]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - include/linux/netdevice.h
130a668049ab06dc2be988de296bf6c6edce1e4c
[mirror_ubuntu-hirsute-kernel.git] / include / linux / netdevice.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the Interfaces handler.
8 *
9 * Version: @(#)dev.h 1.0.10 08/12/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
16 * Bjorn Ekwall. <bj0rn@blox.se>
17 * Pekka Riikonen <priikone@poseidon.pspt.fi>
18 *
19 * Moved to /usr/include/linux for NET3
20 */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36
37 #include <linux/ethtool.h>
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51
52 struct netpoll_info;
53 struct device;
54 struct phy_device;
55 struct dsa_port;
56 struct macsec_context;
57 struct macsec_ops;
58
59 struct sfp_bus;
60 /* 802.11 specific */
61 struct wireless_dev;
62 /* 802.15.4 specific */
63 struct wpan_dev;
64 struct mpls_dev;
65 /* UDP Tunnel offloads */
66 struct udp_tunnel_info;
67 struct bpf_prog;
68 struct xdp_buff;
69
70 void netdev_set_default_ethtool_ops(struct net_device *dev,
71 const struct ethtool_ops *ops);
72
73 /* Backlog congestion levels */
74 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
75 #define NET_RX_DROP 1 /* packet dropped */
76
77 #define MAX_NEST_DEV 8
78
79 /*
80 * Transmit return codes: transmit return codes originate from three different
81 * namespaces:
82 *
83 * - qdisc return codes
84 * - driver transmit return codes
85 * - errno values
86 *
87 * Drivers are allowed to return any one of those in their hard_start_xmit()
88 * function. Real network devices commonly used with qdiscs should only return
89 * the driver transmit return codes though - when qdiscs are used, the actual
90 * transmission happens asynchronously, so the value is not propagated to
91 * higher layers. Virtual network devices transmit synchronously; in this case
92 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
93 * others are propagated to higher layers.
94 */
95
96 /* qdisc ->enqueue() return codes. */
97 #define NET_XMIT_SUCCESS 0x00
98 #define NET_XMIT_DROP 0x01 /* skb dropped */
99 #define NET_XMIT_CN 0x02 /* congestion notification */
100 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
101
102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
103 * indicates that the device will soon be dropping packets, or already drops
104 * some packets of the same priority; prompting us to send less aggressively. */
105 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
106 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
107
108 /* Driver transmit return codes */
109 #define NETDEV_TX_MASK 0xf0
110
111 enum netdev_tx {
112 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
113 NETDEV_TX_OK = 0x00, /* driver took care of packet */
114 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
115 };
116 typedef enum netdev_tx netdev_tx_t;
117
118 /*
119 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121 */
122 static inline bool dev_xmit_complete(int rc)
123 {
124 /*
125 * Positive cases with an skb consumed by a driver:
126 * - successful transmission (rc == NETDEV_TX_OK)
127 * - error while transmitting (rc < 0)
128 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 */
130 if (likely(rc < NET_XMIT_MASK))
131 return true;
132
133 return false;
134 }
135
136 /*
137 * Compute the worst-case header length according to the protocols
138 * used.
139 */
140
141 #if defined(CONFIG_HYPERV_NET)
142 # define LL_MAX_HEADER 128
143 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
144 # if defined(CONFIG_MAC80211_MESH)
145 # define LL_MAX_HEADER 128
146 # else
147 # define LL_MAX_HEADER 96
148 # endif
149 #else
150 # define LL_MAX_HEADER 32
151 #endif
152
153 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
154 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
155 #define MAX_HEADER LL_MAX_HEADER
156 #else
157 #define MAX_HEADER (LL_MAX_HEADER + 48)
158 #endif
159
160 /*
161 * Old network device statistics. Fields are native words
162 * (unsigned long) so they can be read and written atomically.
163 */
164
165 struct net_device_stats {
166 unsigned long rx_packets;
167 unsigned long tx_packets;
168 unsigned long rx_bytes;
169 unsigned long tx_bytes;
170 unsigned long rx_errors;
171 unsigned long tx_errors;
172 unsigned long rx_dropped;
173 unsigned long tx_dropped;
174 unsigned long multicast;
175 unsigned long collisions;
176 unsigned long rx_length_errors;
177 unsigned long rx_over_errors;
178 unsigned long rx_crc_errors;
179 unsigned long rx_frame_errors;
180 unsigned long rx_fifo_errors;
181 unsigned long rx_missed_errors;
182 unsigned long tx_aborted_errors;
183 unsigned long tx_carrier_errors;
184 unsigned long tx_fifo_errors;
185 unsigned long tx_heartbeat_errors;
186 unsigned long tx_window_errors;
187 unsigned long rx_compressed;
188 unsigned long tx_compressed;
189 };
190
191
192 #include <linux/cache.h>
193 #include <linux/skbuff.h>
194
195 #ifdef CONFIG_RPS
196 #include <linux/static_key.h>
197 extern struct static_key_false rps_needed;
198 extern struct static_key_false rfs_needed;
199 #endif
200
201 struct neighbour;
202 struct neigh_parms;
203 struct sk_buff;
204
205 struct netdev_hw_addr {
206 struct list_head list;
207 unsigned char addr[MAX_ADDR_LEN];
208 unsigned char type;
209 #define NETDEV_HW_ADDR_T_LAN 1
210 #define NETDEV_HW_ADDR_T_SAN 2
211 #define NETDEV_HW_ADDR_T_SLAVE 3
212 #define NETDEV_HW_ADDR_T_UNICAST 4
213 #define NETDEV_HW_ADDR_T_MULTICAST 5
214 bool global_use;
215 int sync_cnt;
216 int refcount;
217 int synced;
218 struct rcu_head rcu_head;
219 };
220
221 struct netdev_hw_addr_list {
222 struct list_head list;
223 int count;
224 };
225
226 #define netdev_hw_addr_list_count(l) ((l)->count)
227 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
228 #define netdev_hw_addr_list_for_each(ha, l) \
229 list_for_each_entry(ha, &(l)->list, list)
230
231 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
232 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
233 #define netdev_for_each_uc_addr(ha, dev) \
234 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
235
236 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
237 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
238 #define netdev_for_each_mc_addr(ha, dev) \
239 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
240
241 struct hh_cache {
242 unsigned int hh_len;
243 seqlock_t hh_lock;
244
245 /* cached hardware header; allow for machine alignment needs. */
246 #define HH_DATA_MOD 16
247 #define HH_DATA_OFF(__len) \
248 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
249 #define HH_DATA_ALIGN(__len) \
250 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
251 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
252 };
253
254 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
255 * Alternative is:
256 * dev->hard_header_len ? (dev->hard_header_len +
257 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
258 *
259 * We could use other alignment values, but we must maintain the
260 * relationship HH alignment <= LL alignment.
261 */
262 #define LL_RESERVED_SPACE(dev) \
263 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
265 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
266
267 struct header_ops {
268 int (*create) (struct sk_buff *skb, struct net_device *dev,
269 unsigned short type, const void *daddr,
270 const void *saddr, unsigned int len);
271 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
272 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
273 void (*cache_update)(struct hh_cache *hh,
274 const struct net_device *dev,
275 const unsigned char *haddr);
276 bool (*validate)(const char *ll_header, unsigned int len);
277 __be16 (*parse_protocol)(const struct sk_buff *skb);
278 };
279
280 /* These flag bits are private to the generic network queueing
281 * layer; they may not be explicitly referenced by any other
282 * code.
283 */
284
285 enum netdev_state_t {
286 __LINK_STATE_START,
287 __LINK_STATE_PRESENT,
288 __LINK_STATE_NOCARRIER,
289 __LINK_STATE_LINKWATCH_PENDING,
290 __LINK_STATE_DORMANT,
291 };
292
293
294 /*
295 * This structure holds boot-time configured netdevice settings. They
296 * are then used in the device probing.
297 */
298 struct netdev_boot_setup {
299 char name[IFNAMSIZ];
300 struct ifmap map;
301 };
302 #define NETDEV_BOOT_SETUP_MAX 8
303
304 int __init netdev_boot_setup(char *str);
305
306 struct gro_list {
307 struct list_head list;
308 int count;
309 };
310
311 /*
312 * size of gro hash buckets, must less than bit number of
313 * napi_struct::gro_bitmask
314 */
315 #define GRO_HASH_BUCKETS 8
316
317 /*
318 * Structure for NAPI scheduling similar to tasklet but with weighting
319 */
320 struct napi_struct {
321 /* The poll_list must only be managed by the entity which
322 * changes the state of the NAPI_STATE_SCHED bit. This means
323 * whoever atomically sets that bit can add this napi_struct
324 * to the per-CPU poll_list, and whoever clears that bit
325 * can remove from the list right before clearing the bit.
326 */
327 struct list_head poll_list;
328
329 unsigned long state;
330 int weight;
331 unsigned long gro_bitmask;
332 int (*poll)(struct napi_struct *, int);
333 #ifdef CONFIG_NETPOLL
334 int poll_owner;
335 #endif
336 struct net_device *dev;
337 struct gro_list gro_hash[GRO_HASH_BUCKETS];
338 struct sk_buff *skb;
339 struct list_head rx_list; /* Pending GRO_NORMAL skbs */
340 int rx_count; /* length of rx_list */
341 struct hrtimer timer;
342 struct list_head dev_list;
343 struct hlist_node napi_hash_node;
344 unsigned int napi_id;
345 };
346
347 enum {
348 NAPI_STATE_SCHED, /* Poll is scheduled */
349 NAPI_STATE_MISSED, /* reschedule a napi */
350 NAPI_STATE_DISABLE, /* Disable pending */
351 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
352 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */
353 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
354 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
355 };
356
357 enum {
358 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED),
359 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED),
360 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE),
361 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC),
362 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED),
363 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
364 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
365 };
366
367 enum gro_result {
368 GRO_MERGED,
369 GRO_MERGED_FREE,
370 GRO_HELD,
371 GRO_NORMAL,
372 GRO_DROP,
373 GRO_CONSUMED,
374 };
375 typedef enum gro_result gro_result_t;
376
377 /*
378 * enum rx_handler_result - Possible return values for rx_handlers.
379 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
380 * further.
381 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
382 * case skb->dev was changed by rx_handler.
383 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
384 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
385 *
386 * rx_handlers are functions called from inside __netif_receive_skb(), to do
387 * special processing of the skb, prior to delivery to protocol handlers.
388 *
389 * Currently, a net_device can only have a single rx_handler registered. Trying
390 * to register a second rx_handler will return -EBUSY.
391 *
392 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
393 * To unregister a rx_handler on a net_device, use
394 * netdev_rx_handler_unregister().
395 *
396 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
397 * do with the skb.
398 *
399 * If the rx_handler consumed the skb in some way, it should return
400 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
401 * the skb to be delivered in some other way.
402 *
403 * If the rx_handler changed skb->dev, to divert the skb to another
404 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
405 * new device will be called if it exists.
406 *
407 * If the rx_handler decides the skb should be ignored, it should return
408 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
409 * are registered on exact device (ptype->dev == skb->dev).
410 *
411 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
412 * delivered, it should return RX_HANDLER_PASS.
413 *
414 * A device without a registered rx_handler will behave as if rx_handler
415 * returned RX_HANDLER_PASS.
416 */
417
418 enum rx_handler_result {
419 RX_HANDLER_CONSUMED,
420 RX_HANDLER_ANOTHER,
421 RX_HANDLER_EXACT,
422 RX_HANDLER_PASS,
423 };
424 typedef enum rx_handler_result rx_handler_result_t;
425 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
426
427 void __napi_schedule(struct napi_struct *n);
428 void __napi_schedule_irqoff(struct napi_struct *n);
429
430 static inline bool napi_disable_pending(struct napi_struct *n)
431 {
432 return test_bit(NAPI_STATE_DISABLE, &n->state);
433 }
434
435 bool napi_schedule_prep(struct napi_struct *n);
436
437 /**
438 * napi_schedule - schedule NAPI poll
439 * @n: NAPI context
440 *
441 * Schedule NAPI poll routine to be called if it is not already
442 * running.
443 */
444 static inline void napi_schedule(struct napi_struct *n)
445 {
446 if (napi_schedule_prep(n))
447 __napi_schedule(n);
448 }
449
450 /**
451 * napi_schedule_irqoff - schedule NAPI poll
452 * @n: NAPI context
453 *
454 * Variant of napi_schedule(), assuming hard irqs are masked.
455 */
456 static inline void napi_schedule_irqoff(struct napi_struct *n)
457 {
458 if (napi_schedule_prep(n))
459 __napi_schedule_irqoff(n);
460 }
461
462 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
463 static inline bool napi_reschedule(struct napi_struct *napi)
464 {
465 if (napi_schedule_prep(napi)) {
466 __napi_schedule(napi);
467 return true;
468 }
469 return false;
470 }
471
472 bool napi_complete_done(struct napi_struct *n, int work_done);
473 /**
474 * napi_complete - NAPI processing complete
475 * @n: NAPI context
476 *
477 * Mark NAPI processing as complete.
478 * Consider using napi_complete_done() instead.
479 * Return false if device should avoid rearming interrupts.
480 */
481 static inline bool napi_complete(struct napi_struct *n)
482 {
483 return napi_complete_done(n, 0);
484 }
485
486 /**
487 * napi_hash_del - remove a NAPI from global table
488 * @napi: NAPI context
489 *
490 * Warning: caller must observe RCU grace period
491 * before freeing memory containing @napi, if
492 * this function returns true.
493 * Note: core networking stack automatically calls it
494 * from netif_napi_del().
495 * Drivers might want to call this helper to combine all
496 * the needed RCU grace periods into a single one.
497 */
498 bool napi_hash_del(struct napi_struct *napi);
499
500 /**
501 * napi_disable - prevent NAPI from scheduling
502 * @n: NAPI context
503 *
504 * Stop NAPI from being scheduled on this context.
505 * Waits till any outstanding processing completes.
506 */
507 void napi_disable(struct napi_struct *n);
508
509 /**
510 * napi_enable - enable NAPI scheduling
511 * @n: NAPI context
512 *
513 * Resume NAPI from being scheduled on this context.
514 * Must be paired with napi_disable.
515 */
516 static inline void napi_enable(struct napi_struct *n)
517 {
518 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
519 smp_mb__before_atomic();
520 clear_bit(NAPI_STATE_SCHED, &n->state);
521 clear_bit(NAPI_STATE_NPSVC, &n->state);
522 }
523
524 /**
525 * napi_synchronize - wait until NAPI is not running
526 * @n: NAPI context
527 *
528 * Wait until NAPI is done being scheduled on this context.
529 * Waits till any outstanding processing completes but
530 * does not disable future activations.
531 */
532 static inline void napi_synchronize(const struct napi_struct *n)
533 {
534 if (IS_ENABLED(CONFIG_SMP))
535 while (test_bit(NAPI_STATE_SCHED, &n->state))
536 msleep(1);
537 else
538 barrier();
539 }
540
541 /**
542 * napi_if_scheduled_mark_missed - if napi is running, set the
543 * NAPIF_STATE_MISSED
544 * @n: NAPI context
545 *
546 * If napi is running, set the NAPIF_STATE_MISSED, and return true if
547 * NAPI is scheduled.
548 **/
549 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
550 {
551 unsigned long val, new;
552
553 do {
554 val = READ_ONCE(n->state);
555 if (val & NAPIF_STATE_DISABLE)
556 return true;
557
558 if (!(val & NAPIF_STATE_SCHED))
559 return false;
560
561 new = val | NAPIF_STATE_MISSED;
562 } while (cmpxchg(&n->state, val, new) != val);
563
564 return true;
565 }
566
567 enum netdev_queue_state_t {
568 __QUEUE_STATE_DRV_XOFF,
569 __QUEUE_STATE_STACK_XOFF,
570 __QUEUE_STATE_FROZEN,
571 };
572
573 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
574 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
575 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
576
577 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
578 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
579 QUEUE_STATE_FROZEN)
580 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
581 QUEUE_STATE_FROZEN)
582
583 /*
584 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
585 * netif_tx_* functions below are used to manipulate this flag. The
586 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
587 * queue independently. The netif_xmit_*stopped functions below are called
588 * to check if the queue has been stopped by the driver or stack (either
589 * of the XOFF bits are set in the state). Drivers should not need to call
590 * netif_xmit*stopped functions, they should only be using netif_tx_*.
591 */
592
593 struct netdev_queue {
594 /*
595 * read-mostly part
596 */
597 struct net_device *dev;
598 struct Qdisc __rcu *qdisc;
599 struct Qdisc *qdisc_sleeping;
600 #ifdef CONFIG_SYSFS
601 struct kobject kobj;
602 #endif
603 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
604 int numa_node;
605 #endif
606 unsigned long tx_maxrate;
607 /*
608 * Number of TX timeouts for this queue
609 * (/sys/class/net/DEV/Q/trans_timeout)
610 */
611 unsigned long trans_timeout;
612
613 /* Subordinate device that the queue has been assigned to */
614 struct net_device *sb_dev;
615 #ifdef CONFIG_XDP_SOCKETS
616 struct xdp_umem *umem;
617 #endif
618 /*
619 * write-mostly part
620 */
621 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
622 int xmit_lock_owner;
623 /*
624 * Time (in jiffies) of last Tx
625 */
626 unsigned long trans_start;
627
628 unsigned long state;
629
630 #ifdef CONFIG_BQL
631 struct dql dql;
632 #endif
633 } ____cacheline_aligned_in_smp;
634
635 extern int sysctl_fb_tunnels_only_for_init_net;
636 extern int sysctl_devconf_inherit_init_net;
637
638 static inline bool net_has_fallback_tunnels(const struct net *net)
639 {
640 return net == &init_net ||
641 !IS_ENABLED(CONFIG_SYSCTL) ||
642 !sysctl_fb_tunnels_only_for_init_net;
643 }
644
645 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
646 {
647 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
648 return q->numa_node;
649 #else
650 return NUMA_NO_NODE;
651 #endif
652 }
653
654 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
655 {
656 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
657 q->numa_node = node;
658 #endif
659 }
660
661 #ifdef CONFIG_RPS
662 /*
663 * This structure holds an RPS map which can be of variable length. The
664 * map is an array of CPUs.
665 */
666 struct rps_map {
667 unsigned int len;
668 struct rcu_head rcu;
669 u16 cpus[];
670 };
671 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
672
673 /*
674 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
675 * tail pointer for that CPU's input queue at the time of last enqueue, and
676 * a hardware filter index.
677 */
678 struct rps_dev_flow {
679 u16 cpu;
680 u16 filter;
681 unsigned int last_qtail;
682 };
683 #define RPS_NO_FILTER 0xffff
684
685 /*
686 * The rps_dev_flow_table structure contains a table of flow mappings.
687 */
688 struct rps_dev_flow_table {
689 unsigned int mask;
690 struct rcu_head rcu;
691 struct rps_dev_flow flows[];
692 };
693 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
694 ((_num) * sizeof(struct rps_dev_flow)))
695
696 /*
697 * The rps_sock_flow_table contains mappings of flows to the last CPU
698 * on which they were processed by the application (set in recvmsg).
699 * Each entry is a 32bit value. Upper part is the high-order bits
700 * of flow hash, lower part is CPU number.
701 * rps_cpu_mask is used to partition the space, depending on number of
702 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
703 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
704 * meaning we use 32-6=26 bits for the hash.
705 */
706 struct rps_sock_flow_table {
707 u32 mask;
708
709 u32 ents[] ____cacheline_aligned_in_smp;
710 };
711 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
712
713 #define RPS_NO_CPU 0xffff
714
715 extern u32 rps_cpu_mask;
716 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
717
718 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
719 u32 hash)
720 {
721 if (table && hash) {
722 unsigned int index = hash & table->mask;
723 u32 val = hash & ~rps_cpu_mask;
724
725 /* We only give a hint, preemption can change CPU under us */
726 val |= raw_smp_processor_id();
727
728 if (table->ents[index] != val)
729 table->ents[index] = val;
730 }
731 }
732
733 #ifdef CONFIG_RFS_ACCEL
734 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
735 u16 filter_id);
736 #endif
737 #endif /* CONFIG_RPS */
738
739 /* This structure contains an instance of an RX queue. */
740 struct netdev_rx_queue {
741 #ifdef CONFIG_RPS
742 struct rps_map __rcu *rps_map;
743 struct rps_dev_flow_table __rcu *rps_flow_table;
744 #endif
745 struct kobject kobj;
746 struct net_device *dev;
747 struct xdp_rxq_info xdp_rxq;
748 #ifdef CONFIG_XDP_SOCKETS
749 struct xdp_umem *umem;
750 #endif
751 } ____cacheline_aligned_in_smp;
752
753 /*
754 * RX queue sysfs structures and functions.
755 */
756 struct rx_queue_attribute {
757 struct attribute attr;
758 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
759 ssize_t (*store)(struct netdev_rx_queue *queue,
760 const char *buf, size_t len);
761 };
762
763 #ifdef CONFIG_XPS
764 /*
765 * This structure holds an XPS map which can be of variable length. The
766 * map is an array of queues.
767 */
768 struct xps_map {
769 unsigned int len;
770 unsigned int alloc_len;
771 struct rcu_head rcu;
772 u16 queues[];
773 };
774 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
775 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
776 - sizeof(struct xps_map)) / sizeof(u16))
777
778 /*
779 * This structure holds all XPS maps for device. Maps are indexed by CPU.
780 */
781 struct xps_dev_maps {
782 struct rcu_head rcu;
783 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
784 };
785
786 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \
787 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
788
789 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
790 (_rxqs * (_tcs) * sizeof(struct xps_map *)))
791
792 #endif /* CONFIG_XPS */
793
794 #define TC_MAX_QUEUE 16
795 #define TC_BITMASK 15
796 /* HW offloaded queuing disciplines txq count and offset maps */
797 struct netdev_tc_txq {
798 u16 count;
799 u16 offset;
800 };
801
802 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
803 /*
804 * This structure is to hold information about the device
805 * configured to run FCoE protocol stack.
806 */
807 struct netdev_fcoe_hbainfo {
808 char manufacturer[64];
809 char serial_number[64];
810 char hardware_version[64];
811 char driver_version[64];
812 char optionrom_version[64];
813 char firmware_version[64];
814 char model[256];
815 char model_description[256];
816 };
817 #endif
818
819 #define MAX_PHYS_ITEM_ID_LEN 32
820
821 /* This structure holds a unique identifier to identify some
822 * physical item (port for example) used by a netdevice.
823 */
824 struct netdev_phys_item_id {
825 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
826 unsigned char id_len;
827 };
828
829 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
830 struct netdev_phys_item_id *b)
831 {
832 return a->id_len == b->id_len &&
833 memcmp(a->id, b->id, a->id_len) == 0;
834 }
835
836 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
837 struct sk_buff *skb,
838 struct net_device *sb_dev);
839
840 enum tc_setup_type {
841 TC_SETUP_QDISC_MQPRIO,
842 TC_SETUP_CLSU32,
843 TC_SETUP_CLSFLOWER,
844 TC_SETUP_CLSMATCHALL,
845 TC_SETUP_CLSBPF,
846 TC_SETUP_BLOCK,
847 TC_SETUP_QDISC_CBS,
848 TC_SETUP_QDISC_RED,
849 TC_SETUP_QDISC_PRIO,
850 TC_SETUP_QDISC_MQ,
851 TC_SETUP_QDISC_ETF,
852 TC_SETUP_ROOT_QDISC,
853 TC_SETUP_QDISC_GRED,
854 TC_SETUP_QDISC_TAPRIO,
855 TC_SETUP_FT,
856 TC_SETUP_QDISC_ETS,
857 TC_SETUP_QDISC_TBF,
858 TC_SETUP_QDISC_FIFO,
859 };
860
861 /* These structures hold the attributes of bpf state that are being passed
862 * to the netdevice through the bpf op.
863 */
864 enum bpf_netdev_command {
865 /* Set or clear a bpf program used in the earliest stages of packet
866 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
867 * is responsible for calling bpf_prog_put on any old progs that are
868 * stored. In case of error, the callee need not release the new prog
869 * reference, but on success it takes ownership and must bpf_prog_put
870 * when it is no longer used.
871 */
872 XDP_SETUP_PROG,
873 XDP_SETUP_PROG_HW,
874 XDP_QUERY_PROG,
875 XDP_QUERY_PROG_HW,
876 /* BPF program for offload callbacks, invoked at program load time. */
877 BPF_OFFLOAD_MAP_ALLOC,
878 BPF_OFFLOAD_MAP_FREE,
879 XDP_SETUP_XSK_UMEM,
880 };
881
882 struct bpf_prog_offload_ops;
883 struct netlink_ext_ack;
884 struct xdp_umem;
885 struct xdp_dev_bulk_queue;
886
887 struct netdev_bpf {
888 enum bpf_netdev_command command;
889 union {
890 /* XDP_SETUP_PROG */
891 struct {
892 u32 flags;
893 struct bpf_prog *prog;
894 struct netlink_ext_ack *extack;
895 };
896 /* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */
897 struct {
898 u32 prog_id;
899 /* flags with which program was installed */
900 u32 prog_flags;
901 };
902 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
903 struct {
904 struct bpf_offloaded_map *offmap;
905 };
906 /* XDP_SETUP_XSK_UMEM */
907 struct {
908 struct xdp_umem *umem;
909 u16 queue_id;
910 } xsk;
911 };
912 };
913
914 /* Flags for ndo_xsk_wakeup. */
915 #define XDP_WAKEUP_RX (1 << 0)
916 #define XDP_WAKEUP_TX (1 << 1)
917
918 #ifdef CONFIG_XFRM_OFFLOAD
919 struct xfrmdev_ops {
920 int (*xdo_dev_state_add) (struct xfrm_state *x);
921 void (*xdo_dev_state_delete) (struct xfrm_state *x);
922 void (*xdo_dev_state_free) (struct xfrm_state *x);
923 bool (*xdo_dev_offload_ok) (struct sk_buff *skb,
924 struct xfrm_state *x);
925 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x);
926 };
927 #endif
928
929 struct dev_ifalias {
930 struct rcu_head rcuhead;
931 char ifalias[];
932 };
933
934 struct devlink;
935 struct tlsdev_ops;
936
937 struct netdev_name_node {
938 struct hlist_node hlist;
939 struct list_head list;
940 struct net_device *dev;
941 const char *name;
942 };
943
944 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
945 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
946
947 struct netdev_net_notifier {
948 struct list_head list;
949 struct notifier_block *nb;
950 };
951
952 /*
953 * This structure defines the management hooks for network devices.
954 * The following hooks can be defined; unless noted otherwise, they are
955 * optional and can be filled with a null pointer.
956 *
957 * int (*ndo_init)(struct net_device *dev);
958 * This function is called once when a network device is registered.
959 * The network device can use this for any late stage initialization
960 * or semantic validation. It can fail with an error code which will
961 * be propagated back to register_netdev.
962 *
963 * void (*ndo_uninit)(struct net_device *dev);
964 * This function is called when device is unregistered or when registration
965 * fails. It is not called if init fails.
966 *
967 * int (*ndo_open)(struct net_device *dev);
968 * This function is called when a network device transitions to the up
969 * state.
970 *
971 * int (*ndo_stop)(struct net_device *dev);
972 * This function is called when a network device transitions to the down
973 * state.
974 *
975 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
976 * struct net_device *dev);
977 * Called when a packet needs to be transmitted.
978 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
979 * the queue before that can happen; it's for obsolete devices and weird
980 * corner cases, but the stack really does a non-trivial amount
981 * of useless work if you return NETDEV_TX_BUSY.
982 * Required; cannot be NULL.
983 *
984 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
985 * struct net_device *dev
986 * netdev_features_t features);
987 * Called by core transmit path to determine if device is capable of
988 * performing offload operations on a given packet. This is to give
989 * the device an opportunity to implement any restrictions that cannot
990 * be otherwise expressed by feature flags. The check is called with
991 * the set of features that the stack has calculated and it returns
992 * those the driver believes to be appropriate.
993 *
994 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
995 * struct net_device *sb_dev);
996 * Called to decide which queue to use when device supports multiple
997 * transmit queues.
998 *
999 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1000 * This function is called to allow device receiver to make
1001 * changes to configuration when multicast or promiscuous is enabled.
1002 *
1003 * void (*ndo_set_rx_mode)(struct net_device *dev);
1004 * This function is called device changes address list filtering.
1005 * If driver handles unicast address filtering, it should set
1006 * IFF_UNICAST_FLT in its priv_flags.
1007 *
1008 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1009 * This function is called when the Media Access Control address
1010 * needs to be changed. If this interface is not defined, the
1011 * MAC address can not be changed.
1012 *
1013 * int (*ndo_validate_addr)(struct net_device *dev);
1014 * Test if Media Access Control address is valid for the device.
1015 *
1016 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1017 * Called when a user requests an ioctl which can't be handled by
1018 * the generic interface code. If not defined ioctls return
1019 * not supported error code.
1020 *
1021 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1022 * Used to set network devices bus interface parameters. This interface
1023 * is retained for legacy reasons; new devices should use the bus
1024 * interface (PCI) for low level management.
1025 *
1026 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1027 * Called when a user wants to change the Maximum Transfer Unit
1028 * of a device.
1029 *
1030 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1031 * Callback used when the transmitter has not made any progress
1032 * for dev->watchdog ticks.
1033 *
1034 * void (*ndo_get_stats64)(struct net_device *dev,
1035 * struct rtnl_link_stats64 *storage);
1036 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1037 * Called when a user wants to get the network device usage
1038 * statistics. Drivers must do one of the following:
1039 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
1040 * rtnl_link_stats64 structure passed by the caller.
1041 * 2. Define @ndo_get_stats to update a net_device_stats structure
1042 * (which should normally be dev->stats) and return a pointer to
1043 * it. The structure may be changed asynchronously only if each
1044 * field is written atomically.
1045 * 3. Update dev->stats asynchronously and atomically, and define
1046 * neither operation.
1047 *
1048 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1049 * Return true if this device supports offload stats of this attr_id.
1050 *
1051 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1052 * void *attr_data)
1053 * Get statistics for offload operations by attr_id. Write it into the
1054 * attr_data pointer.
1055 *
1056 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1057 * If device supports VLAN filtering this function is called when a
1058 * VLAN id is registered.
1059 *
1060 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1061 * If device supports VLAN filtering this function is called when a
1062 * VLAN id is unregistered.
1063 *
1064 * void (*ndo_poll_controller)(struct net_device *dev);
1065 *
1066 * SR-IOV management functions.
1067 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1068 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1069 * u8 qos, __be16 proto);
1070 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1071 * int max_tx_rate);
1072 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1073 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1074 * int (*ndo_get_vf_config)(struct net_device *dev,
1075 * int vf, struct ifla_vf_info *ivf);
1076 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1077 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1078 * struct nlattr *port[]);
1079 *
1080 * Enable or disable the VF ability to query its RSS Redirection Table and
1081 * Hash Key. This is needed since on some devices VF share this information
1082 * with PF and querying it may introduce a theoretical security risk.
1083 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1084 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1085 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1086 * void *type_data);
1087 * Called to setup any 'tc' scheduler, classifier or action on @dev.
1088 * This is always called from the stack with the rtnl lock held and netif
1089 * tx queues stopped. This allows the netdevice to perform queue
1090 * management safely.
1091 *
1092 * Fiber Channel over Ethernet (FCoE) offload functions.
1093 * int (*ndo_fcoe_enable)(struct net_device *dev);
1094 * Called when the FCoE protocol stack wants to start using LLD for FCoE
1095 * so the underlying device can perform whatever needed configuration or
1096 * initialization to support acceleration of FCoE traffic.
1097 *
1098 * int (*ndo_fcoe_disable)(struct net_device *dev);
1099 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
1100 * so the underlying device can perform whatever needed clean-ups to
1101 * stop supporting acceleration of FCoE traffic.
1102 *
1103 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1104 * struct scatterlist *sgl, unsigned int sgc);
1105 * Called when the FCoE Initiator wants to initialize an I/O that
1106 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1107 * perform necessary setup and returns 1 to indicate the device is set up
1108 * successfully to perform DDP on this I/O, otherwise this returns 0.
1109 *
1110 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
1111 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
1112 * indicated by the FC exchange id 'xid', so the underlying device can
1113 * clean up and reuse resources for later DDP requests.
1114 *
1115 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1116 * struct scatterlist *sgl, unsigned int sgc);
1117 * Called when the FCoE Target wants to initialize an I/O that
1118 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1119 * perform necessary setup and returns 1 to indicate the device is set up
1120 * successfully to perform DDP on this I/O, otherwise this returns 0.
1121 *
1122 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1123 * struct netdev_fcoe_hbainfo *hbainfo);
1124 * Called when the FCoE Protocol stack wants information on the underlying
1125 * device. This information is utilized by the FCoE protocol stack to
1126 * register attributes with Fiber Channel management service as per the
1127 * FC-GS Fabric Device Management Information(FDMI) specification.
1128 *
1129 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1130 * Called when the underlying device wants to override default World Wide
1131 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1132 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1133 * protocol stack to use.
1134 *
1135 * RFS acceleration.
1136 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1137 * u16 rxq_index, u32 flow_id);
1138 * Set hardware filter for RFS. rxq_index is the target queue index;
1139 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1140 * Return the filter ID on success, or a negative error code.
1141 *
1142 * Slave management functions (for bridge, bonding, etc).
1143 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1144 * Called to make another netdev an underling.
1145 *
1146 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1147 * Called to release previously enslaved netdev.
1148 *
1149 * Feature/offload setting functions.
1150 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1151 * netdev_features_t features);
1152 * Adjusts the requested feature flags according to device-specific
1153 * constraints, and returns the resulting flags. Must not modify
1154 * the device state.
1155 *
1156 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1157 * Called to update device configuration to new features. Passed
1158 * feature set might be less than what was returned by ndo_fix_features()).
1159 * Must return >0 or -errno if it changed dev->features itself.
1160 *
1161 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1162 * struct net_device *dev,
1163 * const unsigned char *addr, u16 vid, u16 flags,
1164 * struct netlink_ext_ack *extack);
1165 * Adds an FDB entry to dev for addr.
1166 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1167 * struct net_device *dev,
1168 * const unsigned char *addr, u16 vid)
1169 * Deletes the FDB entry from dev coresponding to addr.
1170 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1171 * struct net_device *dev, struct net_device *filter_dev,
1172 * int *idx)
1173 * Used to add FDB entries to dump requests. Implementers should add
1174 * entries to skb and update idx with the number of entries.
1175 *
1176 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1177 * u16 flags, struct netlink_ext_ack *extack)
1178 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1179 * struct net_device *dev, u32 filter_mask,
1180 * int nlflags)
1181 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1182 * u16 flags);
1183 *
1184 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1185 * Called to change device carrier. Soft-devices (like dummy, team, etc)
1186 * which do not represent real hardware may define this to allow their
1187 * userspace components to manage their virtual carrier state. Devices
1188 * that determine carrier state from physical hardware properties (eg
1189 * network cables) or protocol-dependent mechanisms (eg
1190 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1191 *
1192 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1193 * struct netdev_phys_item_id *ppid);
1194 * Called to get ID of physical port of this device. If driver does
1195 * not implement this, it is assumed that the hw is not able to have
1196 * multiple net devices on single physical port.
1197 *
1198 * int (*ndo_get_port_parent_id)(struct net_device *dev,
1199 * struct netdev_phys_item_id *ppid)
1200 * Called to get the parent ID of the physical port of this device.
1201 *
1202 * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1203 * struct udp_tunnel_info *ti);
1204 * Called by UDP tunnel to notify a driver about the UDP port and socket
1205 * address family that a UDP tunnel is listnening to. It is called only
1206 * when a new port starts listening. The operation is protected by the
1207 * RTNL.
1208 *
1209 * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1210 * struct udp_tunnel_info *ti);
1211 * Called by UDP tunnel to notify the driver about a UDP port and socket
1212 * address family that the UDP tunnel is not listening to anymore. The
1213 * operation is protected by the RTNL.
1214 *
1215 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1216 * struct net_device *dev)
1217 * Called by upper layer devices to accelerate switching or other
1218 * station functionality into hardware. 'pdev is the lowerdev
1219 * to use for the offload and 'dev' is the net device that will
1220 * back the offload. Returns a pointer to the private structure
1221 * the upper layer will maintain.
1222 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1223 * Called by upper layer device to delete the station created
1224 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1225 * the station and priv is the structure returned by the add
1226 * operation.
1227 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1228 * int queue_index, u32 maxrate);
1229 * Called when a user wants to set a max-rate limitation of specific
1230 * TX queue.
1231 * int (*ndo_get_iflink)(const struct net_device *dev);
1232 * Called to get the iflink value of this device.
1233 * void (*ndo_change_proto_down)(struct net_device *dev,
1234 * bool proto_down);
1235 * This function is used to pass protocol port error state information
1236 * to the switch driver. The switch driver can react to the proto_down
1237 * by doing a phys down on the associated switch port.
1238 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1239 * This function is used to get egress tunnel information for given skb.
1240 * This is useful for retrieving outer tunnel header parameters while
1241 * sampling packet.
1242 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1243 * This function is used to specify the headroom that the skb must
1244 * consider when allocation skb during packet reception. Setting
1245 * appropriate rx headroom value allows avoiding skb head copy on
1246 * forward. Setting a negative value resets the rx headroom to the
1247 * default value.
1248 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1249 * This function is used to set or query state related to XDP on the
1250 * netdevice and manage BPF offload. See definition of
1251 * enum bpf_netdev_command for details.
1252 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1253 * u32 flags);
1254 * This function is used to submit @n XDP packets for transmit on a
1255 * netdevice. Returns number of frames successfully transmitted, frames
1256 * that got dropped are freed/returned via xdp_return_frame().
1257 * Returns negative number, means general error invoking ndo, meaning
1258 * no frames were xmit'ed and core-caller will free all frames.
1259 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1260 * This function is used to wake up the softirq, ksoftirqd or kthread
1261 * responsible for sending and/or receiving packets on a specific
1262 * queue id bound to an AF_XDP socket. The flags field specifies if
1263 * only RX, only Tx, or both should be woken up using the flags
1264 * XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1265 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1266 * Get devlink port instance associated with a given netdev.
1267 * Called with a reference on the netdevice and devlink locks only,
1268 * rtnl_lock is not held.
1269 */
1270 struct net_device_ops {
1271 int (*ndo_init)(struct net_device *dev);
1272 void (*ndo_uninit)(struct net_device *dev);
1273 int (*ndo_open)(struct net_device *dev);
1274 int (*ndo_stop)(struct net_device *dev);
1275 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1276 struct net_device *dev);
1277 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1278 struct net_device *dev,
1279 netdev_features_t features);
1280 u16 (*ndo_select_queue)(struct net_device *dev,
1281 struct sk_buff *skb,
1282 struct net_device *sb_dev);
1283 void (*ndo_change_rx_flags)(struct net_device *dev,
1284 int flags);
1285 void (*ndo_set_rx_mode)(struct net_device *dev);
1286 int (*ndo_set_mac_address)(struct net_device *dev,
1287 void *addr);
1288 int (*ndo_validate_addr)(struct net_device *dev);
1289 int (*ndo_do_ioctl)(struct net_device *dev,
1290 struct ifreq *ifr, int cmd);
1291 int (*ndo_set_config)(struct net_device *dev,
1292 struct ifmap *map);
1293 int (*ndo_change_mtu)(struct net_device *dev,
1294 int new_mtu);
1295 int (*ndo_neigh_setup)(struct net_device *dev,
1296 struct neigh_parms *);
1297 void (*ndo_tx_timeout) (struct net_device *dev,
1298 unsigned int txqueue);
1299
1300 void (*ndo_get_stats64)(struct net_device *dev,
1301 struct rtnl_link_stats64 *storage);
1302 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1303 int (*ndo_get_offload_stats)(int attr_id,
1304 const struct net_device *dev,
1305 void *attr_data);
1306 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1307
1308 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1309 __be16 proto, u16 vid);
1310 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1311 __be16 proto, u16 vid);
1312 #ifdef CONFIG_NET_POLL_CONTROLLER
1313 void (*ndo_poll_controller)(struct net_device *dev);
1314 int (*ndo_netpoll_setup)(struct net_device *dev,
1315 struct netpoll_info *info);
1316 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1317 #endif
1318 int (*ndo_set_vf_mac)(struct net_device *dev,
1319 int queue, u8 *mac);
1320 int (*ndo_set_vf_vlan)(struct net_device *dev,
1321 int queue, u16 vlan,
1322 u8 qos, __be16 proto);
1323 int (*ndo_set_vf_rate)(struct net_device *dev,
1324 int vf, int min_tx_rate,
1325 int max_tx_rate);
1326 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1327 int vf, bool setting);
1328 int (*ndo_set_vf_trust)(struct net_device *dev,
1329 int vf, bool setting);
1330 int (*ndo_get_vf_config)(struct net_device *dev,
1331 int vf,
1332 struct ifla_vf_info *ivf);
1333 int (*ndo_set_vf_link_state)(struct net_device *dev,
1334 int vf, int link_state);
1335 int (*ndo_get_vf_stats)(struct net_device *dev,
1336 int vf,
1337 struct ifla_vf_stats
1338 *vf_stats);
1339 int (*ndo_set_vf_port)(struct net_device *dev,
1340 int vf,
1341 struct nlattr *port[]);
1342 int (*ndo_get_vf_port)(struct net_device *dev,
1343 int vf, struct sk_buff *skb);
1344 int (*ndo_get_vf_guid)(struct net_device *dev,
1345 int vf,
1346 struct ifla_vf_guid *node_guid,
1347 struct ifla_vf_guid *port_guid);
1348 int (*ndo_set_vf_guid)(struct net_device *dev,
1349 int vf, u64 guid,
1350 int guid_type);
1351 int (*ndo_set_vf_rss_query_en)(
1352 struct net_device *dev,
1353 int vf, bool setting);
1354 int (*ndo_setup_tc)(struct net_device *dev,
1355 enum tc_setup_type type,
1356 void *type_data);
1357 #if IS_ENABLED(CONFIG_FCOE)
1358 int (*ndo_fcoe_enable)(struct net_device *dev);
1359 int (*ndo_fcoe_disable)(struct net_device *dev);
1360 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1361 u16 xid,
1362 struct scatterlist *sgl,
1363 unsigned int sgc);
1364 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1365 u16 xid);
1366 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1367 u16 xid,
1368 struct scatterlist *sgl,
1369 unsigned int sgc);
1370 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1371 struct netdev_fcoe_hbainfo *hbainfo);
1372 #endif
1373
1374 #if IS_ENABLED(CONFIG_LIBFCOE)
1375 #define NETDEV_FCOE_WWNN 0
1376 #define NETDEV_FCOE_WWPN 1
1377 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1378 u64 *wwn, int type);
1379 #endif
1380
1381 #ifdef CONFIG_RFS_ACCEL
1382 int (*ndo_rx_flow_steer)(struct net_device *dev,
1383 const struct sk_buff *skb,
1384 u16 rxq_index,
1385 u32 flow_id);
1386 #endif
1387 int (*ndo_add_slave)(struct net_device *dev,
1388 struct net_device *slave_dev,
1389 struct netlink_ext_ack *extack);
1390 int (*ndo_del_slave)(struct net_device *dev,
1391 struct net_device *slave_dev);
1392 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1393 netdev_features_t features);
1394 int (*ndo_set_features)(struct net_device *dev,
1395 netdev_features_t features);
1396 int (*ndo_neigh_construct)(struct net_device *dev,
1397 struct neighbour *n);
1398 void (*ndo_neigh_destroy)(struct net_device *dev,
1399 struct neighbour *n);
1400
1401 int (*ndo_fdb_add)(struct ndmsg *ndm,
1402 struct nlattr *tb[],
1403 struct net_device *dev,
1404 const unsigned char *addr,
1405 u16 vid,
1406 u16 flags,
1407 struct netlink_ext_ack *extack);
1408 int (*ndo_fdb_del)(struct ndmsg *ndm,
1409 struct nlattr *tb[],
1410 struct net_device *dev,
1411 const unsigned char *addr,
1412 u16 vid);
1413 int (*ndo_fdb_dump)(struct sk_buff *skb,
1414 struct netlink_callback *cb,
1415 struct net_device *dev,
1416 struct net_device *filter_dev,
1417 int *idx);
1418 int (*ndo_fdb_get)(struct sk_buff *skb,
1419 struct nlattr *tb[],
1420 struct net_device *dev,
1421 const unsigned char *addr,
1422 u16 vid, u32 portid, u32 seq,
1423 struct netlink_ext_ack *extack);
1424 int (*ndo_bridge_setlink)(struct net_device *dev,
1425 struct nlmsghdr *nlh,
1426 u16 flags,
1427 struct netlink_ext_ack *extack);
1428 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1429 u32 pid, u32 seq,
1430 struct net_device *dev,
1431 u32 filter_mask,
1432 int nlflags);
1433 int (*ndo_bridge_dellink)(struct net_device *dev,
1434 struct nlmsghdr *nlh,
1435 u16 flags);
1436 int (*ndo_change_carrier)(struct net_device *dev,
1437 bool new_carrier);
1438 int (*ndo_get_phys_port_id)(struct net_device *dev,
1439 struct netdev_phys_item_id *ppid);
1440 int (*ndo_get_port_parent_id)(struct net_device *dev,
1441 struct netdev_phys_item_id *ppid);
1442 int (*ndo_get_phys_port_name)(struct net_device *dev,
1443 char *name, size_t len);
1444 void (*ndo_udp_tunnel_add)(struct net_device *dev,
1445 struct udp_tunnel_info *ti);
1446 void (*ndo_udp_tunnel_del)(struct net_device *dev,
1447 struct udp_tunnel_info *ti);
1448 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1449 struct net_device *dev);
1450 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1451 void *priv);
1452
1453 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1454 int queue_index,
1455 u32 maxrate);
1456 int (*ndo_get_iflink)(const struct net_device *dev);
1457 int (*ndo_change_proto_down)(struct net_device *dev,
1458 bool proto_down);
1459 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1460 struct sk_buff *skb);
1461 void (*ndo_set_rx_headroom)(struct net_device *dev,
1462 int needed_headroom);
1463 int (*ndo_bpf)(struct net_device *dev,
1464 struct netdev_bpf *bpf);
1465 int (*ndo_xdp_xmit)(struct net_device *dev, int n,
1466 struct xdp_frame **xdp,
1467 u32 flags);
1468 int (*ndo_xsk_wakeup)(struct net_device *dev,
1469 u32 queue_id, u32 flags);
1470 struct devlink_port * (*ndo_get_devlink_port)(struct net_device *dev);
1471 };
1472
1473 /**
1474 * enum net_device_priv_flags - &struct net_device priv_flags
1475 *
1476 * These are the &struct net_device, they are only set internally
1477 * by drivers and used in the kernel. These flags are invisible to
1478 * userspace; this means that the order of these flags can change
1479 * during any kernel release.
1480 *
1481 * You should have a pretty good reason to be extending these flags.
1482 *
1483 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1484 * @IFF_EBRIDGE: Ethernet bridging device
1485 * @IFF_BONDING: bonding master or slave
1486 * @IFF_ISATAP: ISATAP interface (RFC4214)
1487 * @IFF_WAN_HDLC: WAN HDLC device
1488 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1489 * release skb->dst
1490 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1491 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1492 * @IFF_MACVLAN_PORT: device used as macvlan port
1493 * @IFF_BRIDGE_PORT: device used as bridge port
1494 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1495 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1496 * @IFF_UNICAST_FLT: Supports unicast filtering
1497 * @IFF_TEAM_PORT: device used as team port
1498 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1499 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1500 * change when it's running
1501 * @IFF_MACVLAN: Macvlan device
1502 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1503 * underlying stacked devices
1504 * @IFF_L3MDEV_MASTER: device is an L3 master device
1505 * @IFF_NO_QUEUE: device can run without qdisc attached
1506 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1507 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1508 * @IFF_TEAM: device is a team device
1509 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1510 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1511 * entity (i.e. the master device for bridged veth)
1512 * @IFF_MACSEC: device is a MACsec device
1513 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1514 * @IFF_FAILOVER: device is a failover master device
1515 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1516 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1517 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1518 */
1519 enum netdev_priv_flags {
1520 IFF_802_1Q_VLAN = 1<<0,
1521 IFF_EBRIDGE = 1<<1,
1522 IFF_BONDING = 1<<2,
1523 IFF_ISATAP = 1<<3,
1524 IFF_WAN_HDLC = 1<<4,
1525 IFF_XMIT_DST_RELEASE = 1<<5,
1526 IFF_DONT_BRIDGE = 1<<6,
1527 IFF_DISABLE_NETPOLL = 1<<7,
1528 IFF_MACVLAN_PORT = 1<<8,
1529 IFF_BRIDGE_PORT = 1<<9,
1530 IFF_OVS_DATAPATH = 1<<10,
1531 IFF_TX_SKB_SHARING = 1<<11,
1532 IFF_UNICAST_FLT = 1<<12,
1533 IFF_TEAM_PORT = 1<<13,
1534 IFF_SUPP_NOFCS = 1<<14,
1535 IFF_LIVE_ADDR_CHANGE = 1<<15,
1536 IFF_MACVLAN = 1<<16,
1537 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1538 IFF_L3MDEV_MASTER = 1<<18,
1539 IFF_NO_QUEUE = 1<<19,
1540 IFF_OPENVSWITCH = 1<<20,
1541 IFF_L3MDEV_SLAVE = 1<<21,
1542 IFF_TEAM = 1<<22,
1543 IFF_RXFH_CONFIGURED = 1<<23,
1544 IFF_PHONY_HEADROOM = 1<<24,
1545 IFF_MACSEC = 1<<25,
1546 IFF_NO_RX_HANDLER = 1<<26,
1547 IFF_FAILOVER = 1<<27,
1548 IFF_FAILOVER_SLAVE = 1<<28,
1549 IFF_L3MDEV_RX_HANDLER = 1<<29,
1550 IFF_LIVE_RENAME_OK = 1<<30,
1551 };
1552
1553 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1554 #define IFF_EBRIDGE IFF_EBRIDGE
1555 #define IFF_BONDING IFF_BONDING
1556 #define IFF_ISATAP IFF_ISATAP
1557 #define IFF_WAN_HDLC IFF_WAN_HDLC
1558 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1559 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1560 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1561 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1562 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1563 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1564 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1565 #define IFF_UNICAST_FLT IFF_UNICAST_FLT
1566 #define IFF_TEAM_PORT IFF_TEAM_PORT
1567 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1568 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1569 #define IFF_MACVLAN IFF_MACVLAN
1570 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1571 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1572 #define IFF_NO_QUEUE IFF_NO_QUEUE
1573 #define IFF_OPENVSWITCH IFF_OPENVSWITCH
1574 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1575 #define IFF_TEAM IFF_TEAM
1576 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED
1577 #define IFF_MACSEC IFF_MACSEC
1578 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER
1579 #define IFF_FAILOVER IFF_FAILOVER
1580 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE
1581 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER
1582 #define IFF_LIVE_RENAME_OK IFF_LIVE_RENAME_OK
1583
1584 /**
1585 * struct net_device - The DEVICE structure.
1586 *
1587 * Actually, this whole structure is a big mistake. It mixes I/O
1588 * data with strictly "high-level" data, and it has to know about
1589 * almost every data structure used in the INET module.
1590 *
1591 * @name: This is the first field of the "visible" part of this structure
1592 * (i.e. as seen by users in the "Space.c" file). It is the name
1593 * of the interface.
1594 *
1595 * @name_node: Name hashlist node
1596 * @ifalias: SNMP alias
1597 * @mem_end: Shared memory end
1598 * @mem_start: Shared memory start
1599 * @base_addr: Device I/O address
1600 * @irq: Device IRQ number
1601 *
1602 * @state: Generic network queuing layer state, see netdev_state_t
1603 * @dev_list: The global list of network devices
1604 * @napi_list: List entry used for polling NAPI devices
1605 * @unreg_list: List entry when we are unregistering the
1606 * device; see the function unregister_netdev
1607 * @close_list: List entry used when we are closing the device
1608 * @ptype_all: Device-specific packet handlers for all protocols
1609 * @ptype_specific: Device-specific, protocol-specific packet handlers
1610 *
1611 * @adj_list: Directly linked devices, like slaves for bonding
1612 * @features: Currently active device features
1613 * @hw_features: User-changeable features
1614 *
1615 * @wanted_features: User-requested features
1616 * @vlan_features: Mask of features inheritable by VLAN devices
1617 *
1618 * @hw_enc_features: Mask of features inherited by encapsulating devices
1619 * This field indicates what encapsulation
1620 * offloads the hardware is capable of doing,
1621 * and drivers will need to set them appropriately.
1622 *
1623 * @mpls_features: Mask of features inheritable by MPLS
1624 * @gso_partial_features: value(s) from NETIF_F_GSO\*
1625 *
1626 * @ifindex: interface index
1627 * @group: The group the device belongs to
1628 *
1629 * @stats: Statistics struct, which was left as a legacy, use
1630 * rtnl_link_stats64 instead
1631 *
1632 * @rx_dropped: Dropped packets by core network,
1633 * do not use this in drivers
1634 * @tx_dropped: Dropped packets by core network,
1635 * do not use this in drivers
1636 * @rx_nohandler: nohandler dropped packets by core network on
1637 * inactive devices, do not use this in drivers
1638 * @carrier_up_count: Number of times the carrier has been up
1639 * @carrier_down_count: Number of times the carrier has been down
1640 *
1641 * @wireless_handlers: List of functions to handle Wireless Extensions,
1642 * instead of ioctl,
1643 * see <net/iw_handler.h> for details.
1644 * @wireless_data: Instance data managed by the core of wireless extensions
1645 *
1646 * @netdev_ops: Includes several pointers to callbacks,
1647 * if one wants to override the ndo_*() functions
1648 * @ethtool_ops: Management operations
1649 * @l3mdev_ops: Layer 3 master device operations
1650 * @ndisc_ops: Includes callbacks for different IPv6 neighbour
1651 * discovery handling. Necessary for e.g. 6LoWPAN.
1652 * @xfrmdev_ops: Transformation offload operations
1653 * @tlsdev_ops: Transport Layer Security offload operations
1654 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1655 * of Layer 2 headers.
1656 *
1657 * @flags: Interface flags (a la BSD)
1658 * @priv_flags: Like 'flags' but invisible to userspace,
1659 * see if.h for the definitions
1660 * @gflags: Global flags ( kept as legacy )
1661 * @padded: How much padding added by alloc_netdev()
1662 * @operstate: RFC2863 operstate
1663 * @link_mode: Mapping policy to operstate
1664 * @if_port: Selectable AUI, TP, ...
1665 * @dma: DMA channel
1666 * @mtu: Interface MTU value
1667 * @min_mtu: Interface Minimum MTU value
1668 * @max_mtu: Interface Maximum MTU value
1669 * @type: Interface hardware type
1670 * @hard_header_len: Maximum hardware header length.
1671 * @min_header_len: Minimum hardware header length
1672 *
1673 * @needed_headroom: Extra headroom the hardware may need, but not in all
1674 * cases can this be guaranteed
1675 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1676 * cases can this be guaranteed. Some cases also use
1677 * LL_MAX_HEADER instead to allocate the skb
1678 *
1679 * interface address info:
1680 *
1681 * @perm_addr: Permanent hw address
1682 * @addr_assign_type: Hw address assignment type
1683 * @addr_len: Hardware address length
1684 * @upper_level: Maximum depth level of upper devices.
1685 * @lower_level: Maximum depth level of lower devices.
1686 * @neigh_priv_len: Used in neigh_alloc()
1687 * @dev_id: Used to differentiate devices that share
1688 * the same link layer address
1689 * @dev_port: Used to differentiate devices that share
1690 * the same function
1691 * @addr_list_lock: XXX: need comments on this one
1692 * @name_assign_type: network interface name assignment type
1693 * @uc_promisc: Counter that indicates promiscuous mode
1694 * has been enabled due to the need to listen to
1695 * additional unicast addresses in a device that
1696 * does not implement ndo_set_rx_mode()
1697 * @uc: unicast mac addresses
1698 * @mc: multicast mac addresses
1699 * @dev_addrs: list of device hw addresses
1700 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1701 * @promiscuity: Number of times the NIC is told to work in
1702 * promiscuous mode; if it becomes 0 the NIC will
1703 * exit promiscuous mode
1704 * @allmulti: Counter, enables or disables allmulticast mode
1705 *
1706 * @vlan_info: VLAN info
1707 * @dsa_ptr: dsa specific data
1708 * @tipc_ptr: TIPC specific data
1709 * @atalk_ptr: AppleTalk link
1710 * @ip_ptr: IPv4 specific data
1711 * @dn_ptr: DECnet specific data
1712 * @ip6_ptr: IPv6 specific data
1713 * @ax25_ptr: AX.25 specific data
1714 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1715 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1716 * device struct
1717 * @mpls_ptr: mpls_dev struct pointer
1718 *
1719 * @dev_addr: Hw address (before bcast,
1720 * because most packets are unicast)
1721 *
1722 * @_rx: Array of RX queues
1723 * @num_rx_queues: Number of RX queues
1724 * allocated at register_netdev() time
1725 * @real_num_rx_queues: Number of RX queues currently active in device
1726 * @xdp_prog: XDP sockets filter program pointer
1727 * @gro_flush_timeout: timeout for GRO layer in NAPI
1728 *
1729 * @rx_handler: handler for received packets
1730 * @rx_handler_data: XXX: need comments on this one
1731 * @miniq_ingress: ingress/clsact qdisc specific data for
1732 * ingress processing
1733 * @ingress_queue: XXX: need comments on this one
1734 * @nf_hooks_ingress: netfilter hooks executed for ingress packets
1735 * @broadcast: hw bcast address
1736 *
1737 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1738 * indexed by RX queue number. Assigned by driver.
1739 * This must only be set if the ndo_rx_flow_steer
1740 * operation is defined
1741 * @index_hlist: Device index hash chain
1742 *
1743 * @_tx: Array of TX queues
1744 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1745 * @real_num_tx_queues: Number of TX queues currently active in device
1746 * @qdisc: Root qdisc from userspace point of view
1747 * @tx_queue_len: Max frames per queue allowed
1748 * @tx_global_lock: XXX: need comments on this one
1749 * @xdp_bulkq: XDP device bulk queue
1750 * @xps_cpus_map: all CPUs map for XPS device
1751 * @xps_rxqs_map: all RXQs map for XPS device
1752 *
1753 * @xps_maps: XXX: need comments on this one
1754 * @miniq_egress: clsact qdisc specific data for
1755 * egress processing
1756 * @qdisc_hash: qdisc hash table
1757 * @watchdog_timeo: Represents the timeout that is used by
1758 * the watchdog (see dev_watchdog())
1759 * @watchdog_timer: List of timers
1760 *
1761 * @pcpu_refcnt: Number of references to this device
1762 * @todo_list: Delayed register/unregister
1763 * @link_watch_list: XXX: need comments on this one
1764 *
1765 * @reg_state: Register/unregister state machine
1766 * @dismantle: Device is going to be freed
1767 * @rtnl_link_state: This enum represents the phases of creating
1768 * a new link
1769 *
1770 * @needs_free_netdev: Should unregister perform free_netdev?
1771 * @priv_destructor: Called from unregister
1772 * @npinfo: XXX: need comments on this one
1773 * @nd_net: Network namespace this network device is inside
1774 *
1775 * @ml_priv: Mid-layer private
1776 * @lstats: Loopback statistics
1777 * @tstats: Tunnel statistics
1778 * @dstats: Dummy statistics
1779 * @vstats: Virtual ethernet statistics
1780 *
1781 * @garp_port: GARP
1782 * @mrp_port: MRP
1783 *
1784 * @dev: Class/net/name entry
1785 * @sysfs_groups: Space for optional device, statistics and wireless
1786 * sysfs groups
1787 *
1788 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1789 * @rtnl_link_ops: Rtnl_link_ops
1790 *
1791 * @gso_max_size: Maximum size of generic segmentation offload
1792 * @gso_max_segs: Maximum number of segments that can be passed to the
1793 * NIC for GSO
1794 *
1795 * @dcbnl_ops: Data Center Bridging netlink ops
1796 * @num_tc: Number of traffic classes in the net device
1797 * @tc_to_txq: XXX: need comments on this one
1798 * @prio_tc_map: XXX: need comments on this one
1799 *
1800 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1801 *
1802 * @priomap: XXX: need comments on this one
1803 * @phydev: Physical device may attach itself
1804 * for hardware timestamping
1805 * @sfp_bus: attached &struct sfp_bus structure.
1806 * @qdisc_tx_busylock_key: lockdep class annotating Qdisc->busylock
1807 * spinlock
1808 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1809 * @qdisc_xmit_lock_key: lockdep class annotating
1810 * netdev_queue->_xmit_lock spinlock
1811 * @addr_list_lock_key: lockdep class annotating
1812 * net_device->addr_list_lock spinlock
1813 *
1814 * @proto_down: protocol port state information can be sent to the
1815 * switch driver and used to set the phys state of the
1816 * switch port.
1817 *
1818 * @wol_enabled: Wake-on-LAN is enabled
1819 *
1820 * @net_notifier_list: List of per-net netdev notifier block
1821 * that follow this device when it is moved
1822 * to another network namespace.
1823 *
1824 * @macsec_ops: MACsec offloading ops
1825 *
1826 * FIXME: cleanup struct net_device such that network protocol info
1827 * moves out.
1828 */
1829
1830 struct net_device {
1831 char name[IFNAMSIZ];
1832 struct netdev_name_node *name_node;
1833 struct dev_ifalias __rcu *ifalias;
1834 /*
1835 * I/O specific fields
1836 * FIXME: Merge these and struct ifmap into one
1837 */
1838 unsigned long mem_end;
1839 unsigned long mem_start;
1840 unsigned long base_addr;
1841 int irq;
1842
1843 /*
1844 * Some hardware also needs these fields (state,dev_list,
1845 * napi_list,unreg_list,close_list) but they are not
1846 * part of the usual set specified in Space.c.
1847 */
1848
1849 unsigned long state;
1850
1851 struct list_head dev_list;
1852 struct list_head napi_list;
1853 struct list_head unreg_list;
1854 struct list_head close_list;
1855 struct list_head ptype_all;
1856 struct list_head ptype_specific;
1857
1858 struct {
1859 struct list_head upper;
1860 struct list_head lower;
1861 } adj_list;
1862
1863 netdev_features_t features;
1864 netdev_features_t hw_features;
1865 netdev_features_t wanted_features;
1866 netdev_features_t vlan_features;
1867 netdev_features_t hw_enc_features;
1868 netdev_features_t mpls_features;
1869 netdev_features_t gso_partial_features;
1870
1871 int ifindex;
1872 int group;
1873
1874 struct net_device_stats stats;
1875
1876 atomic_long_t rx_dropped;
1877 atomic_long_t tx_dropped;
1878 atomic_long_t rx_nohandler;
1879
1880 /* Stats to monitor link on/off, flapping */
1881 atomic_t carrier_up_count;
1882 atomic_t carrier_down_count;
1883
1884 #ifdef CONFIG_WIRELESS_EXT
1885 const struct iw_handler_def *wireless_handlers;
1886 struct iw_public_data *wireless_data;
1887 #endif
1888 const struct net_device_ops *netdev_ops;
1889 const struct ethtool_ops *ethtool_ops;
1890 #ifdef CONFIG_NET_L3_MASTER_DEV
1891 const struct l3mdev_ops *l3mdev_ops;
1892 #endif
1893 #if IS_ENABLED(CONFIG_IPV6)
1894 const struct ndisc_ops *ndisc_ops;
1895 #endif
1896
1897 #ifdef CONFIG_XFRM_OFFLOAD
1898 const struct xfrmdev_ops *xfrmdev_ops;
1899 #endif
1900
1901 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1902 const struct tlsdev_ops *tlsdev_ops;
1903 #endif
1904
1905 const struct header_ops *header_ops;
1906
1907 unsigned int flags;
1908 unsigned int priv_flags;
1909
1910 unsigned short gflags;
1911 unsigned short padded;
1912
1913 unsigned char operstate;
1914 unsigned char link_mode;
1915
1916 unsigned char if_port;
1917 unsigned char dma;
1918
1919 /* Note : dev->mtu is often read without holding a lock.
1920 * Writers usually hold RTNL.
1921 * It is recommended to use READ_ONCE() to annotate the reads,
1922 * and to use WRITE_ONCE() to annotate the writes.
1923 */
1924 unsigned int mtu;
1925 unsigned int min_mtu;
1926 unsigned int max_mtu;
1927 unsigned short type;
1928 unsigned short hard_header_len;
1929 unsigned char min_header_len;
1930
1931 unsigned short needed_headroom;
1932 unsigned short needed_tailroom;
1933
1934 /* Interface address info. */
1935 unsigned char perm_addr[MAX_ADDR_LEN];
1936 unsigned char addr_assign_type;
1937 unsigned char addr_len;
1938 unsigned char upper_level;
1939 unsigned char lower_level;
1940 unsigned short neigh_priv_len;
1941 unsigned short dev_id;
1942 unsigned short dev_port;
1943 spinlock_t addr_list_lock;
1944 unsigned char name_assign_type;
1945 bool uc_promisc;
1946 struct netdev_hw_addr_list uc;
1947 struct netdev_hw_addr_list mc;
1948 struct netdev_hw_addr_list dev_addrs;
1949
1950 #ifdef CONFIG_SYSFS
1951 struct kset *queues_kset;
1952 #endif
1953 unsigned int promiscuity;
1954 unsigned int allmulti;
1955
1956
1957 /* Protocol-specific pointers */
1958
1959 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1960 struct vlan_info __rcu *vlan_info;
1961 #endif
1962 #if IS_ENABLED(CONFIG_NET_DSA)
1963 struct dsa_port *dsa_ptr;
1964 #endif
1965 #if IS_ENABLED(CONFIG_TIPC)
1966 struct tipc_bearer __rcu *tipc_ptr;
1967 #endif
1968 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1969 void *atalk_ptr;
1970 #endif
1971 struct in_device __rcu *ip_ptr;
1972 #if IS_ENABLED(CONFIG_DECNET)
1973 struct dn_dev __rcu *dn_ptr;
1974 #endif
1975 struct inet6_dev __rcu *ip6_ptr;
1976 #if IS_ENABLED(CONFIG_AX25)
1977 void *ax25_ptr;
1978 #endif
1979 struct wireless_dev *ieee80211_ptr;
1980 struct wpan_dev *ieee802154_ptr;
1981 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1982 struct mpls_dev __rcu *mpls_ptr;
1983 #endif
1984
1985 /*
1986 * Cache lines mostly used on receive path (including eth_type_trans())
1987 */
1988 /* Interface address info used in eth_type_trans() */
1989 unsigned char *dev_addr;
1990
1991 struct netdev_rx_queue *_rx;
1992 unsigned int num_rx_queues;
1993 unsigned int real_num_rx_queues;
1994
1995 struct bpf_prog __rcu *xdp_prog;
1996 unsigned long gro_flush_timeout;
1997 rx_handler_func_t __rcu *rx_handler;
1998 void __rcu *rx_handler_data;
1999
2000 #ifdef CONFIG_NET_CLS_ACT
2001 struct mini_Qdisc __rcu *miniq_ingress;
2002 #endif
2003 struct netdev_queue __rcu *ingress_queue;
2004 #ifdef CONFIG_NETFILTER_INGRESS
2005 struct nf_hook_entries __rcu *nf_hooks_ingress;
2006 #endif
2007
2008 unsigned char broadcast[MAX_ADDR_LEN];
2009 #ifdef CONFIG_RFS_ACCEL
2010 struct cpu_rmap *rx_cpu_rmap;
2011 #endif
2012 struct hlist_node index_hlist;
2013
2014 /*
2015 * Cache lines mostly used on transmit path
2016 */
2017 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
2018 unsigned int num_tx_queues;
2019 unsigned int real_num_tx_queues;
2020 struct Qdisc *qdisc;
2021 unsigned int tx_queue_len;
2022 spinlock_t tx_global_lock;
2023
2024 struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2025
2026 #ifdef CONFIG_XPS
2027 struct xps_dev_maps __rcu *xps_cpus_map;
2028 struct xps_dev_maps __rcu *xps_rxqs_map;
2029 #endif
2030 #ifdef CONFIG_NET_CLS_ACT
2031 struct mini_Qdisc __rcu *miniq_egress;
2032 #endif
2033
2034 #ifdef CONFIG_NET_SCHED
2035 DECLARE_HASHTABLE (qdisc_hash, 4);
2036 #endif
2037 /* These may be needed for future network-power-down code. */
2038 struct timer_list watchdog_timer;
2039 int watchdog_timeo;
2040
2041 struct list_head todo_list;
2042 int __percpu *pcpu_refcnt;
2043
2044 struct list_head link_watch_list;
2045
2046 enum { NETREG_UNINITIALIZED=0,
2047 NETREG_REGISTERED, /* completed register_netdevice */
2048 NETREG_UNREGISTERING, /* called unregister_netdevice */
2049 NETREG_UNREGISTERED, /* completed unregister todo */
2050 NETREG_RELEASED, /* called free_netdev */
2051 NETREG_DUMMY, /* dummy device for NAPI poll */
2052 } reg_state:8;
2053
2054 bool dismantle;
2055
2056 enum {
2057 RTNL_LINK_INITIALIZED,
2058 RTNL_LINK_INITIALIZING,
2059 } rtnl_link_state:16;
2060
2061 bool needs_free_netdev;
2062 void (*priv_destructor)(struct net_device *dev);
2063
2064 #ifdef CONFIG_NETPOLL
2065 struct netpoll_info __rcu *npinfo;
2066 #endif
2067
2068 possible_net_t nd_net;
2069
2070 /* mid-layer private */
2071 union {
2072 void *ml_priv;
2073 struct pcpu_lstats __percpu *lstats;
2074 struct pcpu_sw_netstats __percpu *tstats;
2075 struct pcpu_dstats __percpu *dstats;
2076 };
2077
2078 #if IS_ENABLED(CONFIG_GARP)
2079 struct garp_port __rcu *garp_port;
2080 #endif
2081 #if IS_ENABLED(CONFIG_MRP)
2082 struct mrp_port __rcu *mrp_port;
2083 #endif
2084
2085 struct device dev;
2086 const struct attribute_group *sysfs_groups[4];
2087 const struct attribute_group *sysfs_rx_queue_group;
2088
2089 const struct rtnl_link_ops *rtnl_link_ops;
2090
2091 /* for setting kernel sock attribute on TCP connection setup */
2092 #define GSO_MAX_SIZE 65536
2093 unsigned int gso_max_size;
2094 #define GSO_MAX_SEGS 65535
2095 u16 gso_max_segs;
2096
2097 #ifdef CONFIG_DCB
2098 const struct dcbnl_rtnl_ops *dcbnl_ops;
2099 #endif
2100 s16 num_tc;
2101 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
2102 u8 prio_tc_map[TC_BITMASK + 1];
2103
2104 #if IS_ENABLED(CONFIG_FCOE)
2105 unsigned int fcoe_ddp_xid;
2106 #endif
2107 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2108 struct netprio_map __rcu *priomap;
2109 #endif
2110 struct phy_device *phydev;
2111 struct sfp_bus *sfp_bus;
2112 struct lock_class_key qdisc_tx_busylock_key;
2113 struct lock_class_key qdisc_running_key;
2114 struct lock_class_key qdisc_xmit_lock_key;
2115 struct lock_class_key addr_list_lock_key;
2116 bool proto_down;
2117 unsigned wol_enabled:1;
2118
2119 struct list_head net_notifier_list;
2120
2121 #if IS_ENABLED(CONFIG_MACSEC)
2122 /* MACsec management functions */
2123 const struct macsec_ops *macsec_ops;
2124 #endif
2125 };
2126 #define to_net_dev(d) container_of(d, struct net_device, dev)
2127
2128 static inline bool netif_elide_gro(const struct net_device *dev)
2129 {
2130 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2131 return true;
2132 return false;
2133 }
2134
2135 #define NETDEV_ALIGN 32
2136
2137 static inline
2138 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2139 {
2140 return dev->prio_tc_map[prio & TC_BITMASK];
2141 }
2142
2143 static inline
2144 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2145 {
2146 if (tc >= dev->num_tc)
2147 return -EINVAL;
2148
2149 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2150 return 0;
2151 }
2152
2153 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2154 void netdev_reset_tc(struct net_device *dev);
2155 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2156 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2157
2158 static inline
2159 int netdev_get_num_tc(struct net_device *dev)
2160 {
2161 return dev->num_tc;
2162 }
2163
2164 void netdev_unbind_sb_channel(struct net_device *dev,
2165 struct net_device *sb_dev);
2166 int netdev_bind_sb_channel_queue(struct net_device *dev,
2167 struct net_device *sb_dev,
2168 u8 tc, u16 count, u16 offset);
2169 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2170 static inline int netdev_get_sb_channel(struct net_device *dev)
2171 {
2172 return max_t(int, -dev->num_tc, 0);
2173 }
2174
2175 static inline
2176 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2177 unsigned int index)
2178 {
2179 return &dev->_tx[index];
2180 }
2181
2182 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2183 const struct sk_buff *skb)
2184 {
2185 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2186 }
2187
2188 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2189 void (*f)(struct net_device *,
2190 struct netdev_queue *,
2191 void *),
2192 void *arg)
2193 {
2194 unsigned int i;
2195
2196 for (i = 0; i < dev->num_tx_queues; i++)
2197 f(dev, &dev->_tx[i], arg);
2198 }
2199
2200 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2201 struct net_device *sb_dev);
2202 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2203 struct sk_buff *skb,
2204 struct net_device *sb_dev);
2205
2206 /* returns the headroom that the master device needs to take in account
2207 * when forwarding to this dev
2208 */
2209 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2210 {
2211 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2212 }
2213
2214 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2215 {
2216 if (dev->netdev_ops->ndo_set_rx_headroom)
2217 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2218 }
2219
2220 /* set the device rx headroom to the dev's default */
2221 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2222 {
2223 netdev_set_rx_headroom(dev, -1);
2224 }
2225
2226 /*
2227 * Net namespace inlines
2228 */
2229 static inline
2230 struct net *dev_net(const struct net_device *dev)
2231 {
2232 return read_pnet(&dev->nd_net);
2233 }
2234
2235 static inline
2236 void dev_net_set(struct net_device *dev, struct net *net)
2237 {
2238 write_pnet(&dev->nd_net, net);
2239 }
2240
2241 /**
2242 * netdev_priv - access network device private data
2243 * @dev: network device
2244 *
2245 * Get network device private data
2246 */
2247 static inline void *netdev_priv(const struct net_device *dev)
2248 {
2249 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2250 }
2251
2252 /* Set the sysfs physical device reference for the network logical device
2253 * if set prior to registration will cause a symlink during initialization.
2254 */
2255 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
2256
2257 /* Set the sysfs device type for the network logical device to allow
2258 * fine-grained identification of different network device types. For
2259 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2260 */
2261 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
2262
2263 /* Default NAPI poll() weight
2264 * Device drivers are strongly advised to not use bigger value
2265 */
2266 #define NAPI_POLL_WEIGHT 64
2267
2268 /**
2269 * netif_napi_add - initialize a NAPI context
2270 * @dev: network device
2271 * @napi: NAPI context
2272 * @poll: polling function
2273 * @weight: default weight
2274 *
2275 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2276 * *any* of the other NAPI-related functions.
2277 */
2278 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2279 int (*poll)(struct napi_struct *, int), int weight);
2280
2281 /**
2282 * netif_tx_napi_add - initialize a NAPI context
2283 * @dev: network device
2284 * @napi: NAPI context
2285 * @poll: polling function
2286 * @weight: default weight
2287 *
2288 * This variant of netif_napi_add() should be used from drivers using NAPI
2289 * to exclusively poll a TX queue.
2290 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2291 */
2292 static inline void netif_tx_napi_add(struct net_device *dev,
2293 struct napi_struct *napi,
2294 int (*poll)(struct napi_struct *, int),
2295 int weight)
2296 {
2297 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2298 netif_napi_add(dev, napi, poll, weight);
2299 }
2300
2301 /**
2302 * netif_napi_del - remove a NAPI context
2303 * @napi: NAPI context
2304 *
2305 * netif_napi_del() removes a NAPI context from the network device NAPI list
2306 */
2307 void netif_napi_del(struct napi_struct *napi);
2308
2309 struct napi_gro_cb {
2310 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2311 void *frag0;
2312
2313 /* Length of frag0. */
2314 unsigned int frag0_len;
2315
2316 /* This indicates where we are processing relative to skb->data. */
2317 int data_offset;
2318
2319 /* This is non-zero if the packet cannot be merged with the new skb. */
2320 u16 flush;
2321
2322 /* Save the IP ID here and check when we get to the transport layer */
2323 u16 flush_id;
2324
2325 /* Number of segments aggregated. */
2326 u16 count;
2327
2328 /* Start offset for remote checksum offload */
2329 u16 gro_remcsum_start;
2330
2331 /* jiffies when first packet was created/queued */
2332 unsigned long age;
2333
2334 /* Used in ipv6_gro_receive() and foo-over-udp */
2335 u16 proto;
2336
2337 /* This is non-zero if the packet may be of the same flow. */
2338 u8 same_flow:1;
2339
2340 /* Used in tunnel GRO receive */
2341 u8 encap_mark:1;
2342
2343 /* GRO checksum is valid */
2344 u8 csum_valid:1;
2345
2346 /* Number of checksums via CHECKSUM_UNNECESSARY */
2347 u8 csum_cnt:3;
2348
2349 /* Free the skb? */
2350 u8 free:2;
2351 #define NAPI_GRO_FREE 1
2352 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2353
2354 /* Used in foo-over-udp, set in udp[46]_gro_receive */
2355 u8 is_ipv6:1;
2356
2357 /* Used in GRE, set in fou/gue_gro_receive */
2358 u8 is_fou:1;
2359
2360 /* Used to determine if flush_id can be ignored */
2361 u8 is_atomic:1;
2362
2363 /* Number of gro_receive callbacks this packet already went through */
2364 u8 recursion_counter:4;
2365
2366 /* GRO is done by frag_list pointer chaining. */
2367 u8 is_flist:1;
2368
2369 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2370 __wsum csum;
2371
2372 /* used in skb_gro_receive() slow path */
2373 struct sk_buff *last;
2374 };
2375
2376 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2377
2378 #define GRO_RECURSION_LIMIT 15
2379 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2380 {
2381 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2382 }
2383
2384 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2385 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2386 struct list_head *head,
2387 struct sk_buff *skb)
2388 {
2389 if (unlikely(gro_recursion_inc_test(skb))) {
2390 NAPI_GRO_CB(skb)->flush |= 1;
2391 return NULL;
2392 }
2393
2394 return cb(head, skb);
2395 }
2396
2397 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2398 struct sk_buff *);
2399 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2400 struct sock *sk,
2401 struct list_head *head,
2402 struct sk_buff *skb)
2403 {
2404 if (unlikely(gro_recursion_inc_test(skb))) {
2405 NAPI_GRO_CB(skb)->flush |= 1;
2406 return NULL;
2407 }
2408
2409 return cb(sk, head, skb);
2410 }
2411
2412 struct packet_type {
2413 __be16 type; /* This is really htons(ether_type). */
2414 bool ignore_outgoing;
2415 struct net_device *dev; /* NULL is wildcarded here */
2416 int (*func) (struct sk_buff *,
2417 struct net_device *,
2418 struct packet_type *,
2419 struct net_device *);
2420 void (*list_func) (struct list_head *,
2421 struct packet_type *,
2422 struct net_device *);
2423 bool (*id_match)(struct packet_type *ptype,
2424 struct sock *sk);
2425 void *af_packet_priv;
2426 struct list_head list;
2427 };
2428
2429 struct offload_callbacks {
2430 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2431 netdev_features_t features);
2432 struct sk_buff *(*gro_receive)(struct list_head *head,
2433 struct sk_buff *skb);
2434 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2435 };
2436
2437 struct packet_offload {
2438 __be16 type; /* This is really htons(ether_type). */
2439 u16 priority;
2440 struct offload_callbacks callbacks;
2441 struct list_head list;
2442 };
2443
2444 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2445 struct pcpu_sw_netstats {
2446 u64 rx_packets;
2447 u64 rx_bytes;
2448 u64 tx_packets;
2449 u64 tx_bytes;
2450 struct u64_stats_sync syncp;
2451 } __aligned(4 * sizeof(u64));
2452
2453 struct pcpu_lstats {
2454 u64_stats_t packets;
2455 u64_stats_t bytes;
2456 struct u64_stats_sync syncp;
2457 } __aligned(2 * sizeof(u64));
2458
2459 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2460
2461 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2462 {
2463 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2464
2465 u64_stats_update_begin(&lstats->syncp);
2466 u64_stats_add(&lstats->bytes, len);
2467 u64_stats_inc(&lstats->packets);
2468 u64_stats_update_end(&lstats->syncp);
2469 }
2470
2471 #define __netdev_alloc_pcpu_stats(type, gfp) \
2472 ({ \
2473 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2474 if (pcpu_stats) { \
2475 int __cpu; \
2476 for_each_possible_cpu(__cpu) { \
2477 typeof(type) *stat; \
2478 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2479 u64_stats_init(&stat->syncp); \
2480 } \
2481 } \
2482 pcpu_stats; \
2483 })
2484
2485 #define netdev_alloc_pcpu_stats(type) \
2486 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2487
2488 enum netdev_lag_tx_type {
2489 NETDEV_LAG_TX_TYPE_UNKNOWN,
2490 NETDEV_LAG_TX_TYPE_RANDOM,
2491 NETDEV_LAG_TX_TYPE_BROADCAST,
2492 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2493 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2494 NETDEV_LAG_TX_TYPE_HASH,
2495 };
2496
2497 enum netdev_lag_hash {
2498 NETDEV_LAG_HASH_NONE,
2499 NETDEV_LAG_HASH_L2,
2500 NETDEV_LAG_HASH_L34,
2501 NETDEV_LAG_HASH_L23,
2502 NETDEV_LAG_HASH_E23,
2503 NETDEV_LAG_HASH_E34,
2504 NETDEV_LAG_HASH_UNKNOWN,
2505 };
2506
2507 struct netdev_lag_upper_info {
2508 enum netdev_lag_tx_type tx_type;
2509 enum netdev_lag_hash hash_type;
2510 };
2511
2512 struct netdev_lag_lower_state_info {
2513 u8 link_up : 1,
2514 tx_enabled : 1;
2515 };
2516
2517 #include <linux/notifier.h>
2518
2519 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2520 * and the rtnetlink notification exclusion list in rtnetlink_event() when
2521 * adding new types.
2522 */
2523 enum netdev_cmd {
2524 NETDEV_UP = 1, /* For now you can't veto a device up/down */
2525 NETDEV_DOWN,
2526 NETDEV_REBOOT, /* Tell a protocol stack a network interface
2527 detected a hardware crash and restarted
2528 - we can use this eg to kick tcp sessions
2529 once done */
2530 NETDEV_CHANGE, /* Notify device state change */
2531 NETDEV_REGISTER,
2532 NETDEV_UNREGISTER,
2533 NETDEV_CHANGEMTU, /* notify after mtu change happened */
2534 NETDEV_CHANGEADDR, /* notify after the address change */
2535 NETDEV_PRE_CHANGEADDR, /* notify before the address change */
2536 NETDEV_GOING_DOWN,
2537 NETDEV_CHANGENAME,
2538 NETDEV_FEAT_CHANGE,
2539 NETDEV_BONDING_FAILOVER,
2540 NETDEV_PRE_UP,
2541 NETDEV_PRE_TYPE_CHANGE,
2542 NETDEV_POST_TYPE_CHANGE,
2543 NETDEV_POST_INIT,
2544 NETDEV_RELEASE,
2545 NETDEV_NOTIFY_PEERS,
2546 NETDEV_JOIN,
2547 NETDEV_CHANGEUPPER,
2548 NETDEV_RESEND_IGMP,
2549 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */
2550 NETDEV_CHANGEINFODATA,
2551 NETDEV_BONDING_INFO,
2552 NETDEV_PRECHANGEUPPER,
2553 NETDEV_CHANGELOWERSTATE,
2554 NETDEV_UDP_TUNNEL_PUSH_INFO,
2555 NETDEV_UDP_TUNNEL_DROP_INFO,
2556 NETDEV_CHANGE_TX_QUEUE_LEN,
2557 NETDEV_CVLAN_FILTER_PUSH_INFO,
2558 NETDEV_CVLAN_FILTER_DROP_INFO,
2559 NETDEV_SVLAN_FILTER_PUSH_INFO,
2560 NETDEV_SVLAN_FILTER_DROP_INFO,
2561 };
2562 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2563
2564 int register_netdevice_notifier(struct notifier_block *nb);
2565 int unregister_netdevice_notifier(struct notifier_block *nb);
2566 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2567 int unregister_netdevice_notifier_net(struct net *net,
2568 struct notifier_block *nb);
2569 int register_netdevice_notifier_dev_net(struct net_device *dev,
2570 struct notifier_block *nb,
2571 struct netdev_net_notifier *nn);
2572 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2573 struct notifier_block *nb,
2574 struct netdev_net_notifier *nn);
2575
2576 struct netdev_notifier_info {
2577 struct net_device *dev;
2578 struct netlink_ext_ack *extack;
2579 };
2580
2581 struct netdev_notifier_info_ext {
2582 struct netdev_notifier_info info; /* must be first */
2583 union {
2584 u32 mtu;
2585 } ext;
2586 };
2587
2588 struct netdev_notifier_change_info {
2589 struct netdev_notifier_info info; /* must be first */
2590 unsigned int flags_changed;
2591 };
2592
2593 struct netdev_notifier_changeupper_info {
2594 struct netdev_notifier_info info; /* must be first */
2595 struct net_device *upper_dev; /* new upper dev */
2596 bool master; /* is upper dev master */
2597 bool linking; /* is the notification for link or unlink */
2598 void *upper_info; /* upper dev info */
2599 };
2600
2601 struct netdev_notifier_changelowerstate_info {
2602 struct netdev_notifier_info info; /* must be first */
2603 void *lower_state_info; /* is lower dev state */
2604 };
2605
2606 struct netdev_notifier_pre_changeaddr_info {
2607 struct netdev_notifier_info info; /* must be first */
2608 const unsigned char *dev_addr;
2609 };
2610
2611 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2612 struct net_device *dev)
2613 {
2614 info->dev = dev;
2615 info->extack = NULL;
2616 }
2617
2618 static inline struct net_device *
2619 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2620 {
2621 return info->dev;
2622 }
2623
2624 static inline struct netlink_ext_ack *
2625 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2626 {
2627 return info->extack;
2628 }
2629
2630 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2631
2632
2633 extern rwlock_t dev_base_lock; /* Device list lock */
2634
2635 #define for_each_netdev(net, d) \
2636 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2637 #define for_each_netdev_reverse(net, d) \
2638 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2639 #define for_each_netdev_rcu(net, d) \
2640 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2641 #define for_each_netdev_safe(net, d, n) \
2642 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2643 #define for_each_netdev_continue(net, d) \
2644 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2645 #define for_each_netdev_continue_reverse(net, d) \
2646 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2647 dev_list)
2648 #define for_each_netdev_continue_rcu(net, d) \
2649 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2650 #define for_each_netdev_in_bond_rcu(bond, slave) \
2651 for_each_netdev_rcu(&init_net, slave) \
2652 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2653 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2654
2655 static inline struct net_device *next_net_device(struct net_device *dev)
2656 {
2657 struct list_head *lh;
2658 struct net *net;
2659
2660 net = dev_net(dev);
2661 lh = dev->dev_list.next;
2662 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2663 }
2664
2665 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2666 {
2667 struct list_head *lh;
2668 struct net *net;
2669
2670 net = dev_net(dev);
2671 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2672 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2673 }
2674
2675 static inline struct net_device *first_net_device(struct net *net)
2676 {
2677 return list_empty(&net->dev_base_head) ? NULL :
2678 net_device_entry(net->dev_base_head.next);
2679 }
2680
2681 static inline struct net_device *first_net_device_rcu(struct net *net)
2682 {
2683 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2684
2685 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2686 }
2687
2688 int netdev_boot_setup_check(struct net_device *dev);
2689 unsigned long netdev_boot_base(const char *prefix, int unit);
2690 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2691 const char *hwaddr);
2692 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2693 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2694 void dev_add_pack(struct packet_type *pt);
2695 void dev_remove_pack(struct packet_type *pt);
2696 void __dev_remove_pack(struct packet_type *pt);
2697 void dev_add_offload(struct packet_offload *po);
2698 void dev_remove_offload(struct packet_offload *po);
2699
2700 int dev_get_iflink(const struct net_device *dev);
2701 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2702 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2703 unsigned short mask);
2704 struct net_device *dev_get_by_name(struct net *net, const char *name);
2705 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2706 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2707 int dev_alloc_name(struct net_device *dev, const char *name);
2708 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2709 void dev_close(struct net_device *dev);
2710 void dev_close_many(struct list_head *head, bool unlink);
2711 void dev_disable_lro(struct net_device *dev);
2712 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2713 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2714 struct net_device *sb_dev);
2715 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2716 struct net_device *sb_dev);
2717 int dev_queue_xmit(struct sk_buff *skb);
2718 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2719 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2720 int register_netdevice(struct net_device *dev);
2721 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2722 void unregister_netdevice_many(struct list_head *head);
2723 static inline void unregister_netdevice(struct net_device *dev)
2724 {
2725 unregister_netdevice_queue(dev, NULL);
2726 }
2727
2728 int netdev_refcnt_read(const struct net_device *dev);
2729 void free_netdev(struct net_device *dev);
2730 void netdev_freemem(struct net_device *dev);
2731 void synchronize_net(void);
2732 int init_dummy_netdev(struct net_device *dev);
2733
2734 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2735 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2736 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2737 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2738 int netdev_get_name(struct net *net, char *name, int ifindex);
2739 int dev_restart(struct net_device *dev);
2740 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2741 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2742
2743 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2744 {
2745 return NAPI_GRO_CB(skb)->data_offset;
2746 }
2747
2748 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2749 {
2750 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2751 }
2752
2753 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2754 {
2755 NAPI_GRO_CB(skb)->data_offset += len;
2756 }
2757
2758 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2759 unsigned int offset)
2760 {
2761 return NAPI_GRO_CB(skb)->frag0 + offset;
2762 }
2763
2764 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2765 {
2766 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2767 }
2768
2769 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2770 {
2771 NAPI_GRO_CB(skb)->frag0 = NULL;
2772 NAPI_GRO_CB(skb)->frag0_len = 0;
2773 }
2774
2775 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2776 unsigned int offset)
2777 {
2778 if (!pskb_may_pull(skb, hlen))
2779 return NULL;
2780
2781 skb_gro_frag0_invalidate(skb);
2782 return skb->data + offset;
2783 }
2784
2785 static inline void *skb_gro_network_header(struct sk_buff *skb)
2786 {
2787 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2788 skb_network_offset(skb);
2789 }
2790
2791 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2792 const void *start, unsigned int len)
2793 {
2794 if (NAPI_GRO_CB(skb)->csum_valid)
2795 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2796 csum_partial(start, len, 0));
2797 }
2798
2799 /* GRO checksum functions. These are logical equivalents of the normal
2800 * checksum functions (in skbuff.h) except that they operate on the GRO
2801 * offsets and fields in sk_buff.
2802 */
2803
2804 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2805
2806 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2807 {
2808 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2809 }
2810
2811 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2812 bool zero_okay,
2813 __sum16 check)
2814 {
2815 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2816 skb_checksum_start_offset(skb) <
2817 skb_gro_offset(skb)) &&
2818 !skb_at_gro_remcsum_start(skb) &&
2819 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2820 (!zero_okay || check));
2821 }
2822
2823 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2824 __wsum psum)
2825 {
2826 if (NAPI_GRO_CB(skb)->csum_valid &&
2827 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2828 return 0;
2829
2830 NAPI_GRO_CB(skb)->csum = psum;
2831
2832 return __skb_gro_checksum_complete(skb);
2833 }
2834
2835 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2836 {
2837 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2838 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2839 NAPI_GRO_CB(skb)->csum_cnt--;
2840 } else {
2841 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2842 * verified a new top level checksum or an encapsulated one
2843 * during GRO. This saves work if we fallback to normal path.
2844 */
2845 __skb_incr_checksum_unnecessary(skb);
2846 }
2847 }
2848
2849 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2850 compute_pseudo) \
2851 ({ \
2852 __sum16 __ret = 0; \
2853 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2854 __ret = __skb_gro_checksum_validate_complete(skb, \
2855 compute_pseudo(skb, proto)); \
2856 if (!__ret) \
2857 skb_gro_incr_csum_unnecessary(skb); \
2858 __ret; \
2859 })
2860
2861 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2862 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2863
2864 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2865 compute_pseudo) \
2866 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2867
2868 #define skb_gro_checksum_simple_validate(skb) \
2869 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2870
2871 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2872 {
2873 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2874 !NAPI_GRO_CB(skb)->csum_valid);
2875 }
2876
2877 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2878 __wsum pseudo)
2879 {
2880 NAPI_GRO_CB(skb)->csum = ~pseudo;
2881 NAPI_GRO_CB(skb)->csum_valid = 1;
2882 }
2883
2884 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo) \
2885 do { \
2886 if (__skb_gro_checksum_convert_check(skb)) \
2887 __skb_gro_checksum_convert(skb, \
2888 compute_pseudo(skb, proto)); \
2889 } while (0)
2890
2891 struct gro_remcsum {
2892 int offset;
2893 __wsum delta;
2894 };
2895
2896 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2897 {
2898 grc->offset = 0;
2899 grc->delta = 0;
2900 }
2901
2902 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2903 unsigned int off, size_t hdrlen,
2904 int start, int offset,
2905 struct gro_remcsum *grc,
2906 bool nopartial)
2907 {
2908 __wsum delta;
2909 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2910
2911 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2912
2913 if (!nopartial) {
2914 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2915 return ptr;
2916 }
2917
2918 ptr = skb_gro_header_fast(skb, off);
2919 if (skb_gro_header_hard(skb, off + plen)) {
2920 ptr = skb_gro_header_slow(skb, off + plen, off);
2921 if (!ptr)
2922 return NULL;
2923 }
2924
2925 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2926 start, offset);
2927
2928 /* Adjust skb->csum since we changed the packet */
2929 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2930
2931 grc->offset = off + hdrlen + offset;
2932 grc->delta = delta;
2933
2934 return ptr;
2935 }
2936
2937 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2938 struct gro_remcsum *grc)
2939 {
2940 void *ptr;
2941 size_t plen = grc->offset + sizeof(u16);
2942
2943 if (!grc->delta)
2944 return;
2945
2946 ptr = skb_gro_header_fast(skb, grc->offset);
2947 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2948 ptr = skb_gro_header_slow(skb, plen, grc->offset);
2949 if (!ptr)
2950 return;
2951 }
2952
2953 remcsum_unadjust((__sum16 *)ptr, grc->delta);
2954 }
2955
2956 #ifdef CONFIG_XFRM_OFFLOAD
2957 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2958 {
2959 if (PTR_ERR(pp) != -EINPROGRESS)
2960 NAPI_GRO_CB(skb)->flush |= flush;
2961 }
2962 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2963 struct sk_buff *pp,
2964 int flush,
2965 struct gro_remcsum *grc)
2966 {
2967 if (PTR_ERR(pp) != -EINPROGRESS) {
2968 NAPI_GRO_CB(skb)->flush |= flush;
2969 skb_gro_remcsum_cleanup(skb, grc);
2970 skb->remcsum_offload = 0;
2971 }
2972 }
2973 #else
2974 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2975 {
2976 NAPI_GRO_CB(skb)->flush |= flush;
2977 }
2978 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2979 struct sk_buff *pp,
2980 int flush,
2981 struct gro_remcsum *grc)
2982 {
2983 NAPI_GRO_CB(skb)->flush |= flush;
2984 skb_gro_remcsum_cleanup(skb, grc);
2985 skb->remcsum_offload = 0;
2986 }
2987 #endif
2988
2989 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2990 unsigned short type,
2991 const void *daddr, const void *saddr,
2992 unsigned int len)
2993 {
2994 if (!dev->header_ops || !dev->header_ops->create)
2995 return 0;
2996
2997 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2998 }
2999
3000 static inline int dev_parse_header(const struct sk_buff *skb,
3001 unsigned char *haddr)
3002 {
3003 const struct net_device *dev = skb->dev;
3004
3005 if (!dev->header_ops || !dev->header_ops->parse)
3006 return 0;
3007 return dev->header_ops->parse(skb, haddr);
3008 }
3009
3010 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3011 {
3012 const struct net_device *dev = skb->dev;
3013
3014 if (!dev->header_ops || !dev->header_ops->parse_protocol)
3015 return 0;
3016 return dev->header_ops->parse_protocol(skb);
3017 }
3018
3019 /* ll_header must have at least hard_header_len allocated */
3020 static inline bool dev_validate_header(const struct net_device *dev,
3021 char *ll_header, int len)
3022 {
3023 if (likely(len >= dev->hard_header_len))
3024 return true;
3025 if (len < dev->min_header_len)
3026 return false;
3027
3028 if (capable(CAP_SYS_RAWIO)) {
3029 memset(ll_header + len, 0, dev->hard_header_len - len);
3030 return true;
3031 }
3032
3033 if (dev->header_ops && dev->header_ops->validate)
3034 return dev->header_ops->validate(ll_header, len);
3035
3036 return false;
3037 }
3038
3039 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
3040 int len, int size);
3041 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
3042 static inline int unregister_gifconf(unsigned int family)
3043 {
3044 return register_gifconf(family, NULL);
3045 }
3046
3047 #ifdef CONFIG_NET_FLOW_LIMIT
3048 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
3049 struct sd_flow_limit {
3050 u64 count;
3051 unsigned int num_buckets;
3052 unsigned int history_head;
3053 u16 history[FLOW_LIMIT_HISTORY];
3054 u8 buckets[];
3055 };
3056
3057 extern int netdev_flow_limit_table_len;
3058 #endif /* CONFIG_NET_FLOW_LIMIT */
3059
3060 /*
3061 * Incoming packets are placed on per-CPU queues
3062 */
3063 struct softnet_data {
3064 struct list_head poll_list;
3065 struct sk_buff_head process_queue;
3066
3067 /* stats */
3068 unsigned int processed;
3069 unsigned int time_squeeze;
3070 unsigned int received_rps;
3071 #ifdef CONFIG_RPS
3072 struct softnet_data *rps_ipi_list;
3073 #endif
3074 #ifdef CONFIG_NET_FLOW_LIMIT
3075 struct sd_flow_limit __rcu *flow_limit;
3076 #endif
3077 struct Qdisc *output_queue;
3078 struct Qdisc **output_queue_tailp;
3079 struct sk_buff *completion_queue;
3080 #ifdef CONFIG_XFRM_OFFLOAD
3081 struct sk_buff_head xfrm_backlog;
3082 #endif
3083 /* written and read only by owning cpu: */
3084 struct {
3085 u16 recursion;
3086 u8 more;
3087 } xmit;
3088 #ifdef CONFIG_RPS
3089 /* input_queue_head should be written by cpu owning this struct,
3090 * and only read by other cpus. Worth using a cache line.
3091 */
3092 unsigned int input_queue_head ____cacheline_aligned_in_smp;
3093
3094 /* Elements below can be accessed between CPUs for RPS/RFS */
3095 call_single_data_t csd ____cacheline_aligned_in_smp;
3096 struct softnet_data *rps_ipi_next;
3097 unsigned int cpu;
3098 unsigned int input_queue_tail;
3099 #endif
3100 unsigned int dropped;
3101 struct sk_buff_head input_pkt_queue;
3102 struct napi_struct backlog;
3103
3104 };
3105
3106 static inline void input_queue_head_incr(struct softnet_data *sd)
3107 {
3108 #ifdef CONFIG_RPS
3109 sd->input_queue_head++;
3110 #endif
3111 }
3112
3113 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3114 unsigned int *qtail)
3115 {
3116 #ifdef CONFIG_RPS
3117 *qtail = ++sd->input_queue_tail;
3118 #endif
3119 }
3120
3121 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3122
3123 static inline int dev_recursion_level(void)
3124 {
3125 return this_cpu_read(softnet_data.xmit.recursion);
3126 }
3127
3128 #define XMIT_RECURSION_LIMIT 10
3129 static inline bool dev_xmit_recursion(void)
3130 {
3131 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3132 XMIT_RECURSION_LIMIT);
3133 }
3134
3135 static inline void dev_xmit_recursion_inc(void)
3136 {
3137 __this_cpu_inc(softnet_data.xmit.recursion);
3138 }
3139
3140 static inline void dev_xmit_recursion_dec(void)
3141 {
3142 __this_cpu_dec(softnet_data.xmit.recursion);
3143 }
3144
3145 void __netif_schedule(struct Qdisc *q);
3146 void netif_schedule_queue(struct netdev_queue *txq);
3147
3148 static inline void netif_tx_schedule_all(struct net_device *dev)
3149 {
3150 unsigned int i;
3151
3152 for (i = 0; i < dev->num_tx_queues; i++)
3153 netif_schedule_queue(netdev_get_tx_queue(dev, i));
3154 }
3155
3156 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3157 {
3158 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3159 }
3160
3161 /**
3162 * netif_start_queue - allow transmit
3163 * @dev: network device
3164 *
3165 * Allow upper layers to call the device hard_start_xmit routine.
3166 */
3167 static inline void netif_start_queue(struct net_device *dev)
3168 {
3169 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3170 }
3171
3172 static inline void netif_tx_start_all_queues(struct net_device *dev)
3173 {
3174 unsigned int i;
3175
3176 for (i = 0; i < dev->num_tx_queues; i++) {
3177 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3178 netif_tx_start_queue(txq);
3179 }
3180 }
3181
3182 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3183
3184 /**
3185 * netif_wake_queue - restart transmit
3186 * @dev: network device
3187 *
3188 * Allow upper layers to call the device hard_start_xmit routine.
3189 * Used for flow control when transmit resources are available.
3190 */
3191 static inline void netif_wake_queue(struct net_device *dev)
3192 {
3193 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3194 }
3195
3196 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3197 {
3198 unsigned int i;
3199
3200 for (i = 0; i < dev->num_tx_queues; i++) {
3201 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3202 netif_tx_wake_queue(txq);
3203 }
3204 }
3205
3206 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3207 {
3208 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3209 }
3210
3211 /**
3212 * netif_stop_queue - stop transmitted packets
3213 * @dev: network device
3214 *
3215 * Stop upper layers calling the device hard_start_xmit routine.
3216 * Used for flow control when transmit resources are unavailable.
3217 */
3218 static inline void netif_stop_queue(struct net_device *dev)
3219 {
3220 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3221 }
3222
3223 void netif_tx_stop_all_queues(struct net_device *dev);
3224 void netdev_update_lockdep_key(struct net_device *dev);
3225
3226 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3227 {
3228 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3229 }
3230
3231 /**
3232 * netif_queue_stopped - test if transmit queue is flowblocked
3233 * @dev: network device
3234 *
3235 * Test if transmit queue on device is currently unable to send.
3236 */
3237 static inline bool netif_queue_stopped(const struct net_device *dev)
3238 {
3239 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3240 }
3241
3242 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3243 {
3244 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3245 }
3246
3247 static inline bool
3248 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3249 {
3250 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3251 }
3252
3253 static inline bool
3254 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3255 {
3256 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3257 }
3258
3259 /**
3260 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3261 * @dev_queue: pointer to transmit queue
3262 *
3263 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3264 * to give appropriate hint to the CPU.
3265 */
3266 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3267 {
3268 #ifdef CONFIG_BQL
3269 prefetchw(&dev_queue->dql.num_queued);
3270 #endif
3271 }
3272
3273 /**
3274 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3275 * @dev_queue: pointer to transmit queue
3276 *
3277 * BQL enabled drivers might use this helper in their TX completion path,
3278 * to give appropriate hint to the CPU.
3279 */
3280 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3281 {
3282 #ifdef CONFIG_BQL
3283 prefetchw(&dev_queue->dql.limit);
3284 #endif
3285 }
3286
3287 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3288 unsigned int bytes)
3289 {
3290 #ifdef CONFIG_BQL
3291 dql_queued(&dev_queue->dql, bytes);
3292
3293 if (likely(dql_avail(&dev_queue->dql) >= 0))
3294 return;
3295
3296 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3297
3298 /*
3299 * The XOFF flag must be set before checking the dql_avail below,
3300 * because in netdev_tx_completed_queue we update the dql_completed
3301 * before checking the XOFF flag.
3302 */
3303 smp_mb();
3304
3305 /* check again in case another CPU has just made room avail */
3306 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3307 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3308 #endif
3309 }
3310
3311 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3312 * that they should not test BQL status themselves.
3313 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3314 * skb of a batch.
3315 * Returns true if the doorbell must be used to kick the NIC.
3316 */
3317 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3318 unsigned int bytes,
3319 bool xmit_more)
3320 {
3321 if (xmit_more) {
3322 #ifdef CONFIG_BQL
3323 dql_queued(&dev_queue->dql, bytes);
3324 #endif
3325 return netif_tx_queue_stopped(dev_queue);
3326 }
3327 netdev_tx_sent_queue(dev_queue, bytes);
3328 return true;
3329 }
3330
3331 /**
3332 * netdev_sent_queue - report the number of bytes queued to hardware
3333 * @dev: network device
3334 * @bytes: number of bytes queued to the hardware device queue
3335 *
3336 * Report the number of bytes queued for sending/completion to the network
3337 * device hardware queue. @bytes should be a good approximation and should
3338 * exactly match netdev_completed_queue() @bytes
3339 */
3340 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3341 {
3342 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3343 }
3344
3345 static inline bool __netdev_sent_queue(struct net_device *dev,
3346 unsigned int bytes,
3347 bool xmit_more)
3348 {
3349 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3350 xmit_more);
3351 }
3352
3353 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3354 unsigned int pkts, unsigned int bytes)
3355 {
3356 #ifdef CONFIG_BQL
3357 if (unlikely(!bytes))
3358 return;
3359
3360 dql_completed(&dev_queue->dql, bytes);
3361
3362 /*
3363 * Without the memory barrier there is a small possiblity that
3364 * netdev_tx_sent_queue will miss the update and cause the queue to
3365 * be stopped forever
3366 */
3367 smp_mb();
3368
3369 if (unlikely(dql_avail(&dev_queue->dql) < 0))
3370 return;
3371
3372 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3373 netif_schedule_queue(dev_queue);
3374 #endif
3375 }
3376
3377 /**
3378 * netdev_completed_queue - report bytes and packets completed by device
3379 * @dev: network device
3380 * @pkts: actual number of packets sent over the medium
3381 * @bytes: actual number of bytes sent over the medium
3382 *
3383 * Report the number of bytes and packets transmitted by the network device
3384 * hardware queue over the physical medium, @bytes must exactly match the
3385 * @bytes amount passed to netdev_sent_queue()
3386 */
3387 static inline void netdev_completed_queue(struct net_device *dev,
3388 unsigned int pkts, unsigned int bytes)
3389 {
3390 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3391 }
3392
3393 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3394 {
3395 #ifdef CONFIG_BQL
3396 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3397 dql_reset(&q->dql);
3398 #endif
3399 }
3400
3401 /**
3402 * netdev_reset_queue - reset the packets and bytes count of a network device
3403 * @dev_queue: network device
3404 *
3405 * Reset the bytes and packet count of a network device and clear the
3406 * software flow control OFF bit for this network device
3407 */
3408 static inline void netdev_reset_queue(struct net_device *dev_queue)
3409 {
3410 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3411 }
3412
3413 /**
3414 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
3415 * @dev: network device
3416 * @queue_index: given tx queue index
3417 *
3418 * Returns 0 if given tx queue index >= number of device tx queues,
3419 * otherwise returns the originally passed tx queue index.
3420 */
3421 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3422 {
3423 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3424 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3425 dev->name, queue_index,
3426 dev->real_num_tx_queues);
3427 return 0;
3428 }
3429
3430 return queue_index;
3431 }
3432
3433 /**
3434 * netif_running - test if up
3435 * @dev: network device
3436 *
3437 * Test if the device has been brought up.
3438 */
3439 static inline bool netif_running(const struct net_device *dev)
3440 {
3441 return test_bit(__LINK_STATE_START, &dev->state);
3442 }
3443
3444 /*
3445 * Routines to manage the subqueues on a device. We only need start,
3446 * stop, and a check if it's stopped. All other device management is
3447 * done at the overall netdevice level.
3448 * Also test the device if we're multiqueue.
3449 */
3450
3451 /**
3452 * netif_start_subqueue - allow sending packets on subqueue
3453 * @dev: network device
3454 * @queue_index: sub queue index
3455 *
3456 * Start individual transmit queue of a device with multiple transmit queues.
3457 */
3458 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3459 {
3460 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3461
3462 netif_tx_start_queue(txq);
3463 }
3464
3465 /**
3466 * netif_stop_subqueue - stop sending packets on subqueue
3467 * @dev: network device
3468 * @queue_index: sub queue index
3469 *
3470 * Stop individual transmit queue of a device with multiple transmit queues.
3471 */
3472 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3473 {
3474 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3475 netif_tx_stop_queue(txq);
3476 }
3477
3478 /**
3479 * netif_subqueue_stopped - test status of subqueue
3480 * @dev: network device
3481 * @queue_index: sub queue index
3482 *
3483 * Check individual transmit queue of a device with multiple transmit queues.
3484 */
3485 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3486 u16 queue_index)
3487 {
3488 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3489
3490 return netif_tx_queue_stopped(txq);
3491 }
3492
3493 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3494 struct sk_buff *skb)
3495 {
3496 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3497 }
3498
3499 /**
3500 * netif_wake_subqueue - allow sending packets on subqueue
3501 * @dev: network device
3502 * @queue_index: sub queue index
3503 *
3504 * Resume individual transmit queue of a device with multiple transmit queues.
3505 */
3506 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3507 {
3508 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3509
3510 netif_tx_wake_queue(txq);
3511 }
3512
3513 #ifdef CONFIG_XPS
3514 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3515 u16 index);
3516 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3517 u16 index, bool is_rxqs_map);
3518
3519 /**
3520 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3521 * @j: CPU/Rx queue index
3522 * @mask: bitmask of all cpus/rx queues
3523 * @nr_bits: number of bits in the bitmask
3524 *
3525 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3526 */
3527 static inline bool netif_attr_test_mask(unsigned long j,
3528 const unsigned long *mask,
3529 unsigned int nr_bits)
3530 {
3531 cpu_max_bits_warn(j, nr_bits);
3532 return test_bit(j, mask);
3533 }
3534
3535 /**
3536 * netif_attr_test_online - Test for online CPU/Rx queue
3537 * @j: CPU/Rx queue index
3538 * @online_mask: bitmask for CPUs/Rx queues that are online
3539 * @nr_bits: number of bits in the bitmask
3540 *
3541 * Returns true if a CPU/Rx queue is online.
3542 */
3543 static inline bool netif_attr_test_online(unsigned long j,
3544 const unsigned long *online_mask,
3545 unsigned int nr_bits)
3546 {
3547 cpu_max_bits_warn(j, nr_bits);
3548
3549 if (online_mask)
3550 return test_bit(j, online_mask);
3551
3552 return (j < nr_bits);
3553 }
3554
3555 /**
3556 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3557 * @n: CPU/Rx queue index
3558 * @srcp: the cpumask/Rx queue mask pointer
3559 * @nr_bits: number of bits in the bitmask
3560 *
3561 * Returns >= nr_bits if no further CPUs/Rx queues set.
3562 */
3563 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3564 unsigned int nr_bits)
3565 {
3566 /* -1 is a legal arg here. */
3567 if (n != -1)
3568 cpu_max_bits_warn(n, nr_bits);
3569
3570 if (srcp)
3571 return find_next_bit(srcp, nr_bits, n + 1);
3572
3573 return n + 1;
3574 }
3575
3576 /**
3577 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3578 * @n: CPU/Rx queue index
3579 * @src1p: the first CPUs/Rx queues mask pointer
3580 * @src2p: the second CPUs/Rx queues mask pointer
3581 * @nr_bits: number of bits in the bitmask
3582 *
3583 * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3584 */
3585 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3586 const unsigned long *src2p,
3587 unsigned int nr_bits)
3588 {
3589 /* -1 is a legal arg here. */
3590 if (n != -1)
3591 cpu_max_bits_warn(n, nr_bits);
3592
3593 if (src1p && src2p)
3594 return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3595 else if (src1p)
3596 return find_next_bit(src1p, nr_bits, n + 1);
3597 else if (src2p)
3598 return find_next_bit(src2p, nr_bits, n + 1);
3599
3600 return n + 1;
3601 }
3602 #else
3603 static inline int netif_set_xps_queue(struct net_device *dev,
3604 const struct cpumask *mask,
3605 u16 index)
3606 {
3607 return 0;
3608 }
3609
3610 static inline int __netif_set_xps_queue(struct net_device *dev,
3611 const unsigned long *mask,
3612 u16 index, bool is_rxqs_map)
3613 {
3614 return 0;
3615 }
3616 #endif
3617
3618 /**
3619 * netif_is_multiqueue - test if device has multiple transmit queues
3620 * @dev: network device
3621 *
3622 * Check if device has multiple transmit queues
3623 */
3624 static inline bool netif_is_multiqueue(const struct net_device *dev)
3625 {
3626 return dev->num_tx_queues > 1;
3627 }
3628
3629 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3630
3631 #ifdef CONFIG_SYSFS
3632 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3633 #else
3634 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3635 unsigned int rxqs)
3636 {
3637 dev->real_num_rx_queues = rxqs;
3638 return 0;
3639 }
3640 #endif
3641
3642 static inline struct netdev_rx_queue *
3643 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3644 {
3645 return dev->_rx + rxq;
3646 }
3647
3648 #ifdef CONFIG_SYSFS
3649 static inline unsigned int get_netdev_rx_queue_index(
3650 struct netdev_rx_queue *queue)
3651 {
3652 struct net_device *dev = queue->dev;
3653 int index = queue - dev->_rx;
3654
3655 BUG_ON(index >= dev->num_rx_queues);
3656 return index;
3657 }
3658 #endif
3659
3660 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
3661 int netif_get_num_default_rss_queues(void);
3662
3663 enum skb_free_reason {
3664 SKB_REASON_CONSUMED,
3665 SKB_REASON_DROPPED,
3666 };
3667
3668 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3669 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3670
3671 /*
3672 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3673 * interrupt context or with hardware interrupts being disabled.
3674 * (in_irq() || irqs_disabled())
3675 *
3676 * We provide four helpers that can be used in following contexts :
3677 *
3678 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3679 * replacing kfree_skb(skb)
3680 *
3681 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3682 * Typically used in place of consume_skb(skb) in TX completion path
3683 *
3684 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3685 * replacing kfree_skb(skb)
3686 *
3687 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3688 * and consumed a packet. Used in place of consume_skb(skb)
3689 */
3690 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3691 {
3692 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3693 }
3694
3695 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3696 {
3697 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3698 }
3699
3700 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3701 {
3702 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3703 }
3704
3705 static inline void dev_consume_skb_any(struct sk_buff *skb)
3706 {
3707 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3708 }
3709
3710 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3711 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3712 int netif_rx(struct sk_buff *skb);
3713 int netif_rx_ni(struct sk_buff *skb);
3714 int netif_receive_skb(struct sk_buff *skb);
3715 int netif_receive_skb_core(struct sk_buff *skb);
3716 void netif_receive_skb_list(struct list_head *head);
3717 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3718 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3719 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3720 gro_result_t napi_gro_frags(struct napi_struct *napi);
3721 struct packet_offload *gro_find_receive_by_type(__be16 type);
3722 struct packet_offload *gro_find_complete_by_type(__be16 type);
3723
3724 static inline void napi_free_frags(struct napi_struct *napi)
3725 {
3726 kfree_skb(napi->skb);
3727 napi->skb = NULL;
3728 }
3729
3730 bool netdev_is_rx_handler_busy(struct net_device *dev);
3731 int netdev_rx_handler_register(struct net_device *dev,
3732 rx_handler_func_t *rx_handler,
3733 void *rx_handler_data);
3734 void netdev_rx_handler_unregister(struct net_device *dev);
3735
3736 bool dev_valid_name(const char *name);
3737 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3738 bool *need_copyout);
3739 int dev_ifconf(struct net *net, struct ifconf *, int);
3740 int dev_ethtool(struct net *net, struct ifreq *);
3741 unsigned int dev_get_flags(const struct net_device *);
3742 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3743 struct netlink_ext_ack *extack);
3744 int dev_change_flags(struct net_device *dev, unsigned int flags,
3745 struct netlink_ext_ack *extack);
3746 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3747 unsigned int gchanges);
3748 int dev_change_name(struct net_device *, const char *);
3749 int dev_set_alias(struct net_device *, const char *, size_t);
3750 int dev_get_alias(const struct net_device *, char *, size_t);
3751 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3752 int __dev_set_mtu(struct net_device *, int);
3753 int dev_validate_mtu(struct net_device *dev, int mtu,
3754 struct netlink_ext_ack *extack);
3755 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3756 struct netlink_ext_ack *extack);
3757 int dev_set_mtu(struct net_device *, int);
3758 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3759 void dev_set_group(struct net_device *, int);
3760 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3761 struct netlink_ext_ack *extack);
3762 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3763 struct netlink_ext_ack *extack);
3764 int dev_change_carrier(struct net_device *, bool new_carrier);
3765 int dev_get_phys_port_id(struct net_device *dev,
3766 struct netdev_phys_item_id *ppid);
3767 int dev_get_phys_port_name(struct net_device *dev,
3768 char *name, size_t len);
3769 int dev_get_port_parent_id(struct net_device *dev,
3770 struct netdev_phys_item_id *ppid, bool recurse);
3771 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3772 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3773 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3774 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3775 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3776 struct netdev_queue *txq, int *ret);
3777
3778 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3779 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3780 int fd, int expected_fd, u32 flags);
3781 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3782 enum bpf_netdev_command cmd);
3783 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3784
3785 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3786 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3787 bool is_skb_forwardable(const struct net_device *dev,
3788 const struct sk_buff *skb);
3789
3790 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3791 struct sk_buff *skb)
3792 {
3793 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3794 unlikely(!is_skb_forwardable(dev, skb))) {
3795 atomic_long_inc(&dev->rx_dropped);
3796 kfree_skb(skb);
3797 return NET_RX_DROP;
3798 }
3799
3800 skb_scrub_packet(skb, true);
3801 skb->priority = 0;
3802 return 0;
3803 }
3804
3805 bool dev_nit_active(struct net_device *dev);
3806 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3807
3808 extern int netdev_budget;
3809 extern unsigned int netdev_budget_usecs;
3810
3811 /* Called by rtnetlink.c:rtnl_unlock() */
3812 void netdev_run_todo(void);
3813
3814 /**
3815 * dev_put - release reference to device
3816 * @dev: network device
3817 *
3818 * Release reference to device to allow it to be freed.
3819 */
3820 static inline void dev_put(struct net_device *dev)
3821 {
3822 this_cpu_dec(*dev->pcpu_refcnt);
3823 }
3824
3825 /**
3826 * dev_hold - get reference to device
3827 * @dev: network device
3828 *
3829 * Hold reference to device to keep it from being freed.
3830 */
3831 static inline void dev_hold(struct net_device *dev)
3832 {
3833 this_cpu_inc(*dev->pcpu_refcnt);
3834 }
3835
3836 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3837 * and _off may be called from IRQ context, but it is caller
3838 * who is responsible for serialization of these calls.
3839 *
3840 * The name carrier is inappropriate, these functions should really be
3841 * called netif_lowerlayer_*() because they represent the state of any
3842 * kind of lower layer not just hardware media.
3843 */
3844
3845 void linkwatch_init_dev(struct net_device *dev);
3846 void linkwatch_fire_event(struct net_device *dev);
3847 void linkwatch_forget_dev(struct net_device *dev);
3848
3849 /**
3850 * netif_carrier_ok - test if carrier present
3851 * @dev: network device
3852 *
3853 * Check if carrier is present on device
3854 */
3855 static inline bool netif_carrier_ok(const struct net_device *dev)
3856 {
3857 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3858 }
3859
3860 unsigned long dev_trans_start(struct net_device *dev);
3861
3862 void __netdev_watchdog_up(struct net_device *dev);
3863
3864 void netif_carrier_on(struct net_device *dev);
3865
3866 void netif_carrier_off(struct net_device *dev);
3867
3868 /**
3869 * netif_dormant_on - mark device as dormant.
3870 * @dev: network device
3871 *
3872 * Mark device as dormant (as per RFC2863).
3873 *
3874 * The dormant state indicates that the relevant interface is not
3875 * actually in a condition to pass packets (i.e., it is not 'up') but is
3876 * in a "pending" state, waiting for some external event. For "on-
3877 * demand" interfaces, this new state identifies the situation where the
3878 * interface is waiting for events to place it in the up state.
3879 */
3880 static inline void netif_dormant_on(struct net_device *dev)
3881 {
3882 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3883 linkwatch_fire_event(dev);
3884 }
3885
3886 /**
3887 * netif_dormant_off - set device as not dormant.
3888 * @dev: network device
3889 *
3890 * Device is not in dormant state.
3891 */
3892 static inline void netif_dormant_off(struct net_device *dev)
3893 {
3894 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3895 linkwatch_fire_event(dev);
3896 }
3897
3898 /**
3899 * netif_dormant - test if device is dormant
3900 * @dev: network device
3901 *
3902 * Check if device is dormant.
3903 */
3904 static inline bool netif_dormant(const struct net_device *dev)
3905 {
3906 return test_bit(__LINK_STATE_DORMANT, &dev->state);
3907 }
3908
3909
3910 /**
3911 * netif_oper_up - test if device is operational
3912 * @dev: network device
3913 *
3914 * Check if carrier is operational
3915 */
3916 static inline bool netif_oper_up(const struct net_device *dev)
3917 {
3918 return (dev->operstate == IF_OPER_UP ||
3919 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3920 }
3921
3922 /**
3923 * netif_device_present - is device available or removed
3924 * @dev: network device
3925 *
3926 * Check if device has not been removed from system.
3927 */
3928 static inline bool netif_device_present(struct net_device *dev)
3929 {
3930 return test_bit(__LINK_STATE_PRESENT, &dev->state);
3931 }
3932
3933 void netif_device_detach(struct net_device *dev);
3934
3935 void netif_device_attach(struct net_device *dev);
3936
3937 /*
3938 * Network interface message level settings
3939 */
3940
3941 enum {
3942 NETIF_MSG_DRV_BIT,
3943 NETIF_MSG_PROBE_BIT,
3944 NETIF_MSG_LINK_BIT,
3945 NETIF_MSG_TIMER_BIT,
3946 NETIF_MSG_IFDOWN_BIT,
3947 NETIF_MSG_IFUP_BIT,
3948 NETIF_MSG_RX_ERR_BIT,
3949 NETIF_MSG_TX_ERR_BIT,
3950 NETIF_MSG_TX_QUEUED_BIT,
3951 NETIF_MSG_INTR_BIT,
3952 NETIF_MSG_TX_DONE_BIT,
3953 NETIF_MSG_RX_STATUS_BIT,
3954 NETIF_MSG_PKTDATA_BIT,
3955 NETIF_MSG_HW_BIT,
3956 NETIF_MSG_WOL_BIT,
3957
3958 /* When you add a new bit above, update netif_msg_class_names array
3959 * in net/ethtool/common.c
3960 */
3961 NETIF_MSG_CLASS_COUNT,
3962 };
3963 /* Both ethtool_ops interface and internal driver implementation use u32 */
3964 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
3965
3966 #define __NETIF_MSG_BIT(bit) ((u32)1 << (bit))
3967 #define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
3968
3969 #define NETIF_MSG_DRV __NETIF_MSG(DRV)
3970 #define NETIF_MSG_PROBE __NETIF_MSG(PROBE)
3971 #define NETIF_MSG_LINK __NETIF_MSG(LINK)
3972 #define NETIF_MSG_TIMER __NETIF_MSG(TIMER)
3973 #define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN)
3974 #define NETIF_MSG_IFUP __NETIF_MSG(IFUP)
3975 #define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR)
3976 #define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR)
3977 #define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED)
3978 #define NETIF_MSG_INTR __NETIF_MSG(INTR)
3979 #define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE)
3980 #define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS)
3981 #define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA)
3982 #define NETIF_MSG_HW __NETIF_MSG(HW)
3983 #define NETIF_MSG_WOL __NETIF_MSG(WOL)
3984
3985 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
3986 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
3987 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
3988 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
3989 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
3990 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
3991 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
3992 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
3993 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3994 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
3995 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
3996 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3997 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
3998 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
3999 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
4000
4001 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4002 {
4003 /* use default */
4004 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4005 return default_msg_enable_bits;
4006 if (debug_value == 0) /* no output */
4007 return 0;
4008 /* set low N bits */
4009 return (1U << debug_value) - 1;
4010 }
4011
4012 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4013 {
4014 spin_lock(&txq->_xmit_lock);
4015 txq->xmit_lock_owner = cpu;
4016 }
4017
4018 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4019 {
4020 __acquire(&txq->_xmit_lock);
4021 return true;
4022 }
4023
4024 static inline void __netif_tx_release(struct netdev_queue *txq)
4025 {
4026 __release(&txq->_xmit_lock);
4027 }
4028
4029 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4030 {
4031 spin_lock_bh(&txq->_xmit_lock);
4032 txq->xmit_lock_owner = smp_processor_id();
4033 }
4034
4035 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4036 {
4037 bool ok = spin_trylock(&txq->_xmit_lock);
4038 if (likely(ok))
4039 txq->xmit_lock_owner = smp_processor_id();
4040 return ok;
4041 }
4042
4043 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4044 {
4045 txq->xmit_lock_owner = -1;
4046 spin_unlock(&txq->_xmit_lock);
4047 }
4048
4049 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4050 {
4051 txq->xmit_lock_owner = -1;
4052 spin_unlock_bh(&txq->_xmit_lock);
4053 }
4054
4055 static inline void txq_trans_update(struct netdev_queue *txq)
4056 {
4057 if (txq->xmit_lock_owner != -1)
4058 txq->trans_start = jiffies;
4059 }
4060
4061 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4062 static inline void netif_trans_update(struct net_device *dev)
4063 {
4064 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4065
4066 if (txq->trans_start != jiffies)
4067 txq->trans_start = jiffies;
4068 }
4069
4070 /**
4071 * netif_tx_lock - grab network device transmit lock
4072 * @dev: network device
4073 *
4074 * Get network device transmit lock
4075 */
4076 static inline void netif_tx_lock(struct net_device *dev)
4077 {
4078 unsigned int i;
4079 int cpu;
4080
4081 spin_lock(&dev->tx_global_lock);
4082 cpu = smp_processor_id();
4083 for (i = 0; i < dev->num_tx_queues; i++) {
4084 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4085
4086 /* We are the only thread of execution doing a
4087 * freeze, but we have to grab the _xmit_lock in
4088 * order to synchronize with threads which are in
4089 * the ->hard_start_xmit() handler and already
4090 * checked the frozen bit.
4091 */
4092 __netif_tx_lock(txq, cpu);
4093 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4094 __netif_tx_unlock(txq);
4095 }
4096 }
4097
4098 static inline void netif_tx_lock_bh(struct net_device *dev)
4099 {
4100 local_bh_disable();
4101 netif_tx_lock(dev);
4102 }
4103
4104 static inline void netif_tx_unlock(struct net_device *dev)
4105 {
4106 unsigned int i;
4107
4108 for (i = 0; i < dev->num_tx_queues; i++) {
4109 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4110
4111 /* No need to grab the _xmit_lock here. If the
4112 * queue is not stopped for another reason, we
4113 * force a schedule.
4114 */
4115 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4116 netif_schedule_queue(txq);
4117 }
4118 spin_unlock(&dev->tx_global_lock);
4119 }
4120
4121 static inline void netif_tx_unlock_bh(struct net_device *dev)
4122 {
4123 netif_tx_unlock(dev);
4124 local_bh_enable();
4125 }
4126
4127 #define HARD_TX_LOCK(dev, txq, cpu) { \
4128 if ((dev->features & NETIF_F_LLTX) == 0) { \
4129 __netif_tx_lock(txq, cpu); \
4130 } else { \
4131 __netif_tx_acquire(txq); \
4132 } \
4133 }
4134
4135 #define HARD_TX_TRYLOCK(dev, txq) \
4136 (((dev->features & NETIF_F_LLTX) == 0) ? \
4137 __netif_tx_trylock(txq) : \
4138 __netif_tx_acquire(txq))
4139
4140 #define HARD_TX_UNLOCK(dev, txq) { \
4141 if ((dev->features & NETIF_F_LLTX) == 0) { \
4142 __netif_tx_unlock(txq); \
4143 } else { \
4144 __netif_tx_release(txq); \
4145 } \
4146 }
4147
4148 static inline void netif_tx_disable(struct net_device *dev)
4149 {
4150 unsigned int i;
4151 int cpu;
4152
4153 local_bh_disable();
4154 cpu = smp_processor_id();
4155 for (i = 0; i < dev->num_tx_queues; i++) {
4156 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4157
4158 __netif_tx_lock(txq, cpu);
4159 netif_tx_stop_queue(txq);
4160 __netif_tx_unlock(txq);
4161 }
4162 local_bh_enable();
4163 }
4164
4165 static inline void netif_addr_lock(struct net_device *dev)
4166 {
4167 spin_lock(&dev->addr_list_lock);
4168 }
4169
4170 static inline void netif_addr_lock_bh(struct net_device *dev)
4171 {
4172 spin_lock_bh(&dev->addr_list_lock);
4173 }
4174
4175 static inline void netif_addr_unlock(struct net_device *dev)
4176 {
4177 spin_unlock(&dev->addr_list_lock);
4178 }
4179
4180 static inline void netif_addr_unlock_bh(struct net_device *dev)
4181 {
4182 spin_unlock_bh(&dev->addr_list_lock);
4183 }
4184
4185 /*
4186 * dev_addrs walker. Should be used only for read access. Call with
4187 * rcu_read_lock held.
4188 */
4189 #define for_each_dev_addr(dev, ha) \
4190 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4191
4192 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4193
4194 void ether_setup(struct net_device *dev);
4195
4196 /* Support for loadable net-drivers */
4197 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4198 unsigned char name_assign_type,
4199 void (*setup)(struct net_device *),
4200 unsigned int txqs, unsigned int rxqs);
4201 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4202 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4203
4204 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4205 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4206 count)
4207
4208 int register_netdev(struct net_device *dev);
4209 void unregister_netdev(struct net_device *dev);
4210
4211 /* General hardware address lists handling functions */
4212 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4213 struct netdev_hw_addr_list *from_list, int addr_len);
4214 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4215 struct netdev_hw_addr_list *from_list, int addr_len);
4216 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4217 struct net_device *dev,
4218 int (*sync)(struct net_device *, const unsigned char *),
4219 int (*unsync)(struct net_device *,
4220 const unsigned char *));
4221 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4222 struct net_device *dev,
4223 int (*sync)(struct net_device *,
4224 const unsigned char *, int),
4225 int (*unsync)(struct net_device *,
4226 const unsigned char *, int));
4227 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4228 struct net_device *dev,
4229 int (*unsync)(struct net_device *,
4230 const unsigned char *, int));
4231 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4232 struct net_device *dev,
4233 int (*unsync)(struct net_device *,
4234 const unsigned char *));
4235 void __hw_addr_init(struct netdev_hw_addr_list *list);
4236
4237 /* Functions used for device addresses handling */
4238 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4239 unsigned char addr_type);
4240 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4241 unsigned char addr_type);
4242 void dev_addr_flush(struct net_device *dev);
4243 int dev_addr_init(struct net_device *dev);
4244
4245 /* Functions used for unicast addresses handling */
4246 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4247 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4248 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4249 int dev_uc_sync(struct net_device *to, struct net_device *from);
4250 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4251 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4252 void dev_uc_flush(struct net_device *dev);
4253 void dev_uc_init(struct net_device *dev);
4254
4255 /**
4256 * __dev_uc_sync - Synchonize device's unicast list
4257 * @dev: device to sync
4258 * @sync: function to call if address should be added
4259 * @unsync: function to call if address should be removed
4260 *
4261 * Add newly added addresses to the interface, and release
4262 * addresses that have been deleted.
4263 */
4264 static inline int __dev_uc_sync(struct net_device *dev,
4265 int (*sync)(struct net_device *,
4266 const unsigned char *),
4267 int (*unsync)(struct net_device *,
4268 const unsigned char *))
4269 {
4270 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4271 }
4272
4273 /**
4274 * __dev_uc_unsync - Remove synchronized addresses from device
4275 * @dev: device to sync
4276 * @unsync: function to call if address should be removed
4277 *
4278 * Remove all addresses that were added to the device by dev_uc_sync().
4279 */
4280 static inline void __dev_uc_unsync(struct net_device *dev,
4281 int (*unsync)(struct net_device *,
4282 const unsigned char *))
4283 {
4284 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
4285 }
4286
4287 /* Functions used for multicast addresses handling */
4288 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4289 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4290 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4291 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4292 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4293 int dev_mc_sync(struct net_device *to, struct net_device *from);
4294 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4295 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4296 void dev_mc_flush(struct net_device *dev);
4297 void dev_mc_init(struct net_device *dev);
4298
4299 /**
4300 * __dev_mc_sync - Synchonize device's multicast list
4301 * @dev: device to sync
4302 * @sync: function to call if address should be added
4303 * @unsync: function to call if address should be removed
4304 *
4305 * Add newly added addresses to the interface, and release
4306 * addresses that have been deleted.
4307 */
4308 static inline int __dev_mc_sync(struct net_device *dev,
4309 int (*sync)(struct net_device *,
4310 const unsigned char *),
4311 int (*unsync)(struct net_device *,
4312 const unsigned char *))
4313 {
4314 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4315 }
4316
4317 /**
4318 * __dev_mc_unsync - Remove synchronized addresses from device
4319 * @dev: device to sync
4320 * @unsync: function to call if address should be removed
4321 *
4322 * Remove all addresses that were added to the device by dev_mc_sync().
4323 */
4324 static inline void __dev_mc_unsync(struct net_device *dev,
4325 int (*unsync)(struct net_device *,
4326 const unsigned char *))
4327 {
4328 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
4329 }
4330
4331 /* Functions used for secondary unicast and multicast support */
4332 void dev_set_rx_mode(struct net_device *dev);
4333 void __dev_set_rx_mode(struct net_device *dev);
4334 int dev_set_promiscuity(struct net_device *dev, int inc);
4335 int dev_set_allmulti(struct net_device *dev, int inc);
4336 void netdev_state_change(struct net_device *dev);
4337 void netdev_notify_peers(struct net_device *dev);
4338 void netdev_features_change(struct net_device *dev);
4339 /* Load a device via the kmod */
4340 void dev_load(struct net *net, const char *name);
4341 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4342 struct rtnl_link_stats64 *storage);
4343 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4344 const struct net_device_stats *netdev_stats);
4345
4346 extern int netdev_max_backlog;
4347 extern int netdev_tstamp_prequeue;
4348 extern int weight_p;
4349 extern int dev_weight_rx_bias;
4350 extern int dev_weight_tx_bias;
4351 extern int dev_rx_weight;
4352 extern int dev_tx_weight;
4353 extern int gro_normal_batch;
4354
4355 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4356 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4357 struct list_head **iter);
4358 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4359 struct list_head **iter);
4360
4361 /* iterate through upper list, must be called under RCU read lock */
4362 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4363 for (iter = &(dev)->adj_list.upper, \
4364 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4365 updev; \
4366 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4367
4368 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4369 int (*fn)(struct net_device *upper_dev,
4370 void *data),
4371 void *data);
4372
4373 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4374 struct net_device *upper_dev);
4375
4376 bool netdev_has_any_upper_dev(struct net_device *dev);
4377
4378 void *netdev_lower_get_next_private(struct net_device *dev,
4379 struct list_head **iter);
4380 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4381 struct list_head **iter);
4382
4383 #define netdev_for_each_lower_private(dev, priv, iter) \
4384 for (iter = (dev)->adj_list.lower.next, \
4385 priv = netdev_lower_get_next_private(dev, &(iter)); \
4386 priv; \
4387 priv = netdev_lower_get_next_private(dev, &(iter)))
4388
4389 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4390 for (iter = &(dev)->adj_list.lower, \
4391 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4392 priv; \
4393 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4394
4395 void *netdev_lower_get_next(struct net_device *dev,
4396 struct list_head **iter);
4397
4398 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4399 for (iter = (dev)->adj_list.lower.next, \
4400 ldev = netdev_lower_get_next(dev, &(iter)); \
4401 ldev; \
4402 ldev = netdev_lower_get_next(dev, &(iter)))
4403
4404 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4405 struct list_head **iter);
4406 int netdev_walk_all_lower_dev(struct net_device *dev,
4407 int (*fn)(struct net_device *lower_dev,
4408 void *data),
4409 void *data);
4410 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4411 int (*fn)(struct net_device *lower_dev,
4412 void *data),
4413 void *data);
4414
4415 void *netdev_adjacent_get_private(struct list_head *adj_list);
4416 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4417 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4418 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4419 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4420 struct netlink_ext_ack *extack);
4421 int netdev_master_upper_dev_link(struct net_device *dev,
4422 struct net_device *upper_dev,
4423 void *upper_priv, void *upper_info,
4424 struct netlink_ext_ack *extack);
4425 void netdev_upper_dev_unlink(struct net_device *dev,
4426 struct net_device *upper_dev);
4427 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4428 struct net_device *new_dev,
4429 struct net_device *dev,
4430 struct netlink_ext_ack *extack);
4431 void netdev_adjacent_change_commit(struct net_device *old_dev,
4432 struct net_device *new_dev,
4433 struct net_device *dev);
4434 void netdev_adjacent_change_abort(struct net_device *old_dev,
4435 struct net_device *new_dev,
4436 struct net_device *dev);
4437 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4438 void *netdev_lower_dev_get_private(struct net_device *dev,
4439 struct net_device *lower_dev);
4440 void netdev_lower_state_changed(struct net_device *lower_dev,
4441 void *lower_state_info);
4442
4443 /* RSS keys are 40 or 52 bytes long */
4444 #define NETDEV_RSS_KEY_LEN 52
4445 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4446 void netdev_rss_key_fill(void *buffer, size_t len);
4447
4448 int skb_checksum_help(struct sk_buff *skb);
4449 int skb_crc32c_csum_help(struct sk_buff *skb);
4450 int skb_csum_hwoffload_help(struct sk_buff *skb,
4451 const netdev_features_t features);
4452
4453 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4454 netdev_features_t features, bool tx_path);
4455 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4456 netdev_features_t features);
4457
4458 struct netdev_bonding_info {
4459 ifslave slave;
4460 ifbond master;
4461 };
4462
4463 struct netdev_notifier_bonding_info {
4464 struct netdev_notifier_info info; /* must be first */
4465 struct netdev_bonding_info bonding_info;
4466 };
4467
4468 void netdev_bonding_info_change(struct net_device *dev,
4469 struct netdev_bonding_info *bonding_info);
4470
4471 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4472 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4473 #else
4474 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4475 const void *data)
4476 {
4477 }
4478 #endif
4479
4480 static inline
4481 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4482 {
4483 return __skb_gso_segment(skb, features, true);
4484 }
4485 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4486
4487 static inline bool can_checksum_protocol(netdev_features_t features,
4488 __be16 protocol)
4489 {
4490 if (protocol == htons(ETH_P_FCOE))
4491 return !!(features & NETIF_F_FCOE_CRC);
4492
4493 /* Assume this is an IP checksum (not SCTP CRC) */
4494
4495 if (features & NETIF_F_HW_CSUM) {
4496 /* Can checksum everything */
4497 return true;
4498 }
4499
4500 switch (protocol) {
4501 case htons(ETH_P_IP):
4502 return !!(features & NETIF_F_IP_CSUM);
4503 case htons(ETH_P_IPV6):
4504 return !!(features & NETIF_F_IPV6_CSUM);
4505 default:
4506 return false;
4507 }
4508 }
4509
4510 #ifdef CONFIG_BUG
4511 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4512 #else
4513 static inline void netdev_rx_csum_fault(struct net_device *dev,
4514 struct sk_buff *skb)
4515 {
4516 }
4517 #endif
4518 /* rx skb timestamps */
4519 void net_enable_timestamp(void);
4520 void net_disable_timestamp(void);
4521
4522 #ifdef CONFIG_PROC_FS
4523 int __init dev_proc_init(void);
4524 #else
4525 #define dev_proc_init() 0
4526 #endif
4527
4528 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4529 struct sk_buff *skb, struct net_device *dev,
4530 bool more)
4531 {
4532 __this_cpu_write(softnet_data.xmit.more, more);
4533 return ops->ndo_start_xmit(skb, dev);
4534 }
4535
4536 static inline bool netdev_xmit_more(void)
4537 {
4538 return __this_cpu_read(softnet_data.xmit.more);
4539 }
4540
4541 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4542 struct netdev_queue *txq, bool more)
4543 {
4544 const struct net_device_ops *ops = dev->netdev_ops;
4545 netdev_tx_t rc;
4546
4547 rc = __netdev_start_xmit(ops, skb, dev, more);
4548 if (rc == NETDEV_TX_OK)
4549 txq_trans_update(txq);
4550
4551 return rc;
4552 }
4553
4554 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4555 const void *ns);
4556 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4557 const void *ns);
4558
4559 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4560 {
4561 return netdev_class_create_file_ns(class_attr, NULL);
4562 }
4563
4564 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4565 {
4566 netdev_class_remove_file_ns(class_attr, NULL);
4567 }
4568
4569 extern const struct kobj_ns_type_operations net_ns_type_operations;
4570
4571 const char *netdev_drivername(const struct net_device *dev);
4572
4573 void linkwatch_run_queue(void);
4574
4575 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4576 netdev_features_t f2)
4577 {
4578 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4579 if (f1 & NETIF_F_HW_CSUM)
4580 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4581 else
4582 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4583 }
4584
4585 return f1 & f2;
4586 }
4587
4588 static inline netdev_features_t netdev_get_wanted_features(
4589 struct net_device *dev)
4590 {
4591 return (dev->features & ~dev->hw_features) | dev->wanted_features;
4592 }
4593 netdev_features_t netdev_increment_features(netdev_features_t all,
4594 netdev_features_t one, netdev_features_t mask);
4595
4596 /* Allow TSO being used on stacked device :
4597 * Performing the GSO segmentation before last device
4598 * is a performance improvement.
4599 */
4600 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4601 netdev_features_t mask)
4602 {
4603 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4604 }
4605
4606 int __netdev_update_features(struct net_device *dev);
4607 void netdev_update_features(struct net_device *dev);
4608 void netdev_change_features(struct net_device *dev);
4609
4610 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4611 struct net_device *dev);
4612
4613 netdev_features_t passthru_features_check(struct sk_buff *skb,
4614 struct net_device *dev,
4615 netdev_features_t features);
4616 netdev_features_t netif_skb_features(struct sk_buff *skb);
4617
4618 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4619 {
4620 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4621
4622 /* check flags correspondence */
4623 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4624 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4625 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4626 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4627 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4628 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4629 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4630 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4631 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4632 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4633 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4634 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4635 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4636 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4637 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4638 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4639 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4640 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4641 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4642
4643 return (features & feature) == feature;
4644 }
4645
4646 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4647 {
4648 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4649 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4650 }
4651
4652 static inline bool netif_needs_gso(struct sk_buff *skb,
4653 netdev_features_t features)
4654 {
4655 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4656 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4657 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4658 }
4659
4660 static inline void netif_set_gso_max_size(struct net_device *dev,
4661 unsigned int size)
4662 {
4663 dev->gso_max_size = size;
4664 }
4665
4666 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4667 int pulled_hlen, u16 mac_offset,
4668 int mac_len)
4669 {
4670 skb->protocol = protocol;
4671 skb->encapsulation = 1;
4672 skb_push(skb, pulled_hlen);
4673 skb_reset_transport_header(skb);
4674 skb->mac_header = mac_offset;
4675 skb->network_header = skb->mac_header + mac_len;
4676 skb->mac_len = mac_len;
4677 }
4678
4679 static inline bool netif_is_macsec(const struct net_device *dev)
4680 {
4681 return dev->priv_flags & IFF_MACSEC;
4682 }
4683
4684 static inline bool netif_is_macvlan(const struct net_device *dev)
4685 {
4686 return dev->priv_flags & IFF_MACVLAN;
4687 }
4688
4689 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4690 {
4691 return dev->priv_flags & IFF_MACVLAN_PORT;
4692 }
4693
4694 static inline bool netif_is_bond_master(const struct net_device *dev)
4695 {
4696 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4697 }
4698
4699 static inline bool netif_is_bond_slave(const struct net_device *dev)
4700 {
4701 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4702 }
4703
4704 static inline bool netif_supports_nofcs(struct net_device *dev)
4705 {
4706 return dev->priv_flags & IFF_SUPP_NOFCS;
4707 }
4708
4709 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4710 {
4711 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4712 }
4713
4714 static inline bool netif_is_l3_master(const struct net_device *dev)
4715 {
4716 return dev->priv_flags & IFF_L3MDEV_MASTER;
4717 }
4718
4719 static inline bool netif_is_l3_slave(const struct net_device *dev)
4720 {
4721 return dev->priv_flags & IFF_L3MDEV_SLAVE;
4722 }
4723
4724 static inline bool netif_is_bridge_master(const struct net_device *dev)
4725 {
4726 return dev->priv_flags & IFF_EBRIDGE;
4727 }
4728
4729 static inline bool netif_is_bridge_port(const struct net_device *dev)
4730 {
4731 return dev->priv_flags & IFF_BRIDGE_PORT;
4732 }
4733
4734 static inline bool netif_is_ovs_master(const struct net_device *dev)
4735 {
4736 return dev->priv_flags & IFF_OPENVSWITCH;
4737 }
4738
4739 static inline bool netif_is_ovs_port(const struct net_device *dev)
4740 {
4741 return dev->priv_flags & IFF_OVS_DATAPATH;
4742 }
4743
4744 static inline bool netif_is_team_master(const struct net_device *dev)
4745 {
4746 return dev->priv_flags & IFF_TEAM;
4747 }
4748
4749 static inline bool netif_is_team_port(const struct net_device *dev)
4750 {
4751 return dev->priv_flags & IFF_TEAM_PORT;
4752 }
4753
4754 static inline bool netif_is_lag_master(const struct net_device *dev)
4755 {
4756 return netif_is_bond_master(dev) || netif_is_team_master(dev);
4757 }
4758
4759 static inline bool netif_is_lag_port(const struct net_device *dev)
4760 {
4761 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4762 }
4763
4764 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4765 {
4766 return dev->priv_flags & IFF_RXFH_CONFIGURED;
4767 }
4768
4769 static inline bool netif_is_failover(const struct net_device *dev)
4770 {
4771 return dev->priv_flags & IFF_FAILOVER;
4772 }
4773
4774 static inline bool netif_is_failover_slave(const struct net_device *dev)
4775 {
4776 return dev->priv_flags & IFF_FAILOVER_SLAVE;
4777 }
4778
4779 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4780 static inline void netif_keep_dst(struct net_device *dev)
4781 {
4782 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4783 }
4784
4785 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4786 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4787 {
4788 /* TODO: reserve and use an additional IFF bit, if we get more users */
4789 return dev->priv_flags & IFF_MACSEC;
4790 }
4791
4792 extern struct pernet_operations __net_initdata loopback_net_ops;
4793
4794 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4795
4796 /* netdev_printk helpers, similar to dev_printk */
4797
4798 static inline const char *netdev_name(const struct net_device *dev)
4799 {
4800 if (!dev->name[0] || strchr(dev->name, '%'))
4801 return "(unnamed net_device)";
4802 return dev->name;
4803 }
4804
4805 static inline bool netdev_unregistering(const struct net_device *dev)
4806 {
4807 return dev->reg_state == NETREG_UNREGISTERING;
4808 }
4809
4810 static inline const char *netdev_reg_state(const struct net_device *dev)
4811 {
4812 switch (dev->reg_state) {
4813 case NETREG_UNINITIALIZED: return " (uninitialized)";
4814 case NETREG_REGISTERED: return "";
4815 case NETREG_UNREGISTERING: return " (unregistering)";
4816 case NETREG_UNREGISTERED: return " (unregistered)";
4817 case NETREG_RELEASED: return " (released)";
4818 case NETREG_DUMMY: return " (dummy)";
4819 }
4820
4821 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4822 return " (unknown)";
4823 }
4824
4825 __printf(3, 4) __cold
4826 void netdev_printk(const char *level, const struct net_device *dev,
4827 const char *format, ...);
4828 __printf(2, 3) __cold
4829 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4830 __printf(2, 3) __cold
4831 void netdev_alert(const struct net_device *dev, const char *format, ...);
4832 __printf(2, 3) __cold
4833 void netdev_crit(const struct net_device *dev, const char *format, ...);
4834 __printf(2, 3) __cold
4835 void netdev_err(const struct net_device *dev, const char *format, ...);
4836 __printf(2, 3) __cold
4837 void netdev_warn(const struct net_device *dev, const char *format, ...);
4838 __printf(2, 3) __cold
4839 void netdev_notice(const struct net_device *dev, const char *format, ...);
4840 __printf(2, 3) __cold
4841 void netdev_info(const struct net_device *dev, const char *format, ...);
4842
4843 #define netdev_level_once(level, dev, fmt, ...) \
4844 do { \
4845 static bool __print_once __read_mostly; \
4846 \
4847 if (!__print_once) { \
4848 __print_once = true; \
4849 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \
4850 } \
4851 } while (0)
4852
4853 #define netdev_emerg_once(dev, fmt, ...) \
4854 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4855 #define netdev_alert_once(dev, fmt, ...) \
4856 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4857 #define netdev_crit_once(dev, fmt, ...) \
4858 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4859 #define netdev_err_once(dev, fmt, ...) \
4860 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4861 #define netdev_warn_once(dev, fmt, ...) \
4862 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4863 #define netdev_notice_once(dev, fmt, ...) \
4864 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4865 #define netdev_info_once(dev, fmt, ...) \
4866 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4867
4868 #define MODULE_ALIAS_NETDEV(device) \
4869 MODULE_ALIAS("netdev-" device)
4870
4871 #if defined(CONFIG_DYNAMIC_DEBUG)
4872 #define netdev_dbg(__dev, format, args...) \
4873 do { \
4874 dynamic_netdev_dbg(__dev, format, ##args); \
4875 } while (0)
4876 #elif defined(DEBUG)
4877 #define netdev_dbg(__dev, format, args...) \
4878 netdev_printk(KERN_DEBUG, __dev, format, ##args)
4879 #else
4880 #define netdev_dbg(__dev, format, args...) \
4881 ({ \
4882 if (0) \
4883 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4884 })
4885 #endif
4886
4887 #if defined(VERBOSE_DEBUG)
4888 #define netdev_vdbg netdev_dbg
4889 #else
4890
4891 #define netdev_vdbg(dev, format, args...) \
4892 ({ \
4893 if (0) \
4894 netdev_printk(KERN_DEBUG, dev, format, ##args); \
4895 0; \
4896 })
4897 #endif
4898
4899 /*
4900 * netdev_WARN() acts like dev_printk(), but with the key difference
4901 * of using a WARN/WARN_ON to get the message out, including the
4902 * file/line information and a backtrace.
4903 */
4904 #define netdev_WARN(dev, format, args...) \
4905 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \
4906 netdev_reg_state(dev), ##args)
4907
4908 #define netdev_WARN_ONCE(dev, format, args...) \
4909 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \
4910 netdev_reg_state(dev), ##args)
4911
4912 /* netif printk helpers, similar to netdev_printk */
4913
4914 #define netif_printk(priv, type, level, dev, fmt, args...) \
4915 do { \
4916 if (netif_msg_##type(priv)) \
4917 netdev_printk(level, (dev), fmt, ##args); \
4918 } while (0)
4919
4920 #define netif_level(level, priv, type, dev, fmt, args...) \
4921 do { \
4922 if (netif_msg_##type(priv)) \
4923 netdev_##level(dev, fmt, ##args); \
4924 } while (0)
4925
4926 #define netif_emerg(priv, type, dev, fmt, args...) \
4927 netif_level(emerg, priv, type, dev, fmt, ##args)
4928 #define netif_alert(priv, type, dev, fmt, args...) \
4929 netif_level(alert, priv, type, dev, fmt, ##args)
4930 #define netif_crit(priv, type, dev, fmt, args...) \
4931 netif_level(crit, priv, type, dev, fmt, ##args)
4932 #define netif_err(priv, type, dev, fmt, args...) \
4933 netif_level(err, priv, type, dev, fmt, ##args)
4934 #define netif_warn(priv, type, dev, fmt, args...) \
4935 netif_level(warn, priv, type, dev, fmt, ##args)
4936 #define netif_notice(priv, type, dev, fmt, args...) \
4937 netif_level(notice, priv, type, dev, fmt, ##args)
4938 #define netif_info(priv, type, dev, fmt, args...) \
4939 netif_level(info, priv, type, dev, fmt, ##args)
4940
4941 #if defined(CONFIG_DYNAMIC_DEBUG)
4942 #define netif_dbg(priv, type, netdev, format, args...) \
4943 do { \
4944 if (netif_msg_##type(priv)) \
4945 dynamic_netdev_dbg(netdev, format, ##args); \
4946 } while (0)
4947 #elif defined(DEBUG)
4948 #define netif_dbg(priv, type, dev, format, args...) \
4949 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4950 #else
4951 #define netif_dbg(priv, type, dev, format, args...) \
4952 ({ \
4953 if (0) \
4954 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4955 0; \
4956 })
4957 #endif
4958
4959 /* if @cond then downgrade to debug, else print at @level */
4960 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \
4961 do { \
4962 if (cond) \
4963 netif_dbg(priv, type, netdev, fmt, ##args); \
4964 else \
4965 netif_ ## level(priv, type, netdev, fmt, ##args); \
4966 } while (0)
4967
4968 #if defined(VERBOSE_DEBUG)
4969 #define netif_vdbg netif_dbg
4970 #else
4971 #define netif_vdbg(priv, type, dev, format, args...) \
4972 ({ \
4973 if (0) \
4974 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4975 0; \
4976 })
4977 #endif
4978
4979 /*
4980 * The list of packet types we will receive (as opposed to discard)
4981 * and the routines to invoke.
4982 *
4983 * Why 16. Because with 16 the only overlap we get on a hash of the
4984 * low nibble of the protocol value is RARP/SNAP/X.25.
4985 *
4986 * 0800 IP
4987 * 0001 802.3
4988 * 0002 AX.25
4989 * 0004 802.2
4990 * 8035 RARP
4991 * 0005 SNAP
4992 * 0805 X.25
4993 * 0806 ARP
4994 * 8137 IPX
4995 * 0009 Localtalk
4996 * 86DD IPv6
4997 */
4998 #define PTYPE_HASH_SIZE (16)
4999 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
5000
5001 extern struct net_device *blackhole_netdev;
5002
5003 #endif /* _LINUX_NETDEVICE_H */