]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/linux/mtd/rawnand.h
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 500
[mirror_ubuntu-jammy-kernel.git] / include / linux / mtd / rawnand.h
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
4 * Steven J. Hill <sjhill@realitydiluted.com>
5 * Thomas Gleixner <tglx@linutronix.de>
6 *
7 * Info:
8 * Contains standard defines and IDs for NAND flash devices
9 *
10 * Changelog:
11 * See git changelog.
12 */
13 #ifndef __LINUX_MTD_RAWNAND_H
14 #define __LINUX_MTD_RAWNAND_H
15
16 #include <linux/mtd/mtd.h>
17 #include <linux/mtd/flashchip.h>
18 #include <linux/mtd/bbm.h>
19 #include <linux/mtd/jedec.h>
20 #include <linux/mtd/nand.h>
21 #include <linux/mtd/onfi.h>
22 #include <linux/mutex.h>
23 #include <linux/of.h>
24 #include <linux/types.h>
25
26 struct nand_chip;
27
28 /* The maximum number of NAND chips in an array */
29 #define NAND_MAX_CHIPS 8
30
31 /*
32 * Constants for hardware specific CLE/ALE/NCE function
33 *
34 * These are bits which can be or'ed to set/clear multiple
35 * bits in one go.
36 */
37 /* Select the chip by setting nCE to low */
38 #define NAND_NCE 0x01
39 /* Select the command latch by setting CLE to high */
40 #define NAND_CLE 0x02
41 /* Select the address latch by setting ALE to high */
42 #define NAND_ALE 0x04
43
44 #define NAND_CTRL_CLE (NAND_NCE | NAND_CLE)
45 #define NAND_CTRL_ALE (NAND_NCE | NAND_ALE)
46 #define NAND_CTRL_CHANGE 0x80
47
48 /*
49 * Standard NAND flash commands
50 */
51 #define NAND_CMD_READ0 0
52 #define NAND_CMD_READ1 1
53 #define NAND_CMD_RNDOUT 5
54 #define NAND_CMD_PAGEPROG 0x10
55 #define NAND_CMD_READOOB 0x50
56 #define NAND_CMD_ERASE1 0x60
57 #define NAND_CMD_STATUS 0x70
58 #define NAND_CMD_SEQIN 0x80
59 #define NAND_CMD_RNDIN 0x85
60 #define NAND_CMD_READID 0x90
61 #define NAND_CMD_ERASE2 0xd0
62 #define NAND_CMD_PARAM 0xec
63 #define NAND_CMD_GET_FEATURES 0xee
64 #define NAND_CMD_SET_FEATURES 0xef
65 #define NAND_CMD_RESET 0xff
66
67 /* Extended commands for large page devices */
68 #define NAND_CMD_READSTART 0x30
69 #define NAND_CMD_RNDOUTSTART 0xE0
70 #define NAND_CMD_CACHEDPROG 0x15
71
72 #define NAND_CMD_NONE -1
73
74 /* Status bits */
75 #define NAND_STATUS_FAIL 0x01
76 #define NAND_STATUS_FAIL_N1 0x02
77 #define NAND_STATUS_TRUE_READY 0x20
78 #define NAND_STATUS_READY 0x40
79 #define NAND_STATUS_WP 0x80
80
81 #define NAND_DATA_IFACE_CHECK_ONLY -1
82
83 /*
84 * Constants for ECC_MODES
85 */
86 typedef enum {
87 NAND_ECC_NONE,
88 NAND_ECC_SOFT,
89 NAND_ECC_HW,
90 NAND_ECC_HW_SYNDROME,
91 NAND_ECC_HW_OOB_FIRST,
92 NAND_ECC_ON_DIE,
93 } nand_ecc_modes_t;
94
95 enum nand_ecc_algo {
96 NAND_ECC_UNKNOWN,
97 NAND_ECC_HAMMING,
98 NAND_ECC_BCH,
99 NAND_ECC_RS,
100 };
101
102 /*
103 * Constants for Hardware ECC
104 */
105 /* Reset Hardware ECC for read */
106 #define NAND_ECC_READ 0
107 /* Reset Hardware ECC for write */
108 #define NAND_ECC_WRITE 1
109 /* Enable Hardware ECC before syndrome is read back from flash */
110 #define NAND_ECC_READSYN 2
111
112 /*
113 * Enable generic NAND 'page erased' check. This check is only done when
114 * ecc.correct() returns -EBADMSG.
115 * Set this flag if your implementation does not fix bitflips in erased
116 * pages and you want to rely on the default implementation.
117 */
118 #define NAND_ECC_GENERIC_ERASED_CHECK BIT(0)
119 #define NAND_ECC_MAXIMIZE BIT(1)
120
121 /*
122 * When using software implementation of Hamming, we can specify which byte
123 * ordering should be used.
124 */
125 #define NAND_ECC_SOFT_HAMMING_SM_ORDER BIT(2)
126
127 /*
128 * Option constants for bizarre disfunctionality and real
129 * features.
130 */
131 /* Buswidth is 16 bit */
132 #define NAND_BUSWIDTH_16 0x00000002
133 /* Chip has cache program function */
134 #define NAND_CACHEPRG 0x00000008
135 /*
136 * Chip requires ready check on read (for auto-incremented sequential read).
137 * True only for small page devices; large page devices do not support
138 * autoincrement.
139 */
140 #define NAND_NEED_READRDY 0x00000100
141
142 /* Chip does not allow subpage writes */
143 #define NAND_NO_SUBPAGE_WRITE 0x00000200
144
145 /* Device is one of 'new' xD cards that expose fake nand command set */
146 #define NAND_BROKEN_XD 0x00000400
147
148 /* Device behaves just like nand, but is readonly */
149 #define NAND_ROM 0x00000800
150
151 /* Device supports subpage reads */
152 #define NAND_SUBPAGE_READ 0x00001000
153
154 /*
155 * Some MLC NANDs need data scrambling to limit bitflips caused by repeated
156 * patterns.
157 */
158 #define NAND_NEED_SCRAMBLING 0x00002000
159
160 /* Device needs 3rd row address cycle */
161 #define NAND_ROW_ADDR_3 0x00004000
162
163 /* Options valid for Samsung large page devices */
164 #define NAND_SAMSUNG_LP_OPTIONS NAND_CACHEPRG
165
166 /* Macros to identify the above */
167 #define NAND_HAS_SUBPAGE_READ(chip) ((chip->options & NAND_SUBPAGE_READ))
168
169 /*
170 * There are different places where the manufacturer stores the factory bad
171 * block markers.
172 *
173 * Position within the block: Each of these pages needs to be checked for a
174 * bad block marking pattern.
175 */
176 #define NAND_BBM_FIRSTPAGE 0x01000000
177 #define NAND_BBM_SECONDPAGE 0x02000000
178 #define NAND_BBM_LASTPAGE 0x04000000
179
180 /* Position within the OOB data of the page */
181 #define NAND_BBM_POS_SMALL 5
182 #define NAND_BBM_POS_LARGE 0
183
184 /* Non chip related options */
185 /* This option skips the bbt scan during initialization. */
186 #define NAND_SKIP_BBTSCAN 0x00010000
187 /* Chip may not exist, so silence any errors in scan */
188 #define NAND_SCAN_SILENT_NODEV 0x00040000
189 /*
190 * Autodetect nand buswidth with readid/onfi.
191 * This suppose the driver will configure the hardware in 8 bits mode
192 * when calling nand_scan_ident, and update its configuration
193 * before calling nand_scan_tail.
194 */
195 #define NAND_BUSWIDTH_AUTO 0x00080000
196 /*
197 * This option could be defined by controller drivers to protect against
198 * kmap'ed, vmalloc'ed highmem buffers being passed from upper layers
199 */
200 #define NAND_USE_BOUNCE_BUFFER 0x00100000
201
202 /*
203 * In case your controller is implementing ->legacy.cmd_ctrl() and is relying
204 * on the default ->cmdfunc() implementation, you may want to let the core
205 * handle the tCCS delay which is required when a column change (RNDIN or
206 * RNDOUT) is requested.
207 * If your controller already takes care of this delay, you don't need to set
208 * this flag.
209 */
210 #define NAND_WAIT_TCCS 0x00200000
211
212 /*
213 * Whether the NAND chip is a boot medium. Drivers might use this information
214 * to select ECC algorithms supported by the boot ROM or similar restrictions.
215 */
216 #define NAND_IS_BOOT_MEDIUM 0x00400000
217
218 /*
219 * Do not try to tweak the timings at runtime. This is needed when the
220 * controller initializes the timings on itself or when it relies on
221 * configuration done by the bootloader.
222 */
223 #define NAND_KEEP_TIMINGS 0x00800000
224
225 /* Cell info constants */
226 #define NAND_CI_CHIPNR_MSK 0x03
227 #define NAND_CI_CELLTYPE_MSK 0x0C
228 #define NAND_CI_CELLTYPE_SHIFT 2
229
230 /**
231 * struct nand_parameters - NAND generic parameters from the parameter page
232 * @model: Model name
233 * @supports_set_get_features: The NAND chip supports setting/getting features
234 * @set_feature_list: Bitmap of features that can be set
235 * @get_feature_list: Bitmap of features that can be get
236 * @onfi: ONFI specific parameters
237 */
238 struct nand_parameters {
239 /* Generic parameters */
240 const char *model;
241 bool supports_set_get_features;
242 DECLARE_BITMAP(set_feature_list, ONFI_FEATURE_NUMBER);
243 DECLARE_BITMAP(get_feature_list, ONFI_FEATURE_NUMBER);
244
245 /* ONFI parameters */
246 struct onfi_params *onfi;
247 };
248
249 /* The maximum expected count of bytes in the NAND ID sequence */
250 #define NAND_MAX_ID_LEN 8
251
252 /**
253 * struct nand_id - NAND id structure
254 * @data: buffer containing the id bytes.
255 * @len: ID length.
256 */
257 struct nand_id {
258 u8 data[NAND_MAX_ID_LEN];
259 int len;
260 };
261
262 /**
263 * struct nand_ecc_step_info - ECC step information of ECC engine
264 * @stepsize: data bytes per ECC step
265 * @strengths: array of supported strengths
266 * @nstrengths: number of supported strengths
267 */
268 struct nand_ecc_step_info {
269 int stepsize;
270 const int *strengths;
271 int nstrengths;
272 };
273
274 /**
275 * struct nand_ecc_caps - capability of ECC engine
276 * @stepinfos: array of ECC step information
277 * @nstepinfos: number of ECC step information
278 * @calc_ecc_bytes: driver's hook to calculate ECC bytes per step
279 */
280 struct nand_ecc_caps {
281 const struct nand_ecc_step_info *stepinfos;
282 int nstepinfos;
283 int (*calc_ecc_bytes)(int step_size, int strength);
284 };
285
286 /* a shorthand to generate struct nand_ecc_caps with only one ECC stepsize */
287 #define NAND_ECC_CAPS_SINGLE(__name, __calc, __step, ...) \
288 static const int __name##_strengths[] = { __VA_ARGS__ }; \
289 static const struct nand_ecc_step_info __name##_stepinfo = { \
290 .stepsize = __step, \
291 .strengths = __name##_strengths, \
292 .nstrengths = ARRAY_SIZE(__name##_strengths), \
293 }; \
294 static const struct nand_ecc_caps __name = { \
295 .stepinfos = &__name##_stepinfo, \
296 .nstepinfos = 1, \
297 .calc_ecc_bytes = __calc, \
298 }
299
300 /**
301 * struct nand_ecc_ctrl - Control structure for ECC
302 * @mode: ECC mode
303 * @algo: ECC algorithm
304 * @steps: number of ECC steps per page
305 * @size: data bytes per ECC step
306 * @bytes: ECC bytes per step
307 * @strength: max number of correctible bits per ECC step
308 * @total: total number of ECC bytes per page
309 * @prepad: padding information for syndrome based ECC generators
310 * @postpad: padding information for syndrome based ECC generators
311 * @options: ECC specific options (see NAND_ECC_XXX flags defined above)
312 * @priv: pointer to private ECC control data
313 * @calc_buf: buffer for calculated ECC, size is oobsize.
314 * @code_buf: buffer for ECC read from flash, size is oobsize.
315 * @hwctl: function to control hardware ECC generator. Must only
316 * be provided if an hardware ECC is available
317 * @calculate: function for ECC calculation or readback from ECC hardware
318 * @correct: function for ECC correction, matching to ECC generator (sw/hw).
319 * Should return a positive number representing the number of
320 * corrected bitflips, -EBADMSG if the number of bitflips exceed
321 * ECC strength, or any other error code if the error is not
322 * directly related to correction.
323 * If -EBADMSG is returned the input buffers should be left
324 * untouched.
325 * @read_page_raw: function to read a raw page without ECC. This function
326 * should hide the specific layout used by the ECC
327 * controller and always return contiguous in-band and
328 * out-of-band data even if they're not stored
329 * contiguously on the NAND chip (e.g.
330 * NAND_ECC_HW_SYNDROME interleaves in-band and
331 * out-of-band data).
332 * @write_page_raw: function to write a raw page without ECC. This function
333 * should hide the specific layout used by the ECC
334 * controller and consider the passed data as contiguous
335 * in-band and out-of-band data. ECC controller is
336 * responsible for doing the appropriate transformations
337 * to adapt to its specific layout (e.g.
338 * NAND_ECC_HW_SYNDROME interleaves in-band and
339 * out-of-band data).
340 * @read_page: function to read a page according to the ECC generator
341 * requirements; returns maximum number of bitflips corrected in
342 * any single ECC step, -EIO hw error
343 * @read_subpage: function to read parts of the page covered by ECC;
344 * returns same as read_page()
345 * @write_subpage: function to write parts of the page covered by ECC.
346 * @write_page: function to write a page according to the ECC generator
347 * requirements.
348 * @write_oob_raw: function to write chip OOB data without ECC
349 * @read_oob_raw: function to read chip OOB data without ECC
350 * @read_oob: function to read chip OOB data
351 * @write_oob: function to write chip OOB data
352 */
353 struct nand_ecc_ctrl {
354 nand_ecc_modes_t mode;
355 enum nand_ecc_algo algo;
356 int steps;
357 int size;
358 int bytes;
359 int total;
360 int strength;
361 int prepad;
362 int postpad;
363 unsigned int options;
364 void *priv;
365 u8 *calc_buf;
366 u8 *code_buf;
367 void (*hwctl)(struct nand_chip *chip, int mode);
368 int (*calculate)(struct nand_chip *chip, const uint8_t *dat,
369 uint8_t *ecc_code);
370 int (*correct)(struct nand_chip *chip, uint8_t *dat, uint8_t *read_ecc,
371 uint8_t *calc_ecc);
372 int (*read_page_raw)(struct nand_chip *chip, uint8_t *buf,
373 int oob_required, int page);
374 int (*write_page_raw)(struct nand_chip *chip, const uint8_t *buf,
375 int oob_required, int page);
376 int (*read_page)(struct nand_chip *chip, uint8_t *buf,
377 int oob_required, int page);
378 int (*read_subpage)(struct nand_chip *chip, uint32_t offs,
379 uint32_t len, uint8_t *buf, int page);
380 int (*write_subpage)(struct nand_chip *chip, uint32_t offset,
381 uint32_t data_len, const uint8_t *data_buf,
382 int oob_required, int page);
383 int (*write_page)(struct nand_chip *chip, const uint8_t *buf,
384 int oob_required, int page);
385 int (*write_oob_raw)(struct nand_chip *chip, int page);
386 int (*read_oob_raw)(struct nand_chip *chip, int page);
387 int (*read_oob)(struct nand_chip *chip, int page);
388 int (*write_oob)(struct nand_chip *chip, int page);
389 };
390
391 /**
392 * struct nand_sdr_timings - SDR NAND chip timings
393 *
394 * This struct defines the timing requirements of a SDR NAND chip.
395 * These information can be found in every NAND datasheets and the timings
396 * meaning are described in the ONFI specifications:
397 * www.onfi.org/~/media/ONFI/specs/onfi_3_1_spec.pdf (chapter 4.15 Timing
398 * Parameters)
399 *
400 * All these timings are expressed in picoseconds.
401 *
402 * @tBERS_max: Block erase time
403 * @tCCS_min: Change column setup time
404 * @tPROG_max: Page program time
405 * @tR_max: Page read time
406 * @tALH_min: ALE hold time
407 * @tADL_min: ALE to data loading time
408 * @tALS_min: ALE setup time
409 * @tAR_min: ALE to RE# delay
410 * @tCEA_max: CE# access time
411 * @tCEH_min: CE# high hold time
412 * @tCH_min: CE# hold time
413 * @tCHZ_max: CE# high to output hi-Z
414 * @tCLH_min: CLE hold time
415 * @tCLR_min: CLE to RE# delay
416 * @tCLS_min: CLE setup time
417 * @tCOH_min: CE# high to output hold
418 * @tCS_min: CE# setup time
419 * @tDH_min: Data hold time
420 * @tDS_min: Data setup time
421 * @tFEAT_max: Busy time for Set Features and Get Features
422 * @tIR_min: Output hi-Z to RE# low
423 * @tITC_max: Interface and Timing Mode Change time
424 * @tRC_min: RE# cycle time
425 * @tREA_max: RE# access time
426 * @tREH_min: RE# high hold time
427 * @tRHOH_min: RE# high to output hold
428 * @tRHW_min: RE# high to WE# low
429 * @tRHZ_max: RE# high to output hi-Z
430 * @tRLOH_min: RE# low to output hold
431 * @tRP_min: RE# pulse width
432 * @tRR_min: Ready to RE# low (data only)
433 * @tRST_max: Device reset time, measured from the falling edge of R/B# to the
434 * rising edge of R/B#.
435 * @tWB_max: WE# high to SR[6] low
436 * @tWC_min: WE# cycle time
437 * @tWH_min: WE# high hold time
438 * @tWHR_min: WE# high to RE# low
439 * @tWP_min: WE# pulse width
440 * @tWW_min: WP# transition to WE# low
441 */
442 struct nand_sdr_timings {
443 u64 tBERS_max;
444 u32 tCCS_min;
445 u64 tPROG_max;
446 u64 tR_max;
447 u32 tALH_min;
448 u32 tADL_min;
449 u32 tALS_min;
450 u32 tAR_min;
451 u32 tCEA_max;
452 u32 tCEH_min;
453 u32 tCH_min;
454 u32 tCHZ_max;
455 u32 tCLH_min;
456 u32 tCLR_min;
457 u32 tCLS_min;
458 u32 tCOH_min;
459 u32 tCS_min;
460 u32 tDH_min;
461 u32 tDS_min;
462 u32 tFEAT_max;
463 u32 tIR_min;
464 u32 tITC_max;
465 u32 tRC_min;
466 u32 tREA_max;
467 u32 tREH_min;
468 u32 tRHOH_min;
469 u32 tRHW_min;
470 u32 tRHZ_max;
471 u32 tRLOH_min;
472 u32 tRP_min;
473 u32 tRR_min;
474 u64 tRST_max;
475 u32 tWB_max;
476 u32 tWC_min;
477 u32 tWH_min;
478 u32 tWHR_min;
479 u32 tWP_min;
480 u32 tWW_min;
481 };
482
483 /**
484 * enum nand_data_interface_type - NAND interface timing type
485 * @NAND_SDR_IFACE: Single Data Rate interface
486 */
487 enum nand_data_interface_type {
488 NAND_SDR_IFACE,
489 };
490
491 /**
492 * struct nand_data_interface - NAND interface timing
493 * @type: type of the timing
494 * @timings: The timing, type according to @type
495 * @timings.sdr: Use it when @type is %NAND_SDR_IFACE.
496 */
497 struct nand_data_interface {
498 enum nand_data_interface_type type;
499 union {
500 struct nand_sdr_timings sdr;
501 } timings;
502 };
503
504 /**
505 * nand_get_sdr_timings - get SDR timing from data interface
506 * @conf: The data interface
507 */
508 static inline const struct nand_sdr_timings *
509 nand_get_sdr_timings(const struct nand_data_interface *conf)
510 {
511 if (conf->type != NAND_SDR_IFACE)
512 return ERR_PTR(-EINVAL);
513
514 return &conf->timings.sdr;
515 }
516
517 /**
518 * struct nand_op_cmd_instr - Definition of a command instruction
519 * @opcode: the command to issue in one cycle
520 */
521 struct nand_op_cmd_instr {
522 u8 opcode;
523 };
524
525 /**
526 * struct nand_op_addr_instr - Definition of an address instruction
527 * @naddrs: length of the @addrs array
528 * @addrs: array containing the address cycles to issue
529 */
530 struct nand_op_addr_instr {
531 unsigned int naddrs;
532 const u8 *addrs;
533 };
534
535 /**
536 * struct nand_op_data_instr - Definition of a data instruction
537 * @len: number of data bytes to move
538 * @buf: buffer to fill
539 * @buf.in: buffer to fill when reading from the NAND chip
540 * @buf.out: buffer to read from when writing to the NAND chip
541 * @force_8bit: force 8-bit access
542 *
543 * Please note that "in" and "out" are inverted from the ONFI specification
544 * and are from the controller perspective, so a "in" is a read from the NAND
545 * chip while a "out" is a write to the NAND chip.
546 */
547 struct nand_op_data_instr {
548 unsigned int len;
549 union {
550 void *in;
551 const void *out;
552 } buf;
553 bool force_8bit;
554 };
555
556 /**
557 * struct nand_op_waitrdy_instr - Definition of a wait ready instruction
558 * @timeout_ms: maximum delay while waiting for the ready/busy pin in ms
559 */
560 struct nand_op_waitrdy_instr {
561 unsigned int timeout_ms;
562 };
563
564 /**
565 * enum nand_op_instr_type - Definition of all instruction types
566 * @NAND_OP_CMD_INSTR: command instruction
567 * @NAND_OP_ADDR_INSTR: address instruction
568 * @NAND_OP_DATA_IN_INSTR: data in instruction
569 * @NAND_OP_DATA_OUT_INSTR: data out instruction
570 * @NAND_OP_WAITRDY_INSTR: wait ready instruction
571 */
572 enum nand_op_instr_type {
573 NAND_OP_CMD_INSTR,
574 NAND_OP_ADDR_INSTR,
575 NAND_OP_DATA_IN_INSTR,
576 NAND_OP_DATA_OUT_INSTR,
577 NAND_OP_WAITRDY_INSTR,
578 };
579
580 /**
581 * struct nand_op_instr - Instruction object
582 * @type: the instruction type
583 * @ctx: extra data associated to the instruction. You'll have to use the
584 * appropriate element depending on @type
585 * @ctx.cmd: use it if @type is %NAND_OP_CMD_INSTR
586 * @ctx.addr: use it if @type is %NAND_OP_ADDR_INSTR
587 * @ctx.data: use it if @type is %NAND_OP_DATA_IN_INSTR
588 * or %NAND_OP_DATA_OUT_INSTR
589 * @ctx.waitrdy: use it if @type is %NAND_OP_WAITRDY_INSTR
590 * @delay_ns: delay the controller should apply after the instruction has been
591 * issued on the bus. Most modern controllers have internal timings
592 * control logic, and in this case, the controller driver can ignore
593 * this field.
594 */
595 struct nand_op_instr {
596 enum nand_op_instr_type type;
597 union {
598 struct nand_op_cmd_instr cmd;
599 struct nand_op_addr_instr addr;
600 struct nand_op_data_instr data;
601 struct nand_op_waitrdy_instr waitrdy;
602 } ctx;
603 unsigned int delay_ns;
604 };
605
606 /*
607 * Special handling must be done for the WAITRDY timeout parameter as it usually
608 * is either tPROG (after a prog), tR (before a read), tRST (during a reset) or
609 * tBERS (during an erase) which all of them are u64 values that cannot be
610 * divided by usual kernel macros and must be handled with the special
611 * DIV_ROUND_UP_ULL() macro.
612 *
613 * Cast to type of dividend is needed here to guarantee that the result won't
614 * be an unsigned long long when the dividend is an unsigned long (or smaller),
615 * which is what the compiler does when it sees ternary operator with 2
616 * different return types (picks the largest type to make sure there's no
617 * loss).
618 */
619 #define __DIVIDE(dividend, divisor) ({ \
620 (__typeof__(dividend))(sizeof(dividend) <= sizeof(unsigned long) ? \
621 DIV_ROUND_UP(dividend, divisor) : \
622 DIV_ROUND_UP_ULL(dividend, divisor)); \
623 })
624 #define PSEC_TO_NSEC(x) __DIVIDE(x, 1000)
625 #define PSEC_TO_MSEC(x) __DIVIDE(x, 1000000000)
626
627 #define NAND_OP_CMD(id, ns) \
628 { \
629 .type = NAND_OP_CMD_INSTR, \
630 .ctx.cmd.opcode = id, \
631 .delay_ns = ns, \
632 }
633
634 #define NAND_OP_ADDR(ncycles, cycles, ns) \
635 { \
636 .type = NAND_OP_ADDR_INSTR, \
637 .ctx.addr = { \
638 .naddrs = ncycles, \
639 .addrs = cycles, \
640 }, \
641 .delay_ns = ns, \
642 }
643
644 #define NAND_OP_DATA_IN(l, b, ns) \
645 { \
646 .type = NAND_OP_DATA_IN_INSTR, \
647 .ctx.data = { \
648 .len = l, \
649 .buf.in = b, \
650 .force_8bit = false, \
651 }, \
652 .delay_ns = ns, \
653 }
654
655 #define NAND_OP_DATA_OUT(l, b, ns) \
656 { \
657 .type = NAND_OP_DATA_OUT_INSTR, \
658 .ctx.data = { \
659 .len = l, \
660 .buf.out = b, \
661 .force_8bit = false, \
662 }, \
663 .delay_ns = ns, \
664 }
665
666 #define NAND_OP_8BIT_DATA_IN(l, b, ns) \
667 { \
668 .type = NAND_OP_DATA_IN_INSTR, \
669 .ctx.data = { \
670 .len = l, \
671 .buf.in = b, \
672 .force_8bit = true, \
673 }, \
674 .delay_ns = ns, \
675 }
676
677 #define NAND_OP_8BIT_DATA_OUT(l, b, ns) \
678 { \
679 .type = NAND_OP_DATA_OUT_INSTR, \
680 .ctx.data = { \
681 .len = l, \
682 .buf.out = b, \
683 .force_8bit = true, \
684 }, \
685 .delay_ns = ns, \
686 }
687
688 #define NAND_OP_WAIT_RDY(tout_ms, ns) \
689 { \
690 .type = NAND_OP_WAITRDY_INSTR, \
691 .ctx.waitrdy.timeout_ms = tout_ms, \
692 .delay_ns = ns, \
693 }
694
695 /**
696 * struct nand_subop - a sub operation
697 * @instrs: array of instructions
698 * @ninstrs: length of the @instrs array
699 * @first_instr_start_off: offset to start from for the first instruction
700 * of the sub-operation
701 * @last_instr_end_off: offset to end at (excluded) for the last instruction
702 * of the sub-operation
703 *
704 * Both @first_instr_start_off and @last_instr_end_off only apply to data or
705 * address instructions.
706 *
707 * When an operation cannot be handled as is by the NAND controller, it will
708 * be split by the parser into sub-operations which will be passed to the
709 * controller driver.
710 */
711 struct nand_subop {
712 const struct nand_op_instr *instrs;
713 unsigned int ninstrs;
714 unsigned int first_instr_start_off;
715 unsigned int last_instr_end_off;
716 };
717
718 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
719 unsigned int op_id);
720 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
721 unsigned int op_id);
722 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
723 unsigned int op_id);
724 unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
725 unsigned int op_id);
726
727 /**
728 * struct nand_op_parser_addr_constraints - Constraints for address instructions
729 * @maxcycles: maximum number of address cycles the controller can issue in a
730 * single step
731 */
732 struct nand_op_parser_addr_constraints {
733 unsigned int maxcycles;
734 };
735
736 /**
737 * struct nand_op_parser_data_constraints - Constraints for data instructions
738 * @maxlen: maximum data length that the controller can handle in a single step
739 */
740 struct nand_op_parser_data_constraints {
741 unsigned int maxlen;
742 };
743
744 /**
745 * struct nand_op_parser_pattern_elem - One element of a pattern
746 * @type: the instructuction type
747 * @optional: whether this element of the pattern is optional or mandatory
748 * @ctx: address or data constraint
749 * @ctx.addr: address constraint (number of cycles)
750 * @ctx.data: data constraint (data length)
751 */
752 struct nand_op_parser_pattern_elem {
753 enum nand_op_instr_type type;
754 bool optional;
755 union {
756 struct nand_op_parser_addr_constraints addr;
757 struct nand_op_parser_data_constraints data;
758 } ctx;
759 };
760
761 #define NAND_OP_PARSER_PAT_CMD_ELEM(_opt) \
762 { \
763 .type = NAND_OP_CMD_INSTR, \
764 .optional = _opt, \
765 }
766
767 #define NAND_OP_PARSER_PAT_ADDR_ELEM(_opt, _maxcycles) \
768 { \
769 .type = NAND_OP_ADDR_INSTR, \
770 .optional = _opt, \
771 .ctx.addr.maxcycles = _maxcycles, \
772 }
773
774 #define NAND_OP_PARSER_PAT_DATA_IN_ELEM(_opt, _maxlen) \
775 { \
776 .type = NAND_OP_DATA_IN_INSTR, \
777 .optional = _opt, \
778 .ctx.data.maxlen = _maxlen, \
779 }
780
781 #define NAND_OP_PARSER_PAT_DATA_OUT_ELEM(_opt, _maxlen) \
782 { \
783 .type = NAND_OP_DATA_OUT_INSTR, \
784 .optional = _opt, \
785 .ctx.data.maxlen = _maxlen, \
786 }
787
788 #define NAND_OP_PARSER_PAT_WAITRDY_ELEM(_opt) \
789 { \
790 .type = NAND_OP_WAITRDY_INSTR, \
791 .optional = _opt, \
792 }
793
794 /**
795 * struct nand_op_parser_pattern - NAND sub-operation pattern descriptor
796 * @elems: array of pattern elements
797 * @nelems: number of pattern elements in @elems array
798 * @exec: the function that will issue a sub-operation
799 *
800 * A pattern is a list of elements, each element reprensenting one instruction
801 * with its constraints. The pattern itself is used by the core to match NAND
802 * chip operation with NAND controller operations.
803 * Once a match between a NAND controller operation pattern and a NAND chip
804 * operation (or a sub-set of a NAND operation) is found, the pattern ->exec()
805 * hook is called so that the controller driver can issue the operation on the
806 * bus.
807 *
808 * Controller drivers should declare as many patterns as they support and pass
809 * this list of patterns (created with the help of the following macro) to
810 * the nand_op_parser_exec_op() helper.
811 */
812 struct nand_op_parser_pattern {
813 const struct nand_op_parser_pattern_elem *elems;
814 unsigned int nelems;
815 int (*exec)(struct nand_chip *chip, const struct nand_subop *subop);
816 };
817
818 #define NAND_OP_PARSER_PATTERN(_exec, ...) \
819 { \
820 .exec = _exec, \
821 .elems = (const struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }, \
822 .nelems = sizeof((struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }) / \
823 sizeof(struct nand_op_parser_pattern_elem), \
824 }
825
826 /**
827 * struct nand_op_parser - NAND controller operation parser descriptor
828 * @patterns: array of supported patterns
829 * @npatterns: length of the @patterns array
830 *
831 * The parser descriptor is just an array of supported patterns which will be
832 * iterated by nand_op_parser_exec_op() everytime it tries to execute an
833 * NAND operation (or tries to determine if a specific operation is supported).
834 *
835 * It is worth mentioning that patterns will be tested in their declaration
836 * order, and the first match will be taken, so it's important to order patterns
837 * appropriately so that simple/inefficient patterns are placed at the end of
838 * the list. Usually, this is where you put single instruction patterns.
839 */
840 struct nand_op_parser {
841 const struct nand_op_parser_pattern *patterns;
842 unsigned int npatterns;
843 };
844
845 #define NAND_OP_PARSER(...) \
846 { \
847 .patterns = (const struct nand_op_parser_pattern[]) { __VA_ARGS__ }, \
848 .npatterns = sizeof((struct nand_op_parser_pattern[]) { __VA_ARGS__ }) / \
849 sizeof(struct nand_op_parser_pattern), \
850 }
851
852 /**
853 * struct nand_operation - NAND operation descriptor
854 * @cs: the CS line to select for this NAND operation
855 * @instrs: array of instructions to execute
856 * @ninstrs: length of the @instrs array
857 *
858 * The actual operation structure that will be passed to chip->exec_op().
859 */
860 struct nand_operation {
861 unsigned int cs;
862 const struct nand_op_instr *instrs;
863 unsigned int ninstrs;
864 };
865
866 #define NAND_OPERATION(_cs, _instrs) \
867 { \
868 .cs = _cs, \
869 .instrs = _instrs, \
870 .ninstrs = ARRAY_SIZE(_instrs), \
871 }
872
873 int nand_op_parser_exec_op(struct nand_chip *chip,
874 const struct nand_op_parser *parser,
875 const struct nand_operation *op, bool check_only);
876
877 /**
878 * struct nand_controller_ops - Controller operations
879 *
880 * @attach_chip: this method is called after the NAND detection phase after
881 * flash ID and MTD fields such as erase size, page size and OOB
882 * size have been set up. ECC requirements are available if
883 * provided by the NAND chip or device tree. Typically used to
884 * choose the appropriate ECC configuration and allocate
885 * associated resources.
886 * This hook is optional.
887 * @detach_chip: free all resources allocated/claimed in
888 * nand_controller_ops->attach_chip().
889 * This hook is optional.
890 * @exec_op: controller specific method to execute NAND operations.
891 * This method replaces chip->legacy.cmdfunc(),
892 * chip->legacy.{read,write}_{buf,byte,word}(),
893 * chip->legacy.dev_ready() and chip->legacy.waifunc().
894 * @setup_data_interface: setup the data interface and timing. If
895 * chipnr is set to %NAND_DATA_IFACE_CHECK_ONLY this
896 * means the configuration should not be applied but
897 * only checked.
898 * This hook is optional.
899 */
900 struct nand_controller_ops {
901 int (*attach_chip)(struct nand_chip *chip);
902 void (*detach_chip)(struct nand_chip *chip);
903 int (*exec_op)(struct nand_chip *chip,
904 const struct nand_operation *op,
905 bool check_only);
906 int (*setup_data_interface)(struct nand_chip *chip, int chipnr,
907 const struct nand_data_interface *conf);
908 };
909
910 /**
911 * struct nand_controller - Structure used to describe a NAND controller
912 *
913 * @lock: lock used to serialize accesses to the NAND controller
914 * @ops: NAND controller operations.
915 */
916 struct nand_controller {
917 struct mutex lock;
918 const struct nand_controller_ops *ops;
919 };
920
921 static inline void nand_controller_init(struct nand_controller *nfc)
922 {
923 mutex_init(&nfc->lock);
924 }
925
926 /**
927 * struct nand_legacy - NAND chip legacy fields/hooks
928 * @IO_ADDR_R: address to read the 8 I/O lines of the flash device
929 * @IO_ADDR_W: address to write the 8 I/O lines of the flash device
930 * @select_chip: select/deselect a specific target/die
931 * @read_byte: read one byte from the chip
932 * @write_byte: write a single byte to the chip on the low 8 I/O lines
933 * @write_buf: write data from the buffer to the chip
934 * @read_buf: read data from the chip into the buffer
935 * @cmd_ctrl: hardware specific function for controlling ALE/CLE/nCE. Also used
936 * to write command and address
937 * @cmdfunc: hardware specific function for writing commands to the chip.
938 * @dev_ready: hardware specific function for accessing device ready/busy line.
939 * If set to NULL no access to ready/busy is available and the
940 * ready/busy information is read from the chip status register.
941 * @waitfunc: hardware specific function for wait on ready.
942 * @block_bad: check if a block is bad, using OOB markers
943 * @block_markbad: mark a block bad
944 * @set_features: set the NAND chip features
945 * @get_features: get the NAND chip features
946 * @chip_delay: chip dependent delay for transferring data from array to read
947 * regs (tR).
948 * @dummy_controller: dummy controller implementation for drivers that can
949 * only control a single chip
950 *
951 * If you look at this structure you're already wrong. These fields/hooks are
952 * all deprecated.
953 */
954 struct nand_legacy {
955 void __iomem *IO_ADDR_R;
956 void __iomem *IO_ADDR_W;
957 void (*select_chip)(struct nand_chip *chip, int cs);
958 u8 (*read_byte)(struct nand_chip *chip);
959 void (*write_byte)(struct nand_chip *chip, u8 byte);
960 void (*write_buf)(struct nand_chip *chip, const u8 *buf, int len);
961 void (*read_buf)(struct nand_chip *chip, u8 *buf, int len);
962 void (*cmd_ctrl)(struct nand_chip *chip, int dat, unsigned int ctrl);
963 void (*cmdfunc)(struct nand_chip *chip, unsigned command, int column,
964 int page_addr);
965 int (*dev_ready)(struct nand_chip *chip);
966 int (*waitfunc)(struct nand_chip *chip);
967 int (*block_bad)(struct nand_chip *chip, loff_t ofs);
968 int (*block_markbad)(struct nand_chip *chip, loff_t ofs);
969 int (*set_features)(struct nand_chip *chip, int feature_addr,
970 u8 *subfeature_para);
971 int (*get_features)(struct nand_chip *chip, int feature_addr,
972 u8 *subfeature_para);
973 int chip_delay;
974 struct nand_controller dummy_controller;
975 };
976
977 /**
978 * struct nand_chip - NAND Private Flash Chip Data
979 * @base: Inherit from the generic NAND device
980 * @legacy: All legacy fields/hooks. If you develop a new driver,
981 * don't even try to use any of these fields/hooks, and if
982 * you're modifying an existing driver that is using those
983 * fields/hooks, you should consider reworking the driver
984 * avoid using them.
985 * @setup_read_retry: [FLASHSPECIFIC] flash (vendor) specific function for
986 * setting the read-retry mode. Mostly needed for MLC NAND.
987 * @ecc: [BOARDSPECIFIC] ECC control structure
988 * @buf_align: minimum buffer alignment required by a platform
989 * @oob_poi: "poison value buffer," used for laying out OOB data
990 * before writing
991 * @page_shift: [INTERN] number of address bits in a page (column
992 * address bits).
993 * @phys_erase_shift: [INTERN] number of address bits in a physical eraseblock
994 * @bbt_erase_shift: [INTERN] number of address bits in a bbt entry
995 * @chip_shift: [INTERN] number of address bits in one chip
996 * @options: [BOARDSPECIFIC] various chip options. They can partly
997 * be set to inform nand_scan about special functionality.
998 * See the defines for further explanation.
999 * @bbt_options: [INTERN] bad block specific options. All options used
1000 * here must come from bbm.h. By default, these options
1001 * will be copied to the appropriate nand_bbt_descr's.
1002 * @badblockpos: [INTERN] position of the bad block marker in the oob
1003 * area.
1004 * @badblockbits: [INTERN] minimum number of set bits in a good block's
1005 * bad block marker position; i.e., BBM == 11110111b is
1006 * not bad when badblockbits == 7
1007 * @onfi_timing_mode_default: [INTERN] default ONFI timing mode. This field is
1008 * set to the actually used ONFI mode if the chip is
1009 * ONFI compliant or deduced from the datasheet if
1010 * the NAND chip is not ONFI compliant.
1011 * @pagemask: [INTERN] page number mask = number of (pages / chip) - 1
1012 * @data_buf: [INTERN] buffer for data, size is (page size + oobsize).
1013 * @pagecache: Structure containing page cache related fields
1014 * @pagecache.bitflips: Number of bitflips of the cached page
1015 * @pagecache.page: Page number currently in the cache. -1 means no page is
1016 * currently cached
1017 * @subpagesize: [INTERN] holds the subpagesize
1018 * @id: [INTERN] holds NAND ID
1019 * @parameters: [INTERN] holds generic parameters under an easily
1020 * readable form.
1021 * @data_interface: [INTERN] NAND interface timing information
1022 * @cur_cs: currently selected target. -1 means no target selected,
1023 * otherwise we should always have cur_cs >= 0 &&
1024 * cur_cs < nanddev_ntargets(). NAND Controller drivers
1025 * should not modify this value, but they're allowed to
1026 * read it.
1027 * @read_retries: [INTERN] the number of read retry modes supported
1028 * @lock: lock protecting the suspended field. Also used to
1029 * serialize accesses to the NAND device.
1030 * @suspended: set to 1 when the device is suspended, 0 when it's not.
1031 * @bbt: [INTERN] bad block table pointer
1032 * @bbt_td: [REPLACEABLE] bad block table descriptor for flash
1033 * lookup.
1034 * @bbt_md: [REPLACEABLE] bad block table mirror descriptor
1035 * @badblock_pattern: [REPLACEABLE] bad block scan pattern used for initial
1036 * bad block scan.
1037 * @controller: [REPLACEABLE] a pointer to a hardware controller
1038 * structure which is shared among multiple independent
1039 * devices.
1040 * @priv: [OPTIONAL] pointer to private chip data
1041 * @manufacturer: [INTERN] Contains manufacturer information
1042 * @manufacturer.desc: [INTERN] Contains manufacturer's description
1043 * @manufacturer.priv: [INTERN] Contains manufacturer private information
1044 */
1045
1046 struct nand_chip {
1047 struct nand_device base;
1048
1049 struct nand_legacy legacy;
1050
1051 int (*setup_read_retry)(struct nand_chip *chip, int retry_mode);
1052
1053 unsigned int options;
1054 unsigned int bbt_options;
1055
1056 int page_shift;
1057 int phys_erase_shift;
1058 int bbt_erase_shift;
1059 int chip_shift;
1060 int pagemask;
1061 u8 *data_buf;
1062
1063 struct {
1064 unsigned int bitflips;
1065 int page;
1066 } pagecache;
1067
1068 int subpagesize;
1069 int onfi_timing_mode_default;
1070 unsigned int badblockpos;
1071 int badblockbits;
1072
1073 struct nand_id id;
1074 struct nand_parameters parameters;
1075
1076 struct nand_data_interface data_interface;
1077
1078 int cur_cs;
1079
1080 int read_retries;
1081
1082 struct mutex lock;
1083 unsigned int suspended : 1;
1084
1085 uint8_t *oob_poi;
1086 struct nand_controller *controller;
1087
1088 struct nand_ecc_ctrl ecc;
1089 unsigned long buf_align;
1090
1091 uint8_t *bbt;
1092 struct nand_bbt_descr *bbt_td;
1093 struct nand_bbt_descr *bbt_md;
1094
1095 struct nand_bbt_descr *badblock_pattern;
1096
1097 void *priv;
1098
1099 struct {
1100 const struct nand_manufacturer *desc;
1101 void *priv;
1102 } manufacturer;
1103 };
1104
1105 extern const struct mtd_ooblayout_ops nand_ooblayout_sp_ops;
1106 extern const struct mtd_ooblayout_ops nand_ooblayout_lp_ops;
1107
1108 static inline struct nand_chip *mtd_to_nand(struct mtd_info *mtd)
1109 {
1110 return container_of(mtd, struct nand_chip, base.mtd);
1111 }
1112
1113 static inline struct mtd_info *nand_to_mtd(struct nand_chip *chip)
1114 {
1115 return &chip->base.mtd;
1116 }
1117
1118 static inline void *nand_get_controller_data(struct nand_chip *chip)
1119 {
1120 return chip->priv;
1121 }
1122
1123 static inline void nand_set_controller_data(struct nand_chip *chip, void *priv)
1124 {
1125 chip->priv = priv;
1126 }
1127
1128 static inline void nand_set_manufacturer_data(struct nand_chip *chip,
1129 void *priv)
1130 {
1131 chip->manufacturer.priv = priv;
1132 }
1133
1134 static inline void *nand_get_manufacturer_data(struct nand_chip *chip)
1135 {
1136 return chip->manufacturer.priv;
1137 }
1138
1139 static inline void nand_set_flash_node(struct nand_chip *chip,
1140 struct device_node *np)
1141 {
1142 mtd_set_of_node(nand_to_mtd(chip), np);
1143 }
1144
1145 static inline struct device_node *nand_get_flash_node(struct nand_chip *chip)
1146 {
1147 return mtd_get_of_node(nand_to_mtd(chip));
1148 }
1149
1150 /*
1151 * A helper for defining older NAND chips where the second ID byte fully
1152 * defined the chip, including the geometry (chip size, eraseblock size, page
1153 * size). All these chips have 512 bytes NAND page size.
1154 */
1155 #define LEGACY_ID_NAND(nm, devid, chipsz, erasesz, opts) \
1156 { .name = (nm), {{ .dev_id = (devid) }}, .pagesize = 512, \
1157 .chipsize = (chipsz), .erasesize = (erasesz), .options = (opts) }
1158
1159 /*
1160 * A helper for defining newer chips which report their page size and
1161 * eraseblock size via the extended ID bytes.
1162 *
1163 * The real difference between LEGACY_ID_NAND and EXTENDED_ID_NAND is that with
1164 * EXTENDED_ID_NAND, manufacturers overloaded the same device ID so that the
1165 * device ID now only represented a particular total chip size (and voltage,
1166 * buswidth), and the page size, eraseblock size, and OOB size could vary while
1167 * using the same device ID.
1168 */
1169 #define EXTENDED_ID_NAND(nm, devid, chipsz, opts) \
1170 { .name = (nm), {{ .dev_id = (devid) }}, .chipsize = (chipsz), \
1171 .options = (opts) }
1172
1173 #define NAND_ECC_INFO(_strength, _step) \
1174 { .strength_ds = (_strength), .step_ds = (_step) }
1175 #define NAND_ECC_STRENGTH(type) ((type)->ecc.strength_ds)
1176 #define NAND_ECC_STEP(type) ((type)->ecc.step_ds)
1177
1178 /**
1179 * struct nand_flash_dev - NAND Flash Device ID Structure
1180 * @name: a human-readable name of the NAND chip
1181 * @dev_id: the device ID (the second byte of the full chip ID array)
1182 * @mfr_id: manufecturer ID part of the full chip ID array (refers the same
1183 * memory address as ``id[0]``)
1184 * @dev_id: device ID part of the full chip ID array (refers the same memory
1185 * address as ``id[1]``)
1186 * @id: full device ID array
1187 * @pagesize: size of the NAND page in bytes; if 0, then the real page size (as
1188 * well as the eraseblock size) is determined from the extended NAND
1189 * chip ID array)
1190 * @chipsize: total chip size in MiB
1191 * @erasesize: eraseblock size in bytes (determined from the extended ID if 0)
1192 * @options: stores various chip bit options
1193 * @id_len: The valid length of the @id.
1194 * @oobsize: OOB size
1195 * @ecc: ECC correctability and step information from the datasheet.
1196 * @ecc.strength_ds: The ECC correctability from the datasheet, same as the
1197 * @ecc_strength_ds in nand_chip{}.
1198 * @ecc.step_ds: The ECC step required by the @ecc.strength_ds, same as the
1199 * @ecc_step_ds in nand_chip{}, also from the datasheet.
1200 * For example, the "4bit ECC for each 512Byte" can be set with
1201 * NAND_ECC_INFO(4, 512).
1202 * @onfi_timing_mode_default: the default ONFI timing mode entered after a NAND
1203 * reset. Should be deduced from timings described
1204 * in the datasheet.
1205 *
1206 */
1207 struct nand_flash_dev {
1208 char *name;
1209 union {
1210 struct {
1211 uint8_t mfr_id;
1212 uint8_t dev_id;
1213 };
1214 uint8_t id[NAND_MAX_ID_LEN];
1215 };
1216 unsigned int pagesize;
1217 unsigned int chipsize;
1218 unsigned int erasesize;
1219 unsigned int options;
1220 uint16_t id_len;
1221 uint16_t oobsize;
1222 struct {
1223 uint16_t strength_ds;
1224 uint16_t step_ds;
1225 } ecc;
1226 int onfi_timing_mode_default;
1227 };
1228
1229 int nand_create_bbt(struct nand_chip *chip);
1230
1231 /*
1232 * Check if it is a SLC nand.
1233 * The !nand_is_slc() can be used to check the MLC/TLC nand chips.
1234 * We do not distinguish the MLC and TLC now.
1235 */
1236 static inline bool nand_is_slc(struct nand_chip *chip)
1237 {
1238 WARN(nanddev_bits_per_cell(&chip->base) == 0,
1239 "chip->bits_per_cell is used uninitialized\n");
1240 return nanddev_bits_per_cell(&chip->base) == 1;
1241 }
1242
1243 /**
1244 * Check if the opcode's address should be sent only on the lower 8 bits
1245 * @command: opcode to check
1246 */
1247 static inline int nand_opcode_8bits(unsigned int command)
1248 {
1249 switch (command) {
1250 case NAND_CMD_READID:
1251 case NAND_CMD_PARAM:
1252 case NAND_CMD_GET_FEATURES:
1253 case NAND_CMD_SET_FEATURES:
1254 return 1;
1255 default:
1256 break;
1257 }
1258 return 0;
1259 }
1260
1261 int nand_check_erased_ecc_chunk(void *data, int datalen,
1262 void *ecc, int ecclen,
1263 void *extraoob, int extraooblen,
1264 int threshold);
1265
1266 int nand_ecc_choose_conf(struct nand_chip *chip,
1267 const struct nand_ecc_caps *caps, int oobavail);
1268
1269 /* Default write_oob implementation */
1270 int nand_write_oob_std(struct nand_chip *chip, int page);
1271
1272 /* Default read_oob implementation */
1273 int nand_read_oob_std(struct nand_chip *chip, int page);
1274
1275 /* Stub used by drivers that do not support GET/SET FEATURES operations */
1276 int nand_get_set_features_notsupp(struct nand_chip *chip, int addr,
1277 u8 *subfeature_param);
1278
1279 /* Default read_page_raw implementation */
1280 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
1281 int page);
1282
1283 /* Default write_page_raw implementation */
1284 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
1285 int oob_required, int page);
1286
1287 /* Reset and initialize a NAND device */
1288 int nand_reset(struct nand_chip *chip, int chipnr);
1289
1290 /* NAND operation helpers */
1291 int nand_reset_op(struct nand_chip *chip);
1292 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1293 unsigned int len);
1294 int nand_status_op(struct nand_chip *chip, u8 *status);
1295 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock);
1296 int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1297 unsigned int offset_in_page, void *buf, unsigned int len);
1298 int nand_change_read_column_op(struct nand_chip *chip,
1299 unsigned int offset_in_page, void *buf,
1300 unsigned int len, bool force_8bit);
1301 int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1302 unsigned int offset_in_page, void *buf, unsigned int len);
1303 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1304 unsigned int offset_in_page, const void *buf,
1305 unsigned int len);
1306 int nand_prog_page_end_op(struct nand_chip *chip);
1307 int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1308 unsigned int offset_in_page, const void *buf,
1309 unsigned int len);
1310 int nand_change_write_column_op(struct nand_chip *chip,
1311 unsigned int offset_in_page, const void *buf,
1312 unsigned int len, bool force_8bit);
1313 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
1314 bool force_8bit);
1315 int nand_write_data_op(struct nand_chip *chip, const void *buf,
1316 unsigned int len, bool force_8bit);
1317
1318 /* Scan and identify a NAND device */
1319 int nand_scan_with_ids(struct nand_chip *chip, unsigned int max_chips,
1320 struct nand_flash_dev *ids);
1321
1322 static inline int nand_scan(struct nand_chip *chip, unsigned int max_chips)
1323 {
1324 return nand_scan_with_ids(chip, max_chips, NULL);
1325 }
1326
1327 /* Internal helper for board drivers which need to override command function */
1328 void nand_wait_ready(struct nand_chip *chip);
1329
1330 /*
1331 * Free resources held by the NAND device, must be called on error after a
1332 * sucessful nand_scan().
1333 */
1334 void nand_cleanup(struct nand_chip *chip);
1335 /* Unregister the MTD device and calls nand_cleanup() */
1336 void nand_release(struct nand_chip *chip);
1337
1338 /*
1339 * External helper for controller drivers that have to implement the WAITRDY
1340 * instruction and have no physical pin to check it.
1341 */
1342 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms);
1343 struct gpio_desc;
1344 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
1345 unsigned long timeout_ms);
1346
1347 /* Select/deselect a NAND target. */
1348 void nand_select_target(struct nand_chip *chip, unsigned int cs);
1349 void nand_deselect_target(struct nand_chip *chip);
1350
1351 /**
1352 * nand_get_data_buf() - Get the internal page buffer
1353 * @chip: NAND chip object
1354 *
1355 * Returns the pre-allocated page buffer after invalidating the cache. This
1356 * function should be used by drivers that do not want to allocate their own
1357 * bounce buffer and still need such a buffer for specific operations (most
1358 * commonly when reading OOB data only).
1359 *
1360 * Be careful to never call this function in the write/write_oob path, because
1361 * the core may have placed the data to be written out in this buffer.
1362 *
1363 * Return: pointer to the page cache buffer
1364 */
1365 static inline void *nand_get_data_buf(struct nand_chip *chip)
1366 {
1367 chip->pagecache.page = -1;
1368
1369 return chip->data_buf;
1370 }
1371
1372 #endif /* __LINUX_MTD_RAWNAND_H */