]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - include/linux/mmzone.h
Merge branch 'master' into upstream
[mirror_ubuntu-zesty-kernel.git] / include / linux / mmzone.h
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifdef __KERNEL__
5 #ifndef __ASSEMBLY__
6
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/cache.h>
11 #include <linux/threads.h>
12 #include <linux/numa.h>
13 #include <linux/init.h>
14 #include <linux/seqlock.h>
15 #include <linux/nodemask.h>
16 #include <asm/atomic.h>
17 #include <asm/page.h>
18
19 /* Free memory management - zoned buddy allocator. */
20 #ifndef CONFIG_FORCE_MAX_ZONEORDER
21 #define MAX_ORDER 11
22 #else
23 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
24 #endif
25 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
26
27 struct free_area {
28 struct list_head free_list;
29 unsigned long nr_free;
30 };
31
32 struct pglist_data;
33
34 /*
35 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
36 * So add a wild amount of padding here to ensure that they fall into separate
37 * cachelines. There are very few zone structures in the machine, so space
38 * consumption is not a concern here.
39 */
40 #if defined(CONFIG_SMP)
41 struct zone_padding {
42 char x[0];
43 } ____cacheline_internodealigned_in_smp;
44 #define ZONE_PADDING(name) struct zone_padding name;
45 #else
46 #define ZONE_PADDING(name)
47 #endif
48
49 struct per_cpu_pages {
50 int count; /* number of pages in the list */
51 int high; /* high watermark, emptying needed */
52 int batch; /* chunk size for buddy add/remove */
53 struct list_head list; /* the list of pages */
54 };
55
56 struct per_cpu_pageset {
57 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
58 #ifdef CONFIG_NUMA
59 unsigned long numa_hit; /* allocated in intended node */
60 unsigned long numa_miss; /* allocated in non intended node */
61 unsigned long numa_foreign; /* was intended here, hit elsewhere */
62 unsigned long interleave_hit; /* interleaver prefered this zone */
63 unsigned long local_node; /* allocation from local node */
64 unsigned long other_node; /* allocation from other node */
65 #endif
66 } ____cacheline_aligned_in_smp;
67
68 #ifdef CONFIG_NUMA
69 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
70 #else
71 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
72 #endif
73
74 #define ZONE_DMA 0
75 #define ZONE_DMA32 1
76 #define ZONE_NORMAL 2
77 #define ZONE_HIGHMEM 3
78
79 #define MAX_NR_ZONES 4 /* Sync this with ZONES_SHIFT */
80 #define ZONES_SHIFT 2 /* ceil(log2(MAX_NR_ZONES)) */
81
82
83 /*
84 * When a memory allocation must conform to specific limitations (such
85 * as being suitable for DMA) the caller will pass in hints to the
86 * allocator in the gfp_mask, in the zone modifier bits. These bits
87 * are used to select a priority ordered list of memory zones which
88 * match the requested limits. GFP_ZONEMASK defines which bits within
89 * the gfp_mask should be considered as zone modifiers. Each valid
90 * combination of the zone modifier bits has a corresponding list
91 * of zones (in node_zonelists). Thus for two zone modifiers there
92 * will be a maximum of 4 (2 ** 2) zonelists, for 3 modifiers there will
93 * be 8 (2 ** 3) zonelists. GFP_ZONETYPES defines the number of possible
94 * combinations of zone modifiers in "zone modifier space".
95 *
96 * As an optimisation any zone modifier bits which are only valid when
97 * no other zone modifier bits are set (loners) should be placed in
98 * the highest order bits of this field. This allows us to reduce the
99 * extent of the zonelists thus saving space. For example in the case
100 * of three zone modifier bits, we could require up to eight zonelists.
101 * If the left most zone modifier is a "loner" then the highest valid
102 * zonelist would be four allowing us to allocate only five zonelists.
103 * Use the first form for GFP_ZONETYPES when the left most bit is not
104 * a "loner", otherwise use the second.
105 *
106 * NOTE! Make sure this matches the zones in <linux/gfp.h>
107 */
108 #define GFP_ZONEMASK 0x07
109 /* #define GFP_ZONETYPES (GFP_ZONEMASK + 1) */ /* Non-loner */
110 #define GFP_ZONETYPES ((GFP_ZONEMASK + 1) / 2 + 1) /* Loner */
111
112 /*
113 * On machines where it is needed (eg PCs) we divide physical memory
114 * into multiple physical zones. On a 32bit PC we have 4 zones:
115 *
116 * ZONE_DMA < 16 MB ISA DMA capable memory
117 * ZONE_DMA32 0 MB Empty
118 * ZONE_NORMAL 16-896 MB direct mapped by the kernel
119 * ZONE_HIGHMEM > 896 MB only page cache and user processes
120 */
121
122 struct zone {
123 /* Fields commonly accessed by the page allocator */
124 unsigned long free_pages;
125 unsigned long pages_min, pages_low, pages_high;
126 /*
127 * We don't know if the memory that we're going to allocate will be freeable
128 * or/and it will be released eventually, so to avoid totally wasting several
129 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
130 * to run OOM on the lower zones despite there's tons of freeable ram
131 * on the higher zones). This array is recalculated at runtime if the
132 * sysctl_lowmem_reserve_ratio sysctl changes.
133 */
134 unsigned long lowmem_reserve[MAX_NR_ZONES];
135
136 #ifdef CONFIG_NUMA
137 struct per_cpu_pageset *pageset[NR_CPUS];
138 #else
139 struct per_cpu_pageset pageset[NR_CPUS];
140 #endif
141 /*
142 * free areas of different sizes
143 */
144 spinlock_t lock;
145 #ifdef CONFIG_MEMORY_HOTPLUG
146 /* see spanned/present_pages for more description */
147 seqlock_t span_seqlock;
148 #endif
149 struct free_area free_area[MAX_ORDER];
150
151
152 ZONE_PADDING(_pad1_)
153
154 /* Fields commonly accessed by the page reclaim scanner */
155 spinlock_t lru_lock;
156 struct list_head active_list;
157 struct list_head inactive_list;
158 unsigned long nr_scan_active;
159 unsigned long nr_scan_inactive;
160 unsigned long nr_active;
161 unsigned long nr_inactive;
162 unsigned long pages_scanned; /* since last reclaim */
163 int all_unreclaimable; /* All pages pinned */
164
165 /* A count of how many reclaimers are scanning this zone */
166 atomic_t reclaim_in_progress;
167
168 /*
169 * timestamp (in jiffies) of the last zone reclaim that did not
170 * result in freeing of pages. This is used to avoid repeated scans
171 * if all memory in the zone is in use.
172 */
173 unsigned long last_unsuccessful_zone_reclaim;
174
175 /*
176 * prev_priority holds the scanning priority for this zone. It is
177 * defined as the scanning priority at which we achieved our reclaim
178 * target at the previous try_to_free_pages() or balance_pgdat()
179 * invokation.
180 *
181 * We use prev_priority as a measure of how much stress page reclaim is
182 * under - it drives the swappiness decision: whether to unmap mapped
183 * pages.
184 *
185 * temp_priority is used to remember the scanning priority at which
186 * this zone was successfully refilled to free_pages == pages_high.
187 *
188 * Access to both these fields is quite racy even on uniprocessor. But
189 * it is expected to average out OK.
190 */
191 int temp_priority;
192 int prev_priority;
193
194
195 ZONE_PADDING(_pad2_)
196 /* Rarely used or read-mostly fields */
197
198 /*
199 * wait_table -- the array holding the hash table
200 * wait_table_size -- the size of the hash table array
201 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
202 *
203 * The purpose of all these is to keep track of the people
204 * waiting for a page to become available and make them
205 * runnable again when possible. The trouble is that this
206 * consumes a lot of space, especially when so few things
207 * wait on pages at a given time. So instead of using
208 * per-page waitqueues, we use a waitqueue hash table.
209 *
210 * The bucket discipline is to sleep on the same queue when
211 * colliding and wake all in that wait queue when removing.
212 * When something wakes, it must check to be sure its page is
213 * truly available, a la thundering herd. The cost of a
214 * collision is great, but given the expected load of the
215 * table, they should be so rare as to be outweighed by the
216 * benefits from the saved space.
217 *
218 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
219 * primary users of these fields, and in mm/page_alloc.c
220 * free_area_init_core() performs the initialization of them.
221 */
222 wait_queue_head_t * wait_table;
223 unsigned long wait_table_size;
224 unsigned long wait_table_bits;
225
226 /*
227 * Discontig memory support fields.
228 */
229 struct pglist_data *zone_pgdat;
230 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
231 unsigned long zone_start_pfn;
232
233 /*
234 * zone_start_pfn, spanned_pages and present_pages are all
235 * protected by span_seqlock. It is a seqlock because it has
236 * to be read outside of zone->lock, and it is done in the main
237 * allocator path. But, it is written quite infrequently.
238 *
239 * The lock is declared along with zone->lock because it is
240 * frequently read in proximity to zone->lock. It's good to
241 * give them a chance of being in the same cacheline.
242 */
243 unsigned long spanned_pages; /* total size, including holes */
244 unsigned long present_pages; /* amount of memory (excluding holes) */
245
246 /*
247 * rarely used fields:
248 */
249 char *name;
250 } ____cacheline_internodealigned_in_smp;
251
252
253 /*
254 * The "priority" of VM scanning is how much of the queues we will scan in one
255 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
256 * queues ("queue_length >> 12") during an aging round.
257 */
258 #define DEF_PRIORITY 12
259
260 /*
261 * One allocation request operates on a zonelist. A zonelist
262 * is a list of zones, the first one is the 'goal' of the
263 * allocation, the other zones are fallback zones, in decreasing
264 * priority.
265 *
266 * Right now a zonelist takes up less than a cacheline. We never
267 * modify it apart from boot-up, and only a few indices are used,
268 * so despite the zonelist table being relatively big, the cache
269 * footprint of this construct is very small.
270 */
271 struct zonelist {
272 struct zone *zones[MAX_NUMNODES * MAX_NR_ZONES + 1]; // NULL delimited
273 };
274
275
276 /*
277 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
278 * (mostly NUMA machines?) to denote a higher-level memory zone than the
279 * zone denotes.
280 *
281 * On NUMA machines, each NUMA node would have a pg_data_t to describe
282 * it's memory layout.
283 *
284 * Memory statistics and page replacement data structures are maintained on a
285 * per-zone basis.
286 */
287 struct bootmem_data;
288 typedef struct pglist_data {
289 struct zone node_zones[MAX_NR_ZONES];
290 struct zonelist node_zonelists[GFP_ZONETYPES];
291 int nr_zones;
292 #ifdef CONFIG_FLAT_NODE_MEM_MAP
293 struct page *node_mem_map;
294 #endif
295 struct bootmem_data *bdata;
296 #ifdef CONFIG_MEMORY_HOTPLUG
297 /*
298 * Must be held any time you expect node_start_pfn, node_present_pages
299 * or node_spanned_pages stay constant. Holding this will also
300 * guarantee that any pfn_valid() stays that way.
301 *
302 * Nests above zone->lock and zone->size_seqlock.
303 */
304 spinlock_t node_size_lock;
305 #endif
306 unsigned long node_start_pfn;
307 unsigned long node_present_pages; /* total number of physical pages */
308 unsigned long node_spanned_pages; /* total size of physical page
309 range, including holes */
310 int node_id;
311 wait_queue_head_t kswapd_wait;
312 struct task_struct *kswapd;
313 int kswapd_max_order;
314 } pg_data_t;
315
316 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
317 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
318 #ifdef CONFIG_FLAT_NODE_MEM_MAP
319 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
320 #else
321 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
322 #endif
323 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
324
325 #include <linux/memory_hotplug.h>
326
327 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
328 unsigned long *free, struct pglist_data *pgdat);
329 void get_zone_counts(unsigned long *active, unsigned long *inactive,
330 unsigned long *free);
331 void build_all_zonelists(void);
332 void wakeup_kswapd(struct zone *zone, int order);
333 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
334 int classzone_idx, int alloc_flags);
335
336 #ifdef CONFIG_HAVE_MEMORY_PRESENT
337 void memory_present(int nid, unsigned long start, unsigned long end);
338 #else
339 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
340 #endif
341
342 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
343 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
344 #endif
345
346 /*
347 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
348 */
349 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
350
351 static inline int populated_zone(struct zone *zone)
352 {
353 return (!!zone->present_pages);
354 }
355
356 static inline int is_highmem_idx(int idx)
357 {
358 return (idx == ZONE_HIGHMEM);
359 }
360
361 static inline int is_normal_idx(int idx)
362 {
363 return (idx == ZONE_NORMAL);
364 }
365
366 /**
367 * is_highmem - helper function to quickly check if a struct zone is a
368 * highmem zone or not. This is an attempt to keep references
369 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
370 * @zone - pointer to struct zone variable
371 */
372 static inline int is_highmem(struct zone *zone)
373 {
374 return zone == zone->zone_pgdat->node_zones + ZONE_HIGHMEM;
375 }
376
377 static inline int is_normal(struct zone *zone)
378 {
379 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
380 }
381
382 static inline int is_dma32(struct zone *zone)
383 {
384 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
385 }
386
387 static inline int is_dma(struct zone *zone)
388 {
389 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
390 }
391
392 /* These two functions are used to setup the per zone pages min values */
393 struct ctl_table;
394 struct file;
395 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
396 void __user *, size_t *, loff_t *);
397 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
398 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
399 void __user *, size_t *, loff_t *);
400 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
401 void __user *, size_t *, loff_t *);
402
403 #include <linux/topology.h>
404 /* Returns the number of the current Node. */
405 #ifndef numa_node_id
406 #define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
407 #endif
408
409 #ifndef CONFIG_NEED_MULTIPLE_NODES
410
411 extern struct pglist_data contig_page_data;
412 #define NODE_DATA(nid) (&contig_page_data)
413 #define NODE_MEM_MAP(nid) mem_map
414 #define MAX_NODES_SHIFT 1
415
416 #else /* CONFIG_NEED_MULTIPLE_NODES */
417
418 #include <asm/mmzone.h>
419
420 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
421
422 extern struct pglist_data *first_online_pgdat(void);
423 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
424 extern struct zone *next_zone(struct zone *zone);
425
426 /**
427 * for_each_pgdat - helper macro to iterate over all nodes
428 * @pgdat - pointer to a pg_data_t variable
429 */
430 #define for_each_online_pgdat(pgdat) \
431 for (pgdat = first_online_pgdat(); \
432 pgdat; \
433 pgdat = next_online_pgdat(pgdat))
434 /**
435 * for_each_zone - helper macro to iterate over all memory zones
436 * @zone - pointer to struct zone variable
437 *
438 * The user only needs to declare the zone variable, for_each_zone
439 * fills it in.
440 */
441 #define for_each_zone(zone) \
442 for (zone = (first_online_pgdat())->node_zones; \
443 zone; \
444 zone = next_zone(zone))
445
446 #ifdef CONFIG_SPARSEMEM
447 #include <asm/sparsemem.h>
448 #endif
449
450 #if BITS_PER_LONG == 32
451 /*
452 * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
453 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
454 */
455 #define FLAGS_RESERVED 9
456
457 #elif BITS_PER_LONG == 64
458 /*
459 * with 64 bit flags field, there's plenty of room.
460 */
461 #define FLAGS_RESERVED 32
462
463 #else
464
465 #error BITS_PER_LONG not defined
466
467 #endif
468
469 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
470 #define early_pfn_to_nid(nid) (0UL)
471 #endif
472
473 #ifdef CONFIG_FLATMEM
474 #define pfn_to_nid(pfn) (0)
475 #endif
476
477 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
478 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
479
480 #ifdef CONFIG_SPARSEMEM
481
482 /*
483 * SECTION_SHIFT #bits space required to store a section #
484 *
485 * PA_SECTION_SHIFT physical address to/from section number
486 * PFN_SECTION_SHIFT pfn to/from section number
487 */
488 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
489
490 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
491 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
492
493 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
494
495 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
496 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
497
498 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
499 #error Allocator MAX_ORDER exceeds SECTION_SIZE
500 #endif
501
502 struct page;
503 struct mem_section {
504 /*
505 * This is, logically, a pointer to an array of struct
506 * pages. However, it is stored with some other magic.
507 * (see sparse.c::sparse_init_one_section())
508 *
509 * Making it a UL at least makes someone do a cast
510 * before using it wrong.
511 */
512 unsigned long section_mem_map;
513 };
514
515 #ifdef CONFIG_SPARSEMEM_EXTREME
516 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
517 #else
518 #define SECTIONS_PER_ROOT 1
519 #endif
520
521 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
522 #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
523 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
524
525 #ifdef CONFIG_SPARSEMEM_EXTREME
526 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
527 #else
528 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
529 #endif
530
531 static inline struct mem_section *__nr_to_section(unsigned long nr)
532 {
533 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
534 return NULL;
535 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
536 }
537 extern int __section_nr(struct mem_section* ms);
538
539 /*
540 * We use the lower bits of the mem_map pointer to store
541 * a little bit of information. There should be at least
542 * 3 bits here due to 32-bit alignment.
543 */
544 #define SECTION_MARKED_PRESENT (1UL<<0)
545 #define SECTION_HAS_MEM_MAP (1UL<<1)
546 #define SECTION_MAP_LAST_BIT (1UL<<2)
547 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
548
549 static inline struct page *__section_mem_map_addr(struct mem_section *section)
550 {
551 unsigned long map = section->section_mem_map;
552 map &= SECTION_MAP_MASK;
553 return (struct page *)map;
554 }
555
556 static inline int valid_section(struct mem_section *section)
557 {
558 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
559 }
560
561 static inline int section_has_mem_map(struct mem_section *section)
562 {
563 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
564 }
565
566 static inline int valid_section_nr(unsigned long nr)
567 {
568 return valid_section(__nr_to_section(nr));
569 }
570
571 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
572 {
573 return __nr_to_section(pfn_to_section_nr(pfn));
574 }
575
576 static inline int pfn_valid(unsigned long pfn)
577 {
578 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
579 return 0;
580 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
581 }
582
583 /*
584 * These are _only_ used during initialisation, therefore they
585 * can use __initdata ... They could have names to indicate
586 * this restriction.
587 */
588 #ifdef CONFIG_NUMA
589 #define pfn_to_nid(pfn) \
590 ({ \
591 unsigned long __pfn_to_nid_pfn = (pfn); \
592 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
593 })
594 #else
595 #define pfn_to_nid(pfn) (0)
596 #endif
597
598 #define early_pfn_valid(pfn) pfn_valid(pfn)
599 void sparse_init(void);
600 #else
601 #define sparse_init() do {} while (0)
602 #define sparse_index_init(_sec, _nid) do {} while (0)
603 #endif /* CONFIG_SPARSEMEM */
604
605 #ifndef early_pfn_valid
606 #define early_pfn_valid(pfn) (1)
607 #endif
608
609 void memory_present(int nid, unsigned long start, unsigned long end);
610 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
611
612 #endif /* !__ASSEMBLY__ */
613 #endif /* __KERNEL__ */
614 #endif /* _LINUX_MMZONE_H */