]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/netdevice.h
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[mirror_ubuntu-artful-kernel.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/pm_qos.h>
29 #include <linux/timer.h>
30 #include <linux/bug.h>
31 #include <linux/delay.h>
32 #include <linux/atomic.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53
54 struct netpoll_info;
55 struct device;
56 struct phy_device;
57 /* 802.11 specific */
58 struct wireless_dev;
59 /* source back-compat hooks */
60 #define SET_ETHTOOL_OPS(netdev,ops) \
61 ( (netdev)->ethtool_ops = (ops) )
62
63 void netdev_set_default_ethtool_ops(struct net_device *dev,
64 const struct ethtool_ops *ops);
65
66 /* hardware address assignment types */
67 #define NET_ADDR_PERM 0 /* address is permanent (default) */
68 #define NET_ADDR_RANDOM 1 /* address is generated randomly */
69 #define NET_ADDR_STOLEN 2 /* address is stolen from other device */
70 #define NET_ADDR_SET 3 /* address is set using
71 * dev_set_mac_address() */
72
73 /* Backlog congestion levels */
74 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
75 #define NET_RX_DROP 1 /* packet dropped */
76
77 /*
78 * Transmit return codes: transmit return codes originate from three different
79 * namespaces:
80 *
81 * - qdisc return codes
82 * - driver transmit return codes
83 * - errno values
84 *
85 * Drivers are allowed to return any one of those in their hard_start_xmit()
86 * function. Real network devices commonly used with qdiscs should only return
87 * the driver transmit return codes though - when qdiscs are used, the actual
88 * transmission happens asynchronously, so the value is not propagated to
89 * higher layers. Virtual network devices transmit synchronously, in this case
90 * the driver transmit return codes are consumed by dev_queue_xmit(), all
91 * others are propagated to higher layers.
92 */
93
94 /* qdisc ->enqueue() return codes. */
95 #define NET_XMIT_SUCCESS 0x00
96 #define NET_XMIT_DROP 0x01 /* skb dropped */
97 #define NET_XMIT_CN 0x02 /* congestion notification */
98 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
99 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
100
101 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
102 * indicates that the device will soon be dropping packets, or already drops
103 * some packets of the same priority; prompting us to send less aggressively. */
104 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
105 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
106
107 /* Driver transmit return codes */
108 #define NETDEV_TX_MASK 0xf0
109
110 enum netdev_tx {
111 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
112 NETDEV_TX_OK = 0x00, /* driver took care of packet */
113 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
114 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
115 };
116 typedef enum netdev_tx netdev_tx_t;
117
118 /*
119 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121 */
122 static inline bool dev_xmit_complete(int rc)
123 {
124 /*
125 * Positive cases with an skb consumed by a driver:
126 * - successful transmission (rc == NETDEV_TX_OK)
127 * - error while transmitting (rc < 0)
128 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 */
130 if (likely(rc < NET_XMIT_MASK))
131 return true;
132
133 return false;
134 }
135
136 /*
137 * Compute the worst case header length according to the protocols
138 * used.
139 */
140
141 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
142 # if defined(CONFIG_MAC80211_MESH)
143 # define LL_MAX_HEADER 128
144 # else
145 # define LL_MAX_HEADER 96
146 # endif
147 #else
148 # define LL_MAX_HEADER 32
149 #endif
150
151 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
152 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
153 #define MAX_HEADER LL_MAX_HEADER
154 #else
155 #define MAX_HEADER (LL_MAX_HEADER + 48)
156 #endif
157
158 /*
159 * Old network device statistics. Fields are native words
160 * (unsigned long) so they can be read and written atomically.
161 */
162
163 struct net_device_stats {
164 unsigned long rx_packets;
165 unsigned long tx_packets;
166 unsigned long rx_bytes;
167 unsigned long tx_bytes;
168 unsigned long rx_errors;
169 unsigned long tx_errors;
170 unsigned long rx_dropped;
171 unsigned long tx_dropped;
172 unsigned long multicast;
173 unsigned long collisions;
174 unsigned long rx_length_errors;
175 unsigned long rx_over_errors;
176 unsigned long rx_crc_errors;
177 unsigned long rx_frame_errors;
178 unsigned long rx_fifo_errors;
179 unsigned long rx_missed_errors;
180 unsigned long tx_aborted_errors;
181 unsigned long tx_carrier_errors;
182 unsigned long tx_fifo_errors;
183 unsigned long tx_heartbeat_errors;
184 unsigned long tx_window_errors;
185 unsigned long rx_compressed;
186 unsigned long tx_compressed;
187 };
188
189
190 #include <linux/cache.h>
191 #include <linux/skbuff.h>
192
193 #ifdef CONFIG_RPS
194 #include <linux/static_key.h>
195 extern struct static_key rps_needed;
196 #endif
197
198 struct neighbour;
199 struct neigh_parms;
200 struct sk_buff;
201
202 struct netdev_hw_addr {
203 struct list_head list;
204 unsigned char addr[MAX_ADDR_LEN];
205 unsigned char type;
206 #define NETDEV_HW_ADDR_T_LAN 1
207 #define NETDEV_HW_ADDR_T_SAN 2
208 #define NETDEV_HW_ADDR_T_SLAVE 3
209 #define NETDEV_HW_ADDR_T_UNICAST 4
210 #define NETDEV_HW_ADDR_T_MULTICAST 5
211 bool global_use;
212 int sync_cnt;
213 int refcount;
214 int synced;
215 struct rcu_head rcu_head;
216 };
217
218 struct netdev_hw_addr_list {
219 struct list_head list;
220 int count;
221 };
222
223 #define netdev_hw_addr_list_count(l) ((l)->count)
224 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
225 #define netdev_hw_addr_list_for_each(ha, l) \
226 list_for_each_entry(ha, &(l)->list, list)
227
228 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
229 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
230 #define netdev_for_each_uc_addr(ha, dev) \
231 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
232
233 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
234 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
235 #define netdev_for_each_mc_addr(ha, dev) \
236 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
237
238 struct hh_cache {
239 u16 hh_len;
240 u16 __pad;
241 seqlock_t hh_lock;
242
243 /* cached hardware header; allow for machine alignment needs. */
244 #define HH_DATA_MOD 16
245 #define HH_DATA_OFF(__len) \
246 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
247 #define HH_DATA_ALIGN(__len) \
248 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
249 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
250 };
251
252 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
253 * Alternative is:
254 * dev->hard_header_len ? (dev->hard_header_len +
255 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
256 *
257 * We could use other alignment values, but we must maintain the
258 * relationship HH alignment <= LL alignment.
259 */
260 #define LL_RESERVED_SPACE(dev) \
261 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
263 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264
265 struct header_ops {
266 int (*create) (struct sk_buff *skb, struct net_device *dev,
267 unsigned short type, const void *daddr,
268 const void *saddr, unsigned int len);
269 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
270 int (*rebuild)(struct sk_buff *skb);
271 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
272 void (*cache_update)(struct hh_cache *hh,
273 const struct net_device *dev,
274 const unsigned char *haddr);
275 };
276
277 /* These flag bits are private to the generic network queueing
278 * layer, they may not be explicitly referenced by any other
279 * code.
280 */
281
282 enum netdev_state_t {
283 __LINK_STATE_START,
284 __LINK_STATE_PRESENT,
285 __LINK_STATE_NOCARRIER,
286 __LINK_STATE_LINKWATCH_PENDING,
287 __LINK_STATE_DORMANT,
288 };
289
290
291 /*
292 * This structure holds at boot time configured netdevice settings. They
293 * are then used in the device probing.
294 */
295 struct netdev_boot_setup {
296 char name[IFNAMSIZ];
297 struct ifmap map;
298 };
299 #define NETDEV_BOOT_SETUP_MAX 8
300
301 int __init netdev_boot_setup(char *str);
302
303 /*
304 * Structure for NAPI scheduling similar to tasklet but with weighting
305 */
306 struct napi_struct {
307 /* The poll_list must only be managed by the entity which
308 * changes the state of the NAPI_STATE_SCHED bit. This means
309 * whoever atomically sets that bit can add this napi_struct
310 * to the per-cpu poll_list, and whoever clears that bit
311 * can remove from the list right before clearing the bit.
312 */
313 struct list_head poll_list;
314
315 unsigned long state;
316 int weight;
317 unsigned int gro_count;
318 int (*poll)(struct napi_struct *, int);
319 #ifdef CONFIG_NETPOLL
320 spinlock_t poll_lock;
321 int poll_owner;
322 #endif
323 struct net_device *dev;
324 struct sk_buff *gro_list;
325 struct sk_buff *skb;
326 struct list_head dev_list;
327 struct hlist_node napi_hash_node;
328 unsigned int napi_id;
329 };
330
331 enum {
332 NAPI_STATE_SCHED, /* Poll is scheduled */
333 NAPI_STATE_DISABLE, /* Disable pending */
334 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
335 NAPI_STATE_HASHED, /* In NAPI hash */
336 };
337
338 enum gro_result {
339 GRO_MERGED,
340 GRO_MERGED_FREE,
341 GRO_HELD,
342 GRO_NORMAL,
343 GRO_DROP,
344 };
345 typedef enum gro_result gro_result_t;
346
347 /*
348 * enum rx_handler_result - Possible return values for rx_handlers.
349 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
350 * further.
351 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
352 * case skb->dev was changed by rx_handler.
353 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
354 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
355 *
356 * rx_handlers are functions called from inside __netif_receive_skb(), to do
357 * special processing of the skb, prior to delivery to protocol handlers.
358 *
359 * Currently, a net_device can only have a single rx_handler registered. Trying
360 * to register a second rx_handler will return -EBUSY.
361 *
362 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
363 * To unregister a rx_handler on a net_device, use
364 * netdev_rx_handler_unregister().
365 *
366 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
367 * do with the skb.
368 *
369 * If the rx_handler consumed to skb in some way, it should return
370 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
371 * the skb to be delivered in some other ways.
372 *
373 * If the rx_handler changed skb->dev, to divert the skb to another
374 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
375 * new device will be called if it exists.
376 *
377 * If the rx_handler consider the skb should be ignored, it should return
378 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
379 * are registered on exact device (ptype->dev == skb->dev).
380 *
381 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
382 * delivered, it should return RX_HANDLER_PASS.
383 *
384 * A device without a registered rx_handler will behave as if rx_handler
385 * returned RX_HANDLER_PASS.
386 */
387
388 enum rx_handler_result {
389 RX_HANDLER_CONSUMED,
390 RX_HANDLER_ANOTHER,
391 RX_HANDLER_EXACT,
392 RX_HANDLER_PASS,
393 };
394 typedef enum rx_handler_result rx_handler_result_t;
395 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
396
397 void __napi_schedule(struct napi_struct *n);
398
399 static inline bool napi_disable_pending(struct napi_struct *n)
400 {
401 return test_bit(NAPI_STATE_DISABLE, &n->state);
402 }
403
404 /**
405 * napi_schedule_prep - check if napi can be scheduled
406 * @n: napi context
407 *
408 * Test if NAPI routine is already running, and if not mark
409 * it as running. This is used as a condition variable
410 * insure only one NAPI poll instance runs. We also make
411 * sure there is no pending NAPI disable.
412 */
413 static inline bool napi_schedule_prep(struct napi_struct *n)
414 {
415 return !napi_disable_pending(n) &&
416 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
417 }
418
419 /**
420 * napi_schedule - schedule NAPI poll
421 * @n: napi context
422 *
423 * Schedule NAPI poll routine to be called if it is not already
424 * running.
425 */
426 static inline void napi_schedule(struct napi_struct *n)
427 {
428 if (napi_schedule_prep(n))
429 __napi_schedule(n);
430 }
431
432 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
433 static inline bool napi_reschedule(struct napi_struct *napi)
434 {
435 if (napi_schedule_prep(napi)) {
436 __napi_schedule(napi);
437 return true;
438 }
439 return false;
440 }
441
442 /**
443 * napi_complete - NAPI processing complete
444 * @n: napi context
445 *
446 * Mark NAPI processing as complete.
447 */
448 void __napi_complete(struct napi_struct *n);
449 void napi_complete(struct napi_struct *n);
450
451 /**
452 * napi_by_id - lookup a NAPI by napi_id
453 * @napi_id: hashed napi_id
454 *
455 * lookup @napi_id in napi_hash table
456 * must be called under rcu_read_lock()
457 */
458 struct napi_struct *napi_by_id(unsigned int napi_id);
459
460 /**
461 * napi_hash_add - add a NAPI to global hashtable
462 * @napi: napi context
463 *
464 * generate a new napi_id and store a @napi under it in napi_hash
465 */
466 void napi_hash_add(struct napi_struct *napi);
467
468 /**
469 * napi_hash_del - remove a NAPI from global table
470 * @napi: napi context
471 *
472 * Warning: caller must observe rcu grace period
473 * before freeing memory containing @napi
474 */
475 void napi_hash_del(struct napi_struct *napi);
476
477 /**
478 * napi_disable - prevent NAPI from scheduling
479 * @n: napi context
480 *
481 * Stop NAPI from being scheduled on this context.
482 * Waits till any outstanding processing completes.
483 */
484 static inline void napi_disable(struct napi_struct *n)
485 {
486 set_bit(NAPI_STATE_DISABLE, &n->state);
487 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
488 msleep(1);
489 clear_bit(NAPI_STATE_DISABLE, &n->state);
490 }
491
492 /**
493 * napi_enable - enable NAPI scheduling
494 * @n: napi context
495 *
496 * Resume NAPI from being scheduled on this context.
497 * Must be paired with napi_disable.
498 */
499 static inline void napi_enable(struct napi_struct *n)
500 {
501 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
502 smp_mb__before_clear_bit();
503 clear_bit(NAPI_STATE_SCHED, &n->state);
504 }
505
506 #ifdef CONFIG_SMP
507 /**
508 * napi_synchronize - wait until NAPI is not running
509 * @n: napi context
510 *
511 * Wait until NAPI is done being scheduled on this context.
512 * Waits till any outstanding processing completes but
513 * does not disable future activations.
514 */
515 static inline void napi_synchronize(const struct napi_struct *n)
516 {
517 while (test_bit(NAPI_STATE_SCHED, &n->state))
518 msleep(1);
519 }
520 #else
521 # define napi_synchronize(n) barrier()
522 #endif
523
524 enum netdev_queue_state_t {
525 __QUEUE_STATE_DRV_XOFF,
526 __QUEUE_STATE_STACK_XOFF,
527 __QUEUE_STATE_FROZEN,
528 #define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF) | \
529 (1 << __QUEUE_STATE_STACK_XOFF))
530 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
531 (1 << __QUEUE_STATE_FROZEN))
532 };
533 /*
534 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
535 * netif_tx_* functions below are used to manipulate this flag. The
536 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
537 * queue independently. The netif_xmit_*stopped functions below are called
538 * to check if the queue has been stopped by the driver or stack (either
539 * of the XOFF bits are set in the state). Drivers should not need to call
540 * netif_xmit*stopped functions, they should only be using netif_tx_*.
541 */
542
543 struct netdev_queue {
544 /*
545 * read mostly part
546 */
547 struct net_device *dev;
548 struct Qdisc *qdisc;
549 struct Qdisc *qdisc_sleeping;
550 #ifdef CONFIG_SYSFS
551 struct kobject kobj;
552 #endif
553 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
554 int numa_node;
555 #endif
556 /*
557 * write mostly part
558 */
559 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
560 int xmit_lock_owner;
561 /*
562 * please use this field instead of dev->trans_start
563 */
564 unsigned long trans_start;
565
566 /*
567 * Number of TX timeouts for this queue
568 * (/sys/class/net/DEV/Q/trans_timeout)
569 */
570 unsigned long trans_timeout;
571
572 unsigned long state;
573
574 #ifdef CONFIG_BQL
575 struct dql dql;
576 #endif
577 } ____cacheline_aligned_in_smp;
578
579 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
580 {
581 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
582 return q->numa_node;
583 #else
584 return NUMA_NO_NODE;
585 #endif
586 }
587
588 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
589 {
590 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
591 q->numa_node = node;
592 #endif
593 }
594
595 #ifdef CONFIG_RPS
596 /*
597 * This structure holds an RPS map which can be of variable length. The
598 * map is an array of CPUs.
599 */
600 struct rps_map {
601 unsigned int len;
602 struct rcu_head rcu;
603 u16 cpus[0];
604 };
605 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
606
607 /*
608 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
609 * tail pointer for that CPU's input queue at the time of last enqueue, and
610 * a hardware filter index.
611 */
612 struct rps_dev_flow {
613 u16 cpu;
614 u16 filter;
615 unsigned int last_qtail;
616 };
617 #define RPS_NO_FILTER 0xffff
618
619 /*
620 * The rps_dev_flow_table structure contains a table of flow mappings.
621 */
622 struct rps_dev_flow_table {
623 unsigned int mask;
624 struct rcu_head rcu;
625 struct rps_dev_flow flows[0];
626 };
627 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
628 ((_num) * sizeof(struct rps_dev_flow)))
629
630 /*
631 * The rps_sock_flow_table contains mappings of flows to the last CPU
632 * on which they were processed by the application (set in recvmsg).
633 */
634 struct rps_sock_flow_table {
635 unsigned int mask;
636 u16 ents[0];
637 };
638 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
639 ((_num) * sizeof(u16)))
640
641 #define RPS_NO_CPU 0xffff
642
643 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
644 u32 hash)
645 {
646 if (table && hash) {
647 unsigned int cpu, index = hash & table->mask;
648
649 /* We only give a hint, preemption can change cpu under us */
650 cpu = raw_smp_processor_id();
651
652 if (table->ents[index] != cpu)
653 table->ents[index] = cpu;
654 }
655 }
656
657 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
658 u32 hash)
659 {
660 if (table && hash)
661 table->ents[hash & table->mask] = RPS_NO_CPU;
662 }
663
664 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
665
666 #ifdef CONFIG_RFS_ACCEL
667 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
668 u16 filter_id);
669 #endif
670
671 /* This structure contains an instance of an RX queue. */
672 struct netdev_rx_queue {
673 struct rps_map __rcu *rps_map;
674 struct rps_dev_flow_table __rcu *rps_flow_table;
675 struct kobject kobj;
676 struct net_device *dev;
677 } ____cacheline_aligned_in_smp;
678 #endif /* CONFIG_RPS */
679
680 #ifdef CONFIG_XPS
681 /*
682 * This structure holds an XPS map which can be of variable length. The
683 * map is an array of queues.
684 */
685 struct xps_map {
686 unsigned int len;
687 unsigned int alloc_len;
688 struct rcu_head rcu;
689 u16 queues[0];
690 };
691 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
692 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
693 / sizeof(u16))
694
695 /*
696 * This structure holds all XPS maps for device. Maps are indexed by CPU.
697 */
698 struct xps_dev_maps {
699 struct rcu_head rcu;
700 struct xps_map __rcu *cpu_map[0];
701 };
702 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
703 (nr_cpu_ids * sizeof(struct xps_map *)))
704 #endif /* CONFIG_XPS */
705
706 #define TC_MAX_QUEUE 16
707 #define TC_BITMASK 15
708 /* HW offloaded queuing disciplines txq count and offset maps */
709 struct netdev_tc_txq {
710 u16 count;
711 u16 offset;
712 };
713
714 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
715 /*
716 * This structure is to hold information about the device
717 * configured to run FCoE protocol stack.
718 */
719 struct netdev_fcoe_hbainfo {
720 char manufacturer[64];
721 char serial_number[64];
722 char hardware_version[64];
723 char driver_version[64];
724 char optionrom_version[64];
725 char firmware_version[64];
726 char model[256];
727 char model_description[256];
728 };
729 #endif
730
731 #define MAX_PHYS_PORT_ID_LEN 32
732
733 /* This structure holds a unique identifier to identify the
734 * physical port used by a netdevice.
735 */
736 struct netdev_phys_port_id {
737 unsigned char id[MAX_PHYS_PORT_ID_LEN];
738 unsigned char id_len;
739 };
740
741 /*
742 * This structure defines the management hooks for network devices.
743 * The following hooks can be defined; unless noted otherwise, they are
744 * optional and can be filled with a null pointer.
745 *
746 * int (*ndo_init)(struct net_device *dev);
747 * This function is called once when network device is registered.
748 * The network device can use this to any late stage initializaton
749 * or semantic validattion. It can fail with an error code which will
750 * be propogated back to register_netdev
751 *
752 * void (*ndo_uninit)(struct net_device *dev);
753 * This function is called when device is unregistered or when registration
754 * fails. It is not called if init fails.
755 *
756 * int (*ndo_open)(struct net_device *dev);
757 * This function is called when network device transistions to the up
758 * state.
759 *
760 * int (*ndo_stop)(struct net_device *dev);
761 * This function is called when network device transistions to the down
762 * state.
763 *
764 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
765 * struct net_device *dev);
766 * Called when a packet needs to be transmitted.
767 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
768 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
769 * Required can not be NULL.
770 *
771 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
772 * Called to decide which queue to when device supports multiple
773 * transmit queues.
774 *
775 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
776 * This function is called to allow device receiver to make
777 * changes to configuration when multicast or promiscious is enabled.
778 *
779 * void (*ndo_set_rx_mode)(struct net_device *dev);
780 * This function is called device changes address list filtering.
781 * If driver handles unicast address filtering, it should set
782 * IFF_UNICAST_FLT to its priv_flags.
783 *
784 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
785 * This function is called when the Media Access Control address
786 * needs to be changed. If this interface is not defined, the
787 * mac address can not be changed.
788 *
789 * int (*ndo_validate_addr)(struct net_device *dev);
790 * Test if Media Access Control address is valid for the device.
791 *
792 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
793 * Called when a user request an ioctl which can't be handled by
794 * the generic interface code. If not defined ioctl's return
795 * not supported error code.
796 *
797 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
798 * Used to set network devices bus interface parameters. This interface
799 * is retained for legacy reason, new devices should use the bus
800 * interface (PCI) for low level management.
801 *
802 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
803 * Called when a user wants to change the Maximum Transfer Unit
804 * of a device. If not defined, any request to change MTU will
805 * will return an error.
806 *
807 * void (*ndo_tx_timeout)(struct net_device *dev);
808 * Callback uses when the transmitter has not made any progress
809 * for dev->watchdog ticks.
810 *
811 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
812 * struct rtnl_link_stats64 *storage);
813 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
814 * Called when a user wants to get the network device usage
815 * statistics. Drivers must do one of the following:
816 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
817 * rtnl_link_stats64 structure passed by the caller.
818 * 2. Define @ndo_get_stats to update a net_device_stats structure
819 * (which should normally be dev->stats) and return a pointer to
820 * it. The structure may be changed asynchronously only if each
821 * field is written atomically.
822 * 3. Update dev->stats asynchronously and atomically, and define
823 * neither operation.
824 *
825 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16t vid);
826 * If device support VLAN filtering this function is called when a
827 * VLAN id is registered.
828 *
829 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
830 * If device support VLAN filtering this function is called when a
831 * VLAN id is unregistered.
832 *
833 * void (*ndo_poll_controller)(struct net_device *dev);
834 *
835 * SR-IOV management functions.
836 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
837 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
838 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
839 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
840 * int (*ndo_get_vf_config)(struct net_device *dev,
841 * int vf, struct ifla_vf_info *ivf);
842 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
843 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
844 * struct nlattr *port[]);
845 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
846 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
847 * Called to setup 'tc' number of traffic classes in the net device. This
848 * is always called from the stack with the rtnl lock held and netif tx
849 * queues stopped. This allows the netdevice to perform queue management
850 * safely.
851 *
852 * Fiber Channel over Ethernet (FCoE) offload functions.
853 * int (*ndo_fcoe_enable)(struct net_device *dev);
854 * Called when the FCoE protocol stack wants to start using LLD for FCoE
855 * so the underlying device can perform whatever needed configuration or
856 * initialization to support acceleration of FCoE traffic.
857 *
858 * int (*ndo_fcoe_disable)(struct net_device *dev);
859 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
860 * so the underlying device can perform whatever needed clean-ups to
861 * stop supporting acceleration of FCoE traffic.
862 *
863 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
864 * struct scatterlist *sgl, unsigned int sgc);
865 * Called when the FCoE Initiator wants to initialize an I/O that
866 * is a possible candidate for Direct Data Placement (DDP). The LLD can
867 * perform necessary setup and returns 1 to indicate the device is set up
868 * successfully to perform DDP on this I/O, otherwise this returns 0.
869 *
870 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
871 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
872 * indicated by the FC exchange id 'xid', so the underlying device can
873 * clean up and reuse resources for later DDP requests.
874 *
875 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
876 * struct scatterlist *sgl, unsigned int sgc);
877 * Called when the FCoE Target wants to initialize an I/O that
878 * is a possible candidate for Direct Data Placement (DDP). The LLD can
879 * perform necessary setup and returns 1 to indicate the device is set up
880 * successfully to perform DDP on this I/O, otherwise this returns 0.
881 *
882 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
883 * struct netdev_fcoe_hbainfo *hbainfo);
884 * Called when the FCoE Protocol stack wants information on the underlying
885 * device. This information is utilized by the FCoE protocol stack to
886 * register attributes with Fiber Channel management service as per the
887 * FC-GS Fabric Device Management Information(FDMI) specification.
888 *
889 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
890 * Called when the underlying device wants to override default World Wide
891 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
892 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
893 * protocol stack to use.
894 *
895 * RFS acceleration.
896 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
897 * u16 rxq_index, u32 flow_id);
898 * Set hardware filter for RFS. rxq_index is the target queue index;
899 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
900 * Return the filter ID on success, or a negative error code.
901 *
902 * Slave management functions (for bridge, bonding, etc).
903 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
904 * Called to make another netdev an underling.
905 *
906 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
907 * Called to release previously enslaved netdev.
908 *
909 * Feature/offload setting functions.
910 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
911 * netdev_features_t features);
912 * Adjusts the requested feature flags according to device-specific
913 * constraints, and returns the resulting flags. Must not modify
914 * the device state.
915 *
916 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
917 * Called to update device configuration to new features. Passed
918 * feature set might be less than what was returned by ndo_fix_features()).
919 * Must return >0 or -errno if it changed dev->features itself.
920 *
921 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
922 * struct net_device *dev,
923 * const unsigned char *addr, u16 flags)
924 * Adds an FDB entry to dev for addr.
925 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
926 * struct net_device *dev,
927 * const unsigned char *addr)
928 * Deletes the FDB entry from dev coresponding to addr.
929 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
930 * struct net_device *dev, int idx)
931 * Used to add FDB entries to dump requests. Implementers should add
932 * entries to skb and update idx with the number of entries.
933 *
934 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh)
935 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
936 * struct net_device *dev, u32 filter_mask)
937 *
938 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
939 * Called to change device carrier. Soft-devices (like dummy, team, etc)
940 * which do not represent real hardware may define this to allow their
941 * userspace components to manage their virtual carrier state. Devices
942 * that determine carrier state from physical hardware properties (eg
943 * network cables) or protocol-dependent mechanisms (eg
944 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
945 *
946 * int (*ndo_get_phys_port_id)(struct net_device *dev,
947 * struct netdev_phys_port_id *ppid);
948 * Called to get ID of physical port of this device. If driver does
949 * not implement this, it is assumed that the hw is not able to have
950 * multiple net devices on single physical port.
951 *
952 * void (*ndo_add_vxlan_port)(struct net_device *dev,
953 * sa_family_t sa_family, __be16 port);
954 * Called by vxlan to notiy a driver about the UDP port and socket
955 * address family that vxlan is listnening to. It is called only when
956 * a new port starts listening. The operation is protected by the
957 * vxlan_net->sock_lock.
958 *
959 * void (*ndo_del_vxlan_port)(struct net_device *dev,
960 * sa_family_t sa_family, __be16 port);
961 * Called by vxlan to notify the driver about a UDP port and socket
962 * address family that vxlan is not listening to anymore. The operation
963 * is protected by the vxlan_net->sock_lock.
964 */
965 struct net_device_ops {
966 int (*ndo_init)(struct net_device *dev);
967 void (*ndo_uninit)(struct net_device *dev);
968 int (*ndo_open)(struct net_device *dev);
969 int (*ndo_stop)(struct net_device *dev);
970 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
971 struct net_device *dev);
972 u16 (*ndo_select_queue)(struct net_device *dev,
973 struct sk_buff *skb);
974 void (*ndo_change_rx_flags)(struct net_device *dev,
975 int flags);
976 void (*ndo_set_rx_mode)(struct net_device *dev);
977 int (*ndo_set_mac_address)(struct net_device *dev,
978 void *addr);
979 int (*ndo_validate_addr)(struct net_device *dev);
980 int (*ndo_do_ioctl)(struct net_device *dev,
981 struct ifreq *ifr, int cmd);
982 int (*ndo_set_config)(struct net_device *dev,
983 struct ifmap *map);
984 int (*ndo_change_mtu)(struct net_device *dev,
985 int new_mtu);
986 int (*ndo_neigh_setup)(struct net_device *dev,
987 struct neigh_parms *);
988 void (*ndo_tx_timeout) (struct net_device *dev);
989
990 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
991 struct rtnl_link_stats64 *storage);
992 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
993
994 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
995 __be16 proto, u16 vid);
996 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
997 __be16 proto, u16 vid);
998 #ifdef CONFIG_NET_POLL_CONTROLLER
999 void (*ndo_poll_controller)(struct net_device *dev);
1000 int (*ndo_netpoll_setup)(struct net_device *dev,
1001 struct netpoll_info *info,
1002 gfp_t gfp);
1003 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1004 #endif
1005 #ifdef CONFIG_NET_RX_BUSY_POLL
1006 int (*ndo_busy_poll)(struct napi_struct *dev);
1007 #endif
1008 int (*ndo_set_vf_mac)(struct net_device *dev,
1009 int queue, u8 *mac);
1010 int (*ndo_set_vf_vlan)(struct net_device *dev,
1011 int queue, u16 vlan, u8 qos);
1012 int (*ndo_set_vf_tx_rate)(struct net_device *dev,
1013 int vf, int rate);
1014 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1015 int vf, bool setting);
1016 int (*ndo_get_vf_config)(struct net_device *dev,
1017 int vf,
1018 struct ifla_vf_info *ivf);
1019 int (*ndo_set_vf_link_state)(struct net_device *dev,
1020 int vf, int link_state);
1021 int (*ndo_set_vf_port)(struct net_device *dev,
1022 int vf,
1023 struct nlattr *port[]);
1024 int (*ndo_get_vf_port)(struct net_device *dev,
1025 int vf, struct sk_buff *skb);
1026 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
1027 #if IS_ENABLED(CONFIG_FCOE)
1028 int (*ndo_fcoe_enable)(struct net_device *dev);
1029 int (*ndo_fcoe_disable)(struct net_device *dev);
1030 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1031 u16 xid,
1032 struct scatterlist *sgl,
1033 unsigned int sgc);
1034 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1035 u16 xid);
1036 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1037 u16 xid,
1038 struct scatterlist *sgl,
1039 unsigned int sgc);
1040 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1041 struct netdev_fcoe_hbainfo *hbainfo);
1042 #endif
1043
1044 #if IS_ENABLED(CONFIG_LIBFCOE)
1045 #define NETDEV_FCOE_WWNN 0
1046 #define NETDEV_FCOE_WWPN 1
1047 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1048 u64 *wwn, int type);
1049 #endif
1050
1051 #ifdef CONFIG_RFS_ACCEL
1052 int (*ndo_rx_flow_steer)(struct net_device *dev,
1053 const struct sk_buff *skb,
1054 u16 rxq_index,
1055 u32 flow_id);
1056 #endif
1057 int (*ndo_add_slave)(struct net_device *dev,
1058 struct net_device *slave_dev);
1059 int (*ndo_del_slave)(struct net_device *dev,
1060 struct net_device *slave_dev);
1061 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1062 netdev_features_t features);
1063 int (*ndo_set_features)(struct net_device *dev,
1064 netdev_features_t features);
1065 int (*ndo_neigh_construct)(struct neighbour *n);
1066 void (*ndo_neigh_destroy)(struct neighbour *n);
1067
1068 int (*ndo_fdb_add)(struct ndmsg *ndm,
1069 struct nlattr *tb[],
1070 struct net_device *dev,
1071 const unsigned char *addr,
1072 u16 flags);
1073 int (*ndo_fdb_del)(struct ndmsg *ndm,
1074 struct nlattr *tb[],
1075 struct net_device *dev,
1076 const unsigned char *addr);
1077 int (*ndo_fdb_dump)(struct sk_buff *skb,
1078 struct netlink_callback *cb,
1079 struct net_device *dev,
1080 int idx);
1081
1082 int (*ndo_bridge_setlink)(struct net_device *dev,
1083 struct nlmsghdr *nlh);
1084 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1085 u32 pid, u32 seq,
1086 struct net_device *dev,
1087 u32 filter_mask);
1088 int (*ndo_bridge_dellink)(struct net_device *dev,
1089 struct nlmsghdr *nlh);
1090 int (*ndo_change_carrier)(struct net_device *dev,
1091 bool new_carrier);
1092 int (*ndo_get_phys_port_id)(struct net_device *dev,
1093 struct netdev_phys_port_id *ppid);
1094 void (*ndo_add_vxlan_port)(struct net_device *dev,
1095 sa_family_t sa_family,
1096 __be16 port);
1097 void (*ndo_del_vxlan_port)(struct net_device *dev,
1098 sa_family_t sa_family,
1099 __be16 port);
1100 };
1101
1102 /*
1103 * The DEVICE structure.
1104 * Actually, this whole structure is a big mistake. It mixes I/O
1105 * data with strictly "high-level" data, and it has to know about
1106 * almost every data structure used in the INET module.
1107 *
1108 * FIXME: cleanup struct net_device such that network protocol info
1109 * moves out.
1110 */
1111
1112 struct net_device {
1113
1114 /*
1115 * This is the first field of the "visible" part of this structure
1116 * (i.e. as seen by users in the "Space.c" file). It is the name
1117 * of the interface.
1118 */
1119 char name[IFNAMSIZ];
1120
1121 /* device name hash chain, please keep it close to name[] */
1122 struct hlist_node name_hlist;
1123
1124 /* snmp alias */
1125 char *ifalias;
1126
1127 /*
1128 * I/O specific fields
1129 * FIXME: Merge these and struct ifmap into one
1130 */
1131 unsigned long mem_end; /* shared mem end */
1132 unsigned long mem_start; /* shared mem start */
1133 unsigned long base_addr; /* device I/O address */
1134 unsigned int irq; /* device IRQ number */
1135
1136 /*
1137 * Some hardware also needs these fields, but they are not
1138 * part of the usual set specified in Space.c.
1139 */
1140
1141 unsigned long state;
1142
1143 struct list_head dev_list;
1144 struct list_head napi_list;
1145 struct list_head unreg_list;
1146 struct list_head close_list;
1147
1148 /* directly linked devices, like slaves for bonding */
1149 struct {
1150 struct list_head upper;
1151 struct list_head lower;
1152 } adj_list;
1153
1154 /* all linked devices, *including* neighbours */
1155 struct {
1156 struct list_head upper;
1157 struct list_head lower;
1158 } all_adj_list;
1159
1160
1161 /* currently active device features */
1162 netdev_features_t features;
1163 /* user-changeable features */
1164 netdev_features_t hw_features;
1165 /* user-requested features */
1166 netdev_features_t wanted_features;
1167 /* mask of features inheritable by VLAN devices */
1168 netdev_features_t vlan_features;
1169 /* mask of features inherited by encapsulating devices
1170 * This field indicates what encapsulation offloads
1171 * the hardware is capable of doing, and drivers will
1172 * need to set them appropriately.
1173 */
1174 netdev_features_t hw_enc_features;
1175 /* mask of fetures inheritable by MPLS */
1176 netdev_features_t mpls_features;
1177
1178 /* Interface index. Unique device identifier */
1179 int ifindex;
1180 int iflink;
1181
1182 struct net_device_stats stats;
1183 atomic_long_t rx_dropped; /* dropped packets by core network
1184 * Do not use this in drivers.
1185 */
1186
1187 #ifdef CONFIG_WIRELESS_EXT
1188 /* List of functions to handle Wireless Extensions (instead of ioctl).
1189 * See <net/iw_handler.h> for details. Jean II */
1190 const struct iw_handler_def * wireless_handlers;
1191 /* Instance data managed by the core of Wireless Extensions. */
1192 struct iw_public_data * wireless_data;
1193 #endif
1194 /* Management operations */
1195 const struct net_device_ops *netdev_ops;
1196 const struct ethtool_ops *ethtool_ops;
1197
1198 /* Hardware header description */
1199 const struct header_ops *header_ops;
1200
1201 unsigned int flags; /* interface flags (a la BSD) */
1202 unsigned int priv_flags; /* Like 'flags' but invisible to userspace.
1203 * See if.h for definitions. */
1204 unsigned short gflags;
1205 unsigned short padded; /* How much padding added by alloc_netdev() */
1206
1207 unsigned char operstate; /* RFC2863 operstate */
1208 unsigned char link_mode; /* mapping policy to operstate */
1209
1210 unsigned char if_port; /* Selectable AUI, TP,..*/
1211 unsigned char dma; /* DMA channel */
1212
1213 unsigned int mtu; /* interface MTU value */
1214 unsigned short type; /* interface hardware type */
1215 unsigned short hard_header_len; /* hardware hdr length */
1216
1217 /* extra head- and tailroom the hardware may need, but not in all cases
1218 * can this be guaranteed, especially tailroom. Some cases also use
1219 * LL_MAX_HEADER instead to allocate the skb.
1220 */
1221 unsigned short needed_headroom;
1222 unsigned short needed_tailroom;
1223
1224 /* Interface address info. */
1225 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1226 unsigned char addr_assign_type; /* hw address assignment type */
1227 unsigned char addr_len; /* hardware address length */
1228 unsigned char neigh_priv_len;
1229 unsigned short dev_id; /* Used to differentiate devices
1230 * that share the same link
1231 * layer address
1232 */
1233 spinlock_t addr_list_lock;
1234 struct netdev_hw_addr_list uc; /* Unicast mac addresses */
1235 struct netdev_hw_addr_list mc; /* Multicast mac addresses */
1236 struct netdev_hw_addr_list dev_addrs; /* list of device
1237 * hw addresses
1238 */
1239 #ifdef CONFIG_SYSFS
1240 struct kset *queues_kset;
1241 #endif
1242
1243 bool uc_promisc;
1244 unsigned int promiscuity;
1245 unsigned int allmulti;
1246
1247
1248 /* Protocol specific pointers */
1249
1250 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1251 struct vlan_info __rcu *vlan_info; /* VLAN info */
1252 #endif
1253 #if IS_ENABLED(CONFIG_NET_DSA)
1254 struct dsa_switch_tree *dsa_ptr; /* dsa specific data */
1255 #endif
1256 void *atalk_ptr; /* AppleTalk link */
1257 struct in_device __rcu *ip_ptr; /* IPv4 specific data */
1258 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */
1259 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */
1260 void *ax25_ptr; /* AX.25 specific data */
1261 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data,
1262 assign before registering */
1263
1264 /*
1265 * Cache lines mostly used on receive path (including eth_type_trans())
1266 */
1267 unsigned long last_rx; /* Time of last Rx
1268 * This should not be set in
1269 * drivers, unless really needed,
1270 * because network stack (bonding)
1271 * use it if/when necessary, to
1272 * avoid dirtying this cache line.
1273 */
1274
1275 /* Interface address info used in eth_type_trans() */
1276 unsigned char *dev_addr; /* hw address, (before bcast
1277 because most packets are
1278 unicast) */
1279
1280
1281 #ifdef CONFIG_RPS
1282 struct netdev_rx_queue *_rx;
1283
1284 /* Number of RX queues allocated at register_netdev() time */
1285 unsigned int num_rx_queues;
1286
1287 /* Number of RX queues currently active in device */
1288 unsigned int real_num_rx_queues;
1289
1290 #endif
1291
1292 rx_handler_func_t __rcu *rx_handler;
1293 void __rcu *rx_handler_data;
1294
1295 struct netdev_queue __rcu *ingress_queue;
1296 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */
1297
1298
1299 /*
1300 * Cache lines mostly used on transmit path
1301 */
1302 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1303
1304 /* Number of TX queues allocated at alloc_netdev_mq() time */
1305 unsigned int num_tx_queues;
1306
1307 /* Number of TX queues currently active in device */
1308 unsigned int real_num_tx_queues;
1309
1310 /* root qdisc from userspace point of view */
1311 struct Qdisc *qdisc;
1312
1313 unsigned long tx_queue_len; /* Max frames per queue allowed */
1314 spinlock_t tx_global_lock;
1315
1316 #ifdef CONFIG_XPS
1317 struct xps_dev_maps __rcu *xps_maps;
1318 #endif
1319 #ifdef CONFIG_RFS_ACCEL
1320 /* CPU reverse-mapping for RX completion interrupts, indexed
1321 * by RX queue number. Assigned by driver. This must only be
1322 * set if the ndo_rx_flow_steer operation is defined. */
1323 struct cpu_rmap *rx_cpu_rmap;
1324 #endif
1325
1326 /* These may be needed for future network-power-down code. */
1327
1328 /*
1329 * trans_start here is expensive for high speed devices on SMP,
1330 * please use netdev_queue->trans_start instead.
1331 */
1332 unsigned long trans_start; /* Time (in jiffies) of last Tx */
1333
1334 int watchdog_timeo; /* used by dev_watchdog() */
1335 struct timer_list watchdog_timer;
1336
1337 /* Number of references to this device */
1338 int __percpu *pcpu_refcnt;
1339
1340 /* delayed register/unregister */
1341 struct list_head todo_list;
1342 /* device index hash chain */
1343 struct hlist_node index_hlist;
1344
1345 struct list_head link_watch_list;
1346
1347 /* register/unregister state machine */
1348 enum { NETREG_UNINITIALIZED=0,
1349 NETREG_REGISTERED, /* completed register_netdevice */
1350 NETREG_UNREGISTERING, /* called unregister_netdevice */
1351 NETREG_UNREGISTERED, /* completed unregister todo */
1352 NETREG_RELEASED, /* called free_netdev */
1353 NETREG_DUMMY, /* dummy device for NAPI poll */
1354 } reg_state:8;
1355
1356 bool dismantle; /* device is going do be freed */
1357
1358 enum {
1359 RTNL_LINK_INITIALIZED,
1360 RTNL_LINK_INITIALIZING,
1361 } rtnl_link_state:16;
1362
1363 /* Called from unregister, can be used to call free_netdev */
1364 void (*destructor)(struct net_device *dev);
1365
1366 #ifdef CONFIG_NETPOLL
1367 struct netpoll_info __rcu *npinfo;
1368 #endif
1369
1370 #ifdef CONFIG_NET_NS
1371 /* Network namespace this network device is inside */
1372 struct net *nd_net;
1373 #endif
1374
1375 /* mid-layer private */
1376 union {
1377 void *ml_priv;
1378 struct pcpu_lstats __percpu *lstats; /* loopback stats */
1379 struct pcpu_tstats __percpu *tstats; /* tunnel stats */
1380 struct pcpu_dstats __percpu *dstats; /* dummy stats */
1381 struct pcpu_vstats __percpu *vstats; /* veth stats */
1382 };
1383 /* GARP */
1384 struct garp_port __rcu *garp_port;
1385 /* MRP */
1386 struct mrp_port __rcu *mrp_port;
1387
1388 /* class/net/name entry */
1389 struct device dev;
1390 /* space for optional device, statistics, and wireless sysfs groups */
1391 const struct attribute_group *sysfs_groups[4];
1392
1393 /* rtnetlink link ops */
1394 const struct rtnl_link_ops *rtnl_link_ops;
1395
1396 /* for setting kernel sock attribute on TCP connection setup */
1397 #define GSO_MAX_SIZE 65536
1398 unsigned int gso_max_size;
1399 #define GSO_MAX_SEGS 65535
1400 u16 gso_max_segs;
1401
1402 #ifdef CONFIG_DCB
1403 /* Data Center Bridging netlink ops */
1404 const struct dcbnl_rtnl_ops *dcbnl_ops;
1405 #endif
1406 u8 num_tc;
1407 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1408 u8 prio_tc_map[TC_BITMASK + 1];
1409
1410 #if IS_ENABLED(CONFIG_FCOE)
1411 /* max exchange id for FCoE LRO by ddp */
1412 unsigned int fcoe_ddp_xid;
1413 #endif
1414 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1415 struct netprio_map __rcu *priomap;
1416 #endif
1417 /* phy device may attach itself for hardware timestamping */
1418 struct phy_device *phydev;
1419
1420 struct lock_class_key *qdisc_tx_busylock;
1421
1422 /* group the device belongs to */
1423 int group;
1424
1425 struct pm_qos_request pm_qos_req;
1426 };
1427 #define to_net_dev(d) container_of(d, struct net_device, dev)
1428
1429 #define NETDEV_ALIGN 32
1430
1431 static inline
1432 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1433 {
1434 return dev->prio_tc_map[prio & TC_BITMASK];
1435 }
1436
1437 static inline
1438 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1439 {
1440 if (tc >= dev->num_tc)
1441 return -EINVAL;
1442
1443 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1444 return 0;
1445 }
1446
1447 static inline
1448 void netdev_reset_tc(struct net_device *dev)
1449 {
1450 dev->num_tc = 0;
1451 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1452 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1453 }
1454
1455 static inline
1456 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1457 {
1458 if (tc >= dev->num_tc)
1459 return -EINVAL;
1460
1461 dev->tc_to_txq[tc].count = count;
1462 dev->tc_to_txq[tc].offset = offset;
1463 return 0;
1464 }
1465
1466 static inline
1467 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1468 {
1469 if (num_tc > TC_MAX_QUEUE)
1470 return -EINVAL;
1471
1472 dev->num_tc = num_tc;
1473 return 0;
1474 }
1475
1476 static inline
1477 int netdev_get_num_tc(struct net_device *dev)
1478 {
1479 return dev->num_tc;
1480 }
1481
1482 static inline
1483 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1484 unsigned int index)
1485 {
1486 return &dev->_tx[index];
1487 }
1488
1489 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1490 void (*f)(struct net_device *,
1491 struct netdev_queue *,
1492 void *),
1493 void *arg)
1494 {
1495 unsigned int i;
1496
1497 for (i = 0; i < dev->num_tx_queues; i++)
1498 f(dev, &dev->_tx[i], arg);
1499 }
1500
1501 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1502 struct sk_buff *skb);
1503 u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb);
1504
1505 /*
1506 * Net namespace inlines
1507 */
1508 static inline
1509 struct net *dev_net(const struct net_device *dev)
1510 {
1511 return read_pnet(&dev->nd_net);
1512 }
1513
1514 static inline
1515 void dev_net_set(struct net_device *dev, struct net *net)
1516 {
1517 #ifdef CONFIG_NET_NS
1518 release_net(dev->nd_net);
1519 dev->nd_net = hold_net(net);
1520 #endif
1521 }
1522
1523 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1524 {
1525 #ifdef CONFIG_NET_DSA_TAG_DSA
1526 if (dev->dsa_ptr != NULL)
1527 return dsa_uses_dsa_tags(dev->dsa_ptr);
1528 #endif
1529
1530 return 0;
1531 }
1532
1533 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1534 {
1535 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1536 if (dev->dsa_ptr != NULL)
1537 return dsa_uses_trailer_tags(dev->dsa_ptr);
1538 #endif
1539
1540 return 0;
1541 }
1542
1543 /**
1544 * netdev_priv - access network device private data
1545 * @dev: network device
1546 *
1547 * Get network device private data
1548 */
1549 static inline void *netdev_priv(const struct net_device *dev)
1550 {
1551 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1552 }
1553
1554 /* Set the sysfs physical device reference for the network logical device
1555 * if set prior to registration will cause a symlink during initialization.
1556 */
1557 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1558
1559 /* Set the sysfs device type for the network logical device to allow
1560 * fin grained indentification of different network device types. For
1561 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1562 */
1563 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1564
1565 /* Default NAPI poll() weight
1566 * Device drivers are strongly advised to not use bigger value
1567 */
1568 #define NAPI_POLL_WEIGHT 64
1569
1570 /**
1571 * netif_napi_add - initialize a napi context
1572 * @dev: network device
1573 * @napi: napi context
1574 * @poll: polling function
1575 * @weight: default weight
1576 *
1577 * netif_napi_add() must be used to initialize a napi context prior to calling
1578 * *any* of the other napi related functions.
1579 */
1580 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1581 int (*poll)(struct napi_struct *, int), int weight);
1582
1583 /**
1584 * netif_napi_del - remove a napi context
1585 * @napi: napi context
1586 *
1587 * netif_napi_del() removes a napi context from the network device napi list
1588 */
1589 void netif_napi_del(struct napi_struct *napi);
1590
1591 struct napi_gro_cb {
1592 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1593 void *frag0;
1594
1595 /* Length of frag0. */
1596 unsigned int frag0_len;
1597
1598 /* This indicates where we are processing relative to skb->data. */
1599 int data_offset;
1600
1601 /* This is non-zero if the packet cannot be merged with the new skb. */
1602 int flush;
1603
1604 /* Number of segments aggregated. */
1605 u16 count;
1606
1607 /* This is non-zero if the packet may be of the same flow. */
1608 u8 same_flow;
1609
1610 /* Free the skb? */
1611 u8 free;
1612 #define NAPI_GRO_FREE 1
1613 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1614
1615 /* jiffies when first packet was created/queued */
1616 unsigned long age;
1617
1618 /* Used in ipv6_gro_receive() */
1619 int proto;
1620
1621 /* used in skb_gro_receive() slow path */
1622 struct sk_buff *last;
1623 };
1624
1625 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1626
1627 struct packet_type {
1628 __be16 type; /* This is really htons(ether_type). */
1629 struct net_device *dev; /* NULL is wildcarded here */
1630 int (*func) (struct sk_buff *,
1631 struct net_device *,
1632 struct packet_type *,
1633 struct net_device *);
1634 bool (*id_match)(struct packet_type *ptype,
1635 struct sock *sk);
1636 void *af_packet_priv;
1637 struct list_head list;
1638 };
1639
1640 struct offload_callbacks {
1641 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1642 netdev_features_t features);
1643 int (*gso_send_check)(struct sk_buff *skb);
1644 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1645 struct sk_buff *skb);
1646 int (*gro_complete)(struct sk_buff *skb);
1647 };
1648
1649 struct packet_offload {
1650 __be16 type; /* This is really htons(ether_type). */
1651 struct offload_callbacks callbacks;
1652 struct list_head list;
1653 };
1654
1655 #include <linux/notifier.h>
1656
1657 /* netdevice notifier chain. Please remember to update the rtnetlink
1658 * notification exclusion list in rtnetlink_event() when adding new
1659 * types.
1660 */
1661 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
1662 #define NETDEV_DOWN 0x0002
1663 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
1664 detected a hardware crash and restarted
1665 - we can use this eg to kick tcp sessions
1666 once done */
1667 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
1668 #define NETDEV_REGISTER 0x0005
1669 #define NETDEV_UNREGISTER 0x0006
1670 #define NETDEV_CHANGEMTU 0x0007
1671 #define NETDEV_CHANGEADDR 0x0008
1672 #define NETDEV_GOING_DOWN 0x0009
1673 #define NETDEV_CHANGENAME 0x000A
1674 #define NETDEV_FEAT_CHANGE 0x000B
1675 #define NETDEV_BONDING_FAILOVER 0x000C
1676 #define NETDEV_PRE_UP 0x000D
1677 #define NETDEV_PRE_TYPE_CHANGE 0x000E
1678 #define NETDEV_POST_TYPE_CHANGE 0x000F
1679 #define NETDEV_POST_INIT 0x0010
1680 #define NETDEV_UNREGISTER_FINAL 0x0011
1681 #define NETDEV_RELEASE 0x0012
1682 #define NETDEV_NOTIFY_PEERS 0x0013
1683 #define NETDEV_JOIN 0x0014
1684 #define NETDEV_CHANGEUPPER 0x0015
1685 #define NETDEV_RESEND_IGMP 0x0016
1686
1687 int register_netdevice_notifier(struct notifier_block *nb);
1688 int unregister_netdevice_notifier(struct notifier_block *nb);
1689
1690 struct netdev_notifier_info {
1691 struct net_device *dev;
1692 };
1693
1694 struct netdev_notifier_change_info {
1695 struct netdev_notifier_info info; /* must be first */
1696 unsigned int flags_changed;
1697 };
1698
1699 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
1700 struct net_device *dev)
1701 {
1702 info->dev = dev;
1703 }
1704
1705 static inline struct net_device *
1706 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
1707 {
1708 return info->dev;
1709 }
1710
1711 int call_netdevice_notifiers_info(unsigned long val, struct net_device *dev,
1712 struct netdev_notifier_info *info);
1713 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1714
1715
1716 extern rwlock_t dev_base_lock; /* Device list lock */
1717
1718 #define for_each_netdev(net, d) \
1719 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1720 #define for_each_netdev_reverse(net, d) \
1721 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1722 #define for_each_netdev_rcu(net, d) \
1723 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1724 #define for_each_netdev_safe(net, d, n) \
1725 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1726 #define for_each_netdev_continue(net, d) \
1727 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1728 #define for_each_netdev_continue_rcu(net, d) \
1729 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1730 #define for_each_netdev_in_bond_rcu(bond, slave) \
1731 for_each_netdev_rcu(&init_net, slave) \
1732 if (netdev_master_upper_dev_get_rcu(slave) == bond)
1733 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
1734
1735 static inline struct net_device *next_net_device(struct net_device *dev)
1736 {
1737 struct list_head *lh;
1738 struct net *net;
1739
1740 net = dev_net(dev);
1741 lh = dev->dev_list.next;
1742 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1743 }
1744
1745 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1746 {
1747 struct list_head *lh;
1748 struct net *net;
1749
1750 net = dev_net(dev);
1751 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1752 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1753 }
1754
1755 static inline struct net_device *first_net_device(struct net *net)
1756 {
1757 return list_empty(&net->dev_base_head) ? NULL :
1758 net_device_entry(net->dev_base_head.next);
1759 }
1760
1761 static inline struct net_device *first_net_device_rcu(struct net *net)
1762 {
1763 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1764
1765 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1766 }
1767
1768 int netdev_boot_setup_check(struct net_device *dev);
1769 unsigned long netdev_boot_base(const char *prefix, int unit);
1770 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1771 const char *hwaddr);
1772 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1773 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1774 void dev_add_pack(struct packet_type *pt);
1775 void dev_remove_pack(struct packet_type *pt);
1776 void __dev_remove_pack(struct packet_type *pt);
1777 void dev_add_offload(struct packet_offload *po);
1778 void dev_remove_offload(struct packet_offload *po);
1779 void __dev_remove_offload(struct packet_offload *po);
1780
1781 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1782 unsigned short mask);
1783 struct net_device *dev_get_by_name(struct net *net, const char *name);
1784 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1785 struct net_device *__dev_get_by_name(struct net *net, const char *name);
1786 int dev_alloc_name(struct net_device *dev, const char *name);
1787 int dev_open(struct net_device *dev);
1788 int dev_close(struct net_device *dev);
1789 void dev_disable_lro(struct net_device *dev);
1790 int dev_loopback_xmit(struct sk_buff *newskb);
1791 int dev_queue_xmit(struct sk_buff *skb);
1792 int register_netdevice(struct net_device *dev);
1793 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
1794 void unregister_netdevice_many(struct list_head *head);
1795 static inline void unregister_netdevice(struct net_device *dev)
1796 {
1797 unregister_netdevice_queue(dev, NULL);
1798 }
1799
1800 int netdev_refcnt_read(const struct net_device *dev);
1801 void free_netdev(struct net_device *dev);
1802 void synchronize_net(void);
1803 int init_dummy_netdev(struct net_device *dev);
1804
1805 struct net_device *dev_get_by_index(struct net *net, int ifindex);
1806 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1807 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1808 int netdev_get_name(struct net *net, char *name, int ifindex);
1809 int dev_restart(struct net_device *dev);
1810 #ifdef CONFIG_NETPOLL_TRAP
1811 int netpoll_trap(void);
1812 #endif
1813 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1814
1815 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1816 {
1817 return NAPI_GRO_CB(skb)->data_offset;
1818 }
1819
1820 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1821 {
1822 return skb->len - NAPI_GRO_CB(skb)->data_offset;
1823 }
1824
1825 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1826 {
1827 NAPI_GRO_CB(skb)->data_offset += len;
1828 }
1829
1830 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1831 unsigned int offset)
1832 {
1833 return NAPI_GRO_CB(skb)->frag0 + offset;
1834 }
1835
1836 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1837 {
1838 return NAPI_GRO_CB(skb)->frag0_len < hlen;
1839 }
1840
1841 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1842 unsigned int offset)
1843 {
1844 if (!pskb_may_pull(skb, hlen))
1845 return NULL;
1846
1847 NAPI_GRO_CB(skb)->frag0 = NULL;
1848 NAPI_GRO_CB(skb)->frag0_len = 0;
1849 return skb->data + offset;
1850 }
1851
1852 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1853 {
1854 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1855 }
1856
1857 static inline void *skb_gro_network_header(struct sk_buff *skb)
1858 {
1859 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1860 skb_network_offset(skb);
1861 }
1862
1863 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1864 unsigned short type,
1865 const void *daddr, const void *saddr,
1866 unsigned int len)
1867 {
1868 if (!dev->header_ops || !dev->header_ops->create)
1869 return 0;
1870
1871 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1872 }
1873
1874 static inline int dev_parse_header(const struct sk_buff *skb,
1875 unsigned char *haddr)
1876 {
1877 const struct net_device *dev = skb->dev;
1878
1879 if (!dev->header_ops || !dev->header_ops->parse)
1880 return 0;
1881 return dev->header_ops->parse(skb, haddr);
1882 }
1883
1884 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1885 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
1886 static inline int unregister_gifconf(unsigned int family)
1887 {
1888 return register_gifconf(family, NULL);
1889 }
1890
1891 #ifdef CONFIG_NET_FLOW_LIMIT
1892 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
1893 struct sd_flow_limit {
1894 u64 count;
1895 unsigned int num_buckets;
1896 unsigned int history_head;
1897 u16 history[FLOW_LIMIT_HISTORY];
1898 u8 buckets[];
1899 };
1900
1901 extern int netdev_flow_limit_table_len;
1902 #endif /* CONFIG_NET_FLOW_LIMIT */
1903
1904 /*
1905 * Incoming packets are placed on per-cpu queues
1906 */
1907 struct softnet_data {
1908 struct Qdisc *output_queue;
1909 struct Qdisc **output_queue_tailp;
1910 struct list_head poll_list;
1911 struct sk_buff *completion_queue;
1912 struct sk_buff_head process_queue;
1913
1914 /* stats */
1915 unsigned int processed;
1916 unsigned int time_squeeze;
1917 unsigned int cpu_collision;
1918 unsigned int received_rps;
1919
1920 #ifdef CONFIG_RPS
1921 struct softnet_data *rps_ipi_list;
1922
1923 /* Elements below can be accessed between CPUs for RPS */
1924 struct call_single_data csd ____cacheline_aligned_in_smp;
1925 struct softnet_data *rps_ipi_next;
1926 unsigned int cpu;
1927 unsigned int input_queue_head;
1928 unsigned int input_queue_tail;
1929 #endif
1930 unsigned int dropped;
1931 struct sk_buff_head input_pkt_queue;
1932 struct napi_struct backlog;
1933
1934 #ifdef CONFIG_NET_FLOW_LIMIT
1935 struct sd_flow_limit __rcu *flow_limit;
1936 #endif
1937 };
1938
1939 static inline void input_queue_head_incr(struct softnet_data *sd)
1940 {
1941 #ifdef CONFIG_RPS
1942 sd->input_queue_head++;
1943 #endif
1944 }
1945
1946 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1947 unsigned int *qtail)
1948 {
1949 #ifdef CONFIG_RPS
1950 *qtail = ++sd->input_queue_tail;
1951 #endif
1952 }
1953
1954 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1955
1956 void __netif_schedule(struct Qdisc *q);
1957
1958 static inline void netif_schedule_queue(struct netdev_queue *txq)
1959 {
1960 if (!(txq->state & QUEUE_STATE_ANY_XOFF))
1961 __netif_schedule(txq->qdisc);
1962 }
1963
1964 static inline void netif_tx_schedule_all(struct net_device *dev)
1965 {
1966 unsigned int i;
1967
1968 for (i = 0; i < dev->num_tx_queues; i++)
1969 netif_schedule_queue(netdev_get_tx_queue(dev, i));
1970 }
1971
1972 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1973 {
1974 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1975 }
1976
1977 /**
1978 * netif_start_queue - allow transmit
1979 * @dev: network device
1980 *
1981 * Allow upper layers to call the device hard_start_xmit routine.
1982 */
1983 static inline void netif_start_queue(struct net_device *dev)
1984 {
1985 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1986 }
1987
1988 static inline void netif_tx_start_all_queues(struct net_device *dev)
1989 {
1990 unsigned int i;
1991
1992 for (i = 0; i < dev->num_tx_queues; i++) {
1993 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1994 netif_tx_start_queue(txq);
1995 }
1996 }
1997
1998 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1999 {
2000 #ifdef CONFIG_NETPOLL_TRAP
2001 if (netpoll_trap()) {
2002 netif_tx_start_queue(dev_queue);
2003 return;
2004 }
2005 #endif
2006 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
2007 __netif_schedule(dev_queue->qdisc);
2008 }
2009
2010 /**
2011 * netif_wake_queue - restart transmit
2012 * @dev: network device
2013 *
2014 * Allow upper layers to call the device hard_start_xmit routine.
2015 * Used for flow control when transmit resources are available.
2016 */
2017 static inline void netif_wake_queue(struct net_device *dev)
2018 {
2019 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2020 }
2021
2022 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2023 {
2024 unsigned int i;
2025
2026 for (i = 0; i < dev->num_tx_queues; i++) {
2027 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2028 netif_tx_wake_queue(txq);
2029 }
2030 }
2031
2032 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2033 {
2034 if (WARN_ON(!dev_queue)) {
2035 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
2036 return;
2037 }
2038 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2039 }
2040
2041 /**
2042 * netif_stop_queue - stop transmitted packets
2043 * @dev: network device
2044 *
2045 * Stop upper layers calling the device hard_start_xmit routine.
2046 * Used for flow control when transmit resources are unavailable.
2047 */
2048 static inline void netif_stop_queue(struct net_device *dev)
2049 {
2050 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2051 }
2052
2053 static inline void netif_tx_stop_all_queues(struct net_device *dev)
2054 {
2055 unsigned int i;
2056
2057 for (i = 0; i < dev->num_tx_queues; i++) {
2058 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2059 netif_tx_stop_queue(txq);
2060 }
2061 }
2062
2063 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2064 {
2065 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2066 }
2067
2068 /**
2069 * netif_queue_stopped - test if transmit queue is flowblocked
2070 * @dev: network device
2071 *
2072 * Test if transmit queue on device is currently unable to send.
2073 */
2074 static inline bool netif_queue_stopped(const struct net_device *dev)
2075 {
2076 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2077 }
2078
2079 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2080 {
2081 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2082 }
2083
2084 static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2085 {
2086 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2087 }
2088
2089 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2090 unsigned int bytes)
2091 {
2092 #ifdef CONFIG_BQL
2093 dql_queued(&dev_queue->dql, bytes);
2094
2095 if (likely(dql_avail(&dev_queue->dql) >= 0))
2096 return;
2097
2098 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2099
2100 /*
2101 * The XOFF flag must be set before checking the dql_avail below,
2102 * because in netdev_tx_completed_queue we update the dql_completed
2103 * before checking the XOFF flag.
2104 */
2105 smp_mb();
2106
2107 /* check again in case another CPU has just made room avail */
2108 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2109 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2110 #endif
2111 }
2112
2113 /**
2114 * netdev_sent_queue - report the number of bytes queued to hardware
2115 * @dev: network device
2116 * @bytes: number of bytes queued to the hardware device queue
2117 *
2118 * Report the number of bytes queued for sending/completion to the network
2119 * device hardware queue. @bytes should be a good approximation and should
2120 * exactly match netdev_completed_queue() @bytes
2121 */
2122 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2123 {
2124 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2125 }
2126
2127 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2128 unsigned int pkts, unsigned int bytes)
2129 {
2130 #ifdef CONFIG_BQL
2131 if (unlikely(!bytes))
2132 return;
2133
2134 dql_completed(&dev_queue->dql, bytes);
2135
2136 /*
2137 * Without the memory barrier there is a small possiblity that
2138 * netdev_tx_sent_queue will miss the update and cause the queue to
2139 * be stopped forever
2140 */
2141 smp_mb();
2142
2143 if (dql_avail(&dev_queue->dql) < 0)
2144 return;
2145
2146 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2147 netif_schedule_queue(dev_queue);
2148 #endif
2149 }
2150
2151 /**
2152 * netdev_completed_queue - report bytes and packets completed by device
2153 * @dev: network device
2154 * @pkts: actual number of packets sent over the medium
2155 * @bytes: actual number of bytes sent over the medium
2156 *
2157 * Report the number of bytes and packets transmitted by the network device
2158 * hardware queue over the physical medium, @bytes must exactly match the
2159 * @bytes amount passed to netdev_sent_queue()
2160 */
2161 static inline void netdev_completed_queue(struct net_device *dev,
2162 unsigned int pkts, unsigned int bytes)
2163 {
2164 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2165 }
2166
2167 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2168 {
2169 #ifdef CONFIG_BQL
2170 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2171 dql_reset(&q->dql);
2172 #endif
2173 }
2174
2175 /**
2176 * netdev_reset_queue - reset the packets and bytes count of a network device
2177 * @dev_queue: network device
2178 *
2179 * Reset the bytes and packet count of a network device and clear the
2180 * software flow control OFF bit for this network device
2181 */
2182 static inline void netdev_reset_queue(struct net_device *dev_queue)
2183 {
2184 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2185 }
2186
2187 /**
2188 * netif_running - test if up
2189 * @dev: network device
2190 *
2191 * Test if the device has been brought up.
2192 */
2193 static inline bool netif_running(const struct net_device *dev)
2194 {
2195 return test_bit(__LINK_STATE_START, &dev->state);
2196 }
2197
2198 /*
2199 * Routines to manage the subqueues on a device. We only need start
2200 * stop, and a check if it's stopped. All other device management is
2201 * done at the overall netdevice level.
2202 * Also test the device if we're multiqueue.
2203 */
2204
2205 /**
2206 * netif_start_subqueue - allow sending packets on subqueue
2207 * @dev: network device
2208 * @queue_index: sub queue index
2209 *
2210 * Start individual transmit queue of a device with multiple transmit queues.
2211 */
2212 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2213 {
2214 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2215
2216 netif_tx_start_queue(txq);
2217 }
2218
2219 /**
2220 * netif_stop_subqueue - stop sending packets on subqueue
2221 * @dev: network device
2222 * @queue_index: sub queue index
2223 *
2224 * Stop individual transmit queue of a device with multiple transmit queues.
2225 */
2226 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2227 {
2228 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2229 #ifdef CONFIG_NETPOLL_TRAP
2230 if (netpoll_trap())
2231 return;
2232 #endif
2233 netif_tx_stop_queue(txq);
2234 }
2235
2236 /**
2237 * netif_subqueue_stopped - test status of subqueue
2238 * @dev: network device
2239 * @queue_index: sub queue index
2240 *
2241 * Check individual transmit queue of a device with multiple transmit queues.
2242 */
2243 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2244 u16 queue_index)
2245 {
2246 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2247
2248 return netif_tx_queue_stopped(txq);
2249 }
2250
2251 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2252 struct sk_buff *skb)
2253 {
2254 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2255 }
2256
2257 /**
2258 * netif_wake_subqueue - allow sending packets on subqueue
2259 * @dev: network device
2260 * @queue_index: sub queue index
2261 *
2262 * Resume individual transmit queue of a device with multiple transmit queues.
2263 */
2264 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2265 {
2266 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2267 #ifdef CONFIG_NETPOLL_TRAP
2268 if (netpoll_trap())
2269 return;
2270 #endif
2271 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2272 __netif_schedule(txq->qdisc);
2273 }
2274
2275 #ifdef CONFIG_XPS
2276 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2277 u16 index);
2278 #else
2279 static inline int netif_set_xps_queue(struct net_device *dev,
2280 const struct cpumask *mask,
2281 u16 index)
2282 {
2283 return 0;
2284 }
2285 #endif
2286
2287 /*
2288 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2289 * as a distribution range limit for the returned value.
2290 */
2291 static inline u16 skb_tx_hash(const struct net_device *dev,
2292 const struct sk_buff *skb)
2293 {
2294 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2295 }
2296
2297 /**
2298 * netif_is_multiqueue - test if device has multiple transmit queues
2299 * @dev: network device
2300 *
2301 * Check if device has multiple transmit queues
2302 */
2303 static inline bool netif_is_multiqueue(const struct net_device *dev)
2304 {
2305 return dev->num_tx_queues > 1;
2306 }
2307
2308 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2309
2310 #ifdef CONFIG_RPS
2311 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2312 #else
2313 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2314 unsigned int rxq)
2315 {
2316 return 0;
2317 }
2318 #endif
2319
2320 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2321 const struct net_device *from_dev)
2322 {
2323 int err;
2324
2325 err = netif_set_real_num_tx_queues(to_dev,
2326 from_dev->real_num_tx_queues);
2327 if (err)
2328 return err;
2329 #ifdef CONFIG_RPS
2330 return netif_set_real_num_rx_queues(to_dev,
2331 from_dev->real_num_rx_queues);
2332 #else
2333 return 0;
2334 #endif
2335 }
2336
2337 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
2338 int netif_get_num_default_rss_queues(void);
2339
2340 /* Use this variant when it is known for sure that it
2341 * is executing from hardware interrupt context or with hardware interrupts
2342 * disabled.
2343 */
2344 void dev_kfree_skb_irq(struct sk_buff *skb);
2345
2346 /* Use this variant in places where it could be invoked
2347 * from either hardware interrupt or other context, with hardware interrupts
2348 * either disabled or enabled.
2349 */
2350 void dev_kfree_skb_any(struct sk_buff *skb);
2351
2352 int netif_rx(struct sk_buff *skb);
2353 int netif_rx_ni(struct sk_buff *skb);
2354 int netif_receive_skb(struct sk_buff *skb);
2355 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2356 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2357 struct sk_buff *napi_get_frags(struct napi_struct *napi);
2358 gro_result_t napi_gro_frags(struct napi_struct *napi);
2359
2360 static inline void napi_free_frags(struct napi_struct *napi)
2361 {
2362 kfree_skb(napi->skb);
2363 napi->skb = NULL;
2364 }
2365
2366 int netdev_rx_handler_register(struct net_device *dev,
2367 rx_handler_func_t *rx_handler,
2368 void *rx_handler_data);
2369 void netdev_rx_handler_unregister(struct net_device *dev);
2370
2371 bool dev_valid_name(const char *name);
2372 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2373 int dev_ethtool(struct net *net, struct ifreq *);
2374 unsigned int dev_get_flags(const struct net_device *);
2375 int __dev_change_flags(struct net_device *, unsigned int flags);
2376 int dev_change_flags(struct net_device *, unsigned int);
2377 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
2378 unsigned int gchanges);
2379 int dev_change_name(struct net_device *, const char *);
2380 int dev_set_alias(struct net_device *, const char *, size_t);
2381 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
2382 int dev_set_mtu(struct net_device *, int);
2383 void dev_set_group(struct net_device *, int);
2384 int dev_set_mac_address(struct net_device *, struct sockaddr *);
2385 int dev_change_carrier(struct net_device *, bool new_carrier);
2386 int dev_get_phys_port_id(struct net_device *dev,
2387 struct netdev_phys_port_id *ppid);
2388 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2389 struct netdev_queue *txq);
2390 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2391
2392 extern int netdev_budget;
2393
2394 /* Called by rtnetlink.c:rtnl_unlock() */
2395 void netdev_run_todo(void);
2396
2397 /**
2398 * dev_put - release reference to device
2399 * @dev: network device
2400 *
2401 * Release reference to device to allow it to be freed.
2402 */
2403 static inline void dev_put(struct net_device *dev)
2404 {
2405 this_cpu_dec(*dev->pcpu_refcnt);
2406 }
2407
2408 /**
2409 * dev_hold - get reference to device
2410 * @dev: network device
2411 *
2412 * Hold reference to device to keep it from being freed.
2413 */
2414 static inline void dev_hold(struct net_device *dev)
2415 {
2416 this_cpu_inc(*dev->pcpu_refcnt);
2417 }
2418
2419 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2420 * and _off may be called from IRQ context, but it is caller
2421 * who is responsible for serialization of these calls.
2422 *
2423 * The name carrier is inappropriate, these functions should really be
2424 * called netif_lowerlayer_*() because they represent the state of any
2425 * kind of lower layer not just hardware media.
2426 */
2427
2428 void linkwatch_init_dev(struct net_device *dev);
2429 void linkwatch_fire_event(struct net_device *dev);
2430 void linkwatch_forget_dev(struct net_device *dev);
2431
2432 /**
2433 * netif_carrier_ok - test if carrier present
2434 * @dev: network device
2435 *
2436 * Check if carrier is present on device
2437 */
2438 static inline bool netif_carrier_ok(const struct net_device *dev)
2439 {
2440 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2441 }
2442
2443 unsigned long dev_trans_start(struct net_device *dev);
2444
2445 void __netdev_watchdog_up(struct net_device *dev);
2446
2447 void netif_carrier_on(struct net_device *dev);
2448
2449 void netif_carrier_off(struct net_device *dev);
2450
2451 /**
2452 * netif_dormant_on - mark device as dormant.
2453 * @dev: network device
2454 *
2455 * Mark device as dormant (as per RFC2863).
2456 *
2457 * The dormant state indicates that the relevant interface is not
2458 * actually in a condition to pass packets (i.e., it is not 'up') but is
2459 * in a "pending" state, waiting for some external event. For "on-
2460 * demand" interfaces, this new state identifies the situation where the
2461 * interface is waiting for events to place it in the up state.
2462 *
2463 */
2464 static inline void netif_dormant_on(struct net_device *dev)
2465 {
2466 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2467 linkwatch_fire_event(dev);
2468 }
2469
2470 /**
2471 * netif_dormant_off - set device as not dormant.
2472 * @dev: network device
2473 *
2474 * Device is not in dormant state.
2475 */
2476 static inline void netif_dormant_off(struct net_device *dev)
2477 {
2478 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2479 linkwatch_fire_event(dev);
2480 }
2481
2482 /**
2483 * netif_dormant - test if carrier present
2484 * @dev: network device
2485 *
2486 * Check if carrier is present on device
2487 */
2488 static inline bool netif_dormant(const struct net_device *dev)
2489 {
2490 return test_bit(__LINK_STATE_DORMANT, &dev->state);
2491 }
2492
2493
2494 /**
2495 * netif_oper_up - test if device is operational
2496 * @dev: network device
2497 *
2498 * Check if carrier is operational
2499 */
2500 static inline bool netif_oper_up(const struct net_device *dev)
2501 {
2502 return (dev->operstate == IF_OPER_UP ||
2503 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2504 }
2505
2506 /**
2507 * netif_device_present - is device available or removed
2508 * @dev: network device
2509 *
2510 * Check if device has not been removed from system.
2511 */
2512 static inline bool netif_device_present(struct net_device *dev)
2513 {
2514 return test_bit(__LINK_STATE_PRESENT, &dev->state);
2515 }
2516
2517 void netif_device_detach(struct net_device *dev);
2518
2519 void netif_device_attach(struct net_device *dev);
2520
2521 /*
2522 * Network interface message level settings
2523 */
2524
2525 enum {
2526 NETIF_MSG_DRV = 0x0001,
2527 NETIF_MSG_PROBE = 0x0002,
2528 NETIF_MSG_LINK = 0x0004,
2529 NETIF_MSG_TIMER = 0x0008,
2530 NETIF_MSG_IFDOWN = 0x0010,
2531 NETIF_MSG_IFUP = 0x0020,
2532 NETIF_MSG_RX_ERR = 0x0040,
2533 NETIF_MSG_TX_ERR = 0x0080,
2534 NETIF_MSG_TX_QUEUED = 0x0100,
2535 NETIF_MSG_INTR = 0x0200,
2536 NETIF_MSG_TX_DONE = 0x0400,
2537 NETIF_MSG_RX_STATUS = 0x0800,
2538 NETIF_MSG_PKTDATA = 0x1000,
2539 NETIF_MSG_HW = 0x2000,
2540 NETIF_MSG_WOL = 0x4000,
2541 };
2542
2543 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
2544 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
2545 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
2546 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
2547 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
2548 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
2549 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
2550 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
2551 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2552 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
2553 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
2554 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
2555 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
2556 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
2557 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
2558
2559 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2560 {
2561 /* use default */
2562 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2563 return default_msg_enable_bits;
2564 if (debug_value == 0) /* no output */
2565 return 0;
2566 /* set low N bits */
2567 return (1 << debug_value) - 1;
2568 }
2569
2570 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2571 {
2572 spin_lock(&txq->_xmit_lock);
2573 txq->xmit_lock_owner = cpu;
2574 }
2575
2576 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2577 {
2578 spin_lock_bh(&txq->_xmit_lock);
2579 txq->xmit_lock_owner = smp_processor_id();
2580 }
2581
2582 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
2583 {
2584 bool ok = spin_trylock(&txq->_xmit_lock);
2585 if (likely(ok))
2586 txq->xmit_lock_owner = smp_processor_id();
2587 return ok;
2588 }
2589
2590 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2591 {
2592 txq->xmit_lock_owner = -1;
2593 spin_unlock(&txq->_xmit_lock);
2594 }
2595
2596 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2597 {
2598 txq->xmit_lock_owner = -1;
2599 spin_unlock_bh(&txq->_xmit_lock);
2600 }
2601
2602 static inline void txq_trans_update(struct netdev_queue *txq)
2603 {
2604 if (txq->xmit_lock_owner != -1)
2605 txq->trans_start = jiffies;
2606 }
2607
2608 /**
2609 * netif_tx_lock - grab network device transmit lock
2610 * @dev: network device
2611 *
2612 * Get network device transmit lock
2613 */
2614 static inline void netif_tx_lock(struct net_device *dev)
2615 {
2616 unsigned int i;
2617 int cpu;
2618
2619 spin_lock(&dev->tx_global_lock);
2620 cpu = smp_processor_id();
2621 for (i = 0; i < dev->num_tx_queues; i++) {
2622 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2623
2624 /* We are the only thread of execution doing a
2625 * freeze, but we have to grab the _xmit_lock in
2626 * order to synchronize with threads which are in
2627 * the ->hard_start_xmit() handler and already
2628 * checked the frozen bit.
2629 */
2630 __netif_tx_lock(txq, cpu);
2631 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2632 __netif_tx_unlock(txq);
2633 }
2634 }
2635
2636 static inline void netif_tx_lock_bh(struct net_device *dev)
2637 {
2638 local_bh_disable();
2639 netif_tx_lock(dev);
2640 }
2641
2642 static inline void netif_tx_unlock(struct net_device *dev)
2643 {
2644 unsigned int i;
2645
2646 for (i = 0; i < dev->num_tx_queues; i++) {
2647 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2648
2649 /* No need to grab the _xmit_lock here. If the
2650 * queue is not stopped for another reason, we
2651 * force a schedule.
2652 */
2653 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2654 netif_schedule_queue(txq);
2655 }
2656 spin_unlock(&dev->tx_global_lock);
2657 }
2658
2659 static inline void netif_tx_unlock_bh(struct net_device *dev)
2660 {
2661 netif_tx_unlock(dev);
2662 local_bh_enable();
2663 }
2664
2665 #define HARD_TX_LOCK(dev, txq, cpu) { \
2666 if ((dev->features & NETIF_F_LLTX) == 0) { \
2667 __netif_tx_lock(txq, cpu); \
2668 } \
2669 }
2670
2671 #define HARD_TX_UNLOCK(dev, txq) { \
2672 if ((dev->features & NETIF_F_LLTX) == 0) { \
2673 __netif_tx_unlock(txq); \
2674 } \
2675 }
2676
2677 static inline void netif_tx_disable(struct net_device *dev)
2678 {
2679 unsigned int i;
2680 int cpu;
2681
2682 local_bh_disable();
2683 cpu = smp_processor_id();
2684 for (i = 0; i < dev->num_tx_queues; i++) {
2685 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2686
2687 __netif_tx_lock(txq, cpu);
2688 netif_tx_stop_queue(txq);
2689 __netif_tx_unlock(txq);
2690 }
2691 local_bh_enable();
2692 }
2693
2694 static inline void netif_addr_lock(struct net_device *dev)
2695 {
2696 spin_lock(&dev->addr_list_lock);
2697 }
2698
2699 static inline void netif_addr_lock_nested(struct net_device *dev)
2700 {
2701 spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING);
2702 }
2703
2704 static inline void netif_addr_lock_bh(struct net_device *dev)
2705 {
2706 spin_lock_bh(&dev->addr_list_lock);
2707 }
2708
2709 static inline void netif_addr_unlock(struct net_device *dev)
2710 {
2711 spin_unlock(&dev->addr_list_lock);
2712 }
2713
2714 static inline void netif_addr_unlock_bh(struct net_device *dev)
2715 {
2716 spin_unlock_bh(&dev->addr_list_lock);
2717 }
2718
2719 /*
2720 * dev_addrs walker. Should be used only for read access. Call with
2721 * rcu_read_lock held.
2722 */
2723 #define for_each_dev_addr(dev, ha) \
2724 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2725
2726 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2727
2728 void ether_setup(struct net_device *dev);
2729
2730 /* Support for loadable net-drivers */
2731 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2732 void (*setup)(struct net_device *),
2733 unsigned int txqs, unsigned int rxqs);
2734 #define alloc_netdev(sizeof_priv, name, setup) \
2735 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2736
2737 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2738 alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2739
2740 int register_netdev(struct net_device *dev);
2741 void unregister_netdev(struct net_device *dev);
2742
2743 /* General hardware address lists handling functions */
2744 int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2745 struct netdev_hw_addr_list *from_list,
2746 int addr_len, unsigned char addr_type);
2747 void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2748 struct netdev_hw_addr_list *from_list,
2749 int addr_len, unsigned char addr_type);
2750 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2751 struct netdev_hw_addr_list *from_list, int addr_len);
2752 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2753 struct netdev_hw_addr_list *from_list, int addr_len);
2754 void __hw_addr_flush(struct netdev_hw_addr_list *list);
2755 void __hw_addr_init(struct netdev_hw_addr_list *list);
2756
2757 /* Functions used for device addresses handling */
2758 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
2759 unsigned char addr_type);
2760 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
2761 unsigned char addr_type);
2762 int dev_addr_add_multiple(struct net_device *to_dev,
2763 struct net_device *from_dev, unsigned char addr_type);
2764 int dev_addr_del_multiple(struct net_device *to_dev,
2765 struct net_device *from_dev, unsigned char addr_type);
2766 void dev_addr_flush(struct net_device *dev);
2767 int dev_addr_init(struct net_device *dev);
2768
2769 /* Functions used for unicast addresses handling */
2770 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
2771 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
2772 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
2773 int dev_uc_sync(struct net_device *to, struct net_device *from);
2774 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
2775 void dev_uc_unsync(struct net_device *to, struct net_device *from);
2776 void dev_uc_flush(struct net_device *dev);
2777 void dev_uc_init(struct net_device *dev);
2778
2779 /* Functions used for multicast addresses handling */
2780 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
2781 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
2782 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
2783 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
2784 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
2785 int dev_mc_sync(struct net_device *to, struct net_device *from);
2786 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
2787 void dev_mc_unsync(struct net_device *to, struct net_device *from);
2788 void dev_mc_flush(struct net_device *dev);
2789 void dev_mc_init(struct net_device *dev);
2790
2791 /* Functions used for secondary unicast and multicast support */
2792 void dev_set_rx_mode(struct net_device *dev);
2793 void __dev_set_rx_mode(struct net_device *dev);
2794 int dev_set_promiscuity(struct net_device *dev, int inc);
2795 int dev_set_allmulti(struct net_device *dev, int inc);
2796 void netdev_state_change(struct net_device *dev);
2797 void netdev_notify_peers(struct net_device *dev);
2798 void netdev_features_change(struct net_device *dev);
2799 /* Load a device via the kmod */
2800 void dev_load(struct net *net, const char *name);
2801 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2802 struct rtnl_link_stats64 *storage);
2803 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
2804 const struct net_device_stats *netdev_stats);
2805
2806 extern int netdev_max_backlog;
2807 extern int netdev_tstamp_prequeue;
2808 extern int weight_p;
2809 extern int bpf_jit_enable;
2810
2811 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
2812 bool netdev_has_any_upper_dev(struct net_device *dev);
2813 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
2814 struct list_head **iter);
2815
2816 /* iterate through upper list, must be called under RCU read lock */
2817 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
2818 for (iter = &(dev)->all_adj_list.upper, \
2819 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
2820 updev; \
2821 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
2822
2823 void *netdev_lower_get_next_private(struct net_device *dev,
2824 struct list_head **iter);
2825 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
2826 struct list_head **iter);
2827
2828 #define netdev_for_each_lower_private(dev, priv, iter) \
2829 for (iter = (dev)->adj_list.lower.next, \
2830 priv = netdev_lower_get_next_private(dev, &(iter)); \
2831 priv; \
2832 priv = netdev_lower_get_next_private(dev, &(iter)))
2833
2834 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
2835 for (iter = &(dev)->adj_list.lower, \
2836 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
2837 priv; \
2838 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
2839
2840 void *netdev_adjacent_get_private(struct list_head *adj_list);
2841 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
2842 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
2843 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
2844 int netdev_master_upper_dev_link(struct net_device *dev,
2845 struct net_device *upper_dev);
2846 int netdev_master_upper_dev_link_private(struct net_device *dev,
2847 struct net_device *upper_dev,
2848 void *private);
2849 void netdev_upper_dev_unlink(struct net_device *dev,
2850 struct net_device *upper_dev);
2851 void *netdev_lower_dev_get_private_rcu(struct net_device *dev,
2852 struct net_device *lower_dev);
2853 void *netdev_lower_dev_get_private(struct net_device *dev,
2854 struct net_device *lower_dev);
2855 int skb_checksum_help(struct sk_buff *skb);
2856 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2857 netdev_features_t features, bool tx_path);
2858 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2859 netdev_features_t features);
2860
2861 static inline
2862 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
2863 {
2864 return __skb_gso_segment(skb, features, true);
2865 }
2866 __be16 skb_network_protocol(struct sk_buff *skb);
2867
2868 static inline bool can_checksum_protocol(netdev_features_t features,
2869 __be16 protocol)
2870 {
2871 return ((features & NETIF_F_GEN_CSUM) ||
2872 ((features & NETIF_F_V4_CSUM) &&
2873 protocol == htons(ETH_P_IP)) ||
2874 ((features & NETIF_F_V6_CSUM) &&
2875 protocol == htons(ETH_P_IPV6)) ||
2876 ((features & NETIF_F_FCOE_CRC) &&
2877 protocol == htons(ETH_P_FCOE)));
2878 }
2879
2880 #ifdef CONFIG_BUG
2881 void netdev_rx_csum_fault(struct net_device *dev);
2882 #else
2883 static inline void netdev_rx_csum_fault(struct net_device *dev)
2884 {
2885 }
2886 #endif
2887 /* rx skb timestamps */
2888 void net_enable_timestamp(void);
2889 void net_disable_timestamp(void);
2890
2891 #ifdef CONFIG_PROC_FS
2892 int __init dev_proc_init(void);
2893 #else
2894 #define dev_proc_init() 0
2895 #endif
2896
2897 int netdev_class_create_file(struct class_attribute *class_attr);
2898 void netdev_class_remove_file(struct class_attribute *class_attr);
2899
2900 extern struct kobj_ns_type_operations net_ns_type_operations;
2901
2902 const char *netdev_drivername(const struct net_device *dev);
2903
2904 void linkwatch_run_queue(void);
2905
2906 static inline netdev_features_t netdev_get_wanted_features(
2907 struct net_device *dev)
2908 {
2909 return (dev->features & ~dev->hw_features) | dev->wanted_features;
2910 }
2911 netdev_features_t netdev_increment_features(netdev_features_t all,
2912 netdev_features_t one, netdev_features_t mask);
2913
2914 /* Allow TSO being used on stacked device :
2915 * Performing the GSO segmentation before last device
2916 * is a performance improvement.
2917 */
2918 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
2919 netdev_features_t mask)
2920 {
2921 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
2922 }
2923
2924 int __netdev_update_features(struct net_device *dev);
2925 void netdev_update_features(struct net_device *dev);
2926 void netdev_change_features(struct net_device *dev);
2927
2928 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2929 struct net_device *dev);
2930
2931 netdev_features_t netif_skb_features(struct sk_buff *skb);
2932
2933 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
2934 {
2935 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
2936
2937 /* check flags correspondence */
2938 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
2939 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
2940 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
2941 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
2942 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
2943 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
2944
2945 return (features & feature) == feature;
2946 }
2947
2948 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
2949 {
2950 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2951 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2952 }
2953
2954 static inline bool netif_needs_gso(struct sk_buff *skb,
2955 netdev_features_t features)
2956 {
2957 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2958 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
2959 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
2960 }
2961
2962 static inline void netif_set_gso_max_size(struct net_device *dev,
2963 unsigned int size)
2964 {
2965 dev->gso_max_size = size;
2966 }
2967
2968 static inline bool netif_is_bond_master(struct net_device *dev)
2969 {
2970 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
2971 }
2972
2973 static inline bool netif_is_bond_slave(struct net_device *dev)
2974 {
2975 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2976 }
2977
2978 static inline bool netif_supports_nofcs(struct net_device *dev)
2979 {
2980 return dev->priv_flags & IFF_SUPP_NOFCS;
2981 }
2982
2983 extern struct pernet_operations __net_initdata loopback_net_ops;
2984
2985 /* Logging, debugging and troubleshooting/diagnostic helpers. */
2986
2987 /* netdev_printk helpers, similar to dev_printk */
2988
2989 static inline const char *netdev_name(const struct net_device *dev)
2990 {
2991 if (dev->reg_state != NETREG_REGISTERED)
2992 return "(unregistered net_device)";
2993 return dev->name;
2994 }
2995
2996 __printf(3, 4)
2997 int netdev_printk(const char *level, const struct net_device *dev,
2998 const char *format, ...);
2999 __printf(2, 3)
3000 int netdev_emerg(const struct net_device *dev, const char *format, ...);
3001 __printf(2, 3)
3002 int netdev_alert(const struct net_device *dev, const char *format, ...);
3003 __printf(2, 3)
3004 int netdev_crit(const struct net_device *dev, const char *format, ...);
3005 __printf(2, 3)
3006 int netdev_err(const struct net_device *dev, const char *format, ...);
3007 __printf(2, 3)
3008 int netdev_warn(const struct net_device *dev, const char *format, ...);
3009 __printf(2, 3)
3010 int netdev_notice(const struct net_device *dev, const char *format, ...);
3011 __printf(2, 3)
3012 int netdev_info(const struct net_device *dev, const char *format, ...);
3013
3014 #define MODULE_ALIAS_NETDEV(device) \
3015 MODULE_ALIAS("netdev-" device)
3016
3017 #if defined(CONFIG_DYNAMIC_DEBUG)
3018 #define netdev_dbg(__dev, format, args...) \
3019 do { \
3020 dynamic_netdev_dbg(__dev, format, ##args); \
3021 } while (0)
3022 #elif defined(DEBUG)
3023 #define netdev_dbg(__dev, format, args...) \
3024 netdev_printk(KERN_DEBUG, __dev, format, ##args)
3025 #else
3026 #define netdev_dbg(__dev, format, args...) \
3027 ({ \
3028 if (0) \
3029 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3030 0; \
3031 })
3032 #endif
3033
3034 #if defined(VERBOSE_DEBUG)
3035 #define netdev_vdbg netdev_dbg
3036 #else
3037
3038 #define netdev_vdbg(dev, format, args...) \
3039 ({ \
3040 if (0) \
3041 netdev_printk(KERN_DEBUG, dev, format, ##args); \
3042 0; \
3043 })
3044 #endif
3045
3046 /*
3047 * netdev_WARN() acts like dev_printk(), but with the key difference
3048 * of using a WARN/WARN_ON to get the message out, including the
3049 * file/line information and a backtrace.
3050 */
3051 #define netdev_WARN(dev, format, args...) \
3052 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
3053
3054 /* netif printk helpers, similar to netdev_printk */
3055
3056 #define netif_printk(priv, type, level, dev, fmt, args...) \
3057 do { \
3058 if (netif_msg_##type(priv)) \
3059 netdev_printk(level, (dev), fmt, ##args); \
3060 } while (0)
3061
3062 #define netif_level(level, priv, type, dev, fmt, args...) \
3063 do { \
3064 if (netif_msg_##type(priv)) \
3065 netdev_##level(dev, fmt, ##args); \
3066 } while (0)
3067
3068 #define netif_emerg(priv, type, dev, fmt, args...) \
3069 netif_level(emerg, priv, type, dev, fmt, ##args)
3070 #define netif_alert(priv, type, dev, fmt, args...) \
3071 netif_level(alert, priv, type, dev, fmt, ##args)
3072 #define netif_crit(priv, type, dev, fmt, args...) \
3073 netif_level(crit, priv, type, dev, fmt, ##args)
3074 #define netif_err(priv, type, dev, fmt, args...) \
3075 netif_level(err, priv, type, dev, fmt, ##args)
3076 #define netif_warn(priv, type, dev, fmt, args...) \
3077 netif_level(warn, priv, type, dev, fmt, ##args)
3078 #define netif_notice(priv, type, dev, fmt, args...) \
3079 netif_level(notice, priv, type, dev, fmt, ##args)
3080 #define netif_info(priv, type, dev, fmt, args...) \
3081 netif_level(info, priv, type, dev, fmt, ##args)
3082
3083 #if defined(CONFIG_DYNAMIC_DEBUG)
3084 #define netif_dbg(priv, type, netdev, format, args...) \
3085 do { \
3086 if (netif_msg_##type(priv)) \
3087 dynamic_netdev_dbg(netdev, format, ##args); \
3088 } while (0)
3089 #elif defined(DEBUG)
3090 #define netif_dbg(priv, type, dev, format, args...) \
3091 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3092 #else
3093 #define netif_dbg(priv, type, dev, format, args...) \
3094 ({ \
3095 if (0) \
3096 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3097 0; \
3098 })
3099 #endif
3100
3101 #if defined(VERBOSE_DEBUG)
3102 #define netif_vdbg netif_dbg
3103 #else
3104 #define netif_vdbg(priv, type, dev, format, args...) \
3105 ({ \
3106 if (0) \
3107 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3108 0; \
3109 })
3110 #endif
3111
3112 /*
3113 * The list of packet types we will receive (as opposed to discard)
3114 * and the routines to invoke.
3115 *
3116 * Why 16. Because with 16 the only overlap we get on a hash of the
3117 * low nibble of the protocol value is RARP/SNAP/X.25.
3118 *
3119 * NOTE: That is no longer true with the addition of VLAN tags. Not
3120 * sure which should go first, but I bet it won't make much
3121 * difference if we are running VLANs. The good news is that
3122 * this protocol won't be in the list unless compiled in, so
3123 * the average user (w/out VLANs) will not be adversely affected.
3124 * --BLG
3125 *
3126 * 0800 IP
3127 * 8100 802.1Q VLAN
3128 * 0001 802.3
3129 * 0002 AX.25
3130 * 0004 802.2
3131 * 8035 RARP
3132 * 0005 SNAP
3133 * 0805 X.25
3134 * 0806 ARP
3135 * 8137 IPX
3136 * 0009 Localtalk
3137 * 86DD IPv6
3138 */
3139 #define PTYPE_HASH_SIZE (16)
3140 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
3141
3142 #endif /* _LINUX_NETDEVICE_H */