]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/netdevice.h
net: add netif_is_ovs_port helper
[mirror_ubuntu-bionic-kernel.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #ifdef CONFIG_DCB
45 #include <net/dcbnl.h>
46 #endif
47 #include <net/netprio_cgroup.h>
48
49 #include <linux/netdev_features.h>
50 #include <linux/neighbour.h>
51 #include <uapi/linux/netdevice.h>
52 #include <uapi/linux/if_bonding.h>
53 #include <uapi/linux/pkt_cls.h>
54 #include <linux/hashtable.h>
55
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 struct dsa_switch_tree;
60
61 /* 802.11 specific */
62 struct wireless_dev;
63 /* 802.15.4 specific */
64 struct wpan_dev;
65 struct mpls_dev;
66 /* UDP Tunnel offloads */
67 struct udp_tunnel_info;
68 struct bpf_prog;
69
70 void netdev_set_default_ethtool_ops(struct net_device *dev,
71 const struct ethtool_ops *ops);
72
73 /* Backlog congestion levels */
74 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
75 #define NET_RX_DROP 1 /* packet dropped */
76
77 /*
78 * Transmit return codes: transmit return codes originate from three different
79 * namespaces:
80 *
81 * - qdisc return codes
82 * - driver transmit return codes
83 * - errno values
84 *
85 * Drivers are allowed to return any one of those in their hard_start_xmit()
86 * function. Real network devices commonly used with qdiscs should only return
87 * the driver transmit return codes though - when qdiscs are used, the actual
88 * transmission happens asynchronously, so the value is not propagated to
89 * higher layers. Virtual network devices transmit synchronously; in this case
90 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
91 * others are propagated to higher layers.
92 */
93
94 /* qdisc ->enqueue() return codes. */
95 #define NET_XMIT_SUCCESS 0x00
96 #define NET_XMIT_DROP 0x01 /* skb dropped */
97 #define NET_XMIT_CN 0x02 /* congestion notification */
98 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
99
100 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
101 * indicates that the device will soon be dropping packets, or already drops
102 * some packets of the same priority; prompting us to send less aggressively. */
103 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
104 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
105
106 /* Driver transmit return codes */
107 #define NETDEV_TX_MASK 0xf0
108
109 enum netdev_tx {
110 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
111 NETDEV_TX_OK = 0x00, /* driver took care of packet */
112 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
113 };
114 typedef enum netdev_tx netdev_tx_t;
115
116 /*
117 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
118 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
119 */
120 static inline bool dev_xmit_complete(int rc)
121 {
122 /*
123 * Positive cases with an skb consumed by a driver:
124 * - successful transmission (rc == NETDEV_TX_OK)
125 * - error while transmitting (rc < 0)
126 * - error while queueing to a different device (rc & NET_XMIT_MASK)
127 */
128 if (likely(rc < NET_XMIT_MASK))
129 return true;
130
131 return false;
132 }
133
134 /*
135 * Compute the worst-case header length according to the protocols
136 * used.
137 */
138
139 #if defined(CONFIG_HYPERV_NET)
140 # define LL_MAX_HEADER 128
141 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
142 # if defined(CONFIG_MAC80211_MESH)
143 # define LL_MAX_HEADER 128
144 # else
145 # define LL_MAX_HEADER 96
146 # endif
147 #else
148 # define LL_MAX_HEADER 32
149 #endif
150
151 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
152 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
153 #define MAX_HEADER LL_MAX_HEADER
154 #else
155 #define MAX_HEADER (LL_MAX_HEADER + 48)
156 #endif
157
158 /*
159 * Old network device statistics. Fields are native words
160 * (unsigned long) so they can be read and written atomically.
161 */
162
163 struct net_device_stats {
164 unsigned long rx_packets;
165 unsigned long tx_packets;
166 unsigned long rx_bytes;
167 unsigned long tx_bytes;
168 unsigned long rx_errors;
169 unsigned long tx_errors;
170 unsigned long rx_dropped;
171 unsigned long tx_dropped;
172 unsigned long multicast;
173 unsigned long collisions;
174 unsigned long rx_length_errors;
175 unsigned long rx_over_errors;
176 unsigned long rx_crc_errors;
177 unsigned long rx_frame_errors;
178 unsigned long rx_fifo_errors;
179 unsigned long rx_missed_errors;
180 unsigned long tx_aborted_errors;
181 unsigned long tx_carrier_errors;
182 unsigned long tx_fifo_errors;
183 unsigned long tx_heartbeat_errors;
184 unsigned long tx_window_errors;
185 unsigned long rx_compressed;
186 unsigned long tx_compressed;
187 };
188
189
190 #include <linux/cache.h>
191 #include <linux/skbuff.h>
192
193 #ifdef CONFIG_RPS
194 #include <linux/static_key.h>
195 extern struct static_key rps_needed;
196 extern struct static_key rfs_needed;
197 #endif
198
199 struct neighbour;
200 struct neigh_parms;
201 struct sk_buff;
202
203 struct netdev_hw_addr {
204 struct list_head list;
205 unsigned char addr[MAX_ADDR_LEN];
206 unsigned char type;
207 #define NETDEV_HW_ADDR_T_LAN 1
208 #define NETDEV_HW_ADDR_T_SAN 2
209 #define NETDEV_HW_ADDR_T_SLAVE 3
210 #define NETDEV_HW_ADDR_T_UNICAST 4
211 #define NETDEV_HW_ADDR_T_MULTICAST 5
212 bool global_use;
213 int sync_cnt;
214 int refcount;
215 int synced;
216 struct rcu_head rcu_head;
217 };
218
219 struct netdev_hw_addr_list {
220 struct list_head list;
221 int count;
222 };
223
224 #define netdev_hw_addr_list_count(l) ((l)->count)
225 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
226 #define netdev_hw_addr_list_for_each(ha, l) \
227 list_for_each_entry(ha, &(l)->list, list)
228
229 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
230 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
231 #define netdev_for_each_uc_addr(ha, dev) \
232 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
233
234 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
235 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
236 #define netdev_for_each_mc_addr(ha, dev) \
237 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
238
239 struct hh_cache {
240 unsigned int hh_len;
241 seqlock_t hh_lock;
242
243 /* cached hardware header; allow for machine alignment needs. */
244 #define HH_DATA_MOD 16
245 #define HH_DATA_OFF(__len) \
246 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
247 #define HH_DATA_ALIGN(__len) \
248 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
249 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
250 };
251
252 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
253 * Alternative is:
254 * dev->hard_header_len ? (dev->hard_header_len +
255 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
256 *
257 * We could use other alignment values, but we must maintain the
258 * relationship HH alignment <= LL alignment.
259 */
260 #define LL_RESERVED_SPACE(dev) \
261 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
263 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264
265 struct header_ops {
266 int (*create) (struct sk_buff *skb, struct net_device *dev,
267 unsigned short type, const void *daddr,
268 const void *saddr, unsigned int len);
269 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
270 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
271 void (*cache_update)(struct hh_cache *hh,
272 const struct net_device *dev,
273 const unsigned char *haddr);
274 bool (*validate)(const char *ll_header, unsigned int len);
275 };
276
277 /* These flag bits are private to the generic network queueing
278 * layer; they may not be explicitly referenced by any other
279 * code.
280 */
281
282 enum netdev_state_t {
283 __LINK_STATE_START,
284 __LINK_STATE_PRESENT,
285 __LINK_STATE_NOCARRIER,
286 __LINK_STATE_LINKWATCH_PENDING,
287 __LINK_STATE_DORMANT,
288 };
289
290
291 /*
292 * This structure holds boot-time configured netdevice settings. They
293 * are then used in the device probing.
294 */
295 struct netdev_boot_setup {
296 char name[IFNAMSIZ];
297 struct ifmap map;
298 };
299 #define NETDEV_BOOT_SETUP_MAX 8
300
301 int __init netdev_boot_setup(char *str);
302
303 /*
304 * Structure for NAPI scheduling similar to tasklet but with weighting
305 */
306 struct napi_struct {
307 /* The poll_list must only be managed by the entity which
308 * changes the state of the NAPI_STATE_SCHED bit. This means
309 * whoever atomically sets that bit can add this napi_struct
310 * to the per-CPU poll_list, and whoever clears that bit
311 * can remove from the list right before clearing the bit.
312 */
313 struct list_head poll_list;
314
315 unsigned long state;
316 int weight;
317 unsigned int gro_count;
318 int (*poll)(struct napi_struct *, int);
319 #ifdef CONFIG_NETPOLL
320 int poll_owner;
321 #endif
322 struct net_device *dev;
323 struct sk_buff *gro_list;
324 struct sk_buff *skb;
325 struct hrtimer timer;
326 struct list_head dev_list;
327 struct hlist_node napi_hash_node;
328 unsigned int napi_id;
329 };
330
331 enum {
332 NAPI_STATE_SCHED, /* Poll is scheduled */
333 NAPI_STATE_MISSED, /* reschedule a napi */
334 NAPI_STATE_DISABLE, /* Disable pending */
335 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
336 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */
337 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
338 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
339 };
340
341 enum {
342 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED),
343 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED),
344 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE),
345 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC),
346 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED),
347 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
348 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
349 };
350
351 enum gro_result {
352 GRO_MERGED,
353 GRO_MERGED_FREE,
354 GRO_HELD,
355 GRO_NORMAL,
356 GRO_DROP,
357 GRO_CONSUMED,
358 };
359 typedef enum gro_result gro_result_t;
360
361 /*
362 * enum rx_handler_result - Possible return values for rx_handlers.
363 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
364 * further.
365 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
366 * case skb->dev was changed by rx_handler.
367 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
368 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
369 *
370 * rx_handlers are functions called from inside __netif_receive_skb(), to do
371 * special processing of the skb, prior to delivery to protocol handlers.
372 *
373 * Currently, a net_device can only have a single rx_handler registered. Trying
374 * to register a second rx_handler will return -EBUSY.
375 *
376 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
377 * To unregister a rx_handler on a net_device, use
378 * netdev_rx_handler_unregister().
379 *
380 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
381 * do with the skb.
382 *
383 * If the rx_handler consumed the skb in some way, it should return
384 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
385 * the skb to be delivered in some other way.
386 *
387 * If the rx_handler changed skb->dev, to divert the skb to another
388 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
389 * new device will be called if it exists.
390 *
391 * If the rx_handler decides the skb should be ignored, it should return
392 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
393 * are registered on exact device (ptype->dev == skb->dev).
394 *
395 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
396 * delivered, it should return RX_HANDLER_PASS.
397 *
398 * A device without a registered rx_handler will behave as if rx_handler
399 * returned RX_HANDLER_PASS.
400 */
401
402 enum rx_handler_result {
403 RX_HANDLER_CONSUMED,
404 RX_HANDLER_ANOTHER,
405 RX_HANDLER_EXACT,
406 RX_HANDLER_PASS,
407 };
408 typedef enum rx_handler_result rx_handler_result_t;
409 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
410
411 void __napi_schedule(struct napi_struct *n);
412 void __napi_schedule_irqoff(struct napi_struct *n);
413
414 static inline bool napi_disable_pending(struct napi_struct *n)
415 {
416 return test_bit(NAPI_STATE_DISABLE, &n->state);
417 }
418
419 bool napi_schedule_prep(struct napi_struct *n);
420
421 /**
422 * napi_schedule - schedule NAPI poll
423 * @n: NAPI context
424 *
425 * Schedule NAPI poll routine to be called if it is not already
426 * running.
427 */
428 static inline void napi_schedule(struct napi_struct *n)
429 {
430 if (napi_schedule_prep(n))
431 __napi_schedule(n);
432 }
433
434 /**
435 * napi_schedule_irqoff - schedule NAPI poll
436 * @n: NAPI context
437 *
438 * Variant of napi_schedule(), assuming hard irqs are masked.
439 */
440 static inline void napi_schedule_irqoff(struct napi_struct *n)
441 {
442 if (napi_schedule_prep(n))
443 __napi_schedule_irqoff(n);
444 }
445
446 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
447 static inline bool napi_reschedule(struct napi_struct *napi)
448 {
449 if (napi_schedule_prep(napi)) {
450 __napi_schedule(napi);
451 return true;
452 }
453 return false;
454 }
455
456 bool napi_complete_done(struct napi_struct *n, int work_done);
457 /**
458 * napi_complete - NAPI processing complete
459 * @n: NAPI context
460 *
461 * Mark NAPI processing as complete.
462 * Consider using napi_complete_done() instead.
463 * Return false if device should avoid rearming interrupts.
464 */
465 static inline bool napi_complete(struct napi_struct *n)
466 {
467 return napi_complete_done(n, 0);
468 }
469
470 /**
471 * napi_hash_del - remove a NAPI from global table
472 * @napi: NAPI context
473 *
474 * Warning: caller must observe RCU grace period
475 * before freeing memory containing @napi, if
476 * this function returns true.
477 * Note: core networking stack automatically calls it
478 * from netif_napi_del().
479 * Drivers might want to call this helper to combine all
480 * the needed RCU grace periods into a single one.
481 */
482 bool napi_hash_del(struct napi_struct *napi);
483
484 /**
485 * napi_disable - prevent NAPI from scheduling
486 * @n: NAPI context
487 *
488 * Stop NAPI from being scheduled on this context.
489 * Waits till any outstanding processing completes.
490 */
491 void napi_disable(struct napi_struct *n);
492
493 /**
494 * napi_enable - enable NAPI scheduling
495 * @n: NAPI context
496 *
497 * Resume NAPI from being scheduled on this context.
498 * Must be paired with napi_disable.
499 */
500 static inline void napi_enable(struct napi_struct *n)
501 {
502 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
503 smp_mb__before_atomic();
504 clear_bit(NAPI_STATE_SCHED, &n->state);
505 clear_bit(NAPI_STATE_NPSVC, &n->state);
506 }
507
508 /**
509 * napi_synchronize - wait until NAPI is not running
510 * @n: NAPI context
511 *
512 * Wait until NAPI is done being scheduled on this context.
513 * Waits till any outstanding processing completes but
514 * does not disable future activations.
515 */
516 static inline void napi_synchronize(const struct napi_struct *n)
517 {
518 if (IS_ENABLED(CONFIG_SMP))
519 while (test_bit(NAPI_STATE_SCHED, &n->state))
520 msleep(1);
521 else
522 barrier();
523 }
524
525 enum netdev_queue_state_t {
526 __QUEUE_STATE_DRV_XOFF,
527 __QUEUE_STATE_STACK_XOFF,
528 __QUEUE_STATE_FROZEN,
529 };
530
531 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
532 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
533 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
534
535 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
536 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
537 QUEUE_STATE_FROZEN)
538 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
539 QUEUE_STATE_FROZEN)
540
541 /*
542 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
543 * netif_tx_* functions below are used to manipulate this flag. The
544 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
545 * queue independently. The netif_xmit_*stopped functions below are called
546 * to check if the queue has been stopped by the driver or stack (either
547 * of the XOFF bits are set in the state). Drivers should not need to call
548 * netif_xmit*stopped functions, they should only be using netif_tx_*.
549 */
550
551 struct netdev_queue {
552 /*
553 * read-mostly part
554 */
555 struct net_device *dev;
556 struct Qdisc __rcu *qdisc;
557 struct Qdisc *qdisc_sleeping;
558 #ifdef CONFIG_SYSFS
559 struct kobject kobj;
560 #endif
561 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
562 int numa_node;
563 #endif
564 unsigned long tx_maxrate;
565 /*
566 * Number of TX timeouts for this queue
567 * (/sys/class/net/DEV/Q/trans_timeout)
568 */
569 unsigned long trans_timeout;
570 /*
571 * write-mostly part
572 */
573 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
574 int xmit_lock_owner;
575 /*
576 * Time (in jiffies) of last Tx
577 */
578 unsigned long trans_start;
579
580 unsigned long state;
581
582 #ifdef CONFIG_BQL
583 struct dql dql;
584 #endif
585 } ____cacheline_aligned_in_smp;
586
587 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
588 {
589 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
590 return q->numa_node;
591 #else
592 return NUMA_NO_NODE;
593 #endif
594 }
595
596 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
597 {
598 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
599 q->numa_node = node;
600 #endif
601 }
602
603 #ifdef CONFIG_RPS
604 /*
605 * This structure holds an RPS map which can be of variable length. The
606 * map is an array of CPUs.
607 */
608 struct rps_map {
609 unsigned int len;
610 struct rcu_head rcu;
611 u16 cpus[0];
612 };
613 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
614
615 /*
616 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
617 * tail pointer for that CPU's input queue at the time of last enqueue, and
618 * a hardware filter index.
619 */
620 struct rps_dev_flow {
621 u16 cpu;
622 u16 filter;
623 unsigned int last_qtail;
624 };
625 #define RPS_NO_FILTER 0xffff
626
627 /*
628 * The rps_dev_flow_table structure contains a table of flow mappings.
629 */
630 struct rps_dev_flow_table {
631 unsigned int mask;
632 struct rcu_head rcu;
633 struct rps_dev_flow flows[0];
634 };
635 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
636 ((_num) * sizeof(struct rps_dev_flow)))
637
638 /*
639 * The rps_sock_flow_table contains mappings of flows to the last CPU
640 * on which they were processed by the application (set in recvmsg).
641 * Each entry is a 32bit value. Upper part is the high-order bits
642 * of flow hash, lower part is CPU number.
643 * rps_cpu_mask is used to partition the space, depending on number of
644 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
645 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
646 * meaning we use 32-6=26 bits for the hash.
647 */
648 struct rps_sock_flow_table {
649 u32 mask;
650
651 u32 ents[0] ____cacheline_aligned_in_smp;
652 };
653 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
654
655 #define RPS_NO_CPU 0xffff
656
657 extern u32 rps_cpu_mask;
658 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
659
660 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
661 u32 hash)
662 {
663 if (table && hash) {
664 unsigned int index = hash & table->mask;
665 u32 val = hash & ~rps_cpu_mask;
666
667 /* We only give a hint, preemption can change CPU under us */
668 val |= raw_smp_processor_id();
669
670 if (table->ents[index] != val)
671 table->ents[index] = val;
672 }
673 }
674
675 #ifdef CONFIG_RFS_ACCEL
676 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
677 u16 filter_id);
678 #endif
679 #endif /* CONFIG_RPS */
680
681 /* This structure contains an instance of an RX queue. */
682 struct netdev_rx_queue {
683 #ifdef CONFIG_RPS
684 struct rps_map __rcu *rps_map;
685 struct rps_dev_flow_table __rcu *rps_flow_table;
686 #endif
687 struct kobject kobj;
688 struct net_device *dev;
689 } ____cacheline_aligned_in_smp;
690
691 /*
692 * RX queue sysfs structures and functions.
693 */
694 struct rx_queue_attribute {
695 struct attribute attr;
696 ssize_t (*show)(struct netdev_rx_queue *queue,
697 struct rx_queue_attribute *attr, char *buf);
698 ssize_t (*store)(struct netdev_rx_queue *queue,
699 struct rx_queue_attribute *attr, const char *buf, size_t len);
700 };
701
702 #ifdef CONFIG_XPS
703 /*
704 * This structure holds an XPS map which can be of variable length. The
705 * map is an array of queues.
706 */
707 struct xps_map {
708 unsigned int len;
709 unsigned int alloc_len;
710 struct rcu_head rcu;
711 u16 queues[0];
712 };
713 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
714 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
715 - sizeof(struct xps_map)) / sizeof(u16))
716
717 /*
718 * This structure holds all XPS maps for device. Maps are indexed by CPU.
719 */
720 struct xps_dev_maps {
721 struct rcu_head rcu;
722 struct xps_map __rcu *cpu_map[0];
723 };
724 #define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \
725 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
726 #endif /* CONFIG_XPS */
727
728 #define TC_MAX_QUEUE 16
729 #define TC_BITMASK 15
730 /* HW offloaded queuing disciplines txq count and offset maps */
731 struct netdev_tc_txq {
732 u16 count;
733 u16 offset;
734 };
735
736 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
737 /*
738 * This structure is to hold information about the device
739 * configured to run FCoE protocol stack.
740 */
741 struct netdev_fcoe_hbainfo {
742 char manufacturer[64];
743 char serial_number[64];
744 char hardware_version[64];
745 char driver_version[64];
746 char optionrom_version[64];
747 char firmware_version[64];
748 char model[256];
749 char model_description[256];
750 };
751 #endif
752
753 #define MAX_PHYS_ITEM_ID_LEN 32
754
755 /* This structure holds a unique identifier to identify some
756 * physical item (port for example) used by a netdevice.
757 */
758 struct netdev_phys_item_id {
759 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
760 unsigned char id_len;
761 };
762
763 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
764 struct netdev_phys_item_id *b)
765 {
766 return a->id_len == b->id_len &&
767 memcmp(a->id, b->id, a->id_len) == 0;
768 }
769
770 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
771 struct sk_buff *skb);
772
773 /* These structures hold the attributes of qdisc and classifiers
774 * that are being passed to the netdevice through the setup_tc op.
775 */
776 enum {
777 TC_SETUP_MQPRIO,
778 TC_SETUP_CLSU32,
779 TC_SETUP_CLSFLOWER,
780 TC_SETUP_MATCHALL,
781 TC_SETUP_CLSBPF,
782 };
783
784 struct tc_cls_u32_offload;
785
786 struct tc_to_netdev {
787 unsigned int type;
788 union {
789 struct tc_cls_u32_offload *cls_u32;
790 struct tc_cls_flower_offload *cls_flower;
791 struct tc_cls_matchall_offload *cls_mall;
792 struct tc_cls_bpf_offload *cls_bpf;
793 struct tc_mqprio_qopt *mqprio;
794 };
795 bool egress_dev;
796 };
797
798 /* These structures hold the attributes of xdp state that are being passed
799 * to the netdevice through the xdp op.
800 */
801 enum xdp_netdev_command {
802 /* Set or clear a bpf program used in the earliest stages of packet
803 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
804 * is responsible for calling bpf_prog_put on any old progs that are
805 * stored. In case of error, the callee need not release the new prog
806 * reference, but on success it takes ownership and must bpf_prog_put
807 * when it is no longer used.
808 */
809 XDP_SETUP_PROG,
810 /* Check if a bpf program is set on the device. The callee should
811 * return true if a program is currently attached and running.
812 */
813 XDP_QUERY_PROG,
814 };
815
816 struct netdev_xdp {
817 enum xdp_netdev_command command;
818 union {
819 /* XDP_SETUP_PROG */
820 struct bpf_prog *prog;
821 /* XDP_QUERY_PROG */
822 bool prog_attached;
823 };
824 };
825
826 /*
827 * This structure defines the management hooks for network devices.
828 * The following hooks can be defined; unless noted otherwise, they are
829 * optional and can be filled with a null pointer.
830 *
831 * int (*ndo_init)(struct net_device *dev);
832 * This function is called once when a network device is registered.
833 * The network device can use this for any late stage initialization
834 * or semantic validation. It can fail with an error code which will
835 * be propagated back to register_netdev.
836 *
837 * void (*ndo_uninit)(struct net_device *dev);
838 * This function is called when device is unregistered or when registration
839 * fails. It is not called if init fails.
840 *
841 * int (*ndo_open)(struct net_device *dev);
842 * This function is called when a network device transitions to the up
843 * state.
844 *
845 * int (*ndo_stop)(struct net_device *dev);
846 * This function is called when a network device transitions to the down
847 * state.
848 *
849 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
850 * struct net_device *dev);
851 * Called when a packet needs to be transmitted.
852 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
853 * the queue before that can happen; it's for obsolete devices and weird
854 * corner cases, but the stack really does a non-trivial amount
855 * of useless work if you return NETDEV_TX_BUSY.
856 * Required; cannot be NULL.
857 *
858 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
859 * struct net_device *dev
860 * netdev_features_t features);
861 * Called by core transmit path to determine if device is capable of
862 * performing offload operations on a given packet. This is to give
863 * the device an opportunity to implement any restrictions that cannot
864 * be otherwise expressed by feature flags. The check is called with
865 * the set of features that the stack has calculated and it returns
866 * those the driver believes to be appropriate.
867 *
868 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
869 * void *accel_priv, select_queue_fallback_t fallback);
870 * Called to decide which queue to use when device supports multiple
871 * transmit queues.
872 *
873 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
874 * This function is called to allow device receiver to make
875 * changes to configuration when multicast or promiscuous is enabled.
876 *
877 * void (*ndo_set_rx_mode)(struct net_device *dev);
878 * This function is called device changes address list filtering.
879 * If driver handles unicast address filtering, it should set
880 * IFF_UNICAST_FLT in its priv_flags.
881 *
882 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
883 * This function is called when the Media Access Control address
884 * needs to be changed. If this interface is not defined, the
885 * MAC address can not be changed.
886 *
887 * int (*ndo_validate_addr)(struct net_device *dev);
888 * Test if Media Access Control address is valid for the device.
889 *
890 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
891 * Called when a user requests an ioctl which can't be handled by
892 * the generic interface code. If not defined ioctls return
893 * not supported error code.
894 *
895 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
896 * Used to set network devices bus interface parameters. This interface
897 * is retained for legacy reasons; new devices should use the bus
898 * interface (PCI) for low level management.
899 *
900 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
901 * Called when a user wants to change the Maximum Transfer Unit
902 * of a device. If not defined, any request to change MTU will
903 * will return an error.
904 *
905 * void (*ndo_tx_timeout)(struct net_device *dev);
906 * Callback used when the transmitter has not made any progress
907 * for dev->watchdog ticks.
908 *
909 * void (*ndo_get_stats64)(struct net_device *dev,
910 * struct rtnl_link_stats64 *storage);
911 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
912 * Called when a user wants to get the network device usage
913 * statistics. Drivers must do one of the following:
914 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
915 * rtnl_link_stats64 structure passed by the caller.
916 * 2. Define @ndo_get_stats to update a net_device_stats structure
917 * (which should normally be dev->stats) and return a pointer to
918 * it. The structure may be changed asynchronously only if each
919 * field is written atomically.
920 * 3. Update dev->stats asynchronously and atomically, and define
921 * neither operation.
922 *
923 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
924 * Return true if this device supports offload stats of this attr_id.
925 *
926 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
927 * void *attr_data)
928 * Get statistics for offload operations by attr_id. Write it into the
929 * attr_data pointer.
930 *
931 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
932 * If device supports VLAN filtering this function is called when a
933 * VLAN id is registered.
934 *
935 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
936 * If device supports VLAN filtering this function is called when a
937 * VLAN id is unregistered.
938 *
939 * void (*ndo_poll_controller)(struct net_device *dev);
940 *
941 * SR-IOV management functions.
942 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
943 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
944 * u8 qos, __be16 proto);
945 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
946 * int max_tx_rate);
947 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
948 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
949 * int (*ndo_get_vf_config)(struct net_device *dev,
950 * int vf, struct ifla_vf_info *ivf);
951 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
952 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
953 * struct nlattr *port[]);
954 *
955 * Enable or disable the VF ability to query its RSS Redirection Table and
956 * Hash Key. This is needed since on some devices VF share this information
957 * with PF and querying it may introduce a theoretical security risk.
958 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
959 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
960 * int (*ndo_setup_tc)(struct net_device *dev, u32 handle,
961 * __be16 protocol, struct tc_to_netdev *tc);
962 * Called to setup any 'tc' scheduler, classifier or action on @dev.
963 * This is always called from the stack with the rtnl lock held and netif
964 * tx queues stopped. This allows the netdevice to perform queue
965 * management safely.
966 *
967 * Fiber Channel over Ethernet (FCoE) offload functions.
968 * int (*ndo_fcoe_enable)(struct net_device *dev);
969 * Called when the FCoE protocol stack wants to start using LLD for FCoE
970 * so the underlying device can perform whatever needed configuration or
971 * initialization to support acceleration of FCoE traffic.
972 *
973 * int (*ndo_fcoe_disable)(struct net_device *dev);
974 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
975 * so the underlying device can perform whatever needed clean-ups to
976 * stop supporting acceleration of FCoE traffic.
977 *
978 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
979 * struct scatterlist *sgl, unsigned int sgc);
980 * Called when the FCoE Initiator wants to initialize an I/O that
981 * is a possible candidate for Direct Data Placement (DDP). The LLD can
982 * perform necessary setup and returns 1 to indicate the device is set up
983 * successfully to perform DDP on this I/O, otherwise this returns 0.
984 *
985 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
986 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
987 * indicated by the FC exchange id 'xid', so the underlying device can
988 * clean up and reuse resources for later DDP requests.
989 *
990 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
991 * struct scatterlist *sgl, unsigned int sgc);
992 * Called when the FCoE Target wants to initialize an I/O that
993 * is a possible candidate for Direct Data Placement (DDP). The LLD can
994 * perform necessary setup and returns 1 to indicate the device is set up
995 * successfully to perform DDP on this I/O, otherwise this returns 0.
996 *
997 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
998 * struct netdev_fcoe_hbainfo *hbainfo);
999 * Called when the FCoE Protocol stack wants information on the underlying
1000 * device. This information is utilized by the FCoE protocol stack to
1001 * register attributes with Fiber Channel management service as per the
1002 * FC-GS Fabric Device Management Information(FDMI) specification.
1003 *
1004 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1005 * Called when the underlying device wants to override default World Wide
1006 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1007 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1008 * protocol stack to use.
1009 *
1010 * RFS acceleration.
1011 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1012 * u16 rxq_index, u32 flow_id);
1013 * Set hardware filter for RFS. rxq_index is the target queue index;
1014 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1015 * Return the filter ID on success, or a negative error code.
1016 *
1017 * Slave management functions (for bridge, bonding, etc).
1018 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1019 * Called to make another netdev an underling.
1020 *
1021 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1022 * Called to release previously enslaved netdev.
1023 *
1024 * Feature/offload setting functions.
1025 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1026 * netdev_features_t features);
1027 * Adjusts the requested feature flags according to device-specific
1028 * constraints, and returns the resulting flags. Must not modify
1029 * the device state.
1030 *
1031 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1032 * Called to update device configuration to new features. Passed
1033 * feature set might be less than what was returned by ndo_fix_features()).
1034 * Must return >0 or -errno if it changed dev->features itself.
1035 *
1036 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1037 * struct net_device *dev,
1038 * const unsigned char *addr, u16 vid, u16 flags)
1039 * Adds an FDB entry to dev for addr.
1040 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1041 * struct net_device *dev,
1042 * const unsigned char *addr, u16 vid)
1043 * Deletes the FDB entry from dev coresponding to addr.
1044 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1045 * struct net_device *dev, struct net_device *filter_dev,
1046 * int *idx)
1047 * Used to add FDB entries to dump requests. Implementers should add
1048 * entries to skb and update idx with the number of entries.
1049 *
1050 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1051 * u16 flags)
1052 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1053 * struct net_device *dev, u32 filter_mask,
1054 * int nlflags)
1055 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1056 * u16 flags);
1057 *
1058 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1059 * Called to change device carrier. Soft-devices (like dummy, team, etc)
1060 * which do not represent real hardware may define this to allow their
1061 * userspace components to manage their virtual carrier state. Devices
1062 * that determine carrier state from physical hardware properties (eg
1063 * network cables) or protocol-dependent mechanisms (eg
1064 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1065 *
1066 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1067 * struct netdev_phys_item_id *ppid);
1068 * Called to get ID of physical port of this device. If driver does
1069 * not implement this, it is assumed that the hw is not able to have
1070 * multiple net devices on single physical port.
1071 *
1072 * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1073 * struct udp_tunnel_info *ti);
1074 * Called by UDP tunnel to notify a driver about the UDP port and socket
1075 * address family that a UDP tunnel is listnening to. It is called only
1076 * when a new port starts listening. The operation is protected by the
1077 * RTNL.
1078 *
1079 * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1080 * struct udp_tunnel_info *ti);
1081 * Called by UDP tunnel to notify the driver about a UDP port and socket
1082 * address family that the UDP tunnel is not listening to anymore. The
1083 * operation is protected by the RTNL.
1084 *
1085 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1086 * struct net_device *dev)
1087 * Called by upper layer devices to accelerate switching or other
1088 * station functionality into hardware. 'pdev is the lowerdev
1089 * to use for the offload and 'dev' is the net device that will
1090 * back the offload. Returns a pointer to the private structure
1091 * the upper layer will maintain.
1092 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1093 * Called by upper layer device to delete the station created
1094 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1095 * the station and priv is the structure returned by the add
1096 * operation.
1097 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1098 * struct net_device *dev,
1099 * void *priv);
1100 * Callback to use for xmit over the accelerated station. This
1101 * is used in place of ndo_start_xmit on accelerated net
1102 * devices.
1103 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1104 * int queue_index, u32 maxrate);
1105 * Called when a user wants to set a max-rate limitation of specific
1106 * TX queue.
1107 * int (*ndo_get_iflink)(const struct net_device *dev);
1108 * Called to get the iflink value of this device.
1109 * void (*ndo_change_proto_down)(struct net_device *dev,
1110 * bool proto_down);
1111 * This function is used to pass protocol port error state information
1112 * to the switch driver. The switch driver can react to the proto_down
1113 * by doing a phys down on the associated switch port.
1114 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1115 * This function is used to get egress tunnel information for given skb.
1116 * This is useful for retrieving outer tunnel header parameters while
1117 * sampling packet.
1118 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1119 * This function is used to specify the headroom that the skb must
1120 * consider when allocation skb during packet reception. Setting
1121 * appropriate rx headroom value allows avoiding skb head copy on
1122 * forward. Setting a negative value resets the rx headroom to the
1123 * default value.
1124 * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp);
1125 * This function is used to set or query state related to XDP on the
1126 * netdevice. See definition of enum xdp_netdev_command for details.
1127 *
1128 */
1129 struct net_device_ops {
1130 int (*ndo_init)(struct net_device *dev);
1131 void (*ndo_uninit)(struct net_device *dev);
1132 int (*ndo_open)(struct net_device *dev);
1133 int (*ndo_stop)(struct net_device *dev);
1134 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1135 struct net_device *dev);
1136 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1137 struct net_device *dev,
1138 netdev_features_t features);
1139 u16 (*ndo_select_queue)(struct net_device *dev,
1140 struct sk_buff *skb,
1141 void *accel_priv,
1142 select_queue_fallback_t fallback);
1143 void (*ndo_change_rx_flags)(struct net_device *dev,
1144 int flags);
1145 void (*ndo_set_rx_mode)(struct net_device *dev);
1146 int (*ndo_set_mac_address)(struct net_device *dev,
1147 void *addr);
1148 int (*ndo_validate_addr)(struct net_device *dev);
1149 int (*ndo_do_ioctl)(struct net_device *dev,
1150 struct ifreq *ifr, int cmd);
1151 int (*ndo_set_config)(struct net_device *dev,
1152 struct ifmap *map);
1153 int (*ndo_change_mtu)(struct net_device *dev,
1154 int new_mtu);
1155 int (*ndo_neigh_setup)(struct net_device *dev,
1156 struct neigh_parms *);
1157 void (*ndo_tx_timeout) (struct net_device *dev);
1158
1159 void (*ndo_get_stats64)(struct net_device *dev,
1160 struct rtnl_link_stats64 *storage);
1161 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1162 int (*ndo_get_offload_stats)(int attr_id,
1163 const struct net_device *dev,
1164 void *attr_data);
1165 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1166
1167 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1168 __be16 proto, u16 vid);
1169 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1170 __be16 proto, u16 vid);
1171 #ifdef CONFIG_NET_POLL_CONTROLLER
1172 void (*ndo_poll_controller)(struct net_device *dev);
1173 int (*ndo_netpoll_setup)(struct net_device *dev,
1174 struct netpoll_info *info);
1175 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1176 #endif
1177 int (*ndo_set_vf_mac)(struct net_device *dev,
1178 int queue, u8 *mac);
1179 int (*ndo_set_vf_vlan)(struct net_device *dev,
1180 int queue, u16 vlan,
1181 u8 qos, __be16 proto);
1182 int (*ndo_set_vf_rate)(struct net_device *dev,
1183 int vf, int min_tx_rate,
1184 int max_tx_rate);
1185 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1186 int vf, bool setting);
1187 int (*ndo_set_vf_trust)(struct net_device *dev,
1188 int vf, bool setting);
1189 int (*ndo_get_vf_config)(struct net_device *dev,
1190 int vf,
1191 struct ifla_vf_info *ivf);
1192 int (*ndo_set_vf_link_state)(struct net_device *dev,
1193 int vf, int link_state);
1194 int (*ndo_get_vf_stats)(struct net_device *dev,
1195 int vf,
1196 struct ifla_vf_stats
1197 *vf_stats);
1198 int (*ndo_set_vf_port)(struct net_device *dev,
1199 int vf,
1200 struct nlattr *port[]);
1201 int (*ndo_get_vf_port)(struct net_device *dev,
1202 int vf, struct sk_buff *skb);
1203 int (*ndo_set_vf_guid)(struct net_device *dev,
1204 int vf, u64 guid,
1205 int guid_type);
1206 int (*ndo_set_vf_rss_query_en)(
1207 struct net_device *dev,
1208 int vf, bool setting);
1209 int (*ndo_setup_tc)(struct net_device *dev,
1210 u32 handle,
1211 __be16 protocol,
1212 struct tc_to_netdev *tc);
1213 #if IS_ENABLED(CONFIG_FCOE)
1214 int (*ndo_fcoe_enable)(struct net_device *dev);
1215 int (*ndo_fcoe_disable)(struct net_device *dev);
1216 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1217 u16 xid,
1218 struct scatterlist *sgl,
1219 unsigned int sgc);
1220 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1221 u16 xid);
1222 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1223 u16 xid,
1224 struct scatterlist *sgl,
1225 unsigned int sgc);
1226 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1227 struct netdev_fcoe_hbainfo *hbainfo);
1228 #endif
1229
1230 #if IS_ENABLED(CONFIG_LIBFCOE)
1231 #define NETDEV_FCOE_WWNN 0
1232 #define NETDEV_FCOE_WWPN 1
1233 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1234 u64 *wwn, int type);
1235 #endif
1236
1237 #ifdef CONFIG_RFS_ACCEL
1238 int (*ndo_rx_flow_steer)(struct net_device *dev,
1239 const struct sk_buff *skb,
1240 u16 rxq_index,
1241 u32 flow_id);
1242 #endif
1243 int (*ndo_add_slave)(struct net_device *dev,
1244 struct net_device *slave_dev);
1245 int (*ndo_del_slave)(struct net_device *dev,
1246 struct net_device *slave_dev);
1247 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1248 netdev_features_t features);
1249 int (*ndo_set_features)(struct net_device *dev,
1250 netdev_features_t features);
1251 int (*ndo_neigh_construct)(struct net_device *dev,
1252 struct neighbour *n);
1253 void (*ndo_neigh_destroy)(struct net_device *dev,
1254 struct neighbour *n);
1255
1256 int (*ndo_fdb_add)(struct ndmsg *ndm,
1257 struct nlattr *tb[],
1258 struct net_device *dev,
1259 const unsigned char *addr,
1260 u16 vid,
1261 u16 flags);
1262 int (*ndo_fdb_del)(struct ndmsg *ndm,
1263 struct nlattr *tb[],
1264 struct net_device *dev,
1265 const unsigned char *addr,
1266 u16 vid);
1267 int (*ndo_fdb_dump)(struct sk_buff *skb,
1268 struct netlink_callback *cb,
1269 struct net_device *dev,
1270 struct net_device *filter_dev,
1271 int *idx);
1272
1273 int (*ndo_bridge_setlink)(struct net_device *dev,
1274 struct nlmsghdr *nlh,
1275 u16 flags);
1276 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1277 u32 pid, u32 seq,
1278 struct net_device *dev,
1279 u32 filter_mask,
1280 int nlflags);
1281 int (*ndo_bridge_dellink)(struct net_device *dev,
1282 struct nlmsghdr *nlh,
1283 u16 flags);
1284 int (*ndo_change_carrier)(struct net_device *dev,
1285 bool new_carrier);
1286 int (*ndo_get_phys_port_id)(struct net_device *dev,
1287 struct netdev_phys_item_id *ppid);
1288 int (*ndo_get_phys_port_name)(struct net_device *dev,
1289 char *name, size_t len);
1290 void (*ndo_udp_tunnel_add)(struct net_device *dev,
1291 struct udp_tunnel_info *ti);
1292 void (*ndo_udp_tunnel_del)(struct net_device *dev,
1293 struct udp_tunnel_info *ti);
1294 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1295 struct net_device *dev);
1296 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1297 void *priv);
1298
1299 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1300 struct net_device *dev,
1301 void *priv);
1302 int (*ndo_get_lock_subclass)(struct net_device *dev);
1303 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1304 int queue_index,
1305 u32 maxrate);
1306 int (*ndo_get_iflink)(const struct net_device *dev);
1307 int (*ndo_change_proto_down)(struct net_device *dev,
1308 bool proto_down);
1309 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1310 struct sk_buff *skb);
1311 void (*ndo_set_rx_headroom)(struct net_device *dev,
1312 int needed_headroom);
1313 int (*ndo_xdp)(struct net_device *dev,
1314 struct netdev_xdp *xdp);
1315 };
1316
1317 /**
1318 * enum net_device_priv_flags - &struct net_device priv_flags
1319 *
1320 * These are the &struct net_device, they are only set internally
1321 * by drivers and used in the kernel. These flags are invisible to
1322 * userspace; this means that the order of these flags can change
1323 * during any kernel release.
1324 *
1325 * You should have a pretty good reason to be extending these flags.
1326 *
1327 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1328 * @IFF_EBRIDGE: Ethernet bridging device
1329 * @IFF_BONDING: bonding master or slave
1330 * @IFF_ISATAP: ISATAP interface (RFC4214)
1331 * @IFF_WAN_HDLC: WAN HDLC device
1332 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1333 * release skb->dst
1334 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1335 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1336 * @IFF_MACVLAN_PORT: device used as macvlan port
1337 * @IFF_BRIDGE_PORT: device used as bridge port
1338 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1339 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1340 * @IFF_UNICAST_FLT: Supports unicast filtering
1341 * @IFF_TEAM_PORT: device used as team port
1342 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1343 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1344 * change when it's running
1345 * @IFF_MACVLAN: Macvlan device
1346 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1347 * underlying stacked devices
1348 * @IFF_IPVLAN_MASTER: IPvlan master device
1349 * @IFF_IPVLAN_SLAVE: IPvlan slave device
1350 * @IFF_L3MDEV_MASTER: device is an L3 master device
1351 * @IFF_NO_QUEUE: device can run without qdisc attached
1352 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1353 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1354 * @IFF_TEAM: device is a team device
1355 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1356 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1357 * entity (i.e. the master device for bridged veth)
1358 * @IFF_MACSEC: device is a MACsec device
1359 */
1360 enum netdev_priv_flags {
1361 IFF_802_1Q_VLAN = 1<<0,
1362 IFF_EBRIDGE = 1<<1,
1363 IFF_BONDING = 1<<2,
1364 IFF_ISATAP = 1<<3,
1365 IFF_WAN_HDLC = 1<<4,
1366 IFF_XMIT_DST_RELEASE = 1<<5,
1367 IFF_DONT_BRIDGE = 1<<6,
1368 IFF_DISABLE_NETPOLL = 1<<7,
1369 IFF_MACVLAN_PORT = 1<<8,
1370 IFF_BRIDGE_PORT = 1<<9,
1371 IFF_OVS_DATAPATH = 1<<10,
1372 IFF_TX_SKB_SHARING = 1<<11,
1373 IFF_UNICAST_FLT = 1<<12,
1374 IFF_TEAM_PORT = 1<<13,
1375 IFF_SUPP_NOFCS = 1<<14,
1376 IFF_LIVE_ADDR_CHANGE = 1<<15,
1377 IFF_MACVLAN = 1<<16,
1378 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1379 IFF_IPVLAN_MASTER = 1<<18,
1380 IFF_IPVLAN_SLAVE = 1<<19,
1381 IFF_L3MDEV_MASTER = 1<<20,
1382 IFF_NO_QUEUE = 1<<21,
1383 IFF_OPENVSWITCH = 1<<22,
1384 IFF_L3MDEV_SLAVE = 1<<23,
1385 IFF_TEAM = 1<<24,
1386 IFF_RXFH_CONFIGURED = 1<<25,
1387 IFF_PHONY_HEADROOM = 1<<26,
1388 IFF_MACSEC = 1<<27,
1389 };
1390
1391 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1392 #define IFF_EBRIDGE IFF_EBRIDGE
1393 #define IFF_BONDING IFF_BONDING
1394 #define IFF_ISATAP IFF_ISATAP
1395 #define IFF_WAN_HDLC IFF_WAN_HDLC
1396 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1397 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1398 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1399 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1400 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1401 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1402 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1403 #define IFF_UNICAST_FLT IFF_UNICAST_FLT
1404 #define IFF_TEAM_PORT IFF_TEAM_PORT
1405 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1406 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1407 #define IFF_MACVLAN IFF_MACVLAN
1408 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1409 #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER
1410 #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE
1411 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1412 #define IFF_NO_QUEUE IFF_NO_QUEUE
1413 #define IFF_OPENVSWITCH IFF_OPENVSWITCH
1414 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1415 #define IFF_TEAM IFF_TEAM
1416 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED
1417 #define IFF_MACSEC IFF_MACSEC
1418
1419 /**
1420 * struct net_device - The DEVICE structure.
1421 * Actually, this whole structure is a big mistake. It mixes I/O
1422 * data with strictly "high-level" data, and it has to know about
1423 * almost every data structure used in the INET module.
1424 *
1425 * @name: This is the first field of the "visible" part of this structure
1426 * (i.e. as seen by users in the "Space.c" file). It is the name
1427 * of the interface.
1428 *
1429 * @name_hlist: Device name hash chain, please keep it close to name[]
1430 * @ifalias: SNMP alias
1431 * @mem_end: Shared memory end
1432 * @mem_start: Shared memory start
1433 * @base_addr: Device I/O address
1434 * @irq: Device IRQ number
1435 *
1436 * @carrier_changes: Stats to monitor carrier on<->off transitions
1437 *
1438 * @state: Generic network queuing layer state, see netdev_state_t
1439 * @dev_list: The global list of network devices
1440 * @napi_list: List entry used for polling NAPI devices
1441 * @unreg_list: List entry when we are unregistering the
1442 * device; see the function unregister_netdev
1443 * @close_list: List entry used when we are closing the device
1444 * @ptype_all: Device-specific packet handlers for all protocols
1445 * @ptype_specific: Device-specific, protocol-specific packet handlers
1446 *
1447 * @adj_list: Directly linked devices, like slaves for bonding
1448 * @features: Currently active device features
1449 * @hw_features: User-changeable features
1450 *
1451 * @wanted_features: User-requested features
1452 * @vlan_features: Mask of features inheritable by VLAN devices
1453 *
1454 * @hw_enc_features: Mask of features inherited by encapsulating devices
1455 * This field indicates what encapsulation
1456 * offloads the hardware is capable of doing,
1457 * and drivers will need to set them appropriately.
1458 *
1459 * @mpls_features: Mask of features inheritable by MPLS
1460 *
1461 * @ifindex: interface index
1462 * @group: The group the device belongs to
1463 *
1464 * @stats: Statistics struct, which was left as a legacy, use
1465 * rtnl_link_stats64 instead
1466 *
1467 * @rx_dropped: Dropped packets by core network,
1468 * do not use this in drivers
1469 * @tx_dropped: Dropped packets by core network,
1470 * do not use this in drivers
1471 * @rx_nohandler: nohandler dropped packets by core network on
1472 * inactive devices, do not use this in drivers
1473 *
1474 * @wireless_handlers: List of functions to handle Wireless Extensions,
1475 * instead of ioctl,
1476 * see <net/iw_handler.h> for details.
1477 * @wireless_data: Instance data managed by the core of wireless extensions
1478 *
1479 * @netdev_ops: Includes several pointers to callbacks,
1480 * if one wants to override the ndo_*() functions
1481 * @ethtool_ops: Management operations
1482 * @ndisc_ops: Includes callbacks for different IPv6 neighbour
1483 * discovery handling. Necessary for e.g. 6LoWPAN.
1484 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1485 * of Layer 2 headers.
1486 *
1487 * @flags: Interface flags (a la BSD)
1488 * @priv_flags: Like 'flags' but invisible to userspace,
1489 * see if.h for the definitions
1490 * @gflags: Global flags ( kept as legacy )
1491 * @padded: How much padding added by alloc_netdev()
1492 * @operstate: RFC2863 operstate
1493 * @link_mode: Mapping policy to operstate
1494 * @if_port: Selectable AUI, TP, ...
1495 * @dma: DMA channel
1496 * @mtu: Interface MTU value
1497 * @min_mtu: Interface Minimum MTU value
1498 * @max_mtu: Interface Maximum MTU value
1499 * @type: Interface hardware type
1500 * @hard_header_len: Maximum hardware header length.
1501 * @min_header_len: Minimum hardware header length
1502 *
1503 * @needed_headroom: Extra headroom the hardware may need, but not in all
1504 * cases can this be guaranteed
1505 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1506 * cases can this be guaranteed. Some cases also use
1507 * LL_MAX_HEADER instead to allocate the skb
1508 *
1509 * interface address info:
1510 *
1511 * @perm_addr: Permanent hw address
1512 * @addr_assign_type: Hw address assignment type
1513 * @addr_len: Hardware address length
1514 * @neigh_priv_len: Used in neigh_alloc()
1515 * @dev_id: Used to differentiate devices that share
1516 * the same link layer address
1517 * @dev_port: Used to differentiate devices that share
1518 * the same function
1519 * @addr_list_lock: XXX: need comments on this one
1520 * @uc_promisc: Counter that indicates promiscuous mode
1521 * has been enabled due to the need to listen to
1522 * additional unicast addresses in a device that
1523 * does not implement ndo_set_rx_mode()
1524 * @uc: unicast mac addresses
1525 * @mc: multicast mac addresses
1526 * @dev_addrs: list of device hw addresses
1527 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1528 * @promiscuity: Number of times the NIC is told to work in
1529 * promiscuous mode; if it becomes 0 the NIC will
1530 * exit promiscuous mode
1531 * @allmulti: Counter, enables or disables allmulticast mode
1532 *
1533 * @vlan_info: VLAN info
1534 * @dsa_ptr: dsa specific data
1535 * @tipc_ptr: TIPC specific data
1536 * @atalk_ptr: AppleTalk link
1537 * @ip_ptr: IPv4 specific data
1538 * @dn_ptr: DECnet specific data
1539 * @ip6_ptr: IPv6 specific data
1540 * @ax25_ptr: AX.25 specific data
1541 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1542 *
1543 * @dev_addr: Hw address (before bcast,
1544 * because most packets are unicast)
1545 *
1546 * @_rx: Array of RX queues
1547 * @num_rx_queues: Number of RX queues
1548 * allocated at register_netdev() time
1549 * @real_num_rx_queues: Number of RX queues currently active in device
1550 *
1551 * @rx_handler: handler for received packets
1552 * @rx_handler_data: XXX: need comments on this one
1553 * @ingress_queue: XXX: need comments on this one
1554 * @broadcast: hw bcast address
1555 *
1556 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1557 * indexed by RX queue number. Assigned by driver.
1558 * This must only be set if the ndo_rx_flow_steer
1559 * operation is defined
1560 * @index_hlist: Device index hash chain
1561 *
1562 * @_tx: Array of TX queues
1563 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1564 * @real_num_tx_queues: Number of TX queues currently active in device
1565 * @qdisc: Root qdisc from userspace point of view
1566 * @tx_queue_len: Max frames per queue allowed
1567 * @tx_global_lock: XXX: need comments on this one
1568 *
1569 * @xps_maps: XXX: need comments on this one
1570 *
1571 * @watchdog_timeo: Represents the timeout that is used by
1572 * the watchdog (see dev_watchdog())
1573 * @watchdog_timer: List of timers
1574 *
1575 * @pcpu_refcnt: Number of references to this device
1576 * @todo_list: Delayed register/unregister
1577 * @link_watch_list: XXX: need comments on this one
1578 *
1579 * @reg_state: Register/unregister state machine
1580 * @dismantle: Device is going to be freed
1581 * @rtnl_link_state: This enum represents the phases of creating
1582 * a new link
1583 *
1584 * @destructor: Called from unregister,
1585 * can be used to call free_netdev
1586 * @npinfo: XXX: need comments on this one
1587 * @nd_net: Network namespace this network device is inside
1588 *
1589 * @ml_priv: Mid-layer private
1590 * @lstats: Loopback statistics
1591 * @tstats: Tunnel statistics
1592 * @dstats: Dummy statistics
1593 * @vstats: Virtual ethernet statistics
1594 *
1595 * @garp_port: GARP
1596 * @mrp_port: MRP
1597 *
1598 * @dev: Class/net/name entry
1599 * @sysfs_groups: Space for optional device, statistics and wireless
1600 * sysfs groups
1601 *
1602 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1603 * @rtnl_link_ops: Rtnl_link_ops
1604 *
1605 * @gso_max_size: Maximum size of generic segmentation offload
1606 * @gso_max_segs: Maximum number of segments that can be passed to the
1607 * NIC for GSO
1608 *
1609 * @dcbnl_ops: Data Center Bridging netlink ops
1610 * @num_tc: Number of traffic classes in the net device
1611 * @tc_to_txq: XXX: need comments on this one
1612 * @prio_tc_map: XXX: need comments on this one
1613 *
1614 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1615 *
1616 * @priomap: XXX: need comments on this one
1617 * @phydev: Physical device may attach itself
1618 * for hardware timestamping
1619 *
1620 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1621 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1622 *
1623 * @proto_down: protocol port state information can be sent to the
1624 * switch driver and used to set the phys state of the
1625 * switch port.
1626 *
1627 * FIXME: cleanup struct net_device such that network protocol info
1628 * moves out.
1629 */
1630
1631 struct net_device {
1632 char name[IFNAMSIZ];
1633 struct hlist_node name_hlist;
1634 char *ifalias;
1635 /*
1636 * I/O specific fields
1637 * FIXME: Merge these and struct ifmap into one
1638 */
1639 unsigned long mem_end;
1640 unsigned long mem_start;
1641 unsigned long base_addr;
1642 int irq;
1643
1644 atomic_t carrier_changes;
1645
1646 /*
1647 * Some hardware also needs these fields (state,dev_list,
1648 * napi_list,unreg_list,close_list) but they are not
1649 * part of the usual set specified in Space.c.
1650 */
1651
1652 unsigned long state;
1653
1654 struct list_head dev_list;
1655 struct list_head napi_list;
1656 struct list_head unreg_list;
1657 struct list_head close_list;
1658 struct list_head ptype_all;
1659 struct list_head ptype_specific;
1660
1661 struct {
1662 struct list_head upper;
1663 struct list_head lower;
1664 } adj_list;
1665
1666 netdev_features_t features;
1667 netdev_features_t hw_features;
1668 netdev_features_t wanted_features;
1669 netdev_features_t vlan_features;
1670 netdev_features_t hw_enc_features;
1671 netdev_features_t mpls_features;
1672 netdev_features_t gso_partial_features;
1673
1674 int ifindex;
1675 int group;
1676
1677 struct net_device_stats stats;
1678
1679 atomic_long_t rx_dropped;
1680 atomic_long_t tx_dropped;
1681 atomic_long_t rx_nohandler;
1682
1683 #ifdef CONFIG_WIRELESS_EXT
1684 const struct iw_handler_def *wireless_handlers;
1685 struct iw_public_data *wireless_data;
1686 #endif
1687 const struct net_device_ops *netdev_ops;
1688 const struct ethtool_ops *ethtool_ops;
1689 #ifdef CONFIG_NET_SWITCHDEV
1690 const struct switchdev_ops *switchdev_ops;
1691 #endif
1692 #ifdef CONFIG_NET_L3_MASTER_DEV
1693 const struct l3mdev_ops *l3mdev_ops;
1694 #endif
1695 #if IS_ENABLED(CONFIG_IPV6)
1696 const struct ndisc_ops *ndisc_ops;
1697 #endif
1698
1699 const struct header_ops *header_ops;
1700
1701 unsigned int flags;
1702 unsigned int priv_flags;
1703
1704 unsigned short gflags;
1705 unsigned short padded;
1706
1707 unsigned char operstate;
1708 unsigned char link_mode;
1709
1710 unsigned char if_port;
1711 unsigned char dma;
1712
1713 unsigned int mtu;
1714 unsigned int min_mtu;
1715 unsigned int max_mtu;
1716 unsigned short type;
1717 unsigned short hard_header_len;
1718 unsigned char min_header_len;
1719
1720 unsigned short needed_headroom;
1721 unsigned short needed_tailroom;
1722
1723 /* Interface address info. */
1724 unsigned char perm_addr[MAX_ADDR_LEN];
1725 unsigned char addr_assign_type;
1726 unsigned char addr_len;
1727 unsigned short neigh_priv_len;
1728 unsigned short dev_id;
1729 unsigned short dev_port;
1730 spinlock_t addr_list_lock;
1731 unsigned char name_assign_type;
1732 bool uc_promisc;
1733 struct netdev_hw_addr_list uc;
1734 struct netdev_hw_addr_list mc;
1735 struct netdev_hw_addr_list dev_addrs;
1736
1737 #ifdef CONFIG_SYSFS
1738 struct kset *queues_kset;
1739 #endif
1740 unsigned int promiscuity;
1741 unsigned int allmulti;
1742
1743
1744 /* Protocol-specific pointers */
1745
1746 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1747 struct vlan_info __rcu *vlan_info;
1748 #endif
1749 #if IS_ENABLED(CONFIG_NET_DSA)
1750 struct dsa_switch_tree *dsa_ptr;
1751 #endif
1752 #if IS_ENABLED(CONFIG_TIPC)
1753 struct tipc_bearer __rcu *tipc_ptr;
1754 #endif
1755 void *atalk_ptr;
1756 struct in_device __rcu *ip_ptr;
1757 struct dn_dev __rcu *dn_ptr;
1758 struct inet6_dev __rcu *ip6_ptr;
1759 void *ax25_ptr;
1760 struct wireless_dev *ieee80211_ptr;
1761 struct wpan_dev *ieee802154_ptr;
1762 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1763 struct mpls_dev __rcu *mpls_ptr;
1764 #endif
1765
1766 /*
1767 * Cache lines mostly used on receive path (including eth_type_trans())
1768 */
1769 /* Interface address info used in eth_type_trans() */
1770 unsigned char *dev_addr;
1771
1772 #ifdef CONFIG_SYSFS
1773 struct netdev_rx_queue *_rx;
1774
1775 unsigned int num_rx_queues;
1776 unsigned int real_num_rx_queues;
1777 #endif
1778
1779 unsigned long gro_flush_timeout;
1780 rx_handler_func_t __rcu *rx_handler;
1781 void __rcu *rx_handler_data;
1782
1783 #ifdef CONFIG_NET_CLS_ACT
1784 struct tcf_proto __rcu *ingress_cl_list;
1785 #endif
1786 struct netdev_queue __rcu *ingress_queue;
1787 #ifdef CONFIG_NETFILTER_INGRESS
1788 struct nf_hook_entry __rcu *nf_hooks_ingress;
1789 #endif
1790
1791 unsigned char broadcast[MAX_ADDR_LEN];
1792 #ifdef CONFIG_RFS_ACCEL
1793 struct cpu_rmap *rx_cpu_rmap;
1794 #endif
1795 struct hlist_node index_hlist;
1796
1797 /*
1798 * Cache lines mostly used on transmit path
1799 */
1800 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1801 unsigned int num_tx_queues;
1802 unsigned int real_num_tx_queues;
1803 struct Qdisc *qdisc;
1804 #ifdef CONFIG_NET_SCHED
1805 DECLARE_HASHTABLE (qdisc_hash, 4);
1806 #endif
1807 unsigned long tx_queue_len;
1808 spinlock_t tx_global_lock;
1809 int watchdog_timeo;
1810
1811 #ifdef CONFIG_XPS
1812 struct xps_dev_maps __rcu *xps_maps;
1813 #endif
1814 #ifdef CONFIG_NET_CLS_ACT
1815 struct tcf_proto __rcu *egress_cl_list;
1816 #endif
1817
1818 /* These may be needed for future network-power-down code. */
1819 struct timer_list watchdog_timer;
1820
1821 int __percpu *pcpu_refcnt;
1822 struct list_head todo_list;
1823
1824 struct list_head link_watch_list;
1825
1826 enum { NETREG_UNINITIALIZED=0,
1827 NETREG_REGISTERED, /* completed register_netdevice */
1828 NETREG_UNREGISTERING, /* called unregister_netdevice */
1829 NETREG_UNREGISTERED, /* completed unregister todo */
1830 NETREG_RELEASED, /* called free_netdev */
1831 NETREG_DUMMY, /* dummy device for NAPI poll */
1832 } reg_state:8;
1833
1834 bool dismantle;
1835
1836 enum {
1837 RTNL_LINK_INITIALIZED,
1838 RTNL_LINK_INITIALIZING,
1839 } rtnl_link_state:16;
1840
1841 void (*destructor)(struct net_device *dev);
1842
1843 #ifdef CONFIG_NETPOLL
1844 struct netpoll_info __rcu *npinfo;
1845 #endif
1846
1847 possible_net_t nd_net;
1848
1849 /* mid-layer private */
1850 union {
1851 void *ml_priv;
1852 struct pcpu_lstats __percpu *lstats;
1853 struct pcpu_sw_netstats __percpu *tstats;
1854 struct pcpu_dstats __percpu *dstats;
1855 struct pcpu_vstats __percpu *vstats;
1856 };
1857
1858 #if IS_ENABLED(CONFIG_GARP)
1859 struct garp_port __rcu *garp_port;
1860 #endif
1861 #if IS_ENABLED(CONFIG_MRP)
1862 struct mrp_port __rcu *mrp_port;
1863 #endif
1864
1865 struct device dev;
1866 const struct attribute_group *sysfs_groups[4];
1867 const struct attribute_group *sysfs_rx_queue_group;
1868
1869 const struct rtnl_link_ops *rtnl_link_ops;
1870
1871 /* for setting kernel sock attribute on TCP connection setup */
1872 #define GSO_MAX_SIZE 65536
1873 unsigned int gso_max_size;
1874 #define GSO_MAX_SEGS 65535
1875 u16 gso_max_segs;
1876
1877 #ifdef CONFIG_DCB
1878 const struct dcbnl_rtnl_ops *dcbnl_ops;
1879 #endif
1880 u8 num_tc;
1881 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1882 u8 prio_tc_map[TC_BITMASK + 1];
1883
1884 #if IS_ENABLED(CONFIG_FCOE)
1885 unsigned int fcoe_ddp_xid;
1886 #endif
1887 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1888 struct netprio_map __rcu *priomap;
1889 #endif
1890 struct phy_device *phydev;
1891 struct lock_class_key *qdisc_tx_busylock;
1892 struct lock_class_key *qdisc_running_key;
1893 bool proto_down;
1894 };
1895 #define to_net_dev(d) container_of(d, struct net_device, dev)
1896
1897 #define NETDEV_ALIGN 32
1898
1899 static inline
1900 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1901 {
1902 return dev->prio_tc_map[prio & TC_BITMASK];
1903 }
1904
1905 static inline
1906 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1907 {
1908 if (tc >= dev->num_tc)
1909 return -EINVAL;
1910
1911 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1912 return 0;
1913 }
1914
1915 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
1916 void netdev_reset_tc(struct net_device *dev);
1917 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
1918 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
1919
1920 static inline
1921 int netdev_get_num_tc(struct net_device *dev)
1922 {
1923 return dev->num_tc;
1924 }
1925
1926 static inline
1927 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1928 unsigned int index)
1929 {
1930 return &dev->_tx[index];
1931 }
1932
1933 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1934 const struct sk_buff *skb)
1935 {
1936 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1937 }
1938
1939 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1940 void (*f)(struct net_device *,
1941 struct netdev_queue *,
1942 void *),
1943 void *arg)
1944 {
1945 unsigned int i;
1946
1947 for (i = 0; i < dev->num_tx_queues; i++)
1948 f(dev, &dev->_tx[i], arg);
1949 }
1950
1951 #define netdev_lockdep_set_classes(dev) \
1952 { \
1953 static struct lock_class_key qdisc_tx_busylock_key; \
1954 static struct lock_class_key qdisc_running_key; \
1955 static struct lock_class_key qdisc_xmit_lock_key; \
1956 static struct lock_class_key dev_addr_list_lock_key; \
1957 unsigned int i; \
1958 \
1959 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \
1960 (dev)->qdisc_running_key = &qdisc_running_key; \
1961 lockdep_set_class(&(dev)->addr_list_lock, \
1962 &dev_addr_list_lock_key); \
1963 for (i = 0; i < (dev)->num_tx_queues; i++) \
1964 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \
1965 &qdisc_xmit_lock_key); \
1966 }
1967
1968 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1969 struct sk_buff *skb,
1970 void *accel_priv);
1971
1972 /* returns the headroom that the master device needs to take in account
1973 * when forwarding to this dev
1974 */
1975 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
1976 {
1977 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
1978 }
1979
1980 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
1981 {
1982 if (dev->netdev_ops->ndo_set_rx_headroom)
1983 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
1984 }
1985
1986 /* set the device rx headroom to the dev's default */
1987 static inline void netdev_reset_rx_headroom(struct net_device *dev)
1988 {
1989 netdev_set_rx_headroom(dev, -1);
1990 }
1991
1992 /*
1993 * Net namespace inlines
1994 */
1995 static inline
1996 struct net *dev_net(const struct net_device *dev)
1997 {
1998 return read_pnet(&dev->nd_net);
1999 }
2000
2001 static inline
2002 void dev_net_set(struct net_device *dev, struct net *net)
2003 {
2004 write_pnet(&dev->nd_net, net);
2005 }
2006
2007 /**
2008 * netdev_priv - access network device private data
2009 * @dev: network device
2010 *
2011 * Get network device private data
2012 */
2013 static inline void *netdev_priv(const struct net_device *dev)
2014 {
2015 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2016 }
2017
2018 /* Set the sysfs physical device reference for the network logical device
2019 * if set prior to registration will cause a symlink during initialization.
2020 */
2021 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
2022
2023 /* Set the sysfs device type for the network logical device to allow
2024 * fine-grained identification of different network device types. For
2025 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2026 */
2027 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
2028
2029 /* Default NAPI poll() weight
2030 * Device drivers are strongly advised to not use bigger value
2031 */
2032 #define NAPI_POLL_WEIGHT 64
2033
2034 /**
2035 * netif_napi_add - initialize a NAPI context
2036 * @dev: network device
2037 * @napi: NAPI context
2038 * @poll: polling function
2039 * @weight: default weight
2040 *
2041 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2042 * *any* of the other NAPI-related functions.
2043 */
2044 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2045 int (*poll)(struct napi_struct *, int), int weight);
2046
2047 /**
2048 * netif_tx_napi_add - initialize a NAPI context
2049 * @dev: network device
2050 * @napi: NAPI context
2051 * @poll: polling function
2052 * @weight: default weight
2053 *
2054 * This variant of netif_napi_add() should be used from drivers using NAPI
2055 * to exclusively poll a TX queue.
2056 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2057 */
2058 static inline void netif_tx_napi_add(struct net_device *dev,
2059 struct napi_struct *napi,
2060 int (*poll)(struct napi_struct *, int),
2061 int weight)
2062 {
2063 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2064 netif_napi_add(dev, napi, poll, weight);
2065 }
2066
2067 /**
2068 * netif_napi_del - remove a NAPI context
2069 * @napi: NAPI context
2070 *
2071 * netif_napi_del() removes a NAPI context from the network device NAPI list
2072 */
2073 void netif_napi_del(struct napi_struct *napi);
2074
2075 struct napi_gro_cb {
2076 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2077 void *frag0;
2078
2079 /* Length of frag0. */
2080 unsigned int frag0_len;
2081
2082 /* This indicates where we are processing relative to skb->data. */
2083 int data_offset;
2084
2085 /* This is non-zero if the packet cannot be merged with the new skb. */
2086 u16 flush;
2087
2088 /* Save the IP ID here and check when we get to the transport layer */
2089 u16 flush_id;
2090
2091 /* Number of segments aggregated. */
2092 u16 count;
2093
2094 /* Start offset for remote checksum offload */
2095 u16 gro_remcsum_start;
2096
2097 /* jiffies when first packet was created/queued */
2098 unsigned long age;
2099
2100 /* Used in ipv6_gro_receive() and foo-over-udp */
2101 u16 proto;
2102
2103 /* This is non-zero if the packet may be of the same flow. */
2104 u8 same_flow:1;
2105
2106 /* Used in tunnel GRO receive */
2107 u8 encap_mark:1;
2108
2109 /* GRO checksum is valid */
2110 u8 csum_valid:1;
2111
2112 /* Number of checksums via CHECKSUM_UNNECESSARY */
2113 u8 csum_cnt:3;
2114
2115 /* Free the skb? */
2116 u8 free:2;
2117 #define NAPI_GRO_FREE 1
2118 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2119
2120 /* Used in foo-over-udp, set in udp[46]_gro_receive */
2121 u8 is_ipv6:1;
2122
2123 /* Used in GRE, set in fou/gue_gro_receive */
2124 u8 is_fou:1;
2125
2126 /* Used to determine if flush_id can be ignored */
2127 u8 is_atomic:1;
2128
2129 /* Number of gro_receive callbacks this packet already went through */
2130 u8 recursion_counter:4;
2131
2132 /* 1 bit hole */
2133
2134 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2135 __wsum csum;
2136
2137 /* used in skb_gro_receive() slow path */
2138 struct sk_buff *last;
2139 };
2140
2141 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2142
2143 #define GRO_RECURSION_LIMIT 15
2144 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2145 {
2146 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2147 }
2148
2149 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *);
2150 static inline struct sk_buff **call_gro_receive(gro_receive_t cb,
2151 struct sk_buff **head,
2152 struct sk_buff *skb)
2153 {
2154 if (unlikely(gro_recursion_inc_test(skb))) {
2155 NAPI_GRO_CB(skb)->flush |= 1;
2156 return NULL;
2157 }
2158
2159 return cb(head, skb);
2160 }
2161
2162 typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **,
2163 struct sk_buff *);
2164 static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb,
2165 struct sock *sk,
2166 struct sk_buff **head,
2167 struct sk_buff *skb)
2168 {
2169 if (unlikely(gro_recursion_inc_test(skb))) {
2170 NAPI_GRO_CB(skb)->flush |= 1;
2171 return NULL;
2172 }
2173
2174 return cb(sk, head, skb);
2175 }
2176
2177 struct packet_type {
2178 __be16 type; /* This is really htons(ether_type). */
2179 struct net_device *dev; /* NULL is wildcarded here */
2180 int (*func) (struct sk_buff *,
2181 struct net_device *,
2182 struct packet_type *,
2183 struct net_device *);
2184 bool (*id_match)(struct packet_type *ptype,
2185 struct sock *sk);
2186 void *af_packet_priv;
2187 struct list_head list;
2188 };
2189
2190 struct offload_callbacks {
2191 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2192 netdev_features_t features);
2193 struct sk_buff **(*gro_receive)(struct sk_buff **head,
2194 struct sk_buff *skb);
2195 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2196 };
2197
2198 struct packet_offload {
2199 __be16 type; /* This is really htons(ether_type). */
2200 u16 priority;
2201 struct offload_callbacks callbacks;
2202 struct list_head list;
2203 };
2204
2205 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2206 struct pcpu_sw_netstats {
2207 u64 rx_packets;
2208 u64 rx_bytes;
2209 u64 tx_packets;
2210 u64 tx_bytes;
2211 struct u64_stats_sync syncp;
2212 };
2213
2214 #define __netdev_alloc_pcpu_stats(type, gfp) \
2215 ({ \
2216 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2217 if (pcpu_stats) { \
2218 int __cpu; \
2219 for_each_possible_cpu(__cpu) { \
2220 typeof(type) *stat; \
2221 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2222 u64_stats_init(&stat->syncp); \
2223 } \
2224 } \
2225 pcpu_stats; \
2226 })
2227
2228 #define netdev_alloc_pcpu_stats(type) \
2229 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2230
2231 enum netdev_lag_tx_type {
2232 NETDEV_LAG_TX_TYPE_UNKNOWN,
2233 NETDEV_LAG_TX_TYPE_RANDOM,
2234 NETDEV_LAG_TX_TYPE_BROADCAST,
2235 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2236 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2237 NETDEV_LAG_TX_TYPE_HASH,
2238 };
2239
2240 struct netdev_lag_upper_info {
2241 enum netdev_lag_tx_type tx_type;
2242 };
2243
2244 struct netdev_lag_lower_state_info {
2245 u8 link_up : 1,
2246 tx_enabled : 1;
2247 };
2248
2249 #include <linux/notifier.h>
2250
2251 /* netdevice notifier chain. Please remember to update the rtnetlink
2252 * notification exclusion list in rtnetlink_event() when adding new
2253 * types.
2254 */
2255 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
2256 #define NETDEV_DOWN 0x0002
2257 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
2258 detected a hardware crash and restarted
2259 - we can use this eg to kick tcp sessions
2260 once done */
2261 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
2262 #define NETDEV_REGISTER 0x0005
2263 #define NETDEV_UNREGISTER 0x0006
2264 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */
2265 #define NETDEV_CHANGEADDR 0x0008
2266 #define NETDEV_GOING_DOWN 0x0009
2267 #define NETDEV_CHANGENAME 0x000A
2268 #define NETDEV_FEAT_CHANGE 0x000B
2269 #define NETDEV_BONDING_FAILOVER 0x000C
2270 #define NETDEV_PRE_UP 0x000D
2271 #define NETDEV_PRE_TYPE_CHANGE 0x000E
2272 #define NETDEV_POST_TYPE_CHANGE 0x000F
2273 #define NETDEV_POST_INIT 0x0010
2274 #define NETDEV_UNREGISTER_FINAL 0x0011
2275 #define NETDEV_RELEASE 0x0012
2276 #define NETDEV_NOTIFY_PEERS 0x0013
2277 #define NETDEV_JOIN 0x0014
2278 #define NETDEV_CHANGEUPPER 0x0015
2279 #define NETDEV_RESEND_IGMP 0x0016
2280 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */
2281 #define NETDEV_CHANGEINFODATA 0x0018
2282 #define NETDEV_BONDING_INFO 0x0019
2283 #define NETDEV_PRECHANGEUPPER 0x001A
2284 #define NETDEV_CHANGELOWERSTATE 0x001B
2285 #define NETDEV_UDP_TUNNEL_PUSH_INFO 0x001C
2286 #define NETDEV_CHANGE_TX_QUEUE_LEN 0x001E
2287
2288 int register_netdevice_notifier(struct notifier_block *nb);
2289 int unregister_netdevice_notifier(struct notifier_block *nb);
2290
2291 struct netdev_notifier_info {
2292 struct net_device *dev;
2293 };
2294
2295 struct netdev_notifier_change_info {
2296 struct netdev_notifier_info info; /* must be first */
2297 unsigned int flags_changed;
2298 };
2299
2300 struct netdev_notifier_changeupper_info {
2301 struct netdev_notifier_info info; /* must be first */
2302 struct net_device *upper_dev; /* new upper dev */
2303 bool master; /* is upper dev master */
2304 bool linking; /* is the notification for link or unlink */
2305 void *upper_info; /* upper dev info */
2306 };
2307
2308 struct netdev_notifier_changelowerstate_info {
2309 struct netdev_notifier_info info; /* must be first */
2310 void *lower_state_info; /* is lower dev state */
2311 };
2312
2313 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2314 struct net_device *dev)
2315 {
2316 info->dev = dev;
2317 }
2318
2319 static inline struct net_device *
2320 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2321 {
2322 return info->dev;
2323 }
2324
2325 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2326
2327
2328 extern rwlock_t dev_base_lock; /* Device list lock */
2329
2330 #define for_each_netdev(net, d) \
2331 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2332 #define for_each_netdev_reverse(net, d) \
2333 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2334 #define for_each_netdev_rcu(net, d) \
2335 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2336 #define for_each_netdev_safe(net, d, n) \
2337 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2338 #define for_each_netdev_continue(net, d) \
2339 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2340 #define for_each_netdev_continue_rcu(net, d) \
2341 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2342 #define for_each_netdev_in_bond_rcu(bond, slave) \
2343 for_each_netdev_rcu(&init_net, slave) \
2344 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2345 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2346
2347 static inline struct net_device *next_net_device(struct net_device *dev)
2348 {
2349 struct list_head *lh;
2350 struct net *net;
2351
2352 net = dev_net(dev);
2353 lh = dev->dev_list.next;
2354 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2355 }
2356
2357 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2358 {
2359 struct list_head *lh;
2360 struct net *net;
2361
2362 net = dev_net(dev);
2363 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2364 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2365 }
2366
2367 static inline struct net_device *first_net_device(struct net *net)
2368 {
2369 return list_empty(&net->dev_base_head) ? NULL :
2370 net_device_entry(net->dev_base_head.next);
2371 }
2372
2373 static inline struct net_device *first_net_device_rcu(struct net *net)
2374 {
2375 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2376
2377 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2378 }
2379
2380 int netdev_boot_setup_check(struct net_device *dev);
2381 unsigned long netdev_boot_base(const char *prefix, int unit);
2382 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2383 const char *hwaddr);
2384 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2385 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2386 void dev_add_pack(struct packet_type *pt);
2387 void dev_remove_pack(struct packet_type *pt);
2388 void __dev_remove_pack(struct packet_type *pt);
2389 void dev_add_offload(struct packet_offload *po);
2390 void dev_remove_offload(struct packet_offload *po);
2391
2392 int dev_get_iflink(const struct net_device *dev);
2393 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2394 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2395 unsigned short mask);
2396 struct net_device *dev_get_by_name(struct net *net, const char *name);
2397 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2398 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2399 int dev_alloc_name(struct net_device *dev, const char *name);
2400 int dev_open(struct net_device *dev);
2401 int dev_close(struct net_device *dev);
2402 int dev_close_many(struct list_head *head, bool unlink);
2403 void dev_disable_lro(struct net_device *dev);
2404 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2405 int dev_queue_xmit(struct sk_buff *skb);
2406 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2407 int register_netdevice(struct net_device *dev);
2408 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2409 void unregister_netdevice_many(struct list_head *head);
2410 static inline void unregister_netdevice(struct net_device *dev)
2411 {
2412 unregister_netdevice_queue(dev, NULL);
2413 }
2414
2415 int netdev_refcnt_read(const struct net_device *dev);
2416 void free_netdev(struct net_device *dev);
2417 void netdev_freemem(struct net_device *dev);
2418 void synchronize_net(void);
2419 int init_dummy_netdev(struct net_device *dev);
2420
2421 DECLARE_PER_CPU(int, xmit_recursion);
2422 #define XMIT_RECURSION_LIMIT 10
2423
2424 static inline int dev_recursion_level(void)
2425 {
2426 return this_cpu_read(xmit_recursion);
2427 }
2428
2429 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2430 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2431 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2432 int netdev_get_name(struct net *net, char *name, int ifindex);
2433 int dev_restart(struct net_device *dev);
2434 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2435
2436 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2437 {
2438 return NAPI_GRO_CB(skb)->data_offset;
2439 }
2440
2441 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2442 {
2443 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2444 }
2445
2446 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2447 {
2448 NAPI_GRO_CB(skb)->data_offset += len;
2449 }
2450
2451 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2452 unsigned int offset)
2453 {
2454 return NAPI_GRO_CB(skb)->frag0 + offset;
2455 }
2456
2457 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2458 {
2459 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2460 }
2461
2462 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2463 {
2464 NAPI_GRO_CB(skb)->frag0 = NULL;
2465 NAPI_GRO_CB(skb)->frag0_len = 0;
2466 }
2467
2468 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2469 unsigned int offset)
2470 {
2471 if (!pskb_may_pull(skb, hlen))
2472 return NULL;
2473
2474 skb_gro_frag0_invalidate(skb);
2475 return skb->data + offset;
2476 }
2477
2478 static inline void *skb_gro_network_header(struct sk_buff *skb)
2479 {
2480 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2481 skb_network_offset(skb);
2482 }
2483
2484 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2485 const void *start, unsigned int len)
2486 {
2487 if (NAPI_GRO_CB(skb)->csum_valid)
2488 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2489 csum_partial(start, len, 0));
2490 }
2491
2492 /* GRO checksum functions. These are logical equivalents of the normal
2493 * checksum functions (in skbuff.h) except that they operate on the GRO
2494 * offsets and fields in sk_buff.
2495 */
2496
2497 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2498
2499 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2500 {
2501 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2502 }
2503
2504 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2505 bool zero_okay,
2506 __sum16 check)
2507 {
2508 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2509 skb_checksum_start_offset(skb) <
2510 skb_gro_offset(skb)) &&
2511 !skb_at_gro_remcsum_start(skb) &&
2512 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2513 (!zero_okay || check));
2514 }
2515
2516 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2517 __wsum psum)
2518 {
2519 if (NAPI_GRO_CB(skb)->csum_valid &&
2520 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2521 return 0;
2522
2523 NAPI_GRO_CB(skb)->csum = psum;
2524
2525 return __skb_gro_checksum_complete(skb);
2526 }
2527
2528 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2529 {
2530 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2531 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2532 NAPI_GRO_CB(skb)->csum_cnt--;
2533 } else {
2534 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2535 * verified a new top level checksum or an encapsulated one
2536 * during GRO. This saves work if we fallback to normal path.
2537 */
2538 __skb_incr_checksum_unnecessary(skb);
2539 }
2540 }
2541
2542 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2543 compute_pseudo) \
2544 ({ \
2545 __sum16 __ret = 0; \
2546 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2547 __ret = __skb_gro_checksum_validate_complete(skb, \
2548 compute_pseudo(skb, proto)); \
2549 if (__ret) \
2550 __skb_mark_checksum_bad(skb); \
2551 else \
2552 skb_gro_incr_csum_unnecessary(skb); \
2553 __ret; \
2554 })
2555
2556 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2557 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2558
2559 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2560 compute_pseudo) \
2561 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2562
2563 #define skb_gro_checksum_simple_validate(skb) \
2564 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2565
2566 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2567 {
2568 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2569 !NAPI_GRO_CB(skb)->csum_valid);
2570 }
2571
2572 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2573 __sum16 check, __wsum pseudo)
2574 {
2575 NAPI_GRO_CB(skb)->csum = ~pseudo;
2576 NAPI_GRO_CB(skb)->csum_valid = 1;
2577 }
2578
2579 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2580 do { \
2581 if (__skb_gro_checksum_convert_check(skb)) \
2582 __skb_gro_checksum_convert(skb, check, \
2583 compute_pseudo(skb, proto)); \
2584 } while (0)
2585
2586 struct gro_remcsum {
2587 int offset;
2588 __wsum delta;
2589 };
2590
2591 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2592 {
2593 grc->offset = 0;
2594 grc->delta = 0;
2595 }
2596
2597 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2598 unsigned int off, size_t hdrlen,
2599 int start, int offset,
2600 struct gro_remcsum *grc,
2601 bool nopartial)
2602 {
2603 __wsum delta;
2604 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2605
2606 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2607
2608 if (!nopartial) {
2609 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2610 return ptr;
2611 }
2612
2613 ptr = skb_gro_header_fast(skb, off);
2614 if (skb_gro_header_hard(skb, off + plen)) {
2615 ptr = skb_gro_header_slow(skb, off + plen, off);
2616 if (!ptr)
2617 return NULL;
2618 }
2619
2620 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2621 start, offset);
2622
2623 /* Adjust skb->csum since we changed the packet */
2624 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2625
2626 grc->offset = off + hdrlen + offset;
2627 grc->delta = delta;
2628
2629 return ptr;
2630 }
2631
2632 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2633 struct gro_remcsum *grc)
2634 {
2635 void *ptr;
2636 size_t plen = grc->offset + sizeof(u16);
2637
2638 if (!grc->delta)
2639 return;
2640
2641 ptr = skb_gro_header_fast(skb, grc->offset);
2642 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2643 ptr = skb_gro_header_slow(skb, plen, grc->offset);
2644 if (!ptr)
2645 return;
2646 }
2647
2648 remcsum_unadjust((__sum16 *)ptr, grc->delta);
2649 }
2650
2651 #ifdef CONFIG_XFRM_OFFLOAD
2652 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2653 {
2654 if (PTR_ERR(pp) != -EINPROGRESS)
2655 NAPI_GRO_CB(skb)->flush |= flush;
2656 }
2657 #else
2658 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2659 {
2660 NAPI_GRO_CB(skb)->flush |= flush;
2661 }
2662 #endif
2663
2664 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2665 unsigned short type,
2666 const void *daddr, const void *saddr,
2667 unsigned int len)
2668 {
2669 if (!dev->header_ops || !dev->header_ops->create)
2670 return 0;
2671
2672 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2673 }
2674
2675 static inline int dev_parse_header(const struct sk_buff *skb,
2676 unsigned char *haddr)
2677 {
2678 const struct net_device *dev = skb->dev;
2679
2680 if (!dev->header_ops || !dev->header_ops->parse)
2681 return 0;
2682 return dev->header_ops->parse(skb, haddr);
2683 }
2684
2685 /* ll_header must have at least hard_header_len allocated */
2686 static inline bool dev_validate_header(const struct net_device *dev,
2687 char *ll_header, int len)
2688 {
2689 if (likely(len >= dev->hard_header_len))
2690 return true;
2691 if (len < dev->min_header_len)
2692 return false;
2693
2694 if (capable(CAP_SYS_RAWIO)) {
2695 memset(ll_header + len, 0, dev->hard_header_len - len);
2696 return true;
2697 }
2698
2699 if (dev->header_ops && dev->header_ops->validate)
2700 return dev->header_ops->validate(ll_header, len);
2701
2702 return false;
2703 }
2704
2705 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2706 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2707 static inline int unregister_gifconf(unsigned int family)
2708 {
2709 return register_gifconf(family, NULL);
2710 }
2711
2712 #ifdef CONFIG_NET_FLOW_LIMIT
2713 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
2714 struct sd_flow_limit {
2715 u64 count;
2716 unsigned int num_buckets;
2717 unsigned int history_head;
2718 u16 history[FLOW_LIMIT_HISTORY];
2719 u8 buckets[];
2720 };
2721
2722 extern int netdev_flow_limit_table_len;
2723 #endif /* CONFIG_NET_FLOW_LIMIT */
2724
2725 /*
2726 * Incoming packets are placed on per-CPU queues
2727 */
2728 struct softnet_data {
2729 struct list_head poll_list;
2730 struct sk_buff_head process_queue;
2731
2732 /* stats */
2733 unsigned int processed;
2734 unsigned int time_squeeze;
2735 unsigned int received_rps;
2736 #ifdef CONFIG_RPS
2737 struct softnet_data *rps_ipi_list;
2738 #endif
2739 #ifdef CONFIG_NET_FLOW_LIMIT
2740 struct sd_flow_limit __rcu *flow_limit;
2741 #endif
2742 struct Qdisc *output_queue;
2743 struct Qdisc **output_queue_tailp;
2744 struct sk_buff *completion_queue;
2745
2746 #ifdef CONFIG_RPS
2747 /* input_queue_head should be written by cpu owning this struct,
2748 * and only read by other cpus. Worth using a cache line.
2749 */
2750 unsigned int input_queue_head ____cacheline_aligned_in_smp;
2751
2752 /* Elements below can be accessed between CPUs for RPS/RFS */
2753 struct call_single_data csd ____cacheline_aligned_in_smp;
2754 struct softnet_data *rps_ipi_next;
2755 unsigned int cpu;
2756 unsigned int input_queue_tail;
2757 #endif
2758 unsigned int dropped;
2759 struct sk_buff_head input_pkt_queue;
2760 struct napi_struct backlog;
2761
2762 };
2763
2764 static inline void input_queue_head_incr(struct softnet_data *sd)
2765 {
2766 #ifdef CONFIG_RPS
2767 sd->input_queue_head++;
2768 #endif
2769 }
2770
2771 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2772 unsigned int *qtail)
2773 {
2774 #ifdef CONFIG_RPS
2775 *qtail = ++sd->input_queue_tail;
2776 #endif
2777 }
2778
2779 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2780
2781 void __netif_schedule(struct Qdisc *q);
2782 void netif_schedule_queue(struct netdev_queue *txq);
2783
2784 static inline void netif_tx_schedule_all(struct net_device *dev)
2785 {
2786 unsigned int i;
2787
2788 for (i = 0; i < dev->num_tx_queues; i++)
2789 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2790 }
2791
2792 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2793 {
2794 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2795 }
2796
2797 /**
2798 * netif_start_queue - allow transmit
2799 * @dev: network device
2800 *
2801 * Allow upper layers to call the device hard_start_xmit routine.
2802 */
2803 static inline void netif_start_queue(struct net_device *dev)
2804 {
2805 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2806 }
2807
2808 static inline void netif_tx_start_all_queues(struct net_device *dev)
2809 {
2810 unsigned int i;
2811
2812 for (i = 0; i < dev->num_tx_queues; i++) {
2813 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2814 netif_tx_start_queue(txq);
2815 }
2816 }
2817
2818 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2819
2820 /**
2821 * netif_wake_queue - restart transmit
2822 * @dev: network device
2823 *
2824 * Allow upper layers to call the device hard_start_xmit routine.
2825 * Used for flow control when transmit resources are available.
2826 */
2827 static inline void netif_wake_queue(struct net_device *dev)
2828 {
2829 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2830 }
2831
2832 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2833 {
2834 unsigned int i;
2835
2836 for (i = 0; i < dev->num_tx_queues; i++) {
2837 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2838 netif_tx_wake_queue(txq);
2839 }
2840 }
2841
2842 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2843 {
2844 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2845 }
2846
2847 /**
2848 * netif_stop_queue - stop transmitted packets
2849 * @dev: network device
2850 *
2851 * Stop upper layers calling the device hard_start_xmit routine.
2852 * Used for flow control when transmit resources are unavailable.
2853 */
2854 static inline void netif_stop_queue(struct net_device *dev)
2855 {
2856 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2857 }
2858
2859 void netif_tx_stop_all_queues(struct net_device *dev);
2860
2861 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2862 {
2863 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2864 }
2865
2866 /**
2867 * netif_queue_stopped - test if transmit queue is flowblocked
2868 * @dev: network device
2869 *
2870 * Test if transmit queue on device is currently unable to send.
2871 */
2872 static inline bool netif_queue_stopped(const struct net_device *dev)
2873 {
2874 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2875 }
2876
2877 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2878 {
2879 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2880 }
2881
2882 static inline bool
2883 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2884 {
2885 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2886 }
2887
2888 static inline bool
2889 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2890 {
2891 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2892 }
2893
2894 /**
2895 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2896 * @dev_queue: pointer to transmit queue
2897 *
2898 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2899 * to give appropriate hint to the CPU.
2900 */
2901 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2902 {
2903 #ifdef CONFIG_BQL
2904 prefetchw(&dev_queue->dql.num_queued);
2905 #endif
2906 }
2907
2908 /**
2909 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2910 * @dev_queue: pointer to transmit queue
2911 *
2912 * BQL enabled drivers might use this helper in their TX completion path,
2913 * to give appropriate hint to the CPU.
2914 */
2915 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2916 {
2917 #ifdef CONFIG_BQL
2918 prefetchw(&dev_queue->dql.limit);
2919 #endif
2920 }
2921
2922 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2923 unsigned int bytes)
2924 {
2925 #ifdef CONFIG_BQL
2926 dql_queued(&dev_queue->dql, bytes);
2927
2928 if (likely(dql_avail(&dev_queue->dql) >= 0))
2929 return;
2930
2931 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2932
2933 /*
2934 * The XOFF flag must be set before checking the dql_avail below,
2935 * because in netdev_tx_completed_queue we update the dql_completed
2936 * before checking the XOFF flag.
2937 */
2938 smp_mb();
2939
2940 /* check again in case another CPU has just made room avail */
2941 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2942 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2943 #endif
2944 }
2945
2946 /**
2947 * netdev_sent_queue - report the number of bytes queued to hardware
2948 * @dev: network device
2949 * @bytes: number of bytes queued to the hardware device queue
2950 *
2951 * Report the number of bytes queued for sending/completion to the network
2952 * device hardware queue. @bytes should be a good approximation and should
2953 * exactly match netdev_completed_queue() @bytes
2954 */
2955 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2956 {
2957 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2958 }
2959
2960 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2961 unsigned int pkts, unsigned int bytes)
2962 {
2963 #ifdef CONFIG_BQL
2964 if (unlikely(!bytes))
2965 return;
2966
2967 dql_completed(&dev_queue->dql, bytes);
2968
2969 /*
2970 * Without the memory barrier there is a small possiblity that
2971 * netdev_tx_sent_queue will miss the update and cause the queue to
2972 * be stopped forever
2973 */
2974 smp_mb();
2975
2976 if (dql_avail(&dev_queue->dql) < 0)
2977 return;
2978
2979 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2980 netif_schedule_queue(dev_queue);
2981 #endif
2982 }
2983
2984 /**
2985 * netdev_completed_queue - report bytes and packets completed by device
2986 * @dev: network device
2987 * @pkts: actual number of packets sent over the medium
2988 * @bytes: actual number of bytes sent over the medium
2989 *
2990 * Report the number of bytes and packets transmitted by the network device
2991 * hardware queue over the physical medium, @bytes must exactly match the
2992 * @bytes amount passed to netdev_sent_queue()
2993 */
2994 static inline void netdev_completed_queue(struct net_device *dev,
2995 unsigned int pkts, unsigned int bytes)
2996 {
2997 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2998 }
2999
3000 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3001 {
3002 #ifdef CONFIG_BQL
3003 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3004 dql_reset(&q->dql);
3005 #endif
3006 }
3007
3008 /**
3009 * netdev_reset_queue - reset the packets and bytes count of a network device
3010 * @dev_queue: network device
3011 *
3012 * Reset the bytes and packet count of a network device and clear the
3013 * software flow control OFF bit for this network device
3014 */
3015 static inline void netdev_reset_queue(struct net_device *dev_queue)
3016 {
3017 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3018 }
3019
3020 /**
3021 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
3022 * @dev: network device
3023 * @queue_index: given tx queue index
3024 *
3025 * Returns 0 if given tx queue index >= number of device tx queues,
3026 * otherwise returns the originally passed tx queue index.
3027 */
3028 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3029 {
3030 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3031 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3032 dev->name, queue_index,
3033 dev->real_num_tx_queues);
3034 return 0;
3035 }
3036
3037 return queue_index;
3038 }
3039
3040 /**
3041 * netif_running - test if up
3042 * @dev: network device
3043 *
3044 * Test if the device has been brought up.
3045 */
3046 static inline bool netif_running(const struct net_device *dev)
3047 {
3048 return test_bit(__LINK_STATE_START, &dev->state);
3049 }
3050
3051 /*
3052 * Routines to manage the subqueues on a device. We only need start,
3053 * stop, and a check if it's stopped. All other device management is
3054 * done at the overall netdevice level.
3055 * Also test the device if we're multiqueue.
3056 */
3057
3058 /**
3059 * netif_start_subqueue - allow sending packets on subqueue
3060 * @dev: network device
3061 * @queue_index: sub queue index
3062 *
3063 * Start individual transmit queue of a device with multiple transmit queues.
3064 */
3065 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3066 {
3067 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3068
3069 netif_tx_start_queue(txq);
3070 }
3071
3072 /**
3073 * netif_stop_subqueue - stop sending packets on subqueue
3074 * @dev: network device
3075 * @queue_index: sub queue index
3076 *
3077 * Stop individual transmit queue of a device with multiple transmit queues.
3078 */
3079 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3080 {
3081 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3082 netif_tx_stop_queue(txq);
3083 }
3084
3085 /**
3086 * netif_subqueue_stopped - test status of subqueue
3087 * @dev: network device
3088 * @queue_index: sub queue index
3089 *
3090 * Check individual transmit queue of a device with multiple transmit queues.
3091 */
3092 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3093 u16 queue_index)
3094 {
3095 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3096
3097 return netif_tx_queue_stopped(txq);
3098 }
3099
3100 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3101 struct sk_buff *skb)
3102 {
3103 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3104 }
3105
3106 /**
3107 * netif_wake_subqueue - allow sending packets on subqueue
3108 * @dev: network device
3109 * @queue_index: sub queue index
3110 *
3111 * Resume individual transmit queue of a device with multiple transmit queues.
3112 */
3113 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3114 {
3115 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3116
3117 netif_tx_wake_queue(txq);
3118 }
3119
3120 #ifdef CONFIG_XPS
3121 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3122 u16 index);
3123 #else
3124 static inline int netif_set_xps_queue(struct net_device *dev,
3125 const struct cpumask *mask,
3126 u16 index)
3127 {
3128 return 0;
3129 }
3130 #endif
3131
3132 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3133 unsigned int num_tx_queues);
3134
3135 /*
3136 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3137 * as a distribution range limit for the returned value.
3138 */
3139 static inline u16 skb_tx_hash(const struct net_device *dev,
3140 struct sk_buff *skb)
3141 {
3142 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3143 }
3144
3145 /**
3146 * netif_is_multiqueue - test if device has multiple transmit queues
3147 * @dev: network device
3148 *
3149 * Check if device has multiple transmit queues
3150 */
3151 static inline bool netif_is_multiqueue(const struct net_device *dev)
3152 {
3153 return dev->num_tx_queues > 1;
3154 }
3155
3156 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3157
3158 #ifdef CONFIG_SYSFS
3159 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3160 #else
3161 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3162 unsigned int rxq)
3163 {
3164 return 0;
3165 }
3166 #endif
3167
3168 #ifdef CONFIG_SYSFS
3169 static inline unsigned int get_netdev_rx_queue_index(
3170 struct netdev_rx_queue *queue)
3171 {
3172 struct net_device *dev = queue->dev;
3173 int index = queue - dev->_rx;
3174
3175 BUG_ON(index >= dev->num_rx_queues);
3176 return index;
3177 }
3178 #endif
3179
3180 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
3181 int netif_get_num_default_rss_queues(void);
3182
3183 enum skb_free_reason {
3184 SKB_REASON_CONSUMED,
3185 SKB_REASON_DROPPED,
3186 };
3187
3188 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3189 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3190
3191 /*
3192 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3193 * interrupt context or with hardware interrupts being disabled.
3194 * (in_irq() || irqs_disabled())
3195 *
3196 * We provide four helpers that can be used in following contexts :
3197 *
3198 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3199 * replacing kfree_skb(skb)
3200 *
3201 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3202 * Typically used in place of consume_skb(skb) in TX completion path
3203 *
3204 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3205 * replacing kfree_skb(skb)
3206 *
3207 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3208 * and consumed a packet. Used in place of consume_skb(skb)
3209 */
3210 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3211 {
3212 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3213 }
3214
3215 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3216 {
3217 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3218 }
3219
3220 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3221 {
3222 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3223 }
3224
3225 static inline void dev_consume_skb_any(struct sk_buff *skb)
3226 {
3227 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3228 }
3229
3230 int netif_rx(struct sk_buff *skb);
3231 int netif_rx_ni(struct sk_buff *skb);
3232 int netif_receive_skb(struct sk_buff *skb);
3233 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3234 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3235 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3236 gro_result_t napi_gro_frags(struct napi_struct *napi);
3237 struct packet_offload *gro_find_receive_by_type(__be16 type);
3238 struct packet_offload *gro_find_complete_by_type(__be16 type);
3239
3240 static inline void napi_free_frags(struct napi_struct *napi)
3241 {
3242 kfree_skb(napi->skb);
3243 napi->skb = NULL;
3244 }
3245
3246 bool netdev_is_rx_handler_busy(struct net_device *dev);
3247 int netdev_rx_handler_register(struct net_device *dev,
3248 rx_handler_func_t *rx_handler,
3249 void *rx_handler_data);
3250 void netdev_rx_handler_unregister(struct net_device *dev);
3251
3252 bool dev_valid_name(const char *name);
3253 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3254 int dev_ethtool(struct net *net, struct ifreq *);
3255 unsigned int dev_get_flags(const struct net_device *);
3256 int __dev_change_flags(struct net_device *, unsigned int flags);
3257 int dev_change_flags(struct net_device *, unsigned int);
3258 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3259 unsigned int gchanges);
3260 int dev_change_name(struct net_device *, const char *);
3261 int dev_set_alias(struct net_device *, const char *, size_t);
3262 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3263 int dev_set_mtu(struct net_device *, int);
3264 void dev_set_group(struct net_device *, int);
3265 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3266 int dev_change_carrier(struct net_device *, bool new_carrier);
3267 int dev_get_phys_port_id(struct net_device *dev,
3268 struct netdev_phys_item_id *ppid);
3269 int dev_get_phys_port_name(struct net_device *dev,
3270 char *name, size_t len);
3271 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3272 int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags);
3273 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3274 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3275 struct netdev_queue *txq, int *ret);
3276 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3277 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3278 bool is_skb_forwardable(const struct net_device *dev,
3279 const struct sk_buff *skb);
3280
3281 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3282 struct sk_buff *skb)
3283 {
3284 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3285 unlikely(!is_skb_forwardable(dev, skb))) {
3286 atomic_long_inc(&dev->rx_dropped);
3287 kfree_skb(skb);
3288 return NET_RX_DROP;
3289 }
3290
3291 skb_scrub_packet(skb, true);
3292 skb->priority = 0;
3293 return 0;
3294 }
3295
3296 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3297
3298 extern int netdev_budget;
3299
3300 /* Called by rtnetlink.c:rtnl_unlock() */
3301 void netdev_run_todo(void);
3302
3303 /**
3304 * dev_put - release reference to device
3305 * @dev: network device
3306 *
3307 * Release reference to device to allow it to be freed.
3308 */
3309 static inline void dev_put(struct net_device *dev)
3310 {
3311 this_cpu_dec(*dev->pcpu_refcnt);
3312 }
3313
3314 /**
3315 * dev_hold - get reference to device
3316 * @dev: network device
3317 *
3318 * Hold reference to device to keep it from being freed.
3319 */
3320 static inline void dev_hold(struct net_device *dev)
3321 {
3322 this_cpu_inc(*dev->pcpu_refcnt);
3323 }
3324
3325 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3326 * and _off may be called from IRQ context, but it is caller
3327 * who is responsible for serialization of these calls.
3328 *
3329 * The name carrier is inappropriate, these functions should really be
3330 * called netif_lowerlayer_*() because they represent the state of any
3331 * kind of lower layer not just hardware media.
3332 */
3333
3334 void linkwatch_init_dev(struct net_device *dev);
3335 void linkwatch_fire_event(struct net_device *dev);
3336 void linkwatch_forget_dev(struct net_device *dev);
3337
3338 /**
3339 * netif_carrier_ok - test if carrier present
3340 * @dev: network device
3341 *
3342 * Check if carrier is present on device
3343 */
3344 static inline bool netif_carrier_ok(const struct net_device *dev)
3345 {
3346 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3347 }
3348
3349 unsigned long dev_trans_start(struct net_device *dev);
3350
3351 void __netdev_watchdog_up(struct net_device *dev);
3352
3353 void netif_carrier_on(struct net_device *dev);
3354
3355 void netif_carrier_off(struct net_device *dev);
3356
3357 /**
3358 * netif_dormant_on - mark device as dormant.
3359 * @dev: network device
3360 *
3361 * Mark device as dormant (as per RFC2863).
3362 *
3363 * The dormant state indicates that the relevant interface is not
3364 * actually in a condition to pass packets (i.e., it is not 'up') but is
3365 * in a "pending" state, waiting for some external event. For "on-
3366 * demand" interfaces, this new state identifies the situation where the
3367 * interface is waiting for events to place it in the up state.
3368 */
3369 static inline void netif_dormant_on(struct net_device *dev)
3370 {
3371 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3372 linkwatch_fire_event(dev);
3373 }
3374
3375 /**
3376 * netif_dormant_off - set device as not dormant.
3377 * @dev: network device
3378 *
3379 * Device is not in dormant state.
3380 */
3381 static inline void netif_dormant_off(struct net_device *dev)
3382 {
3383 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3384 linkwatch_fire_event(dev);
3385 }
3386
3387 /**
3388 * netif_dormant - test if carrier present
3389 * @dev: network device
3390 *
3391 * Check if carrier is present on device
3392 */
3393 static inline bool netif_dormant(const struct net_device *dev)
3394 {
3395 return test_bit(__LINK_STATE_DORMANT, &dev->state);
3396 }
3397
3398
3399 /**
3400 * netif_oper_up - test if device is operational
3401 * @dev: network device
3402 *
3403 * Check if carrier is operational
3404 */
3405 static inline bool netif_oper_up(const struct net_device *dev)
3406 {
3407 return (dev->operstate == IF_OPER_UP ||
3408 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3409 }
3410
3411 /**
3412 * netif_device_present - is device available or removed
3413 * @dev: network device
3414 *
3415 * Check if device has not been removed from system.
3416 */
3417 static inline bool netif_device_present(struct net_device *dev)
3418 {
3419 return test_bit(__LINK_STATE_PRESENT, &dev->state);
3420 }
3421
3422 void netif_device_detach(struct net_device *dev);
3423
3424 void netif_device_attach(struct net_device *dev);
3425
3426 /*
3427 * Network interface message level settings
3428 */
3429
3430 enum {
3431 NETIF_MSG_DRV = 0x0001,
3432 NETIF_MSG_PROBE = 0x0002,
3433 NETIF_MSG_LINK = 0x0004,
3434 NETIF_MSG_TIMER = 0x0008,
3435 NETIF_MSG_IFDOWN = 0x0010,
3436 NETIF_MSG_IFUP = 0x0020,
3437 NETIF_MSG_RX_ERR = 0x0040,
3438 NETIF_MSG_TX_ERR = 0x0080,
3439 NETIF_MSG_TX_QUEUED = 0x0100,
3440 NETIF_MSG_INTR = 0x0200,
3441 NETIF_MSG_TX_DONE = 0x0400,
3442 NETIF_MSG_RX_STATUS = 0x0800,
3443 NETIF_MSG_PKTDATA = 0x1000,
3444 NETIF_MSG_HW = 0x2000,
3445 NETIF_MSG_WOL = 0x4000,
3446 };
3447
3448 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
3449 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
3450 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
3451 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
3452 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
3453 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
3454 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
3455 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
3456 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3457 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
3458 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
3459 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3460 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
3461 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
3462 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
3463
3464 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3465 {
3466 /* use default */
3467 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3468 return default_msg_enable_bits;
3469 if (debug_value == 0) /* no output */
3470 return 0;
3471 /* set low N bits */
3472 return (1 << debug_value) - 1;
3473 }
3474
3475 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3476 {
3477 spin_lock(&txq->_xmit_lock);
3478 txq->xmit_lock_owner = cpu;
3479 }
3480
3481 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3482 {
3483 __acquire(&txq->_xmit_lock);
3484 return true;
3485 }
3486
3487 static inline void __netif_tx_release(struct netdev_queue *txq)
3488 {
3489 __release(&txq->_xmit_lock);
3490 }
3491
3492 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3493 {
3494 spin_lock_bh(&txq->_xmit_lock);
3495 txq->xmit_lock_owner = smp_processor_id();
3496 }
3497
3498 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3499 {
3500 bool ok = spin_trylock(&txq->_xmit_lock);
3501 if (likely(ok))
3502 txq->xmit_lock_owner = smp_processor_id();
3503 return ok;
3504 }
3505
3506 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3507 {
3508 txq->xmit_lock_owner = -1;
3509 spin_unlock(&txq->_xmit_lock);
3510 }
3511
3512 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3513 {
3514 txq->xmit_lock_owner = -1;
3515 spin_unlock_bh(&txq->_xmit_lock);
3516 }
3517
3518 static inline void txq_trans_update(struct netdev_queue *txq)
3519 {
3520 if (txq->xmit_lock_owner != -1)
3521 txq->trans_start = jiffies;
3522 }
3523
3524 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3525 static inline void netif_trans_update(struct net_device *dev)
3526 {
3527 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3528
3529 if (txq->trans_start != jiffies)
3530 txq->trans_start = jiffies;
3531 }
3532
3533 /**
3534 * netif_tx_lock - grab network device transmit lock
3535 * @dev: network device
3536 *
3537 * Get network device transmit lock
3538 */
3539 static inline void netif_tx_lock(struct net_device *dev)
3540 {
3541 unsigned int i;
3542 int cpu;
3543
3544 spin_lock(&dev->tx_global_lock);
3545 cpu = smp_processor_id();
3546 for (i = 0; i < dev->num_tx_queues; i++) {
3547 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3548
3549 /* We are the only thread of execution doing a
3550 * freeze, but we have to grab the _xmit_lock in
3551 * order to synchronize with threads which are in
3552 * the ->hard_start_xmit() handler and already
3553 * checked the frozen bit.
3554 */
3555 __netif_tx_lock(txq, cpu);
3556 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3557 __netif_tx_unlock(txq);
3558 }
3559 }
3560
3561 static inline void netif_tx_lock_bh(struct net_device *dev)
3562 {
3563 local_bh_disable();
3564 netif_tx_lock(dev);
3565 }
3566
3567 static inline void netif_tx_unlock(struct net_device *dev)
3568 {
3569 unsigned int i;
3570
3571 for (i = 0; i < dev->num_tx_queues; i++) {
3572 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3573
3574 /* No need to grab the _xmit_lock here. If the
3575 * queue is not stopped for another reason, we
3576 * force a schedule.
3577 */
3578 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3579 netif_schedule_queue(txq);
3580 }
3581 spin_unlock(&dev->tx_global_lock);
3582 }
3583
3584 static inline void netif_tx_unlock_bh(struct net_device *dev)
3585 {
3586 netif_tx_unlock(dev);
3587 local_bh_enable();
3588 }
3589
3590 #define HARD_TX_LOCK(dev, txq, cpu) { \
3591 if ((dev->features & NETIF_F_LLTX) == 0) { \
3592 __netif_tx_lock(txq, cpu); \
3593 } else { \
3594 __netif_tx_acquire(txq); \
3595 } \
3596 }
3597
3598 #define HARD_TX_TRYLOCK(dev, txq) \
3599 (((dev->features & NETIF_F_LLTX) == 0) ? \
3600 __netif_tx_trylock(txq) : \
3601 __netif_tx_acquire(txq))
3602
3603 #define HARD_TX_UNLOCK(dev, txq) { \
3604 if ((dev->features & NETIF_F_LLTX) == 0) { \
3605 __netif_tx_unlock(txq); \
3606 } else { \
3607 __netif_tx_release(txq); \
3608 } \
3609 }
3610
3611 static inline void netif_tx_disable(struct net_device *dev)
3612 {
3613 unsigned int i;
3614 int cpu;
3615
3616 local_bh_disable();
3617 cpu = smp_processor_id();
3618 for (i = 0; i < dev->num_tx_queues; i++) {
3619 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3620
3621 __netif_tx_lock(txq, cpu);
3622 netif_tx_stop_queue(txq);
3623 __netif_tx_unlock(txq);
3624 }
3625 local_bh_enable();
3626 }
3627
3628 static inline void netif_addr_lock(struct net_device *dev)
3629 {
3630 spin_lock(&dev->addr_list_lock);
3631 }
3632
3633 static inline void netif_addr_lock_nested(struct net_device *dev)
3634 {
3635 int subclass = SINGLE_DEPTH_NESTING;
3636
3637 if (dev->netdev_ops->ndo_get_lock_subclass)
3638 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3639
3640 spin_lock_nested(&dev->addr_list_lock, subclass);
3641 }
3642
3643 static inline void netif_addr_lock_bh(struct net_device *dev)
3644 {
3645 spin_lock_bh(&dev->addr_list_lock);
3646 }
3647
3648 static inline void netif_addr_unlock(struct net_device *dev)
3649 {
3650 spin_unlock(&dev->addr_list_lock);
3651 }
3652
3653 static inline void netif_addr_unlock_bh(struct net_device *dev)
3654 {
3655 spin_unlock_bh(&dev->addr_list_lock);
3656 }
3657
3658 /*
3659 * dev_addrs walker. Should be used only for read access. Call with
3660 * rcu_read_lock held.
3661 */
3662 #define for_each_dev_addr(dev, ha) \
3663 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3664
3665 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3666
3667 void ether_setup(struct net_device *dev);
3668
3669 /* Support for loadable net-drivers */
3670 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3671 unsigned char name_assign_type,
3672 void (*setup)(struct net_device *),
3673 unsigned int txqs, unsigned int rxqs);
3674 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3675 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3676
3677 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3678 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3679 count)
3680
3681 int register_netdev(struct net_device *dev);
3682 void unregister_netdev(struct net_device *dev);
3683
3684 /* General hardware address lists handling functions */
3685 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3686 struct netdev_hw_addr_list *from_list, int addr_len);
3687 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3688 struct netdev_hw_addr_list *from_list, int addr_len);
3689 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3690 struct net_device *dev,
3691 int (*sync)(struct net_device *, const unsigned char *),
3692 int (*unsync)(struct net_device *,
3693 const unsigned char *));
3694 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3695 struct net_device *dev,
3696 int (*unsync)(struct net_device *,
3697 const unsigned char *));
3698 void __hw_addr_init(struct netdev_hw_addr_list *list);
3699
3700 /* Functions used for device addresses handling */
3701 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3702 unsigned char addr_type);
3703 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3704 unsigned char addr_type);
3705 void dev_addr_flush(struct net_device *dev);
3706 int dev_addr_init(struct net_device *dev);
3707
3708 /* Functions used for unicast addresses handling */
3709 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3710 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3711 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3712 int dev_uc_sync(struct net_device *to, struct net_device *from);
3713 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3714 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3715 void dev_uc_flush(struct net_device *dev);
3716 void dev_uc_init(struct net_device *dev);
3717
3718 /**
3719 * __dev_uc_sync - Synchonize device's unicast list
3720 * @dev: device to sync
3721 * @sync: function to call if address should be added
3722 * @unsync: function to call if address should be removed
3723 *
3724 * Add newly added addresses to the interface, and release
3725 * addresses that have been deleted.
3726 */
3727 static inline int __dev_uc_sync(struct net_device *dev,
3728 int (*sync)(struct net_device *,
3729 const unsigned char *),
3730 int (*unsync)(struct net_device *,
3731 const unsigned char *))
3732 {
3733 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3734 }
3735
3736 /**
3737 * __dev_uc_unsync - Remove synchronized addresses from device
3738 * @dev: device to sync
3739 * @unsync: function to call if address should be removed
3740 *
3741 * Remove all addresses that were added to the device by dev_uc_sync().
3742 */
3743 static inline void __dev_uc_unsync(struct net_device *dev,
3744 int (*unsync)(struct net_device *,
3745 const unsigned char *))
3746 {
3747 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3748 }
3749
3750 /* Functions used for multicast addresses handling */
3751 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3752 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3753 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3754 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3755 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3756 int dev_mc_sync(struct net_device *to, struct net_device *from);
3757 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3758 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3759 void dev_mc_flush(struct net_device *dev);
3760 void dev_mc_init(struct net_device *dev);
3761
3762 /**
3763 * __dev_mc_sync - Synchonize device's multicast list
3764 * @dev: device to sync
3765 * @sync: function to call if address should be added
3766 * @unsync: function to call if address should be removed
3767 *
3768 * Add newly added addresses to the interface, and release
3769 * addresses that have been deleted.
3770 */
3771 static inline int __dev_mc_sync(struct net_device *dev,
3772 int (*sync)(struct net_device *,
3773 const unsigned char *),
3774 int (*unsync)(struct net_device *,
3775 const unsigned char *))
3776 {
3777 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3778 }
3779
3780 /**
3781 * __dev_mc_unsync - Remove synchronized addresses from device
3782 * @dev: device to sync
3783 * @unsync: function to call if address should be removed
3784 *
3785 * Remove all addresses that were added to the device by dev_mc_sync().
3786 */
3787 static inline void __dev_mc_unsync(struct net_device *dev,
3788 int (*unsync)(struct net_device *,
3789 const unsigned char *))
3790 {
3791 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3792 }
3793
3794 /* Functions used for secondary unicast and multicast support */
3795 void dev_set_rx_mode(struct net_device *dev);
3796 void __dev_set_rx_mode(struct net_device *dev);
3797 int dev_set_promiscuity(struct net_device *dev, int inc);
3798 int dev_set_allmulti(struct net_device *dev, int inc);
3799 void netdev_state_change(struct net_device *dev);
3800 void netdev_notify_peers(struct net_device *dev);
3801 void netdev_features_change(struct net_device *dev);
3802 /* Load a device via the kmod */
3803 void dev_load(struct net *net, const char *name);
3804 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3805 struct rtnl_link_stats64 *storage);
3806 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3807 const struct net_device_stats *netdev_stats);
3808
3809 extern int netdev_max_backlog;
3810 extern int netdev_tstamp_prequeue;
3811 extern int weight_p;
3812 extern int dev_weight_rx_bias;
3813 extern int dev_weight_tx_bias;
3814 extern int dev_rx_weight;
3815 extern int dev_tx_weight;
3816
3817 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3818 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3819 struct list_head **iter);
3820 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3821 struct list_head **iter);
3822
3823 /* iterate through upper list, must be called under RCU read lock */
3824 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3825 for (iter = &(dev)->adj_list.upper, \
3826 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3827 updev; \
3828 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3829
3830 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
3831 int (*fn)(struct net_device *upper_dev,
3832 void *data),
3833 void *data);
3834
3835 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
3836 struct net_device *upper_dev);
3837
3838 void *netdev_lower_get_next_private(struct net_device *dev,
3839 struct list_head **iter);
3840 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3841 struct list_head **iter);
3842
3843 #define netdev_for_each_lower_private(dev, priv, iter) \
3844 for (iter = (dev)->adj_list.lower.next, \
3845 priv = netdev_lower_get_next_private(dev, &(iter)); \
3846 priv; \
3847 priv = netdev_lower_get_next_private(dev, &(iter)))
3848
3849 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3850 for (iter = &(dev)->adj_list.lower, \
3851 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3852 priv; \
3853 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3854
3855 void *netdev_lower_get_next(struct net_device *dev,
3856 struct list_head **iter);
3857
3858 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3859 for (iter = (dev)->adj_list.lower.next, \
3860 ldev = netdev_lower_get_next(dev, &(iter)); \
3861 ldev; \
3862 ldev = netdev_lower_get_next(dev, &(iter)))
3863
3864 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
3865 struct list_head **iter);
3866 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
3867 struct list_head **iter);
3868
3869 int netdev_walk_all_lower_dev(struct net_device *dev,
3870 int (*fn)(struct net_device *lower_dev,
3871 void *data),
3872 void *data);
3873 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
3874 int (*fn)(struct net_device *lower_dev,
3875 void *data),
3876 void *data);
3877
3878 void *netdev_adjacent_get_private(struct list_head *adj_list);
3879 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3880 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3881 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3882 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3883 int netdev_master_upper_dev_link(struct net_device *dev,
3884 struct net_device *upper_dev,
3885 void *upper_priv, void *upper_info);
3886 void netdev_upper_dev_unlink(struct net_device *dev,
3887 struct net_device *upper_dev);
3888 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3889 void *netdev_lower_dev_get_private(struct net_device *dev,
3890 struct net_device *lower_dev);
3891 void netdev_lower_state_changed(struct net_device *lower_dev,
3892 void *lower_state_info);
3893
3894 /* RSS keys are 40 or 52 bytes long */
3895 #define NETDEV_RSS_KEY_LEN 52
3896 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
3897 void netdev_rss_key_fill(void *buffer, size_t len);
3898
3899 int dev_get_nest_level(struct net_device *dev);
3900 int skb_checksum_help(struct sk_buff *skb);
3901 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3902 netdev_features_t features, bool tx_path);
3903 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3904 netdev_features_t features);
3905
3906 struct netdev_bonding_info {
3907 ifslave slave;
3908 ifbond master;
3909 };
3910
3911 struct netdev_notifier_bonding_info {
3912 struct netdev_notifier_info info; /* must be first */
3913 struct netdev_bonding_info bonding_info;
3914 };
3915
3916 void netdev_bonding_info_change(struct net_device *dev,
3917 struct netdev_bonding_info *bonding_info);
3918
3919 static inline
3920 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3921 {
3922 return __skb_gso_segment(skb, features, true);
3923 }
3924 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3925
3926 static inline bool can_checksum_protocol(netdev_features_t features,
3927 __be16 protocol)
3928 {
3929 if (protocol == htons(ETH_P_FCOE))
3930 return !!(features & NETIF_F_FCOE_CRC);
3931
3932 /* Assume this is an IP checksum (not SCTP CRC) */
3933
3934 if (features & NETIF_F_HW_CSUM) {
3935 /* Can checksum everything */
3936 return true;
3937 }
3938
3939 switch (protocol) {
3940 case htons(ETH_P_IP):
3941 return !!(features & NETIF_F_IP_CSUM);
3942 case htons(ETH_P_IPV6):
3943 return !!(features & NETIF_F_IPV6_CSUM);
3944 default:
3945 return false;
3946 }
3947 }
3948
3949 #ifdef CONFIG_BUG
3950 void netdev_rx_csum_fault(struct net_device *dev);
3951 #else
3952 static inline void netdev_rx_csum_fault(struct net_device *dev)
3953 {
3954 }
3955 #endif
3956 /* rx skb timestamps */
3957 void net_enable_timestamp(void);
3958 void net_disable_timestamp(void);
3959
3960 #ifdef CONFIG_PROC_FS
3961 int __init dev_proc_init(void);
3962 #else
3963 #define dev_proc_init() 0
3964 #endif
3965
3966 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3967 struct sk_buff *skb, struct net_device *dev,
3968 bool more)
3969 {
3970 skb->xmit_more = more ? 1 : 0;
3971 return ops->ndo_start_xmit(skb, dev);
3972 }
3973
3974 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3975 struct netdev_queue *txq, bool more)
3976 {
3977 const struct net_device_ops *ops = dev->netdev_ops;
3978 int rc;
3979
3980 rc = __netdev_start_xmit(ops, skb, dev, more);
3981 if (rc == NETDEV_TX_OK)
3982 txq_trans_update(txq);
3983
3984 return rc;
3985 }
3986
3987 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3988 const void *ns);
3989 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3990 const void *ns);
3991
3992 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3993 {
3994 return netdev_class_create_file_ns(class_attr, NULL);
3995 }
3996
3997 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3998 {
3999 netdev_class_remove_file_ns(class_attr, NULL);
4000 }
4001
4002 extern struct kobj_ns_type_operations net_ns_type_operations;
4003
4004 const char *netdev_drivername(const struct net_device *dev);
4005
4006 void linkwatch_run_queue(void);
4007
4008 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4009 netdev_features_t f2)
4010 {
4011 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4012 if (f1 & NETIF_F_HW_CSUM)
4013 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4014 else
4015 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4016 }
4017
4018 return f1 & f2;
4019 }
4020
4021 static inline netdev_features_t netdev_get_wanted_features(
4022 struct net_device *dev)
4023 {
4024 return (dev->features & ~dev->hw_features) | dev->wanted_features;
4025 }
4026 netdev_features_t netdev_increment_features(netdev_features_t all,
4027 netdev_features_t one, netdev_features_t mask);
4028
4029 /* Allow TSO being used on stacked device :
4030 * Performing the GSO segmentation before last device
4031 * is a performance improvement.
4032 */
4033 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4034 netdev_features_t mask)
4035 {
4036 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4037 }
4038
4039 int __netdev_update_features(struct net_device *dev);
4040 void netdev_update_features(struct net_device *dev);
4041 void netdev_change_features(struct net_device *dev);
4042
4043 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4044 struct net_device *dev);
4045
4046 netdev_features_t passthru_features_check(struct sk_buff *skb,
4047 struct net_device *dev,
4048 netdev_features_t features);
4049 netdev_features_t netif_skb_features(struct sk_buff *skb);
4050
4051 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4052 {
4053 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4054
4055 /* check flags correspondence */
4056 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4057 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
4058 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4059 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4060 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4061 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4062 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4063 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4064 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4065 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4066 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4067 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4068 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4069 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4070 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4071 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4072
4073 return (features & feature) == feature;
4074 }
4075
4076 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4077 {
4078 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4079 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4080 }
4081
4082 static inline bool netif_needs_gso(struct sk_buff *skb,
4083 netdev_features_t features)
4084 {
4085 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4086 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4087 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4088 }
4089
4090 static inline void netif_set_gso_max_size(struct net_device *dev,
4091 unsigned int size)
4092 {
4093 dev->gso_max_size = size;
4094 }
4095
4096 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4097 int pulled_hlen, u16 mac_offset,
4098 int mac_len)
4099 {
4100 skb->protocol = protocol;
4101 skb->encapsulation = 1;
4102 skb_push(skb, pulled_hlen);
4103 skb_reset_transport_header(skb);
4104 skb->mac_header = mac_offset;
4105 skb->network_header = skb->mac_header + mac_len;
4106 skb->mac_len = mac_len;
4107 }
4108
4109 static inline bool netif_is_macsec(const struct net_device *dev)
4110 {
4111 return dev->priv_flags & IFF_MACSEC;
4112 }
4113
4114 static inline bool netif_is_macvlan(const struct net_device *dev)
4115 {
4116 return dev->priv_flags & IFF_MACVLAN;
4117 }
4118
4119 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4120 {
4121 return dev->priv_flags & IFF_MACVLAN_PORT;
4122 }
4123
4124 static inline bool netif_is_ipvlan(const struct net_device *dev)
4125 {
4126 return dev->priv_flags & IFF_IPVLAN_SLAVE;
4127 }
4128
4129 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
4130 {
4131 return dev->priv_flags & IFF_IPVLAN_MASTER;
4132 }
4133
4134 static inline bool netif_is_bond_master(const struct net_device *dev)
4135 {
4136 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4137 }
4138
4139 static inline bool netif_is_bond_slave(const struct net_device *dev)
4140 {
4141 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4142 }
4143
4144 static inline bool netif_supports_nofcs(struct net_device *dev)
4145 {
4146 return dev->priv_flags & IFF_SUPP_NOFCS;
4147 }
4148
4149 static inline bool netif_is_l3_master(const struct net_device *dev)
4150 {
4151 return dev->priv_flags & IFF_L3MDEV_MASTER;
4152 }
4153
4154 static inline bool netif_is_l3_slave(const struct net_device *dev)
4155 {
4156 return dev->priv_flags & IFF_L3MDEV_SLAVE;
4157 }
4158
4159 static inline bool netif_is_bridge_master(const struct net_device *dev)
4160 {
4161 return dev->priv_flags & IFF_EBRIDGE;
4162 }
4163
4164 static inline bool netif_is_bridge_port(const struct net_device *dev)
4165 {
4166 return dev->priv_flags & IFF_BRIDGE_PORT;
4167 }
4168
4169 static inline bool netif_is_ovs_master(const struct net_device *dev)
4170 {
4171 return dev->priv_flags & IFF_OPENVSWITCH;
4172 }
4173
4174 static inline bool netif_is_ovs_port(const struct net_device *dev)
4175 {
4176 return dev->priv_flags & IFF_OVS_DATAPATH;
4177 }
4178
4179 static inline bool netif_is_team_master(const struct net_device *dev)
4180 {
4181 return dev->priv_flags & IFF_TEAM;
4182 }
4183
4184 static inline bool netif_is_team_port(const struct net_device *dev)
4185 {
4186 return dev->priv_flags & IFF_TEAM_PORT;
4187 }
4188
4189 static inline bool netif_is_lag_master(const struct net_device *dev)
4190 {
4191 return netif_is_bond_master(dev) || netif_is_team_master(dev);
4192 }
4193
4194 static inline bool netif_is_lag_port(const struct net_device *dev)
4195 {
4196 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4197 }
4198
4199 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4200 {
4201 return dev->priv_flags & IFF_RXFH_CONFIGURED;
4202 }
4203
4204 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4205 static inline void netif_keep_dst(struct net_device *dev)
4206 {
4207 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4208 }
4209
4210 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4211 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4212 {
4213 /* TODO: reserve and use an additional IFF bit, if we get more users */
4214 return dev->priv_flags & IFF_MACSEC;
4215 }
4216
4217 extern struct pernet_operations __net_initdata loopback_net_ops;
4218
4219 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4220
4221 /* netdev_printk helpers, similar to dev_printk */
4222
4223 static inline const char *netdev_name(const struct net_device *dev)
4224 {
4225 if (!dev->name[0] || strchr(dev->name, '%'))
4226 return "(unnamed net_device)";
4227 return dev->name;
4228 }
4229
4230 static inline const char *netdev_reg_state(const struct net_device *dev)
4231 {
4232 switch (dev->reg_state) {
4233 case NETREG_UNINITIALIZED: return " (uninitialized)";
4234 case NETREG_REGISTERED: return "";
4235 case NETREG_UNREGISTERING: return " (unregistering)";
4236 case NETREG_UNREGISTERED: return " (unregistered)";
4237 case NETREG_RELEASED: return " (released)";
4238 case NETREG_DUMMY: return " (dummy)";
4239 }
4240
4241 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4242 return " (unknown)";
4243 }
4244
4245 __printf(3, 4)
4246 void netdev_printk(const char *level, const struct net_device *dev,
4247 const char *format, ...);
4248 __printf(2, 3)
4249 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4250 __printf(2, 3)
4251 void netdev_alert(const struct net_device *dev, const char *format, ...);
4252 __printf(2, 3)
4253 void netdev_crit(const struct net_device *dev, const char *format, ...);
4254 __printf(2, 3)
4255 void netdev_err(const struct net_device *dev, const char *format, ...);
4256 __printf(2, 3)
4257 void netdev_warn(const struct net_device *dev, const char *format, ...);
4258 __printf(2, 3)
4259 void netdev_notice(const struct net_device *dev, const char *format, ...);
4260 __printf(2, 3)
4261 void netdev_info(const struct net_device *dev, const char *format, ...);
4262
4263 #define MODULE_ALIAS_NETDEV(device) \
4264 MODULE_ALIAS("netdev-" device)
4265
4266 #if defined(CONFIG_DYNAMIC_DEBUG)
4267 #define netdev_dbg(__dev, format, args...) \
4268 do { \
4269 dynamic_netdev_dbg(__dev, format, ##args); \
4270 } while (0)
4271 #elif defined(DEBUG)
4272 #define netdev_dbg(__dev, format, args...) \
4273 netdev_printk(KERN_DEBUG, __dev, format, ##args)
4274 #else
4275 #define netdev_dbg(__dev, format, args...) \
4276 ({ \
4277 if (0) \
4278 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4279 })
4280 #endif
4281
4282 #if defined(VERBOSE_DEBUG)
4283 #define netdev_vdbg netdev_dbg
4284 #else
4285
4286 #define netdev_vdbg(dev, format, args...) \
4287 ({ \
4288 if (0) \
4289 netdev_printk(KERN_DEBUG, dev, format, ##args); \
4290 0; \
4291 })
4292 #endif
4293
4294 /*
4295 * netdev_WARN() acts like dev_printk(), but with the key difference
4296 * of using a WARN/WARN_ON to get the message out, including the
4297 * file/line information and a backtrace.
4298 */
4299 #define netdev_WARN(dev, format, args...) \
4300 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \
4301 netdev_reg_state(dev), ##args)
4302
4303 /* netif printk helpers, similar to netdev_printk */
4304
4305 #define netif_printk(priv, type, level, dev, fmt, args...) \
4306 do { \
4307 if (netif_msg_##type(priv)) \
4308 netdev_printk(level, (dev), fmt, ##args); \
4309 } while (0)
4310
4311 #define netif_level(level, priv, type, dev, fmt, args...) \
4312 do { \
4313 if (netif_msg_##type(priv)) \
4314 netdev_##level(dev, fmt, ##args); \
4315 } while (0)
4316
4317 #define netif_emerg(priv, type, dev, fmt, args...) \
4318 netif_level(emerg, priv, type, dev, fmt, ##args)
4319 #define netif_alert(priv, type, dev, fmt, args...) \
4320 netif_level(alert, priv, type, dev, fmt, ##args)
4321 #define netif_crit(priv, type, dev, fmt, args...) \
4322 netif_level(crit, priv, type, dev, fmt, ##args)
4323 #define netif_err(priv, type, dev, fmt, args...) \
4324 netif_level(err, priv, type, dev, fmt, ##args)
4325 #define netif_warn(priv, type, dev, fmt, args...) \
4326 netif_level(warn, priv, type, dev, fmt, ##args)
4327 #define netif_notice(priv, type, dev, fmt, args...) \
4328 netif_level(notice, priv, type, dev, fmt, ##args)
4329 #define netif_info(priv, type, dev, fmt, args...) \
4330 netif_level(info, priv, type, dev, fmt, ##args)
4331
4332 #if defined(CONFIG_DYNAMIC_DEBUG)
4333 #define netif_dbg(priv, type, netdev, format, args...) \
4334 do { \
4335 if (netif_msg_##type(priv)) \
4336 dynamic_netdev_dbg(netdev, format, ##args); \
4337 } while (0)
4338 #elif defined(DEBUG)
4339 #define netif_dbg(priv, type, dev, format, args...) \
4340 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4341 #else
4342 #define netif_dbg(priv, type, dev, format, args...) \
4343 ({ \
4344 if (0) \
4345 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4346 0; \
4347 })
4348 #endif
4349
4350 /* if @cond then downgrade to debug, else print at @level */
4351 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \
4352 do { \
4353 if (cond) \
4354 netif_dbg(priv, type, netdev, fmt, ##args); \
4355 else \
4356 netif_ ## level(priv, type, netdev, fmt, ##args); \
4357 } while (0)
4358
4359 #if defined(VERBOSE_DEBUG)
4360 #define netif_vdbg netif_dbg
4361 #else
4362 #define netif_vdbg(priv, type, dev, format, args...) \
4363 ({ \
4364 if (0) \
4365 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4366 0; \
4367 })
4368 #endif
4369
4370 /*
4371 * The list of packet types we will receive (as opposed to discard)
4372 * and the routines to invoke.
4373 *
4374 * Why 16. Because with 16 the only overlap we get on a hash of the
4375 * low nibble of the protocol value is RARP/SNAP/X.25.
4376 *
4377 * NOTE: That is no longer true with the addition of VLAN tags. Not
4378 * sure which should go first, but I bet it won't make much
4379 * difference if we are running VLANs. The good news is that
4380 * this protocol won't be in the list unless compiled in, so
4381 * the average user (w/out VLANs) will not be adversely affected.
4382 * --BLG
4383 *
4384 * 0800 IP
4385 * 8100 802.1Q VLAN
4386 * 0001 802.3
4387 * 0002 AX.25
4388 * 0004 802.2
4389 * 8035 RARP
4390 * 0005 SNAP
4391 * 0805 X.25
4392 * 0806 ARP
4393 * 8137 IPX
4394 * 0009 Localtalk
4395 * 86DD IPv6
4396 */
4397 #define PTYPE_HASH_SIZE (16)
4398 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4399
4400 #endif /* _LINUX_NETDEVICE_H */