]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - include/linux/mtd/rawnand.h
powerpc/cacheinfo: Remove double free
[mirror_ubuntu-hirsute-kernel.git] / include / linux / mtd / rawnand.h
1 /*
2 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
3 * Steven J. Hill <sjhill@realitydiluted.com>
4 * Thomas Gleixner <tglx@linutronix.de>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * Info:
11 * Contains standard defines and IDs for NAND flash devices
12 *
13 * Changelog:
14 * See git changelog.
15 */
16 #ifndef __LINUX_MTD_RAWNAND_H
17 #define __LINUX_MTD_RAWNAND_H
18
19 #include <linux/mtd/mtd.h>
20 #include <linux/mtd/flashchip.h>
21 #include <linux/mtd/bbm.h>
22 #include <linux/mtd/jedec.h>
23 #include <linux/mtd/onfi.h>
24 #include <linux/mutex.h>
25 #include <linux/of.h>
26 #include <linux/types.h>
27
28 struct nand_chip;
29
30 /* The maximum number of NAND chips in an array */
31 #define NAND_MAX_CHIPS 8
32
33 /*
34 * Constants for hardware specific CLE/ALE/NCE function
35 *
36 * These are bits which can be or'ed to set/clear multiple
37 * bits in one go.
38 */
39 /* Select the chip by setting nCE to low */
40 #define NAND_NCE 0x01
41 /* Select the command latch by setting CLE to high */
42 #define NAND_CLE 0x02
43 /* Select the address latch by setting ALE to high */
44 #define NAND_ALE 0x04
45
46 #define NAND_CTRL_CLE (NAND_NCE | NAND_CLE)
47 #define NAND_CTRL_ALE (NAND_NCE | NAND_ALE)
48 #define NAND_CTRL_CHANGE 0x80
49
50 /*
51 * Standard NAND flash commands
52 */
53 #define NAND_CMD_READ0 0
54 #define NAND_CMD_READ1 1
55 #define NAND_CMD_RNDOUT 5
56 #define NAND_CMD_PAGEPROG 0x10
57 #define NAND_CMD_READOOB 0x50
58 #define NAND_CMD_ERASE1 0x60
59 #define NAND_CMD_STATUS 0x70
60 #define NAND_CMD_SEQIN 0x80
61 #define NAND_CMD_RNDIN 0x85
62 #define NAND_CMD_READID 0x90
63 #define NAND_CMD_ERASE2 0xd0
64 #define NAND_CMD_PARAM 0xec
65 #define NAND_CMD_GET_FEATURES 0xee
66 #define NAND_CMD_SET_FEATURES 0xef
67 #define NAND_CMD_RESET 0xff
68
69 /* Extended commands for large page devices */
70 #define NAND_CMD_READSTART 0x30
71 #define NAND_CMD_RNDOUTSTART 0xE0
72 #define NAND_CMD_CACHEDPROG 0x15
73
74 #define NAND_CMD_NONE -1
75
76 /* Status bits */
77 #define NAND_STATUS_FAIL 0x01
78 #define NAND_STATUS_FAIL_N1 0x02
79 #define NAND_STATUS_TRUE_READY 0x20
80 #define NAND_STATUS_READY 0x40
81 #define NAND_STATUS_WP 0x80
82
83 #define NAND_DATA_IFACE_CHECK_ONLY -1
84
85 /*
86 * Constants for ECC_MODES
87 */
88 typedef enum {
89 NAND_ECC_NONE,
90 NAND_ECC_SOFT,
91 NAND_ECC_HW,
92 NAND_ECC_HW_SYNDROME,
93 NAND_ECC_HW_OOB_FIRST,
94 NAND_ECC_ON_DIE,
95 } nand_ecc_modes_t;
96
97 enum nand_ecc_algo {
98 NAND_ECC_UNKNOWN,
99 NAND_ECC_HAMMING,
100 NAND_ECC_BCH,
101 NAND_ECC_RS,
102 };
103
104 /*
105 * Constants for Hardware ECC
106 */
107 /* Reset Hardware ECC for read */
108 #define NAND_ECC_READ 0
109 /* Reset Hardware ECC for write */
110 #define NAND_ECC_WRITE 1
111 /* Enable Hardware ECC before syndrome is read back from flash */
112 #define NAND_ECC_READSYN 2
113
114 /*
115 * Enable generic NAND 'page erased' check. This check is only done when
116 * ecc.correct() returns -EBADMSG.
117 * Set this flag if your implementation does not fix bitflips in erased
118 * pages and you want to rely on the default implementation.
119 */
120 #define NAND_ECC_GENERIC_ERASED_CHECK BIT(0)
121 #define NAND_ECC_MAXIMIZE BIT(1)
122
123 /*
124 * When using software implementation of Hamming, we can specify which byte
125 * ordering should be used.
126 */
127 #define NAND_ECC_SOFT_HAMMING_SM_ORDER BIT(2)
128
129 /*
130 * Option constants for bizarre disfunctionality and real
131 * features.
132 */
133 /* Buswidth is 16 bit */
134 #define NAND_BUSWIDTH_16 0x00000002
135 /* Chip has cache program function */
136 #define NAND_CACHEPRG 0x00000008
137 /*
138 * Chip requires ready check on read (for auto-incremented sequential read).
139 * True only for small page devices; large page devices do not support
140 * autoincrement.
141 */
142 #define NAND_NEED_READRDY 0x00000100
143
144 /* Chip does not allow subpage writes */
145 #define NAND_NO_SUBPAGE_WRITE 0x00000200
146
147 /* Device is one of 'new' xD cards that expose fake nand command set */
148 #define NAND_BROKEN_XD 0x00000400
149
150 /* Device behaves just like nand, but is readonly */
151 #define NAND_ROM 0x00000800
152
153 /* Device supports subpage reads */
154 #define NAND_SUBPAGE_READ 0x00001000
155
156 /*
157 * Some MLC NANDs need data scrambling to limit bitflips caused by repeated
158 * patterns.
159 */
160 #define NAND_NEED_SCRAMBLING 0x00002000
161
162 /* Device needs 3rd row address cycle */
163 #define NAND_ROW_ADDR_3 0x00004000
164
165 /* Options valid for Samsung large page devices */
166 #define NAND_SAMSUNG_LP_OPTIONS NAND_CACHEPRG
167
168 /* Macros to identify the above */
169 #define NAND_HAS_SUBPAGE_READ(chip) ((chip->options & NAND_SUBPAGE_READ))
170
171 /* Non chip related options */
172 /* This option skips the bbt scan during initialization. */
173 #define NAND_SKIP_BBTSCAN 0x00010000
174 /* Chip may not exist, so silence any errors in scan */
175 #define NAND_SCAN_SILENT_NODEV 0x00040000
176 /*
177 * Autodetect nand buswidth with readid/onfi.
178 * This suppose the driver will configure the hardware in 8 bits mode
179 * when calling nand_scan_ident, and update its configuration
180 * before calling nand_scan_tail.
181 */
182 #define NAND_BUSWIDTH_AUTO 0x00080000
183 /*
184 * This option could be defined by controller drivers to protect against
185 * kmap'ed, vmalloc'ed highmem buffers being passed from upper layers
186 */
187 #define NAND_USE_BOUNCE_BUFFER 0x00100000
188
189 /*
190 * In case your controller is implementing ->legacy.cmd_ctrl() and is relying
191 * on the default ->cmdfunc() implementation, you may want to let the core
192 * handle the tCCS delay which is required when a column change (RNDIN or
193 * RNDOUT) is requested.
194 * If your controller already takes care of this delay, you don't need to set
195 * this flag.
196 */
197 #define NAND_WAIT_TCCS 0x00200000
198
199 /*
200 * Whether the NAND chip is a boot medium. Drivers might use this information
201 * to select ECC algorithms supported by the boot ROM or similar restrictions.
202 */
203 #define NAND_IS_BOOT_MEDIUM 0x00400000
204
205 /*
206 * Do not try to tweak the timings at runtime. This is needed when the
207 * controller initializes the timings on itself or when it relies on
208 * configuration done by the bootloader.
209 */
210 #define NAND_KEEP_TIMINGS 0x00800000
211
212 /* Cell info constants */
213 #define NAND_CI_CHIPNR_MSK 0x03
214 #define NAND_CI_CELLTYPE_MSK 0x0C
215 #define NAND_CI_CELLTYPE_SHIFT 2
216
217 /**
218 * struct nand_parameters - NAND generic parameters from the parameter page
219 * @model: Model name
220 * @supports_set_get_features: The NAND chip supports setting/getting features
221 * @set_feature_list: Bitmap of features that can be set
222 * @get_feature_list: Bitmap of features that can be get
223 * @onfi: ONFI specific parameters
224 */
225 struct nand_parameters {
226 /* Generic parameters */
227 const char *model;
228 bool supports_set_get_features;
229 DECLARE_BITMAP(set_feature_list, ONFI_FEATURE_NUMBER);
230 DECLARE_BITMAP(get_feature_list, ONFI_FEATURE_NUMBER);
231
232 /* ONFI parameters */
233 struct onfi_params *onfi;
234 };
235
236 /* The maximum expected count of bytes in the NAND ID sequence */
237 #define NAND_MAX_ID_LEN 8
238
239 /**
240 * struct nand_id - NAND id structure
241 * @data: buffer containing the id bytes.
242 * @len: ID length.
243 */
244 struct nand_id {
245 u8 data[NAND_MAX_ID_LEN];
246 int len;
247 };
248
249 /**
250 * struct nand_ecc_step_info - ECC step information of ECC engine
251 * @stepsize: data bytes per ECC step
252 * @strengths: array of supported strengths
253 * @nstrengths: number of supported strengths
254 */
255 struct nand_ecc_step_info {
256 int stepsize;
257 const int *strengths;
258 int nstrengths;
259 };
260
261 /**
262 * struct nand_ecc_caps - capability of ECC engine
263 * @stepinfos: array of ECC step information
264 * @nstepinfos: number of ECC step information
265 * @calc_ecc_bytes: driver's hook to calculate ECC bytes per step
266 */
267 struct nand_ecc_caps {
268 const struct nand_ecc_step_info *stepinfos;
269 int nstepinfos;
270 int (*calc_ecc_bytes)(int step_size, int strength);
271 };
272
273 /* a shorthand to generate struct nand_ecc_caps with only one ECC stepsize */
274 #define NAND_ECC_CAPS_SINGLE(__name, __calc, __step, ...) \
275 static const int __name##_strengths[] = { __VA_ARGS__ }; \
276 static const struct nand_ecc_step_info __name##_stepinfo = { \
277 .stepsize = __step, \
278 .strengths = __name##_strengths, \
279 .nstrengths = ARRAY_SIZE(__name##_strengths), \
280 }; \
281 static const struct nand_ecc_caps __name = { \
282 .stepinfos = &__name##_stepinfo, \
283 .nstepinfos = 1, \
284 .calc_ecc_bytes = __calc, \
285 }
286
287 /**
288 * struct nand_ecc_ctrl - Control structure for ECC
289 * @mode: ECC mode
290 * @algo: ECC algorithm
291 * @steps: number of ECC steps per page
292 * @size: data bytes per ECC step
293 * @bytes: ECC bytes per step
294 * @strength: max number of correctible bits per ECC step
295 * @total: total number of ECC bytes per page
296 * @prepad: padding information for syndrome based ECC generators
297 * @postpad: padding information for syndrome based ECC generators
298 * @options: ECC specific options (see NAND_ECC_XXX flags defined above)
299 * @priv: pointer to private ECC control data
300 * @calc_buf: buffer for calculated ECC, size is oobsize.
301 * @code_buf: buffer for ECC read from flash, size is oobsize.
302 * @hwctl: function to control hardware ECC generator. Must only
303 * be provided if an hardware ECC is available
304 * @calculate: function for ECC calculation or readback from ECC hardware
305 * @correct: function for ECC correction, matching to ECC generator (sw/hw).
306 * Should return a positive number representing the number of
307 * corrected bitflips, -EBADMSG if the number of bitflips exceed
308 * ECC strength, or any other error code if the error is not
309 * directly related to correction.
310 * If -EBADMSG is returned the input buffers should be left
311 * untouched.
312 * @read_page_raw: function to read a raw page without ECC. This function
313 * should hide the specific layout used by the ECC
314 * controller and always return contiguous in-band and
315 * out-of-band data even if they're not stored
316 * contiguously on the NAND chip (e.g.
317 * NAND_ECC_HW_SYNDROME interleaves in-band and
318 * out-of-band data).
319 * @write_page_raw: function to write a raw page without ECC. This function
320 * should hide the specific layout used by the ECC
321 * controller and consider the passed data as contiguous
322 * in-band and out-of-band data. ECC controller is
323 * responsible for doing the appropriate transformations
324 * to adapt to its specific layout (e.g.
325 * NAND_ECC_HW_SYNDROME interleaves in-band and
326 * out-of-band data).
327 * @read_page: function to read a page according to the ECC generator
328 * requirements; returns maximum number of bitflips corrected in
329 * any single ECC step, -EIO hw error
330 * @read_subpage: function to read parts of the page covered by ECC;
331 * returns same as read_page()
332 * @write_subpage: function to write parts of the page covered by ECC.
333 * @write_page: function to write a page according to the ECC generator
334 * requirements.
335 * @write_oob_raw: function to write chip OOB data without ECC
336 * @read_oob_raw: function to read chip OOB data without ECC
337 * @read_oob: function to read chip OOB data
338 * @write_oob: function to write chip OOB data
339 */
340 struct nand_ecc_ctrl {
341 nand_ecc_modes_t mode;
342 enum nand_ecc_algo algo;
343 int steps;
344 int size;
345 int bytes;
346 int total;
347 int strength;
348 int prepad;
349 int postpad;
350 unsigned int options;
351 void *priv;
352 u8 *calc_buf;
353 u8 *code_buf;
354 void (*hwctl)(struct nand_chip *chip, int mode);
355 int (*calculate)(struct nand_chip *chip, const uint8_t *dat,
356 uint8_t *ecc_code);
357 int (*correct)(struct nand_chip *chip, uint8_t *dat, uint8_t *read_ecc,
358 uint8_t *calc_ecc);
359 int (*read_page_raw)(struct nand_chip *chip, uint8_t *buf,
360 int oob_required, int page);
361 int (*write_page_raw)(struct nand_chip *chip, const uint8_t *buf,
362 int oob_required, int page);
363 int (*read_page)(struct nand_chip *chip, uint8_t *buf,
364 int oob_required, int page);
365 int (*read_subpage)(struct nand_chip *chip, uint32_t offs,
366 uint32_t len, uint8_t *buf, int page);
367 int (*write_subpage)(struct nand_chip *chip, uint32_t offset,
368 uint32_t data_len, const uint8_t *data_buf,
369 int oob_required, int page);
370 int (*write_page)(struct nand_chip *chip, const uint8_t *buf,
371 int oob_required, int page);
372 int (*write_oob_raw)(struct nand_chip *chip, int page);
373 int (*read_oob_raw)(struct nand_chip *chip, int page);
374 int (*read_oob)(struct nand_chip *chip, int page);
375 int (*write_oob)(struct nand_chip *chip, int page);
376 };
377
378 /**
379 * struct nand_sdr_timings - SDR NAND chip timings
380 *
381 * This struct defines the timing requirements of a SDR NAND chip.
382 * These information can be found in every NAND datasheets and the timings
383 * meaning are described in the ONFI specifications:
384 * www.onfi.org/~/media/ONFI/specs/onfi_3_1_spec.pdf (chapter 4.15 Timing
385 * Parameters)
386 *
387 * All these timings are expressed in picoseconds.
388 *
389 * @tBERS_max: Block erase time
390 * @tCCS_min: Change column setup time
391 * @tPROG_max: Page program time
392 * @tR_max: Page read time
393 * @tALH_min: ALE hold time
394 * @tADL_min: ALE to data loading time
395 * @tALS_min: ALE setup time
396 * @tAR_min: ALE to RE# delay
397 * @tCEA_max: CE# access time
398 * @tCEH_min: CE# high hold time
399 * @tCH_min: CE# hold time
400 * @tCHZ_max: CE# high to output hi-Z
401 * @tCLH_min: CLE hold time
402 * @tCLR_min: CLE to RE# delay
403 * @tCLS_min: CLE setup time
404 * @tCOH_min: CE# high to output hold
405 * @tCS_min: CE# setup time
406 * @tDH_min: Data hold time
407 * @tDS_min: Data setup time
408 * @tFEAT_max: Busy time for Set Features and Get Features
409 * @tIR_min: Output hi-Z to RE# low
410 * @tITC_max: Interface and Timing Mode Change time
411 * @tRC_min: RE# cycle time
412 * @tREA_max: RE# access time
413 * @tREH_min: RE# high hold time
414 * @tRHOH_min: RE# high to output hold
415 * @tRHW_min: RE# high to WE# low
416 * @tRHZ_max: RE# high to output hi-Z
417 * @tRLOH_min: RE# low to output hold
418 * @tRP_min: RE# pulse width
419 * @tRR_min: Ready to RE# low (data only)
420 * @tRST_max: Device reset time, measured from the falling edge of R/B# to the
421 * rising edge of R/B#.
422 * @tWB_max: WE# high to SR[6] low
423 * @tWC_min: WE# cycle time
424 * @tWH_min: WE# high hold time
425 * @tWHR_min: WE# high to RE# low
426 * @tWP_min: WE# pulse width
427 * @tWW_min: WP# transition to WE# low
428 */
429 struct nand_sdr_timings {
430 u64 tBERS_max;
431 u32 tCCS_min;
432 u64 tPROG_max;
433 u64 tR_max;
434 u32 tALH_min;
435 u32 tADL_min;
436 u32 tALS_min;
437 u32 tAR_min;
438 u32 tCEA_max;
439 u32 tCEH_min;
440 u32 tCH_min;
441 u32 tCHZ_max;
442 u32 tCLH_min;
443 u32 tCLR_min;
444 u32 tCLS_min;
445 u32 tCOH_min;
446 u32 tCS_min;
447 u32 tDH_min;
448 u32 tDS_min;
449 u32 tFEAT_max;
450 u32 tIR_min;
451 u32 tITC_max;
452 u32 tRC_min;
453 u32 tREA_max;
454 u32 tREH_min;
455 u32 tRHOH_min;
456 u32 tRHW_min;
457 u32 tRHZ_max;
458 u32 tRLOH_min;
459 u32 tRP_min;
460 u32 tRR_min;
461 u64 tRST_max;
462 u32 tWB_max;
463 u32 tWC_min;
464 u32 tWH_min;
465 u32 tWHR_min;
466 u32 tWP_min;
467 u32 tWW_min;
468 };
469
470 /**
471 * enum nand_data_interface_type - NAND interface timing type
472 * @NAND_SDR_IFACE: Single Data Rate interface
473 */
474 enum nand_data_interface_type {
475 NAND_SDR_IFACE,
476 };
477
478 /**
479 * struct nand_data_interface - NAND interface timing
480 * @type: type of the timing
481 * @timings: The timing, type according to @type
482 * @timings.sdr: Use it when @type is %NAND_SDR_IFACE.
483 */
484 struct nand_data_interface {
485 enum nand_data_interface_type type;
486 union {
487 struct nand_sdr_timings sdr;
488 } timings;
489 };
490
491 /**
492 * nand_get_sdr_timings - get SDR timing from data interface
493 * @conf: The data interface
494 */
495 static inline const struct nand_sdr_timings *
496 nand_get_sdr_timings(const struct nand_data_interface *conf)
497 {
498 if (conf->type != NAND_SDR_IFACE)
499 return ERR_PTR(-EINVAL);
500
501 return &conf->timings.sdr;
502 }
503
504 /**
505 * struct nand_op_cmd_instr - Definition of a command instruction
506 * @opcode: the command to issue in one cycle
507 */
508 struct nand_op_cmd_instr {
509 u8 opcode;
510 };
511
512 /**
513 * struct nand_op_addr_instr - Definition of an address instruction
514 * @naddrs: length of the @addrs array
515 * @addrs: array containing the address cycles to issue
516 */
517 struct nand_op_addr_instr {
518 unsigned int naddrs;
519 const u8 *addrs;
520 };
521
522 /**
523 * struct nand_op_data_instr - Definition of a data instruction
524 * @len: number of data bytes to move
525 * @buf: buffer to fill
526 * @buf.in: buffer to fill when reading from the NAND chip
527 * @buf.out: buffer to read from when writing to the NAND chip
528 * @force_8bit: force 8-bit access
529 *
530 * Please note that "in" and "out" are inverted from the ONFI specification
531 * and are from the controller perspective, so a "in" is a read from the NAND
532 * chip while a "out" is a write to the NAND chip.
533 */
534 struct nand_op_data_instr {
535 unsigned int len;
536 union {
537 void *in;
538 const void *out;
539 } buf;
540 bool force_8bit;
541 };
542
543 /**
544 * struct nand_op_waitrdy_instr - Definition of a wait ready instruction
545 * @timeout_ms: maximum delay while waiting for the ready/busy pin in ms
546 */
547 struct nand_op_waitrdy_instr {
548 unsigned int timeout_ms;
549 };
550
551 /**
552 * enum nand_op_instr_type - Definition of all instruction types
553 * @NAND_OP_CMD_INSTR: command instruction
554 * @NAND_OP_ADDR_INSTR: address instruction
555 * @NAND_OP_DATA_IN_INSTR: data in instruction
556 * @NAND_OP_DATA_OUT_INSTR: data out instruction
557 * @NAND_OP_WAITRDY_INSTR: wait ready instruction
558 */
559 enum nand_op_instr_type {
560 NAND_OP_CMD_INSTR,
561 NAND_OP_ADDR_INSTR,
562 NAND_OP_DATA_IN_INSTR,
563 NAND_OP_DATA_OUT_INSTR,
564 NAND_OP_WAITRDY_INSTR,
565 };
566
567 /**
568 * struct nand_op_instr - Instruction object
569 * @type: the instruction type
570 * @ctx: extra data associated to the instruction. You'll have to use the
571 * appropriate element depending on @type
572 * @ctx.cmd: use it if @type is %NAND_OP_CMD_INSTR
573 * @ctx.addr: use it if @type is %NAND_OP_ADDR_INSTR
574 * @ctx.data: use it if @type is %NAND_OP_DATA_IN_INSTR
575 * or %NAND_OP_DATA_OUT_INSTR
576 * @ctx.waitrdy: use it if @type is %NAND_OP_WAITRDY_INSTR
577 * @delay_ns: delay the controller should apply after the instruction has been
578 * issued on the bus. Most modern controllers have internal timings
579 * control logic, and in this case, the controller driver can ignore
580 * this field.
581 */
582 struct nand_op_instr {
583 enum nand_op_instr_type type;
584 union {
585 struct nand_op_cmd_instr cmd;
586 struct nand_op_addr_instr addr;
587 struct nand_op_data_instr data;
588 struct nand_op_waitrdy_instr waitrdy;
589 } ctx;
590 unsigned int delay_ns;
591 };
592
593 /*
594 * Special handling must be done for the WAITRDY timeout parameter as it usually
595 * is either tPROG (after a prog), tR (before a read), tRST (during a reset) or
596 * tBERS (during an erase) which all of them are u64 values that cannot be
597 * divided by usual kernel macros and must be handled with the special
598 * DIV_ROUND_UP_ULL() macro.
599 *
600 * Cast to type of dividend is needed here to guarantee that the result won't
601 * be an unsigned long long when the dividend is an unsigned long (or smaller),
602 * which is what the compiler does when it sees ternary operator with 2
603 * different return types (picks the largest type to make sure there's no
604 * loss).
605 */
606 #define __DIVIDE(dividend, divisor) ({ \
607 (__typeof__(dividend))(sizeof(dividend) <= sizeof(unsigned long) ? \
608 DIV_ROUND_UP(dividend, divisor) : \
609 DIV_ROUND_UP_ULL(dividend, divisor)); \
610 })
611 #define PSEC_TO_NSEC(x) __DIVIDE(x, 1000)
612 #define PSEC_TO_MSEC(x) __DIVIDE(x, 1000000000)
613
614 #define NAND_OP_CMD(id, ns) \
615 { \
616 .type = NAND_OP_CMD_INSTR, \
617 .ctx.cmd.opcode = id, \
618 .delay_ns = ns, \
619 }
620
621 #define NAND_OP_ADDR(ncycles, cycles, ns) \
622 { \
623 .type = NAND_OP_ADDR_INSTR, \
624 .ctx.addr = { \
625 .naddrs = ncycles, \
626 .addrs = cycles, \
627 }, \
628 .delay_ns = ns, \
629 }
630
631 #define NAND_OP_DATA_IN(l, b, ns) \
632 { \
633 .type = NAND_OP_DATA_IN_INSTR, \
634 .ctx.data = { \
635 .len = l, \
636 .buf.in = b, \
637 .force_8bit = false, \
638 }, \
639 .delay_ns = ns, \
640 }
641
642 #define NAND_OP_DATA_OUT(l, b, ns) \
643 { \
644 .type = NAND_OP_DATA_OUT_INSTR, \
645 .ctx.data = { \
646 .len = l, \
647 .buf.out = b, \
648 .force_8bit = false, \
649 }, \
650 .delay_ns = ns, \
651 }
652
653 #define NAND_OP_8BIT_DATA_IN(l, b, ns) \
654 { \
655 .type = NAND_OP_DATA_IN_INSTR, \
656 .ctx.data = { \
657 .len = l, \
658 .buf.in = b, \
659 .force_8bit = true, \
660 }, \
661 .delay_ns = ns, \
662 }
663
664 #define NAND_OP_8BIT_DATA_OUT(l, b, ns) \
665 { \
666 .type = NAND_OP_DATA_OUT_INSTR, \
667 .ctx.data = { \
668 .len = l, \
669 .buf.out = b, \
670 .force_8bit = true, \
671 }, \
672 .delay_ns = ns, \
673 }
674
675 #define NAND_OP_WAIT_RDY(tout_ms, ns) \
676 { \
677 .type = NAND_OP_WAITRDY_INSTR, \
678 .ctx.waitrdy.timeout_ms = tout_ms, \
679 .delay_ns = ns, \
680 }
681
682 /**
683 * struct nand_subop - a sub operation
684 * @instrs: array of instructions
685 * @ninstrs: length of the @instrs array
686 * @first_instr_start_off: offset to start from for the first instruction
687 * of the sub-operation
688 * @last_instr_end_off: offset to end at (excluded) for the last instruction
689 * of the sub-operation
690 *
691 * Both @first_instr_start_off and @last_instr_end_off only apply to data or
692 * address instructions.
693 *
694 * When an operation cannot be handled as is by the NAND controller, it will
695 * be split by the parser into sub-operations which will be passed to the
696 * controller driver.
697 */
698 struct nand_subop {
699 const struct nand_op_instr *instrs;
700 unsigned int ninstrs;
701 unsigned int first_instr_start_off;
702 unsigned int last_instr_end_off;
703 };
704
705 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
706 unsigned int op_id);
707 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
708 unsigned int op_id);
709 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
710 unsigned int op_id);
711 unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
712 unsigned int op_id);
713
714 /**
715 * struct nand_op_parser_addr_constraints - Constraints for address instructions
716 * @maxcycles: maximum number of address cycles the controller can issue in a
717 * single step
718 */
719 struct nand_op_parser_addr_constraints {
720 unsigned int maxcycles;
721 };
722
723 /**
724 * struct nand_op_parser_data_constraints - Constraints for data instructions
725 * @maxlen: maximum data length that the controller can handle in a single step
726 */
727 struct nand_op_parser_data_constraints {
728 unsigned int maxlen;
729 };
730
731 /**
732 * struct nand_op_parser_pattern_elem - One element of a pattern
733 * @type: the instructuction type
734 * @optional: whether this element of the pattern is optional or mandatory
735 * @ctx: address or data constraint
736 * @ctx.addr: address constraint (number of cycles)
737 * @ctx.data: data constraint (data length)
738 */
739 struct nand_op_parser_pattern_elem {
740 enum nand_op_instr_type type;
741 bool optional;
742 union {
743 struct nand_op_parser_addr_constraints addr;
744 struct nand_op_parser_data_constraints data;
745 } ctx;
746 };
747
748 #define NAND_OP_PARSER_PAT_CMD_ELEM(_opt) \
749 { \
750 .type = NAND_OP_CMD_INSTR, \
751 .optional = _opt, \
752 }
753
754 #define NAND_OP_PARSER_PAT_ADDR_ELEM(_opt, _maxcycles) \
755 { \
756 .type = NAND_OP_ADDR_INSTR, \
757 .optional = _opt, \
758 .ctx.addr.maxcycles = _maxcycles, \
759 }
760
761 #define NAND_OP_PARSER_PAT_DATA_IN_ELEM(_opt, _maxlen) \
762 { \
763 .type = NAND_OP_DATA_IN_INSTR, \
764 .optional = _opt, \
765 .ctx.data.maxlen = _maxlen, \
766 }
767
768 #define NAND_OP_PARSER_PAT_DATA_OUT_ELEM(_opt, _maxlen) \
769 { \
770 .type = NAND_OP_DATA_OUT_INSTR, \
771 .optional = _opt, \
772 .ctx.data.maxlen = _maxlen, \
773 }
774
775 #define NAND_OP_PARSER_PAT_WAITRDY_ELEM(_opt) \
776 { \
777 .type = NAND_OP_WAITRDY_INSTR, \
778 .optional = _opt, \
779 }
780
781 /**
782 * struct nand_op_parser_pattern - NAND sub-operation pattern descriptor
783 * @elems: array of pattern elements
784 * @nelems: number of pattern elements in @elems array
785 * @exec: the function that will issue a sub-operation
786 *
787 * A pattern is a list of elements, each element reprensenting one instruction
788 * with its constraints. The pattern itself is used by the core to match NAND
789 * chip operation with NAND controller operations.
790 * Once a match between a NAND controller operation pattern and a NAND chip
791 * operation (or a sub-set of a NAND operation) is found, the pattern ->exec()
792 * hook is called so that the controller driver can issue the operation on the
793 * bus.
794 *
795 * Controller drivers should declare as many patterns as they support and pass
796 * this list of patterns (created with the help of the following macro) to
797 * the nand_op_parser_exec_op() helper.
798 */
799 struct nand_op_parser_pattern {
800 const struct nand_op_parser_pattern_elem *elems;
801 unsigned int nelems;
802 int (*exec)(struct nand_chip *chip, const struct nand_subop *subop);
803 };
804
805 #define NAND_OP_PARSER_PATTERN(_exec, ...) \
806 { \
807 .exec = _exec, \
808 .elems = (struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }, \
809 .nelems = sizeof((struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }) / \
810 sizeof(struct nand_op_parser_pattern_elem), \
811 }
812
813 /**
814 * struct nand_op_parser - NAND controller operation parser descriptor
815 * @patterns: array of supported patterns
816 * @npatterns: length of the @patterns array
817 *
818 * The parser descriptor is just an array of supported patterns which will be
819 * iterated by nand_op_parser_exec_op() everytime it tries to execute an
820 * NAND operation (or tries to determine if a specific operation is supported).
821 *
822 * It is worth mentioning that patterns will be tested in their declaration
823 * order, and the first match will be taken, so it's important to order patterns
824 * appropriately so that simple/inefficient patterns are placed at the end of
825 * the list. Usually, this is where you put single instruction patterns.
826 */
827 struct nand_op_parser {
828 const struct nand_op_parser_pattern *patterns;
829 unsigned int npatterns;
830 };
831
832 #define NAND_OP_PARSER(...) \
833 { \
834 .patterns = (struct nand_op_parser_pattern[]) { __VA_ARGS__ }, \
835 .npatterns = sizeof((struct nand_op_parser_pattern[]) { __VA_ARGS__ }) / \
836 sizeof(struct nand_op_parser_pattern), \
837 }
838
839 /**
840 * struct nand_operation - NAND operation descriptor
841 * @cs: the CS line to select for this NAND operation
842 * @instrs: array of instructions to execute
843 * @ninstrs: length of the @instrs array
844 *
845 * The actual operation structure that will be passed to chip->exec_op().
846 */
847 struct nand_operation {
848 unsigned int cs;
849 const struct nand_op_instr *instrs;
850 unsigned int ninstrs;
851 };
852
853 #define NAND_OPERATION(_cs, _instrs) \
854 { \
855 .cs = _cs, \
856 .instrs = _instrs, \
857 .ninstrs = ARRAY_SIZE(_instrs), \
858 }
859
860 int nand_op_parser_exec_op(struct nand_chip *chip,
861 const struct nand_op_parser *parser,
862 const struct nand_operation *op, bool check_only);
863 /**
864 * struct nand_controller_ops - Controller operations
865 *
866 * @attach_chip: this method is called after the NAND detection phase after
867 * flash ID and MTD fields such as erase size, page size and OOB
868 * size have been set up. ECC requirements are available if
869 * provided by the NAND chip or device tree. Typically used to
870 * choose the appropriate ECC configuration and allocate
871 * associated resources.
872 * This hook is optional.
873 * @detach_chip: free all resources allocated/claimed in
874 * nand_controller_ops->attach_chip().
875 * This hook is optional.
876 * @exec_op: controller specific method to execute NAND operations.
877 * This method replaces chip->legacy.cmdfunc(),
878 * chip->legacy.{read,write}_{buf,byte,word}(),
879 * chip->legacy.dev_ready() and chip->legacy.waifunc().
880 * @setup_data_interface: setup the data interface and timing. If
881 * chipnr is set to %NAND_DATA_IFACE_CHECK_ONLY this
882 * means the configuration should not be applied but
883 * only checked.
884 * This hook is optional.
885 */
886 struct nand_controller_ops {
887 int (*attach_chip)(struct nand_chip *chip);
888 void (*detach_chip)(struct nand_chip *chip);
889 int (*exec_op)(struct nand_chip *chip,
890 const struct nand_operation *op,
891 bool check_only);
892 int (*setup_data_interface)(struct nand_chip *chip, int chipnr,
893 const struct nand_data_interface *conf);
894 };
895
896 /**
897 * struct nand_controller - Structure used to describe a NAND controller
898 *
899 * @lock: lock used to serialize accesses to the NAND controller
900 * @ops: NAND controller operations.
901 */
902 struct nand_controller {
903 struct mutex lock;
904 const struct nand_controller_ops *ops;
905 };
906
907 static inline void nand_controller_init(struct nand_controller *nfc)
908 {
909 mutex_init(&nfc->lock);
910 }
911
912 /**
913 * struct nand_legacy - NAND chip legacy fields/hooks
914 * @IO_ADDR_R: address to read the 8 I/O lines of the flash device
915 * @IO_ADDR_W: address to write the 8 I/O lines of the flash device
916 * @select_chip: select/deselect a specific target/die
917 * @read_byte: read one byte from the chip
918 * @write_byte: write a single byte to the chip on the low 8 I/O lines
919 * @write_buf: write data from the buffer to the chip
920 * @read_buf: read data from the chip into the buffer
921 * @cmd_ctrl: hardware specific function for controlling ALE/CLE/nCE. Also used
922 * to write command and address
923 * @cmdfunc: hardware specific function for writing commands to the chip.
924 * @dev_ready: hardware specific function for accessing device ready/busy line.
925 * If set to NULL no access to ready/busy is available and the
926 * ready/busy information is read from the chip status register.
927 * @waitfunc: hardware specific function for wait on ready.
928 * @block_bad: check if a block is bad, using OOB markers
929 * @block_markbad: mark a block bad
930 * @set_features: set the NAND chip features
931 * @get_features: get the NAND chip features
932 * @chip_delay: chip dependent delay for transferring data from array to read
933 * regs (tR).
934 * @dummy_controller: dummy controller implementation for drivers that can
935 * only control a single chip
936 *
937 * If you look at this structure you're already wrong. These fields/hooks are
938 * all deprecated.
939 */
940 struct nand_legacy {
941 void __iomem *IO_ADDR_R;
942 void __iomem *IO_ADDR_W;
943 void (*select_chip)(struct nand_chip *chip, int cs);
944 u8 (*read_byte)(struct nand_chip *chip);
945 void (*write_byte)(struct nand_chip *chip, u8 byte);
946 void (*write_buf)(struct nand_chip *chip, const u8 *buf, int len);
947 void (*read_buf)(struct nand_chip *chip, u8 *buf, int len);
948 void (*cmd_ctrl)(struct nand_chip *chip, int dat, unsigned int ctrl);
949 void (*cmdfunc)(struct nand_chip *chip, unsigned command, int column,
950 int page_addr);
951 int (*dev_ready)(struct nand_chip *chip);
952 int (*waitfunc)(struct nand_chip *chip);
953 int (*block_bad)(struct nand_chip *chip, loff_t ofs);
954 int (*block_markbad)(struct nand_chip *chip, loff_t ofs);
955 int (*set_features)(struct nand_chip *chip, int feature_addr,
956 u8 *subfeature_para);
957 int (*get_features)(struct nand_chip *chip, int feature_addr,
958 u8 *subfeature_para);
959 int chip_delay;
960 struct nand_controller dummy_controller;
961 };
962
963 /**
964 * struct nand_chip - NAND Private Flash Chip Data
965 * @mtd: MTD device registered to the MTD framework
966 * @legacy: All legacy fields/hooks. If you develop a new driver,
967 * don't even try to use any of these fields/hooks, and if
968 * you're modifying an existing driver that is using those
969 * fields/hooks, you should consider reworking the driver
970 * avoid using them.
971 * @setup_read_retry: [FLASHSPECIFIC] flash (vendor) specific function for
972 * setting the read-retry mode. Mostly needed for MLC NAND.
973 * @ecc: [BOARDSPECIFIC] ECC control structure
974 * @buf_align: minimum buffer alignment required by a platform
975 * @oob_poi: "poison value buffer," used for laying out OOB data
976 * before writing
977 * @page_shift: [INTERN] number of address bits in a page (column
978 * address bits).
979 * @phys_erase_shift: [INTERN] number of address bits in a physical eraseblock
980 * @bbt_erase_shift: [INTERN] number of address bits in a bbt entry
981 * @chip_shift: [INTERN] number of address bits in one chip
982 * @options: [BOARDSPECIFIC] various chip options. They can partly
983 * be set to inform nand_scan about special functionality.
984 * See the defines for further explanation.
985 * @bbt_options: [INTERN] bad block specific options. All options used
986 * here must come from bbm.h. By default, these options
987 * will be copied to the appropriate nand_bbt_descr's.
988 * @badblockpos: [INTERN] position of the bad block marker in the oob
989 * area.
990 * @badblockbits: [INTERN] minimum number of set bits in a good block's
991 * bad block marker position; i.e., BBM == 11110111b is
992 * not bad when badblockbits == 7
993 * @bits_per_cell: [INTERN] number of bits per cell. i.e., 1 means SLC.
994 * @ecc_strength_ds: [INTERN] ECC correctability from the datasheet.
995 * Minimum amount of bit errors per @ecc_step_ds guaranteed
996 * to be correctable. If unknown, set to zero.
997 * @ecc_step_ds: [INTERN] ECC step required by the @ecc_strength_ds,
998 * also from the datasheet. It is the recommended ECC step
999 * size, if known; if unknown, set to zero.
1000 * @onfi_timing_mode_default: [INTERN] default ONFI timing mode. This field is
1001 * set to the actually used ONFI mode if the chip is
1002 * ONFI compliant or deduced from the datasheet if
1003 * the NAND chip is not ONFI compliant.
1004 * @numchips: [INTERN] number of physical chips
1005 * @chipsize: [INTERN] the size of one chip for multichip arrays
1006 * @pagemask: [INTERN] page number mask = number of (pages / chip) - 1
1007 * @data_buf: [INTERN] buffer for data, size is (page size + oobsize).
1008 * @pagebuf: [INTERN] holds the pagenumber which is currently in
1009 * data_buf.
1010 * @pagebuf_bitflips: [INTERN] holds the bitflip count for the page which is
1011 * currently in data_buf.
1012 * @subpagesize: [INTERN] holds the subpagesize
1013 * @id: [INTERN] holds NAND ID
1014 * @parameters: [INTERN] holds generic parameters under an easily
1015 * readable form.
1016 * @max_bb_per_die: [INTERN] the max number of bad blocks each die of a
1017 * this nand device will encounter their life times.
1018 * @blocks_per_die: [INTERN] The number of PEBs in a die
1019 * @data_interface: [INTERN] NAND interface timing information
1020 * @cur_cs: currently selected target. -1 means no target selected,
1021 * otherwise we should always have cur_cs >= 0 &&
1022 * cur_cs < numchips. NAND Controller drivers should not
1023 * modify this value, but they're allowed to read it.
1024 * @read_retries: [INTERN] the number of read retry modes supported
1025 * @lock: lock protecting the suspended field. Also used to
1026 * serialize accesses to the NAND device.
1027 * @suspended: set to 1 when the device is suspended, 0 when it's not.
1028 * @bbt: [INTERN] bad block table pointer
1029 * @bbt_td: [REPLACEABLE] bad block table descriptor for flash
1030 * lookup.
1031 * @bbt_md: [REPLACEABLE] bad block table mirror descriptor
1032 * @badblock_pattern: [REPLACEABLE] bad block scan pattern used for initial
1033 * bad block scan.
1034 * @controller: [REPLACEABLE] a pointer to a hardware controller
1035 * structure which is shared among multiple independent
1036 * devices.
1037 * @priv: [OPTIONAL] pointer to private chip data
1038 * @manufacturer: [INTERN] Contains manufacturer information
1039 * @manufacturer.desc: [INTERN] Contains manufacturer's description
1040 * @manufacturer.priv: [INTERN] Contains manufacturer private information
1041 */
1042
1043 struct nand_chip {
1044 struct mtd_info mtd;
1045
1046 struct nand_legacy legacy;
1047
1048 int (*setup_read_retry)(struct nand_chip *chip, int retry_mode);
1049
1050 unsigned int options;
1051 unsigned int bbt_options;
1052
1053 int page_shift;
1054 int phys_erase_shift;
1055 int bbt_erase_shift;
1056 int chip_shift;
1057 int numchips;
1058 uint64_t chipsize;
1059 int pagemask;
1060 u8 *data_buf;
1061 int pagebuf;
1062 unsigned int pagebuf_bitflips;
1063 int subpagesize;
1064 uint8_t bits_per_cell;
1065 uint16_t ecc_strength_ds;
1066 uint16_t ecc_step_ds;
1067 int onfi_timing_mode_default;
1068 int badblockpos;
1069 int badblockbits;
1070
1071 struct nand_id id;
1072 struct nand_parameters parameters;
1073 u16 max_bb_per_die;
1074 u32 blocks_per_die;
1075
1076 struct nand_data_interface data_interface;
1077
1078 int cur_cs;
1079
1080 int read_retries;
1081
1082 struct mutex lock;
1083 unsigned int suspended : 1;
1084
1085 uint8_t *oob_poi;
1086 struct nand_controller *controller;
1087
1088 struct nand_ecc_ctrl ecc;
1089 unsigned long buf_align;
1090
1091 uint8_t *bbt;
1092 struct nand_bbt_descr *bbt_td;
1093 struct nand_bbt_descr *bbt_md;
1094
1095 struct nand_bbt_descr *badblock_pattern;
1096
1097 void *priv;
1098
1099 struct {
1100 const struct nand_manufacturer *desc;
1101 void *priv;
1102 } manufacturer;
1103 };
1104
1105 extern const struct mtd_ooblayout_ops nand_ooblayout_sp_ops;
1106 extern const struct mtd_ooblayout_ops nand_ooblayout_lp_ops;
1107
1108 static inline void nand_set_flash_node(struct nand_chip *chip,
1109 struct device_node *np)
1110 {
1111 mtd_set_of_node(&chip->mtd, np);
1112 }
1113
1114 static inline struct device_node *nand_get_flash_node(struct nand_chip *chip)
1115 {
1116 return mtd_get_of_node(&chip->mtd);
1117 }
1118
1119 static inline struct nand_chip *mtd_to_nand(struct mtd_info *mtd)
1120 {
1121 return container_of(mtd, struct nand_chip, mtd);
1122 }
1123
1124 static inline struct mtd_info *nand_to_mtd(struct nand_chip *chip)
1125 {
1126 return &chip->mtd;
1127 }
1128
1129 static inline void *nand_get_controller_data(struct nand_chip *chip)
1130 {
1131 return chip->priv;
1132 }
1133
1134 static inline void nand_set_controller_data(struct nand_chip *chip, void *priv)
1135 {
1136 chip->priv = priv;
1137 }
1138
1139 static inline void nand_set_manufacturer_data(struct nand_chip *chip,
1140 void *priv)
1141 {
1142 chip->manufacturer.priv = priv;
1143 }
1144
1145 static inline void *nand_get_manufacturer_data(struct nand_chip *chip)
1146 {
1147 return chip->manufacturer.priv;
1148 }
1149
1150 /*
1151 * A helper for defining older NAND chips where the second ID byte fully
1152 * defined the chip, including the geometry (chip size, eraseblock size, page
1153 * size). All these chips have 512 bytes NAND page size.
1154 */
1155 #define LEGACY_ID_NAND(nm, devid, chipsz, erasesz, opts) \
1156 { .name = (nm), {{ .dev_id = (devid) }}, .pagesize = 512, \
1157 .chipsize = (chipsz), .erasesize = (erasesz), .options = (opts) }
1158
1159 /*
1160 * A helper for defining newer chips which report their page size and
1161 * eraseblock size via the extended ID bytes.
1162 *
1163 * The real difference between LEGACY_ID_NAND and EXTENDED_ID_NAND is that with
1164 * EXTENDED_ID_NAND, manufacturers overloaded the same device ID so that the
1165 * device ID now only represented a particular total chip size (and voltage,
1166 * buswidth), and the page size, eraseblock size, and OOB size could vary while
1167 * using the same device ID.
1168 */
1169 #define EXTENDED_ID_NAND(nm, devid, chipsz, opts) \
1170 { .name = (nm), {{ .dev_id = (devid) }}, .chipsize = (chipsz), \
1171 .options = (opts) }
1172
1173 #define NAND_ECC_INFO(_strength, _step) \
1174 { .strength_ds = (_strength), .step_ds = (_step) }
1175 #define NAND_ECC_STRENGTH(type) ((type)->ecc.strength_ds)
1176 #define NAND_ECC_STEP(type) ((type)->ecc.step_ds)
1177
1178 /**
1179 * struct nand_flash_dev - NAND Flash Device ID Structure
1180 * @name: a human-readable name of the NAND chip
1181 * @dev_id: the device ID (the second byte of the full chip ID array)
1182 * @mfr_id: manufecturer ID part of the full chip ID array (refers the same
1183 * memory address as @id[0])
1184 * @dev_id: device ID part of the full chip ID array (refers the same memory
1185 * address as @id[1])
1186 * @id: full device ID array
1187 * @pagesize: size of the NAND page in bytes; if 0, then the real page size (as
1188 * well as the eraseblock size) is determined from the extended NAND
1189 * chip ID array)
1190 * @chipsize: total chip size in MiB
1191 * @erasesize: eraseblock size in bytes (determined from the extended ID if 0)
1192 * @options: stores various chip bit options
1193 * @id_len: The valid length of the @id.
1194 * @oobsize: OOB size
1195 * @ecc: ECC correctability and step information from the datasheet.
1196 * @ecc.strength_ds: The ECC correctability from the datasheet, same as the
1197 * @ecc_strength_ds in nand_chip{}.
1198 * @ecc.step_ds: The ECC step required by the @ecc.strength_ds, same as the
1199 * @ecc_step_ds in nand_chip{}, also from the datasheet.
1200 * For example, the "4bit ECC for each 512Byte" can be set with
1201 * NAND_ECC_INFO(4, 512).
1202 * @onfi_timing_mode_default: the default ONFI timing mode entered after a NAND
1203 * reset. Should be deduced from timings described
1204 * in the datasheet.
1205 *
1206 */
1207 struct nand_flash_dev {
1208 char *name;
1209 union {
1210 struct {
1211 uint8_t mfr_id;
1212 uint8_t dev_id;
1213 };
1214 uint8_t id[NAND_MAX_ID_LEN];
1215 };
1216 unsigned int pagesize;
1217 unsigned int chipsize;
1218 unsigned int erasesize;
1219 unsigned int options;
1220 uint16_t id_len;
1221 uint16_t oobsize;
1222 struct {
1223 uint16_t strength_ds;
1224 uint16_t step_ds;
1225 } ecc;
1226 int onfi_timing_mode_default;
1227 };
1228
1229 int nand_create_bbt(struct nand_chip *chip);
1230
1231 /*
1232 * Check if it is a SLC nand.
1233 * The !nand_is_slc() can be used to check the MLC/TLC nand chips.
1234 * We do not distinguish the MLC and TLC now.
1235 */
1236 static inline bool nand_is_slc(struct nand_chip *chip)
1237 {
1238 WARN(chip->bits_per_cell == 0,
1239 "chip->bits_per_cell is used uninitialized\n");
1240 return chip->bits_per_cell == 1;
1241 }
1242
1243 /**
1244 * Check if the opcode's address should be sent only on the lower 8 bits
1245 * @command: opcode to check
1246 */
1247 static inline int nand_opcode_8bits(unsigned int command)
1248 {
1249 switch (command) {
1250 case NAND_CMD_READID:
1251 case NAND_CMD_PARAM:
1252 case NAND_CMD_GET_FEATURES:
1253 case NAND_CMD_SET_FEATURES:
1254 return 1;
1255 default:
1256 break;
1257 }
1258 return 0;
1259 }
1260
1261 int nand_check_erased_ecc_chunk(void *data, int datalen,
1262 void *ecc, int ecclen,
1263 void *extraoob, int extraooblen,
1264 int threshold);
1265
1266 int nand_ecc_choose_conf(struct nand_chip *chip,
1267 const struct nand_ecc_caps *caps, int oobavail);
1268
1269 /* Default write_oob implementation */
1270 int nand_write_oob_std(struct nand_chip *chip, int page);
1271
1272 /* Default read_oob implementation */
1273 int nand_read_oob_std(struct nand_chip *chip, int page);
1274
1275 /* Stub used by drivers that do not support GET/SET FEATURES operations */
1276 int nand_get_set_features_notsupp(struct nand_chip *chip, int addr,
1277 u8 *subfeature_param);
1278
1279 /* Default read_page_raw implementation */
1280 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
1281 int page);
1282
1283 /* Default write_page_raw implementation */
1284 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
1285 int oob_required, int page);
1286
1287 /* Reset and initialize a NAND device */
1288 int nand_reset(struct nand_chip *chip, int chipnr);
1289
1290 /* NAND operation helpers */
1291 int nand_reset_op(struct nand_chip *chip);
1292 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1293 unsigned int len);
1294 int nand_status_op(struct nand_chip *chip, u8 *status);
1295 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock);
1296 int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1297 unsigned int offset_in_page, void *buf, unsigned int len);
1298 int nand_change_read_column_op(struct nand_chip *chip,
1299 unsigned int offset_in_page, void *buf,
1300 unsigned int len, bool force_8bit);
1301 int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1302 unsigned int offset_in_page, void *buf, unsigned int len);
1303 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1304 unsigned int offset_in_page, const void *buf,
1305 unsigned int len);
1306 int nand_prog_page_end_op(struct nand_chip *chip);
1307 int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1308 unsigned int offset_in_page, const void *buf,
1309 unsigned int len);
1310 int nand_change_write_column_op(struct nand_chip *chip,
1311 unsigned int offset_in_page, const void *buf,
1312 unsigned int len, bool force_8bit);
1313 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
1314 bool force_8bit);
1315 int nand_write_data_op(struct nand_chip *chip, const void *buf,
1316 unsigned int len, bool force_8bit);
1317
1318 /* Scan and identify a NAND device */
1319 int nand_scan_with_ids(struct nand_chip *chip, unsigned int max_chips,
1320 struct nand_flash_dev *ids);
1321
1322 static inline int nand_scan(struct nand_chip *chip, unsigned int max_chips)
1323 {
1324 return nand_scan_with_ids(chip, max_chips, NULL);
1325 }
1326
1327 /* Internal helper for board drivers which need to override command function */
1328 void nand_wait_ready(struct nand_chip *chip);
1329
1330 /*
1331 * Free resources held by the NAND device, must be called on error after a
1332 * sucessful nand_scan().
1333 */
1334 void nand_cleanup(struct nand_chip *chip);
1335 /* Unregister the MTD device and calls nand_cleanup() */
1336 void nand_release(struct nand_chip *chip);
1337
1338 /*
1339 * External helper for controller drivers that have to implement the WAITRDY
1340 * instruction and have no physical pin to check it.
1341 */
1342 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms);
1343 struct gpio_desc;
1344 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
1345 unsigned long timeout_ms);
1346
1347 /* Select/deselect a NAND target. */
1348 void nand_select_target(struct nand_chip *chip, unsigned int cs);
1349 void nand_deselect_target(struct nand_chip *chip);
1350
1351 #endif /* __LINUX_MTD_RAWNAND_H */