]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/mmzone.h
Merge tag 'for-linus' of git://linux-c6x.org/git/projects/linux-c6x-upstreaming
[mirror_ubuntu-artful-kernel.git] / include / linux / mmzone.h
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <generated/bounds.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21
22 /* Free memory management - zoned buddy allocator. */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29
30 /*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coalesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37
38 enum {
39 MIGRATE_UNMOVABLE,
40 MIGRATE_RECLAIMABLE,
41 MIGRATE_MOVABLE,
42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
43 MIGRATE_RESERVE = MIGRATE_PCPTYPES,
44 #ifdef CONFIG_CMA
45 /*
46 * MIGRATE_CMA migration type is designed to mimic the way
47 * ZONE_MOVABLE works. Only movable pages can be allocated
48 * from MIGRATE_CMA pageblocks and page allocator never
49 * implicitly change migration type of MIGRATE_CMA pageblock.
50 *
51 * The way to use it is to change migratetype of a range of
52 * pageblocks to MIGRATE_CMA which can be done by
53 * __free_pageblock_cma() function. What is important though
54 * is that a range of pageblocks must be aligned to
55 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 * a single pageblock.
57 */
58 MIGRATE_CMA,
59 #endif
60 MIGRATE_ISOLATE, /* can't allocate from here */
61 MIGRATE_TYPES
62 };
63
64 #ifdef CONFIG_CMA
65 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
66 # define cma_wmark_pages(zone) zone->min_cma_pages
67 #else
68 # define is_migrate_cma(migratetype) false
69 # define cma_wmark_pages(zone) 0
70 #endif
71
72 #define for_each_migratetype_order(order, type) \
73 for (order = 0; order < MAX_ORDER; order++) \
74 for (type = 0; type < MIGRATE_TYPES; type++)
75
76 extern int page_group_by_mobility_disabled;
77
78 static inline int get_pageblock_migratetype(struct page *page)
79 {
80 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
81 }
82
83 struct free_area {
84 struct list_head free_list[MIGRATE_TYPES];
85 unsigned long nr_free;
86 };
87
88 struct pglist_data;
89
90 /*
91 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
92 * So add a wild amount of padding here to ensure that they fall into separate
93 * cachelines. There are very few zone structures in the machine, so space
94 * consumption is not a concern here.
95 */
96 #if defined(CONFIG_SMP)
97 struct zone_padding {
98 char x[0];
99 } ____cacheline_internodealigned_in_smp;
100 #define ZONE_PADDING(name) struct zone_padding name;
101 #else
102 #define ZONE_PADDING(name)
103 #endif
104
105 enum zone_stat_item {
106 /* First 128 byte cacheline (assuming 64 bit words) */
107 NR_FREE_PAGES,
108 NR_LRU_BASE,
109 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
110 NR_ACTIVE_ANON, /* " " " " " */
111 NR_INACTIVE_FILE, /* " " " " " */
112 NR_ACTIVE_FILE, /* " " " " " */
113 NR_UNEVICTABLE, /* " " " " " */
114 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
115 NR_ANON_PAGES, /* Mapped anonymous pages */
116 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
117 only modified from process context */
118 NR_FILE_PAGES,
119 NR_FILE_DIRTY,
120 NR_WRITEBACK,
121 NR_SLAB_RECLAIMABLE,
122 NR_SLAB_UNRECLAIMABLE,
123 NR_PAGETABLE, /* used for pagetables */
124 NR_KERNEL_STACK,
125 /* Second 128 byte cacheline */
126 NR_UNSTABLE_NFS, /* NFS unstable pages */
127 NR_BOUNCE,
128 NR_VMSCAN_WRITE,
129 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
130 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
131 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
132 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
133 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
134 NR_DIRTIED, /* page dirtyings since bootup */
135 NR_WRITTEN, /* page writings since bootup */
136 #ifdef CONFIG_NUMA
137 NUMA_HIT, /* allocated in intended node */
138 NUMA_MISS, /* allocated in non intended node */
139 NUMA_FOREIGN, /* was intended here, hit elsewhere */
140 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
141 NUMA_LOCAL, /* allocation from local node */
142 NUMA_OTHER, /* allocation from other node */
143 #endif
144 NR_ANON_TRANSPARENT_HUGEPAGES,
145 NR_VM_ZONE_STAT_ITEMS };
146
147 /*
148 * We do arithmetic on the LRU lists in various places in the code,
149 * so it is important to keep the active lists LRU_ACTIVE higher in
150 * the array than the corresponding inactive lists, and to keep
151 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
152 *
153 * This has to be kept in sync with the statistics in zone_stat_item
154 * above and the descriptions in vmstat_text in mm/vmstat.c
155 */
156 #define LRU_BASE 0
157 #define LRU_ACTIVE 1
158 #define LRU_FILE 2
159
160 enum lru_list {
161 LRU_INACTIVE_ANON = LRU_BASE,
162 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
163 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
164 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
165 LRU_UNEVICTABLE,
166 NR_LRU_LISTS
167 };
168
169 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
170
171 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
172
173 static inline int is_file_lru(enum lru_list lru)
174 {
175 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
176 }
177
178 static inline int is_active_lru(enum lru_list lru)
179 {
180 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
181 }
182
183 static inline int is_unevictable_lru(enum lru_list lru)
184 {
185 return (lru == LRU_UNEVICTABLE);
186 }
187
188 struct zone_reclaim_stat {
189 /*
190 * The pageout code in vmscan.c keeps track of how many of the
191 * mem/swap backed and file backed pages are referenced.
192 * The higher the rotated/scanned ratio, the more valuable
193 * that cache is.
194 *
195 * The anon LRU stats live in [0], file LRU stats in [1]
196 */
197 unsigned long recent_rotated[2];
198 unsigned long recent_scanned[2];
199 };
200
201 struct lruvec {
202 struct list_head lists[NR_LRU_LISTS];
203 struct zone_reclaim_stat reclaim_stat;
204 #ifdef CONFIG_MEMCG
205 struct zone *zone;
206 #endif
207 };
208
209 /* Mask used at gathering information at once (see memcontrol.c) */
210 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
211 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
212 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
213
214 /* Isolate clean file */
215 #define ISOLATE_CLEAN ((__force isolate_mode_t)0x1)
216 /* Isolate unmapped file */
217 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
218 /* Isolate for asynchronous migration */
219 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
220
221 /* LRU Isolation modes. */
222 typedef unsigned __bitwise__ isolate_mode_t;
223
224 enum zone_watermarks {
225 WMARK_MIN,
226 WMARK_LOW,
227 WMARK_HIGH,
228 NR_WMARK
229 };
230
231 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
232 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
233 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
234
235 struct per_cpu_pages {
236 int count; /* number of pages in the list */
237 int high; /* high watermark, emptying needed */
238 int batch; /* chunk size for buddy add/remove */
239
240 /* Lists of pages, one per migrate type stored on the pcp-lists */
241 struct list_head lists[MIGRATE_PCPTYPES];
242 };
243
244 struct per_cpu_pageset {
245 struct per_cpu_pages pcp;
246 #ifdef CONFIG_NUMA
247 s8 expire;
248 #endif
249 #ifdef CONFIG_SMP
250 s8 stat_threshold;
251 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
252 #endif
253 };
254
255 #endif /* !__GENERATING_BOUNDS.H */
256
257 enum zone_type {
258 #ifdef CONFIG_ZONE_DMA
259 /*
260 * ZONE_DMA is used when there are devices that are not able
261 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
262 * carve out the portion of memory that is needed for these devices.
263 * The range is arch specific.
264 *
265 * Some examples
266 *
267 * Architecture Limit
268 * ---------------------------
269 * parisc, ia64, sparc <4G
270 * s390 <2G
271 * arm Various
272 * alpha Unlimited or 0-16MB.
273 *
274 * i386, x86_64 and multiple other arches
275 * <16M.
276 */
277 ZONE_DMA,
278 #endif
279 #ifdef CONFIG_ZONE_DMA32
280 /*
281 * x86_64 needs two ZONE_DMAs because it supports devices that are
282 * only able to do DMA to the lower 16M but also 32 bit devices that
283 * can only do DMA areas below 4G.
284 */
285 ZONE_DMA32,
286 #endif
287 /*
288 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
289 * performed on pages in ZONE_NORMAL if the DMA devices support
290 * transfers to all addressable memory.
291 */
292 ZONE_NORMAL,
293 #ifdef CONFIG_HIGHMEM
294 /*
295 * A memory area that is only addressable by the kernel through
296 * mapping portions into its own address space. This is for example
297 * used by i386 to allow the kernel to address the memory beyond
298 * 900MB. The kernel will set up special mappings (page
299 * table entries on i386) for each page that the kernel needs to
300 * access.
301 */
302 ZONE_HIGHMEM,
303 #endif
304 ZONE_MOVABLE,
305 __MAX_NR_ZONES
306 };
307
308 #ifndef __GENERATING_BOUNDS_H
309
310 /*
311 * When a memory allocation must conform to specific limitations (such
312 * as being suitable for DMA) the caller will pass in hints to the
313 * allocator in the gfp_mask, in the zone modifier bits. These bits
314 * are used to select a priority ordered list of memory zones which
315 * match the requested limits. See gfp_zone() in include/linux/gfp.h
316 */
317
318 #if MAX_NR_ZONES < 2
319 #define ZONES_SHIFT 0
320 #elif MAX_NR_ZONES <= 2
321 #define ZONES_SHIFT 1
322 #elif MAX_NR_ZONES <= 4
323 #define ZONES_SHIFT 2
324 #else
325 #error ZONES_SHIFT -- too many zones configured adjust calculation
326 #endif
327
328 struct zone {
329 /* Fields commonly accessed by the page allocator */
330
331 /* zone watermarks, access with *_wmark_pages(zone) macros */
332 unsigned long watermark[NR_WMARK];
333
334 /*
335 * When free pages are below this point, additional steps are taken
336 * when reading the number of free pages to avoid per-cpu counter
337 * drift allowing watermarks to be breached
338 */
339 unsigned long percpu_drift_mark;
340
341 /*
342 * We don't know if the memory that we're going to allocate will be freeable
343 * or/and it will be released eventually, so to avoid totally wasting several
344 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
345 * to run OOM on the lower zones despite there's tons of freeable ram
346 * on the higher zones). This array is recalculated at runtime if the
347 * sysctl_lowmem_reserve_ratio sysctl changes.
348 */
349 unsigned long lowmem_reserve[MAX_NR_ZONES];
350
351 /*
352 * This is a per-zone reserve of pages that should not be
353 * considered dirtyable memory.
354 */
355 unsigned long dirty_balance_reserve;
356
357 #ifdef CONFIG_NUMA
358 int node;
359 /*
360 * zone reclaim becomes active if more unmapped pages exist.
361 */
362 unsigned long min_unmapped_pages;
363 unsigned long min_slab_pages;
364 #endif
365 struct per_cpu_pageset __percpu *pageset;
366 /*
367 * free areas of different sizes
368 */
369 spinlock_t lock;
370 int all_unreclaimable; /* All pages pinned */
371 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
372 /* pfn where the last incremental compaction isolated free pages */
373 unsigned long compact_cached_free_pfn;
374 #endif
375 #ifdef CONFIG_MEMORY_HOTPLUG
376 /* see spanned/present_pages for more description */
377 seqlock_t span_seqlock;
378 #endif
379 #ifdef CONFIG_CMA
380 /*
381 * CMA needs to increase watermark levels during the allocation
382 * process to make sure that the system is not starved.
383 */
384 unsigned long min_cma_pages;
385 #endif
386 struct free_area free_area[MAX_ORDER];
387
388 #ifndef CONFIG_SPARSEMEM
389 /*
390 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
391 * In SPARSEMEM, this map is stored in struct mem_section
392 */
393 unsigned long *pageblock_flags;
394 #endif /* CONFIG_SPARSEMEM */
395
396 #ifdef CONFIG_COMPACTION
397 /*
398 * On compaction failure, 1<<compact_defer_shift compactions
399 * are skipped before trying again. The number attempted since
400 * last failure is tracked with compact_considered.
401 */
402 unsigned int compact_considered;
403 unsigned int compact_defer_shift;
404 int compact_order_failed;
405 #endif
406
407 ZONE_PADDING(_pad1_)
408
409 /* Fields commonly accessed by the page reclaim scanner */
410 spinlock_t lru_lock;
411 struct lruvec lruvec;
412
413 unsigned long pages_scanned; /* since last reclaim */
414 unsigned long flags; /* zone flags, see below */
415
416 /* Zone statistics */
417 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
418
419 /*
420 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
421 * this zone's LRU. Maintained by the pageout code.
422 */
423 unsigned int inactive_ratio;
424
425
426 ZONE_PADDING(_pad2_)
427 /* Rarely used or read-mostly fields */
428
429 /*
430 * wait_table -- the array holding the hash table
431 * wait_table_hash_nr_entries -- the size of the hash table array
432 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
433 *
434 * The purpose of all these is to keep track of the people
435 * waiting for a page to become available and make them
436 * runnable again when possible. The trouble is that this
437 * consumes a lot of space, especially when so few things
438 * wait on pages at a given time. So instead of using
439 * per-page waitqueues, we use a waitqueue hash table.
440 *
441 * The bucket discipline is to sleep on the same queue when
442 * colliding and wake all in that wait queue when removing.
443 * When something wakes, it must check to be sure its page is
444 * truly available, a la thundering herd. The cost of a
445 * collision is great, but given the expected load of the
446 * table, they should be so rare as to be outweighed by the
447 * benefits from the saved space.
448 *
449 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
450 * primary users of these fields, and in mm/page_alloc.c
451 * free_area_init_core() performs the initialization of them.
452 */
453 wait_queue_head_t * wait_table;
454 unsigned long wait_table_hash_nr_entries;
455 unsigned long wait_table_bits;
456
457 /*
458 * Discontig memory support fields.
459 */
460 struct pglist_data *zone_pgdat;
461 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
462 unsigned long zone_start_pfn;
463
464 /*
465 * zone_start_pfn, spanned_pages and present_pages are all
466 * protected by span_seqlock. It is a seqlock because it has
467 * to be read outside of zone->lock, and it is done in the main
468 * allocator path. But, it is written quite infrequently.
469 *
470 * The lock is declared along with zone->lock because it is
471 * frequently read in proximity to zone->lock. It's good to
472 * give them a chance of being in the same cacheline.
473 */
474 unsigned long spanned_pages; /* total size, including holes */
475 unsigned long present_pages; /* amount of memory (excluding holes) */
476
477 /*
478 * rarely used fields:
479 */
480 const char *name;
481 #ifdef CONFIG_MEMORY_ISOLATION
482 /*
483 * the number of MIGRATE_ISOLATE *pageblock*.
484 * We need this for free page counting. Look at zone_watermark_ok_safe.
485 * It's protected by zone->lock
486 */
487 int nr_pageblock_isolate;
488 #endif
489 } ____cacheline_internodealigned_in_smp;
490
491 typedef enum {
492 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
493 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
494 ZONE_CONGESTED, /* zone has many dirty pages backed by
495 * a congested BDI
496 */
497 } zone_flags_t;
498
499 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
500 {
501 set_bit(flag, &zone->flags);
502 }
503
504 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
505 {
506 return test_and_set_bit(flag, &zone->flags);
507 }
508
509 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
510 {
511 clear_bit(flag, &zone->flags);
512 }
513
514 static inline int zone_is_reclaim_congested(const struct zone *zone)
515 {
516 return test_bit(ZONE_CONGESTED, &zone->flags);
517 }
518
519 static inline int zone_is_reclaim_locked(const struct zone *zone)
520 {
521 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
522 }
523
524 static inline int zone_is_oom_locked(const struct zone *zone)
525 {
526 return test_bit(ZONE_OOM_LOCKED, &zone->flags);
527 }
528
529 /*
530 * The "priority" of VM scanning is how much of the queues we will scan in one
531 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
532 * queues ("queue_length >> 12") during an aging round.
533 */
534 #define DEF_PRIORITY 12
535
536 /* Maximum number of zones on a zonelist */
537 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
538
539 #ifdef CONFIG_NUMA
540
541 /*
542 * The NUMA zonelists are doubled because we need zonelists that restrict the
543 * allocations to a single node for GFP_THISNODE.
544 *
545 * [0] : Zonelist with fallback
546 * [1] : No fallback (GFP_THISNODE)
547 */
548 #define MAX_ZONELISTS 2
549
550
551 /*
552 * We cache key information from each zonelist for smaller cache
553 * footprint when scanning for free pages in get_page_from_freelist().
554 *
555 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
556 * up short of free memory since the last time (last_fullzone_zap)
557 * we zero'd fullzones.
558 * 2) The array z_to_n[] maps each zone in the zonelist to its node
559 * id, so that we can efficiently evaluate whether that node is
560 * set in the current tasks mems_allowed.
561 *
562 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
563 * indexed by a zones offset in the zonelist zones[] array.
564 *
565 * The get_page_from_freelist() routine does two scans. During the
566 * first scan, we skip zones whose corresponding bit in 'fullzones'
567 * is set or whose corresponding node in current->mems_allowed (which
568 * comes from cpusets) is not set. During the second scan, we bypass
569 * this zonelist_cache, to ensure we look methodically at each zone.
570 *
571 * Once per second, we zero out (zap) fullzones, forcing us to
572 * reconsider nodes that might have regained more free memory.
573 * The field last_full_zap is the time we last zapped fullzones.
574 *
575 * This mechanism reduces the amount of time we waste repeatedly
576 * reexaming zones for free memory when they just came up low on
577 * memory momentarilly ago.
578 *
579 * The zonelist_cache struct members logically belong in struct
580 * zonelist. However, the mempolicy zonelists constructed for
581 * MPOL_BIND are intentionally variable length (and usually much
582 * shorter). A general purpose mechanism for handling structs with
583 * multiple variable length members is more mechanism than we want
584 * here. We resort to some special case hackery instead.
585 *
586 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
587 * part because they are shorter), so we put the fixed length stuff
588 * at the front of the zonelist struct, ending in a variable length
589 * zones[], as is needed by MPOL_BIND.
590 *
591 * Then we put the optional zonelist cache on the end of the zonelist
592 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
593 * the fixed length portion at the front of the struct. This pointer
594 * both enables us to find the zonelist cache, and in the case of
595 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
596 * to know that the zonelist cache is not there.
597 *
598 * The end result is that struct zonelists come in two flavors:
599 * 1) The full, fixed length version, shown below, and
600 * 2) The custom zonelists for MPOL_BIND.
601 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
602 *
603 * Even though there may be multiple CPU cores on a node modifying
604 * fullzones or last_full_zap in the same zonelist_cache at the same
605 * time, we don't lock it. This is just hint data - if it is wrong now
606 * and then, the allocator will still function, perhaps a bit slower.
607 */
608
609
610 struct zonelist_cache {
611 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
612 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
613 unsigned long last_full_zap; /* when last zap'd (jiffies) */
614 };
615 #else
616 #define MAX_ZONELISTS 1
617 struct zonelist_cache;
618 #endif
619
620 /*
621 * This struct contains information about a zone in a zonelist. It is stored
622 * here to avoid dereferences into large structures and lookups of tables
623 */
624 struct zoneref {
625 struct zone *zone; /* Pointer to actual zone */
626 int zone_idx; /* zone_idx(zoneref->zone) */
627 };
628
629 /*
630 * One allocation request operates on a zonelist. A zonelist
631 * is a list of zones, the first one is the 'goal' of the
632 * allocation, the other zones are fallback zones, in decreasing
633 * priority.
634 *
635 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
636 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
637 * *
638 * To speed the reading of the zonelist, the zonerefs contain the zone index
639 * of the entry being read. Helper functions to access information given
640 * a struct zoneref are
641 *
642 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
643 * zonelist_zone_idx() - Return the index of the zone for an entry
644 * zonelist_node_idx() - Return the index of the node for an entry
645 */
646 struct zonelist {
647 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
648 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
649 #ifdef CONFIG_NUMA
650 struct zonelist_cache zlcache; // optional ...
651 #endif
652 };
653
654 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
655 struct node_active_region {
656 unsigned long start_pfn;
657 unsigned long end_pfn;
658 int nid;
659 };
660 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
661
662 #ifndef CONFIG_DISCONTIGMEM
663 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
664 extern struct page *mem_map;
665 #endif
666
667 /*
668 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
669 * (mostly NUMA machines?) to denote a higher-level memory zone than the
670 * zone denotes.
671 *
672 * On NUMA machines, each NUMA node would have a pg_data_t to describe
673 * it's memory layout.
674 *
675 * Memory statistics and page replacement data structures are maintained on a
676 * per-zone basis.
677 */
678 struct bootmem_data;
679 typedef struct pglist_data {
680 struct zone node_zones[MAX_NR_ZONES];
681 struct zonelist node_zonelists[MAX_ZONELISTS];
682 int nr_zones;
683 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
684 struct page *node_mem_map;
685 #ifdef CONFIG_MEMCG
686 struct page_cgroup *node_page_cgroup;
687 #endif
688 #endif
689 #ifndef CONFIG_NO_BOOTMEM
690 struct bootmem_data *bdata;
691 #endif
692 #ifdef CONFIG_MEMORY_HOTPLUG
693 /*
694 * Must be held any time you expect node_start_pfn, node_present_pages
695 * or node_spanned_pages stay constant. Holding this will also
696 * guarantee that any pfn_valid() stays that way.
697 *
698 * Nests above zone->lock and zone->size_seqlock.
699 */
700 spinlock_t node_size_lock;
701 #endif
702 unsigned long node_start_pfn;
703 unsigned long node_present_pages; /* total number of physical pages */
704 unsigned long node_spanned_pages; /* total size of physical page
705 range, including holes */
706 int node_id;
707 wait_queue_head_t kswapd_wait;
708 wait_queue_head_t pfmemalloc_wait;
709 struct task_struct *kswapd; /* Protected by lock_memory_hotplug() */
710 int kswapd_max_order;
711 enum zone_type classzone_idx;
712 } pg_data_t;
713
714 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
715 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
716 #ifdef CONFIG_FLAT_NODE_MEM_MAP
717 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
718 #else
719 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
720 #endif
721 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
722
723 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
724
725 #define node_end_pfn(nid) ({\
726 pg_data_t *__pgdat = NODE_DATA(nid);\
727 __pgdat->node_start_pfn + __pgdat->node_spanned_pages;\
728 })
729
730 #include <linux/memory_hotplug.h>
731
732 extern struct mutex zonelists_mutex;
733 void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
734 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
735 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
736 int classzone_idx, int alloc_flags);
737 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
738 int classzone_idx, int alloc_flags);
739 enum memmap_context {
740 MEMMAP_EARLY,
741 MEMMAP_HOTPLUG,
742 };
743 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
744 unsigned long size,
745 enum memmap_context context);
746
747 extern void lruvec_init(struct lruvec *lruvec, struct zone *zone);
748
749 static inline struct zone *lruvec_zone(struct lruvec *lruvec)
750 {
751 #ifdef CONFIG_MEMCG
752 return lruvec->zone;
753 #else
754 return container_of(lruvec, struct zone, lruvec);
755 #endif
756 }
757
758 #ifdef CONFIG_HAVE_MEMORY_PRESENT
759 void memory_present(int nid, unsigned long start, unsigned long end);
760 #else
761 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
762 #endif
763
764 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
765 int local_memory_node(int node_id);
766 #else
767 static inline int local_memory_node(int node_id) { return node_id; };
768 #endif
769
770 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
771 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
772 #endif
773
774 /*
775 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
776 */
777 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
778
779 static inline int populated_zone(struct zone *zone)
780 {
781 return (!!zone->present_pages);
782 }
783
784 extern int movable_zone;
785
786 static inline int zone_movable_is_highmem(void)
787 {
788 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
789 return movable_zone == ZONE_HIGHMEM;
790 #else
791 return 0;
792 #endif
793 }
794
795 static inline int is_highmem_idx(enum zone_type idx)
796 {
797 #ifdef CONFIG_HIGHMEM
798 return (idx == ZONE_HIGHMEM ||
799 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
800 #else
801 return 0;
802 #endif
803 }
804
805 static inline int is_normal_idx(enum zone_type idx)
806 {
807 return (idx == ZONE_NORMAL);
808 }
809
810 /**
811 * is_highmem - helper function to quickly check if a struct zone is a
812 * highmem zone or not. This is an attempt to keep references
813 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
814 * @zone - pointer to struct zone variable
815 */
816 static inline int is_highmem(struct zone *zone)
817 {
818 #ifdef CONFIG_HIGHMEM
819 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
820 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
821 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
822 zone_movable_is_highmem());
823 #else
824 return 0;
825 #endif
826 }
827
828 static inline int is_normal(struct zone *zone)
829 {
830 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
831 }
832
833 static inline int is_dma32(struct zone *zone)
834 {
835 #ifdef CONFIG_ZONE_DMA32
836 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
837 #else
838 return 0;
839 #endif
840 }
841
842 static inline int is_dma(struct zone *zone)
843 {
844 #ifdef CONFIG_ZONE_DMA
845 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
846 #else
847 return 0;
848 #endif
849 }
850
851 /* These two functions are used to setup the per zone pages min values */
852 struct ctl_table;
853 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
854 void __user *, size_t *, loff_t *);
855 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
856 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
857 void __user *, size_t *, loff_t *);
858 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
859 void __user *, size_t *, loff_t *);
860 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
861 void __user *, size_t *, loff_t *);
862 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
863 void __user *, size_t *, loff_t *);
864
865 extern int numa_zonelist_order_handler(struct ctl_table *, int,
866 void __user *, size_t *, loff_t *);
867 extern char numa_zonelist_order[];
868 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
869
870 #ifndef CONFIG_NEED_MULTIPLE_NODES
871
872 extern struct pglist_data contig_page_data;
873 #define NODE_DATA(nid) (&contig_page_data)
874 #define NODE_MEM_MAP(nid) mem_map
875
876 #else /* CONFIG_NEED_MULTIPLE_NODES */
877
878 #include <asm/mmzone.h>
879
880 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
881
882 extern struct pglist_data *first_online_pgdat(void);
883 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
884 extern struct zone *next_zone(struct zone *zone);
885
886 /**
887 * for_each_online_pgdat - helper macro to iterate over all online nodes
888 * @pgdat - pointer to a pg_data_t variable
889 */
890 #define for_each_online_pgdat(pgdat) \
891 for (pgdat = first_online_pgdat(); \
892 pgdat; \
893 pgdat = next_online_pgdat(pgdat))
894 /**
895 * for_each_zone - helper macro to iterate over all memory zones
896 * @zone - pointer to struct zone variable
897 *
898 * The user only needs to declare the zone variable, for_each_zone
899 * fills it in.
900 */
901 #define for_each_zone(zone) \
902 for (zone = (first_online_pgdat())->node_zones; \
903 zone; \
904 zone = next_zone(zone))
905
906 #define for_each_populated_zone(zone) \
907 for (zone = (first_online_pgdat())->node_zones; \
908 zone; \
909 zone = next_zone(zone)) \
910 if (!populated_zone(zone)) \
911 ; /* do nothing */ \
912 else
913
914 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
915 {
916 return zoneref->zone;
917 }
918
919 static inline int zonelist_zone_idx(struct zoneref *zoneref)
920 {
921 return zoneref->zone_idx;
922 }
923
924 static inline int zonelist_node_idx(struct zoneref *zoneref)
925 {
926 #ifdef CONFIG_NUMA
927 /* zone_to_nid not available in this context */
928 return zoneref->zone->node;
929 #else
930 return 0;
931 #endif /* CONFIG_NUMA */
932 }
933
934 /**
935 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
936 * @z - The cursor used as a starting point for the search
937 * @highest_zoneidx - The zone index of the highest zone to return
938 * @nodes - An optional nodemask to filter the zonelist with
939 * @zone - The first suitable zone found is returned via this parameter
940 *
941 * This function returns the next zone at or below a given zone index that is
942 * within the allowed nodemask using a cursor as the starting point for the
943 * search. The zoneref returned is a cursor that represents the current zone
944 * being examined. It should be advanced by one before calling
945 * next_zones_zonelist again.
946 */
947 struct zoneref *next_zones_zonelist(struct zoneref *z,
948 enum zone_type highest_zoneidx,
949 nodemask_t *nodes,
950 struct zone **zone);
951
952 /**
953 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
954 * @zonelist - The zonelist to search for a suitable zone
955 * @highest_zoneidx - The zone index of the highest zone to return
956 * @nodes - An optional nodemask to filter the zonelist with
957 * @zone - The first suitable zone found is returned via this parameter
958 *
959 * This function returns the first zone at or below a given zone index that is
960 * within the allowed nodemask. The zoneref returned is a cursor that can be
961 * used to iterate the zonelist with next_zones_zonelist by advancing it by
962 * one before calling.
963 */
964 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
965 enum zone_type highest_zoneidx,
966 nodemask_t *nodes,
967 struct zone **zone)
968 {
969 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
970 zone);
971 }
972
973 /**
974 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
975 * @zone - The current zone in the iterator
976 * @z - The current pointer within zonelist->zones being iterated
977 * @zlist - The zonelist being iterated
978 * @highidx - The zone index of the highest zone to return
979 * @nodemask - Nodemask allowed by the allocator
980 *
981 * This iterator iterates though all zones at or below a given zone index and
982 * within a given nodemask
983 */
984 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
985 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
986 zone; \
987 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
988
989 /**
990 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
991 * @zone - The current zone in the iterator
992 * @z - The current pointer within zonelist->zones being iterated
993 * @zlist - The zonelist being iterated
994 * @highidx - The zone index of the highest zone to return
995 *
996 * This iterator iterates though all zones at or below a given zone index.
997 */
998 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
999 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1000
1001 #ifdef CONFIG_SPARSEMEM
1002 #include <asm/sparsemem.h>
1003 #endif
1004
1005 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1006 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1007 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1008 {
1009 return 0;
1010 }
1011 #endif
1012
1013 #ifdef CONFIG_FLATMEM
1014 #define pfn_to_nid(pfn) (0)
1015 #endif
1016
1017 #ifdef CONFIG_SPARSEMEM
1018
1019 /*
1020 * SECTION_SHIFT #bits space required to store a section #
1021 *
1022 * PA_SECTION_SHIFT physical address to/from section number
1023 * PFN_SECTION_SHIFT pfn to/from section number
1024 */
1025 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
1026
1027 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1028 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1029
1030 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1031
1032 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1033 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1034
1035 #define SECTION_BLOCKFLAGS_BITS \
1036 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1037
1038 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1039 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1040 #endif
1041
1042 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1043 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1044
1045 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1046 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1047
1048 struct page;
1049 struct page_cgroup;
1050 struct mem_section {
1051 /*
1052 * This is, logically, a pointer to an array of struct
1053 * pages. However, it is stored with some other magic.
1054 * (see sparse.c::sparse_init_one_section())
1055 *
1056 * Additionally during early boot we encode node id of
1057 * the location of the section here to guide allocation.
1058 * (see sparse.c::memory_present())
1059 *
1060 * Making it a UL at least makes someone do a cast
1061 * before using it wrong.
1062 */
1063 unsigned long section_mem_map;
1064
1065 /* See declaration of similar field in struct zone */
1066 unsigned long *pageblock_flags;
1067 #ifdef CONFIG_MEMCG
1068 /*
1069 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
1070 * section. (see memcontrol.h/page_cgroup.h about this.)
1071 */
1072 struct page_cgroup *page_cgroup;
1073 unsigned long pad;
1074 #endif
1075 };
1076
1077 #ifdef CONFIG_SPARSEMEM_EXTREME
1078 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1079 #else
1080 #define SECTIONS_PER_ROOT 1
1081 #endif
1082
1083 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1084 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1085 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1086
1087 #ifdef CONFIG_SPARSEMEM_EXTREME
1088 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1089 #else
1090 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1091 #endif
1092
1093 static inline struct mem_section *__nr_to_section(unsigned long nr)
1094 {
1095 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1096 return NULL;
1097 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1098 }
1099 extern int __section_nr(struct mem_section* ms);
1100 extern unsigned long usemap_size(void);
1101
1102 /*
1103 * We use the lower bits of the mem_map pointer to store
1104 * a little bit of information. There should be at least
1105 * 3 bits here due to 32-bit alignment.
1106 */
1107 #define SECTION_MARKED_PRESENT (1UL<<0)
1108 #define SECTION_HAS_MEM_MAP (1UL<<1)
1109 #define SECTION_MAP_LAST_BIT (1UL<<2)
1110 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1111 #define SECTION_NID_SHIFT 2
1112
1113 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1114 {
1115 unsigned long map = section->section_mem_map;
1116 map &= SECTION_MAP_MASK;
1117 return (struct page *)map;
1118 }
1119
1120 static inline int present_section(struct mem_section *section)
1121 {
1122 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1123 }
1124
1125 static inline int present_section_nr(unsigned long nr)
1126 {
1127 return present_section(__nr_to_section(nr));
1128 }
1129
1130 static inline int valid_section(struct mem_section *section)
1131 {
1132 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1133 }
1134
1135 static inline int valid_section_nr(unsigned long nr)
1136 {
1137 return valid_section(__nr_to_section(nr));
1138 }
1139
1140 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1141 {
1142 return __nr_to_section(pfn_to_section_nr(pfn));
1143 }
1144
1145 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1146 static inline int pfn_valid(unsigned long pfn)
1147 {
1148 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1149 return 0;
1150 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1151 }
1152 #endif
1153
1154 static inline int pfn_present(unsigned long pfn)
1155 {
1156 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1157 return 0;
1158 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1159 }
1160
1161 /*
1162 * These are _only_ used during initialisation, therefore they
1163 * can use __initdata ... They could have names to indicate
1164 * this restriction.
1165 */
1166 #ifdef CONFIG_NUMA
1167 #define pfn_to_nid(pfn) \
1168 ({ \
1169 unsigned long __pfn_to_nid_pfn = (pfn); \
1170 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1171 })
1172 #else
1173 #define pfn_to_nid(pfn) (0)
1174 #endif
1175
1176 #define early_pfn_valid(pfn) pfn_valid(pfn)
1177 void sparse_init(void);
1178 #else
1179 #define sparse_init() do {} while (0)
1180 #define sparse_index_init(_sec, _nid) do {} while (0)
1181 #endif /* CONFIG_SPARSEMEM */
1182
1183 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1184 bool early_pfn_in_nid(unsigned long pfn, int nid);
1185 #else
1186 #define early_pfn_in_nid(pfn, nid) (1)
1187 #endif
1188
1189 #ifndef early_pfn_valid
1190 #define early_pfn_valid(pfn) (1)
1191 #endif
1192
1193 void memory_present(int nid, unsigned long start, unsigned long end);
1194 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1195
1196 /*
1197 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1198 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1199 * pfn_valid_within() should be used in this case; we optimise this away
1200 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1201 */
1202 #ifdef CONFIG_HOLES_IN_ZONE
1203 #define pfn_valid_within(pfn) pfn_valid(pfn)
1204 #else
1205 #define pfn_valid_within(pfn) (1)
1206 #endif
1207
1208 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1209 /*
1210 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1211 * associated with it or not. In FLATMEM, it is expected that holes always
1212 * have valid memmap as long as there is valid PFNs either side of the hole.
1213 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1214 * entire section.
1215 *
1216 * However, an ARM, and maybe other embedded architectures in the future
1217 * free memmap backing holes to save memory on the assumption the memmap is
1218 * never used. The page_zone linkages are then broken even though pfn_valid()
1219 * returns true. A walker of the full memmap must then do this additional
1220 * check to ensure the memmap they are looking at is sane by making sure
1221 * the zone and PFN linkages are still valid. This is expensive, but walkers
1222 * of the full memmap are extremely rare.
1223 */
1224 int memmap_valid_within(unsigned long pfn,
1225 struct page *page, struct zone *zone);
1226 #else
1227 static inline int memmap_valid_within(unsigned long pfn,
1228 struct page *page, struct zone *zone)
1229 {
1230 return 1;
1231 }
1232 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1233
1234 #endif /* !__GENERATING_BOUNDS.H */
1235 #endif /* !__ASSEMBLY__ */
1236 #endif /* _LINUX_MMZONE_H */