]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - include/linux/netdevice.h
atomic: use <linux/atomic.h>
[mirror_ubuntu-zesty-kernel.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/if.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_link.h>
32
33 #ifdef __KERNEL__
34 #include <linux/pm_qos_params.h>
35 #include <linux/timer.h>
36 #include <linux/delay.h>
37 #include <linux/atomic.h>
38 #include <asm/cache.h>
39 #include <asm/byteorder.h>
40
41 #include <linux/device.h>
42 #include <linux/percpu.h>
43 #include <linux/rculist.h>
44 #include <linux/dmaengine.h>
45 #include <linux/workqueue.h>
46
47 #include <linux/ethtool.h>
48 #include <net/net_namespace.h>
49 #include <net/dsa.h>
50 #ifdef CONFIG_DCB
51 #include <net/dcbnl.h>
52 #endif
53
54 struct vlan_group;
55 struct netpoll_info;
56 struct phy_device;
57 /* 802.11 specific */
58 struct wireless_dev;
59 /* source back-compat hooks */
60 #define SET_ETHTOOL_OPS(netdev,ops) \
61 ( (netdev)->ethtool_ops = (ops) )
62
63 /* hardware address assignment types */
64 #define NET_ADDR_PERM 0 /* address is permanent (default) */
65 #define NET_ADDR_RANDOM 1 /* address is generated randomly */
66 #define NET_ADDR_STOLEN 2 /* address is stolen from other device */
67
68 /* Backlog congestion levels */
69 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
70 #define NET_RX_DROP 1 /* packet dropped */
71
72 /*
73 * Transmit return codes: transmit return codes originate from three different
74 * namespaces:
75 *
76 * - qdisc return codes
77 * - driver transmit return codes
78 * - errno values
79 *
80 * Drivers are allowed to return any one of those in their hard_start_xmit()
81 * function. Real network devices commonly used with qdiscs should only return
82 * the driver transmit return codes though - when qdiscs are used, the actual
83 * transmission happens asynchronously, so the value is not propagated to
84 * higher layers. Virtual network devices transmit synchronously, in this case
85 * the driver transmit return codes are consumed by dev_queue_xmit(), all
86 * others are propagated to higher layers.
87 */
88
89 /* qdisc ->enqueue() return codes. */
90 #define NET_XMIT_SUCCESS 0x00
91 #define NET_XMIT_DROP 0x01 /* skb dropped */
92 #define NET_XMIT_CN 0x02 /* congestion notification */
93 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
94 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
95
96 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
97 * indicates that the device will soon be dropping packets, or already drops
98 * some packets of the same priority; prompting us to send less aggressively. */
99 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
100 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
101
102 /* Driver transmit return codes */
103 #define NETDEV_TX_MASK 0xf0
104
105 enum netdev_tx {
106 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
107 NETDEV_TX_OK = 0x00, /* driver took care of packet */
108 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
109 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
110 };
111 typedef enum netdev_tx netdev_tx_t;
112
113 /*
114 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
115 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
116 */
117 static inline bool dev_xmit_complete(int rc)
118 {
119 /*
120 * Positive cases with an skb consumed by a driver:
121 * - successful transmission (rc == NETDEV_TX_OK)
122 * - error while transmitting (rc < 0)
123 * - error while queueing to a different device (rc & NET_XMIT_MASK)
124 */
125 if (likely(rc < NET_XMIT_MASK))
126 return true;
127
128 return false;
129 }
130
131 #endif
132
133 #define MAX_ADDR_LEN 32 /* Largest hardware address length */
134
135 /* Initial net device group. All devices belong to group 0 by default. */
136 #define INIT_NETDEV_GROUP 0
137
138 #ifdef __KERNEL__
139 /*
140 * Compute the worst case header length according to the protocols
141 * used.
142 */
143
144 #if defined(CONFIG_WLAN) || defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
145 # if defined(CONFIG_MAC80211_MESH)
146 # define LL_MAX_HEADER 128
147 # else
148 # define LL_MAX_HEADER 96
149 # endif
150 #elif defined(CONFIG_TR) || defined(CONFIG_TR_MODULE)
151 # define LL_MAX_HEADER 48
152 #else
153 # define LL_MAX_HEADER 32
154 #endif
155
156 #if !defined(CONFIG_NET_IPIP) && !defined(CONFIG_NET_IPIP_MODULE) && \
157 !defined(CONFIG_NET_IPGRE) && !defined(CONFIG_NET_IPGRE_MODULE) && \
158 !defined(CONFIG_IPV6_SIT) && !defined(CONFIG_IPV6_SIT_MODULE) && \
159 !defined(CONFIG_IPV6_TUNNEL) && !defined(CONFIG_IPV6_TUNNEL_MODULE)
160 #define MAX_HEADER LL_MAX_HEADER
161 #else
162 #define MAX_HEADER (LL_MAX_HEADER + 48)
163 #endif
164
165 /*
166 * Old network device statistics. Fields are native words
167 * (unsigned long) so they can be read and written atomically.
168 */
169
170 struct net_device_stats {
171 unsigned long rx_packets;
172 unsigned long tx_packets;
173 unsigned long rx_bytes;
174 unsigned long tx_bytes;
175 unsigned long rx_errors;
176 unsigned long tx_errors;
177 unsigned long rx_dropped;
178 unsigned long tx_dropped;
179 unsigned long multicast;
180 unsigned long collisions;
181 unsigned long rx_length_errors;
182 unsigned long rx_over_errors;
183 unsigned long rx_crc_errors;
184 unsigned long rx_frame_errors;
185 unsigned long rx_fifo_errors;
186 unsigned long rx_missed_errors;
187 unsigned long tx_aborted_errors;
188 unsigned long tx_carrier_errors;
189 unsigned long tx_fifo_errors;
190 unsigned long tx_heartbeat_errors;
191 unsigned long tx_window_errors;
192 unsigned long rx_compressed;
193 unsigned long tx_compressed;
194 };
195
196 #endif /* __KERNEL__ */
197
198
199 /* Media selection options. */
200 enum {
201 IF_PORT_UNKNOWN = 0,
202 IF_PORT_10BASE2,
203 IF_PORT_10BASET,
204 IF_PORT_AUI,
205 IF_PORT_100BASET,
206 IF_PORT_100BASETX,
207 IF_PORT_100BASEFX
208 };
209
210 #ifdef __KERNEL__
211
212 #include <linux/cache.h>
213 #include <linux/skbuff.h>
214
215 struct neighbour;
216 struct neigh_parms;
217 struct sk_buff;
218
219 struct netdev_hw_addr {
220 struct list_head list;
221 unsigned char addr[MAX_ADDR_LEN];
222 unsigned char type;
223 #define NETDEV_HW_ADDR_T_LAN 1
224 #define NETDEV_HW_ADDR_T_SAN 2
225 #define NETDEV_HW_ADDR_T_SLAVE 3
226 #define NETDEV_HW_ADDR_T_UNICAST 4
227 #define NETDEV_HW_ADDR_T_MULTICAST 5
228 bool synced;
229 bool global_use;
230 int refcount;
231 struct rcu_head rcu_head;
232 };
233
234 struct netdev_hw_addr_list {
235 struct list_head list;
236 int count;
237 };
238
239 #define netdev_hw_addr_list_count(l) ((l)->count)
240 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
241 #define netdev_hw_addr_list_for_each(ha, l) \
242 list_for_each_entry(ha, &(l)->list, list)
243
244 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
245 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
246 #define netdev_for_each_uc_addr(ha, dev) \
247 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
248
249 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
250 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
251 #define netdev_for_each_mc_addr(ha, dev) \
252 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
253
254 struct hh_cache {
255 u16 hh_len;
256 u16 __pad;
257 seqlock_t hh_lock;
258
259 /* cached hardware header; allow for machine alignment needs. */
260 #define HH_DATA_MOD 16
261 #define HH_DATA_OFF(__len) \
262 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
263 #define HH_DATA_ALIGN(__len) \
264 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
265 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
266 };
267
268 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
269 * Alternative is:
270 * dev->hard_header_len ? (dev->hard_header_len +
271 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
272 *
273 * We could use other alignment values, but we must maintain the
274 * relationship HH alignment <= LL alignment.
275 *
276 * LL_ALLOCATED_SPACE also takes into account the tailroom the device
277 * may need.
278 */
279 #define LL_RESERVED_SPACE(dev) \
280 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
281 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
282 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
283 #define LL_ALLOCATED_SPACE(dev) \
284 ((((dev)->hard_header_len+(dev)->needed_headroom+(dev)->needed_tailroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
285
286 struct header_ops {
287 int (*create) (struct sk_buff *skb, struct net_device *dev,
288 unsigned short type, const void *daddr,
289 const void *saddr, unsigned len);
290 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
291 int (*rebuild)(struct sk_buff *skb);
292 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
293 void (*cache_update)(struct hh_cache *hh,
294 const struct net_device *dev,
295 const unsigned char *haddr);
296 };
297
298 /* These flag bits are private to the generic network queueing
299 * layer, they may not be explicitly referenced by any other
300 * code.
301 */
302
303 enum netdev_state_t {
304 __LINK_STATE_START,
305 __LINK_STATE_PRESENT,
306 __LINK_STATE_NOCARRIER,
307 __LINK_STATE_LINKWATCH_PENDING,
308 __LINK_STATE_DORMANT,
309 };
310
311
312 /*
313 * This structure holds at boot time configured netdevice settings. They
314 * are then used in the device probing.
315 */
316 struct netdev_boot_setup {
317 char name[IFNAMSIZ];
318 struct ifmap map;
319 };
320 #define NETDEV_BOOT_SETUP_MAX 8
321
322 extern int __init netdev_boot_setup(char *str);
323
324 /*
325 * Structure for NAPI scheduling similar to tasklet but with weighting
326 */
327 struct napi_struct {
328 /* The poll_list must only be managed by the entity which
329 * changes the state of the NAPI_STATE_SCHED bit. This means
330 * whoever atomically sets that bit can add this napi_struct
331 * to the per-cpu poll_list, and whoever clears that bit
332 * can remove from the list right before clearing the bit.
333 */
334 struct list_head poll_list;
335
336 unsigned long state;
337 int weight;
338 int (*poll)(struct napi_struct *, int);
339 #ifdef CONFIG_NETPOLL
340 spinlock_t poll_lock;
341 int poll_owner;
342 #endif
343
344 unsigned int gro_count;
345
346 struct net_device *dev;
347 struct list_head dev_list;
348 struct sk_buff *gro_list;
349 struct sk_buff *skb;
350 };
351
352 enum {
353 NAPI_STATE_SCHED, /* Poll is scheduled */
354 NAPI_STATE_DISABLE, /* Disable pending */
355 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
356 };
357
358 enum gro_result {
359 GRO_MERGED,
360 GRO_MERGED_FREE,
361 GRO_HELD,
362 GRO_NORMAL,
363 GRO_DROP,
364 };
365 typedef enum gro_result gro_result_t;
366
367 /*
368 * enum rx_handler_result - Possible return values for rx_handlers.
369 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
370 * further.
371 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
372 * case skb->dev was changed by rx_handler.
373 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
374 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
375 *
376 * rx_handlers are functions called from inside __netif_receive_skb(), to do
377 * special processing of the skb, prior to delivery to protocol handlers.
378 *
379 * Currently, a net_device can only have a single rx_handler registered. Trying
380 * to register a second rx_handler will return -EBUSY.
381 *
382 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
383 * To unregister a rx_handler on a net_device, use
384 * netdev_rx_handler_unregister().
385 *
386 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
387 * do with the skb.
388 *
389 * If the rx_handler consumed to skb in some way, it should return
390 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
391 * the skb to be delivered in some other ways.
392 *
393 * If the rx_handler changed skb->dev, to divert the skb to another
394 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
395 * new device will be called if it exists.
396 *
397 * If the rx_handler consider the skb should be ignored, it should return
398 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
399 * are registred on exact device (ptype->dev == skb->dev).
400 *
401 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
402 * delivered, it should return RX_HANDLER_PASS.
403 *
404 * A device without a registered rx_handler will behave as if rx_handler
405 * returned RX_HANDLER_PASS.
406 */
407
408 enum rx_handler_result {
409 RX_HANDLER_CONSUMED,
410 RX_HANDLER_ANOTHER,
411 RX_HANDLER_EXACT,
412 RX_HANDLER_PASS,
413 };
414 typedef enum rx_handler_result rx_handler_result_t;
415 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
416
417 extern void __napi_schedule(struct napi_struct *n);
418
419 static inline int napi_disable_pending(struct napi_struct *n)
420 {
421 return test_bit(NAPI_STATE_DISABLE, &n->state);
422 }
423
424 /**
425 * napi_schedule_prep - check if napi can be scheduled
426 * @n: napi context
427 *
428 * Test if NAPI routine is already running, and if not mark
429 * it as running. This is used as a condition variable
430 * insure only one NAPI poll instance runs. We also make
431 * sure there is no pending NAPI disable.
432 */
433 static inline int napi_schedule_prep(struct napi_struct *n)
434 {
435 return !napi_disable_pending(n) &&
436 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
437 }
438
439 /**
440 * napi_schedule - schedule NAPI poll
441 * @n: napi context
442 *
443 * Schedule NAPI poll routine to be called if it is not already
444 * running.
445 */
446 static inline void napi_schedule(struct napi_struct *n)
447 {
448 if (napi_schedule_prep(n))
449 __napi_schedule(n);
450 }
451
452 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
453 static inline int napi_reschedule(struct napi_struct *napi)
454 {
455 if (napi_schedule_prep(napi)) {
456 __napi_schedule(napi);
457 return 1;
458 }
459 return 0;
460 }
461
462 /**
463 * napi_complete - NAPI processing complete
464 * @n: napi context
465 *
466 * Mark NAPI processing as complete.
467 */
468 extern void __napi_complete(struct napi_struct *n);
469 extern void napi_complete(struct napi_struct *n);
470
471 /**
472 * napi_disable - prevent NAPI from scheduling
473 * @n: napi context
474 *
475 * Stop NAPI from being scheduled on this context.
476 * Waits till any outstanding processing completes.
477 */
478 static inline void napi_disable(struct napi_struct *n)
479 {
480 set_bit(NAPI_STATE_DISABLE, &n->state);
481 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
482 msleep(1);
483 clear_bit(NAPI_STATE_DISABLE, &n->state);
484 }
485
486 /**
487 * napi_enable - enable NAPI scheduling
488 * @n: napi context
489 *
490 * Resume NAPI from being scheduled on this context.
491 * Must be paired with napi_disable.
492 */
493 static inline void napi_enable(struct napi_struct *n)
494 {
495 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
496 smp_mb__before_clear_bit();
497 clear_bit(NAPI_STATE_SCHED, &n->state);
498 }
499
500 #ifdef CONFIG_SMP
501 /**
502 * napi_synchronize - wait until NAPI is not running
503 * @n: napi context
504 *
505 * Wait until NAPI is done being scheduled on this context.
506 * Waits till any outstanding processing completes but
507 * does not disable future activations.
508 */
509 static inline void napi_synchronize(const struct napi_struct *n)
510 {
511 while (test_bit(NAPI_STATE_SCHED, &n->state))
512 msleep(1);
513 }
514 #else
515 # define napi_synchronize(n) barrier()
516 #endif
517
518 enum netdev_queue_state_t {
519 __QUEUE_STATE_XOFF,
520 __QUEUE_STATE_FROZEN,
521 #define QUEUE_STATE_XOFF_OR_FROZEN ((1 << __QUEUE_STATE_XOFF) | \
522 (1 << __QUEUE_STATE_FROZEN))
523 };
524
525 struct netdev_queue {
526 /*
527 * read mostly part
528 */
529 struct net_device *dev;
530 struct Qdisc *qdisc;
531 unsigned long state;
532 struct Qdisc *qdisc_sleeping;
533 #if defined(CONFIG_RPS) || defined(CONFIG_XPS)
534 struct kobject kobj;
535 #endif
536 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
537 int numa_node;
538 #endif
539 /*
540 * write mostly part
541 */
542 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
543 int xmit_lock_owner;
544 /*
545 * please use this field instead of dev->trans_start
546 */
547 unsigned long trans_start;
548 } ____cacheline_aligned_in_smp;
549
550 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
551 {
552 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
553 return q->numa_node;
554 #else
555 return NUMA_NO_NODE;
556 #endif
557 }
558
559 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
560 {
561 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
562 q->numa_node = node;
563 #endif
564 }
565
566 #ifdef CONFIG_RPS
567 /*
568 * This structure holds an RPS map which can be of variable length. The
569 * map is an array of CPUs.
570 */
571 struct rps_map {
572 unsigned int len;
573 struct rcu_head rcu;
574 u16 cpus[0];
575 };
576 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + (_num * sizeof(u16)))
577
578 /*
579 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
580 * tail pointer for that CPU's input queue at the time of last enqueue, and
581 * a hardware filter index.
582 */
583 struct rps_dev_flow {
584 u16 cpu;
585 u16 filter;
586 unsigned int last_qtail;
587 };
588 #define RPS_NO_FILTER 0xffff
589
590 /*
591 * The rps_dev_flow_table structure contains a table of flow mappings.
592 */
593 struct rps_dev_flow_table {
594 unsigned int mask;
595 struct rcu_head rcu;
596 struct work_struct free_work;
597 struct rps_dev_flow flows[0];
598 };
599 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
600 (_num * sizeof(struct rps_dev_flow)))
601
602 /*
603 * The rps_sock_flow_table contains mappings of flows to the last CPU
604 * on which they were processed by the application (set in recvmsg).
605 */
606 struct rps_sock_flow_table {
607 unsigned int mask;
608 u16 ents[0];
609 };
610 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
611 (_num * sizeof(u16)))
612
613 #define RPS_NO_CPU 0xffff
614
615 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
616 u32 hash)
617 {
618 if (table && hash) {
619 unsigned int cpu, index = hash & table->mask;
620
621 /* We only give a hint, preemption can change cpu under us */
622 cpu = raw_smp_processor_id();
623
624 if (table->ents[index] != cpu)
625 table->ents[index] = cpu;
626 }
627 }
628
629 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
630 u32 hash)
631 {
632 if (table && hash)
633 table->ents[hash & table->mask] = RPS_NO_CPU;
634 }
635
636 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
637
638 #ifdef CONFIG_RFS_ACCEL
639 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
640 u32 flow_id, u16 filter_id);
641 #endif
642
643 /* This structure contains an instance of an RX queue. */
644 struct netdev_rx_queue {
645 struct rps_map __rcu *rps_map;
646 struct rps_dev_flow_table __rcu *rps_flow_table;
647 struct kobject kobj;
648 struct net_device *dev;
649 } ____cacheline_aligned_in_smp;
650 #endif /* CONFIG_RPS */
651
652 #ifdef CONFIG_XPS
653 /*
654 * This structure holds an XPS map which can be of variable length. The
655 * map is an array of queues.
656 */
657 struct xps_map {
658 unsigned int len;
659 unsigned int alloc_len;
660 struct rcu_head rcu;
661 u16 queues[0];
662 };
663 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + (_num * sizeof(u16)))
664 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
665 / sizeof(u16))
666
667 /*
668 * This structure holds all XPS maps for device. Maps are indexed by CPU.
669 */
670 struct xps_dev_maps {
671 struct rcu_head rcu;
672 struct xps_map __rcu *cpu_map[0];
673 };
674 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
675 (nr_cpu_ids * sizeof(struct xps_map *)))
676 #endif /* CONFIG_XPS */
677
678 #define TC_MAX_QUEUE 16
679 #define TC_BITMASK 15
680 /* HW offloaded queuing disciplines txq count and offset maps */
681 struct netdev_tc_txq {
682 u16 count;
683 u16 offset;
684 };
685
686 /*
687 * This structure defines the management hooks for network devices.
688 * The following hooks can be defined; unless noted otherwise, they are
689 * optional and can be filled with a null pointer.
690 *
691 * int (*ndo_init)(struct net_device *dev);
692 * This function is called once when network device is registered.
693 * The network device can use this to any late stage initializaton
694 * or semantic validattion. It can fail with an error code which will
695 * be propogated back to register_netdev
696 *
697 * void (*ndo_uninit)(struct net_device *dev);
698 * This function is called when device is unregistered or when registration
699 * fails. It is not called if init fails.
700 *
701 * int (*ndo_open)(struct net_device *dev);
702 * This function is called when network device transistions to the up
703 * state.
704 *
705 * int (*ndo_stop)(struct net_device *dev);
706 * This function is called when network device transistions to the down
707 * state.
708 *
709 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
710 * struct net_device *dev);
711 * Called when a packet needs to be transmitted.
712 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
713 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
714 * Required can not be NULL.
715 *
716 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
717 * Called to decide which queue to when device supports multiple
718 * transmit queues.
719 *
720 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
721 * This function is called to allow device receiver to make
722 * changes to configuration when multicast or promiscious is enabled.
723 *
724 * void (*ndo_set_rx_mode)(struct net_device *dev);
725 * This function is called device changes address list filtering.
726 *
727 * void (*ndo_set_multicast_list)(struct net_device *dev);
728 * This function is called when the multicast address list changes.
729 *
730 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
731 * This function is called when the Media Access Control address
732 * needs to be changed. If this interface is not defined, the
733 * mac address can not be changed.
734 *
735 * int (*ndo_validate_addr)(struct net_device *dev);
736 * Test if Media Access Control address is valid for the device.
737 *
738 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
739 * Called when a user request an ioctl which can't be handled by
740 * the generic interface code. If not defined ioctl's return
741 * not supported error code.
742 *
743 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
744 * Used to set network devices bus interface parameters. This interface
745 * is retained for legacy reason, new devices should use the bus
746 * interface (PCI) for low level management.
747 *
748 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
749 * Called when a user wants to change the Maximum Transfer Unit
750 * of a device. If not defined, any request to change MTU will
751 * will return an error.
752 *
753 * void (*ndo_tx_timeout)(struct net_device *dev);
754 * Callback uses when the transmitter has not made any progress
755 * for dev->watchdog ticks.
756 *
757 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
758 * struct rtnl_link_stats64 *storage);
759 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
760 * Called when a user wants to get the network device usage
761 * statistics. Drivers must do one of the following:
762 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
763 * rtnl_link_stats64 structure passed by the caller.
764 * 2. Define @ndo_get_stats to update a net_device_stats structure
765 * (which should normally be dev->stats) and return a pointer to
766 * it. The structure may be changed asynchronously only if each
767 * field is written atomically.
768 * 3. Update dev->stats asynchronously and atomically, and define
769 * neither operation.
770 *
771 * void (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
772 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
773 * this function is called when a VLAN id is registered.
774 *
775 * void (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
776 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
777 * this function is called when a VLAN id is unregistered.
778 *
779 * void (*ndo_poll_controller)(struct net_device *dev);
780 *
781 * SR-IOV management functions.
782 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
783 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
784 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
785 * int (*ndo_get_vf_config)(struct net_device *dev,
786 * int vf, struct ifla_vf_info *ivf);
787 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
788 * struct nlattr *port[]);
789 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
790 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
791 * Called to setup 'tc' number of traffic classes in the net device. This
792 * is always called from the stack with the rtnl lock held and netif tx
793 * queues stopped. This allows the netdevice to perform queue management
794 * safely.
795 *
796 * Fiber Channel over Ethernet (FCoE) offload functions.
797 * int (*ndo_fcoe_enable)(struct net_device *dev);
798 * Called when the FCoE protocol stack wants to start using LLD for FCoE
799 * so the underlying device can perform whatever needed configuration or
800 * initialization to support acceleration of FCoE traffic.
801 *
802 * int (*ndo_fcoe_disable)(struct net_device *dev);
803 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
804 * so the underlying device can perform whatever needed clean-ups to
805 * stop supporting acceleration of FCoE traffic.
806 *
807 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
808 * struct scatterlist *sgl, unsigned int sgc);
809 * Called when the FCoE Initiator wants to initialize an I/O that
810 * is a possible candidate for Direct Data Placement (DDP). The LLD can
811 * perform necessary setup and returns 1 to indicate the device is set up
812 * successfully to perform DDP on this I/O, otherwise this returns 0.
813 *
814 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
815 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
816 * indicated by the FC exchange id 'xid', so the underlying device can
817 * clean up and reuse resources for later DDP requests.
818 *
819 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
820 * struct scatterlist *sgl, unsigned int sgc);
821 * Called when the FCoE Target wants to initialize an I/O that
822 * is a possible candidate for Direct Data Placement (DDP). The LLD can
823 * perform necessary setup and returns 1 to indicate the device is set up
824 * successfully to perform DDP on this I/O, otherwise this returns 0.
825 *
826 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
827 * Called when the underlying device wants to override default World Wide
828 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
829 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
830 * protocol stack to use.
831 *
832 * RFS acceleration.
833 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
834 * u16 rxq_index, u32 flow_id);
835 * Set hardware filter for RFS. rxq_index is the target queue index;
836 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
837 * Return the filter ID on success, or a negative error code.
838 *
839 * Slave management functions (for bridge, bonding, etc). User should
840 * call netdev_set_master() to set dev->master properly.
841 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
842 * Called to make another netdev an underling.
843 *
844 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
845 * Called to release previously enslaved netdev.
846 *
847 * Feature/offload setting functions.
848 * u32 (*ndo_fix_features)(struct net_device *dev, u32 features);
849 * Adjusts the requested feature flags according to device-specific
850 * constraints, and returns the resulting flags. Must not modify
851 * the device state.
852 *
853 * int (*ndo_set_features)(struct net_device *dev, u32 features);
854 * Called to update device configuration to new features. Passed
855 * feature set might be less than what was returned by ndo_fix_features()).
856 * Must return >0 or -errno if it changed dev->features itself.
857 *
858 */
859 struct net_device_ops {
860 int (*ndo_init)(struct net_device *dev);
861 void (*ndo_uninit)(struct net_device *dev);
862 int (*ndo_open)(struct net_device *dev);
863 int (*ndo_stop)(struct net_device *dev);
864 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
865 struct net_device *dev);
866 u16 (*ndo_select_queue)(struct net_device *dev,
867 struct sk_buff *skb);
868 void (*ndo_change_rx_flags)(struct net_device *dev,
869 int flags);
870 void (*ndo_set_rx_mode)(struct net_device *dev);
871 void (*ndo_set_multicast_list)(struct net_device *dev);
872 int (*ndo_set_mac_address)(struct net_device *dev,
873 void *addr);
874 int (*ndo_validate_addr)(struct net_device *dev);
875 int (*ndo_do_ioctl)(struct net_device *dev,
876 struct ifreq *ifr, int cmd);
877 int (*ndo_set_config)(struct net_device *dev,
878 struct ifmap *map);
879 int (*ndo_change_mtu)(struct net_device *dev,
880 int new_mtu);
881 int (*ndo_neigh_setup)(struct net_device *dev,
882 struct neigh_parms *);
883 void (*ndo_tx_timeout) (struct net_device *dev);
884
885 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
886 struct rtnl_link_stats64 *storage);
887 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
888
889 void (*ndo_vlan_rx_add_vid)(struct net_device *dev,
890 unsigned short vid);
891 void (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
892 unsigned short vid);
893 #ifdef CONFIG_NET_POLL_CONTROLLER
894 void (*ndo_poll_controller)(struct net_device *dev);
895 int (*ndo_netpoll_setup)(struct net_device *dev,
896 struct netpoll_info *info);
897 void (*ndo_netpoll_cleanup)(struct net_device *dev);
898 #endif
899 int (*ndo_set_vf_mac)(struct net_device *dev,
900 int queue, u8 *mac);
901 int (*ndo_set_vf_vlan)(struct net_device *dev,
902 int queue, u16 vlan, u8 qos);
903 int (*ndo_set_vf_tx_rate)(struct net_device *dev,
904 int vf, int rate);
905 int (*ndo_get_vf_config)(struct net_device *dev,
906 int vf,
907 struct ifla_vf_info *ivf);
908 int (*ndo_set_vf_port)(struct net_device *dev,
909 int vf,
910 struct nlattr *port[]);
911 int (*ndo_get_vf_port)(struct net_device *dev,
912 int vf, struct sk_buff *skb);
913 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
914 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
915 int (*ndo_fcoe_enable)(struct net_device *dev);
916 int (*ndo_fcoe_disable)(struct net_device *dev);
917 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
918 u16 xid,
919 struct scatterlist *sgl,
920 unsigned int sgc);
921 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
922 u16 xid);
923 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
924 u16 xid,
925 struct scatterlist *sgl,
926 unsigned int sgc);
927 #define NETDEV_FCOE_WWNN 0
928 #define NETDEV_FCOE_WWPN 1
929 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
930 u64 *wwn, int type);
931 #endif
932 #ifdef CONFIG_RFS_ACCEL
933 int (*ndo_rx_flow_steer)(struct net_device *dev,
934 const struct sk_buff *skb,
935 u16 rxq_index,
936 u32 flow_id);
937 #endif
938 int (*ndo_add_slave)(struct net_device *dev,
939 struct net_device *slave_dev);
940 int (*ndo_del_slave)(struct net_device *dev,
941 struct net_device *slave_dev);
942 u32 (*ndo_fix_features)(struct net_device *dev,
943 u32 features);
944 int (*ndo_set_features)(struct net_device *dev,
945 u32 features);
946 };
947
948 /*
949 * The DEVICE structure.
950 * Actually, this whole structure is a big mistake. It mixes I/O
951 * data with strictly "high-level" data, and it has to know about
952 * almost every data structure used in the INET module.
953 *
954 * FIXME: cleanup struct net_device such that network protocol info
955 * moves out.
956 */
957
958 struct net_device {
959
960 /*
961 * This is the first field of the "visible" part of this structure
962 * (i.e. as seen by users in the "Space.c" file). It is the name
963 * of the interface.
964 */
965 char name[IFNAMSIZ];
966
967 struct pm_qos_request_list pm_qos_req;
968
969 /* device name hash chain */
970 struct hlist_node name_hlist;
971 /* snmp alias */
972 char *ifalias;
973
974 /*
975 * I/O specific fields
976 * FIXME: Merge these and struct ifmap into one
977 */
978 unsigned long mem_end; /* shared mem end */
979 unsigned long mem_start; /* shared mem start */
980 unsigned long base_addr; /* device I/O address */
981 unsigned int irq; /* device IRQ number */
982
983 /*
984 * Some hardware also needs these fields, but they are not
985 * part of the usual set specified in Space.c.
986 */
987
988 unsigned long state;
989
990 struct list_head dev_list;
991 struct list_head napi_list;
992 struct list_head unreg_list;
993
994 /* currently active device features */
995 u32 features;
996 /* user-changeable features */
997 u32 hw_features;
998 /* user-requested features */
999 u32 wanted_features;
1000 /* mask of features inheritable by VLAN devices */
1001 u32 vlan_features;
1002
1003 /* Net device feature bits; if you change something,
1004 * also update netdev_features_strings[] in ethtool.c */
1005
1006 #define NETIF_F_SG 1 /* Scatter/gather IO. */
1007 #define NETIF_F_IP_CSUM 2 /* Can checksum TCP/UDP over IPv4. */
1008 #define NETIF_F_NO_CSUM 4 /* Does not require checksum. F.e. loopack. */
1009 #define NETIF_F_HW_CSUM 8 /* Can checksum all the packets. */
1010 #define NETIF_F_IPV6_CSUM 16 /* Can checksum TCP/UDP over IPV6 */
1011 #define NETIF_F_HIGHDMA 32 /* Can DMA to high memory. */
1012 #define NETIF_F_FRAGLIST 64 /* Scatter/gather IO. */
1013 #define NETIF_F_HW_VLAN_TX 128 /* Transmit VLAN hw acceleration */
1014 #define NETIF_F_HW_VLAN_RX 256 /* Receive VLAN hw acceleration */
1015 #define NETIF_F_HW_VLAN_FILTER 512 /* Receive filtering on VLAN */
1016 #define NETIF_F_VLAN_CHALLENGED 1024 /* Device cannot handle VLAN packets */
1017 #define NETIF_F_GSO 2048 /* Enable software GSO. */
1018 #define NETIF_F_LLTX 4096 /* LockLess TX - deprecated. Please */
1019 /* do not use LLTX in new drivers */
1020 #define NETIF_F_NETNS_LOCAL 8192 /* Does not change network namespaces */
1021 #define NETIF_F_GRO 16384 /* Generic receive offload */
1022 #define NETIF_F_LRO 32768 /* large receive offload */
1023
1024 /* the GSO_MASK reserves bits 16 through 23 */
1025 #define NETIF_F_FCOE_CRC (1 << 24) /* FCoE CRC32 */
1026 #define NETIF_F_SCTP_CSUM (1 << 25) /* SCTP checksum offload */
1027 #define NETIF_F_FCOE_MTU (1 << 26) /* Supports max FCoE MTU, 2158 bytes*/
1028 #define NETIF_F_NTUPLE (1 << 27) /* N-tuple filters supported */
1029 #define NETIF_F_RXHASH (1 << 28) /* Receive hashing offload */
1030 #define NETIF_F_RXCSUM (1 << 29) /* Receive checksumming offload */
1031 #define NETIF_F_NOCACHE_COPY (1 << 30) /* Use no-cache copyfromuser */
1032 #define NETIF_F_LOOPBACK (1 << 31) /* Enable loopback */
1033
1034 /* Segmentation offload features */
1035 #define NETIF_F_GSO_SHIFT 16
1036 #define NETIF_F_GSO_MASK 0x00ff0000
1037 #define NETIF_F_TSO (SKB_GSO_TCPV4 << NETIF_F_GSO_SHIFT)
1038 #define NETIF_F_UFO (SKB_GSO_UDP << NETIF_F_GSO_SHIFT)
1039 #define NETIF_F_GSO_ROBUST (SKB_GSO_DODGY << NETIF_F_GSO_SHIFT)
1040 #define NETIF_F_TSO_ECN (SKB_GSO_TCP_ECN << NETIF_F_GSO_SHIFT)
1041 #define NETIF_F_TSO6 (SKB_GSO_TCPV6 << NETIF_F_GSO_SHIFT)
1042 #define NETIF_F_FSO (SKB_GSO_FCOE << NETIF_F_GSO_SHIFT)
1043
1044 /* Features valid for ethtool to change */
1045 /* = all defined minus driver/device-class-related */
1046 #define NETIF_F_NEVER_CHANGE (NETIF_F_VLAN_CHALLENGED | \
1047 NETIF_F_LLTX | NETIF_F_NETNS_LOCAL)
1048 #define NETIF_F_ETHTOOL_BITS (0xff3fffff & ~NETIF_F_NEVER_CHANGE)
1049
1050 /* List of features with software fallbacks. */
1051 #define NETIF_F_GSO_SOFTWARE (NETIF_F_TSO | NETIF_F_TSO_ECN | \
1052 NETIF_F_TSO6 | NETIF_F_UFO)
1053
1054
1055 #define NETIF_F_GEN_CSUM (NETIF_F_NO_CSUM | NETIF_F_HW_CSUM)
1056 #define NETIF_F_V4_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IP_CSUM)
1057 #define NETIF_F_V6_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IPV6_CSUM)
1058 #define NETIF_F_ALL_CSUM (NETIF_F_V4_CSUM | NETIF_F_V6_CSUM)
1059
1060 #define NETIF_F_ALL_TSO (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1061
1062 #define NETIF_F_ALL_FCOE (NETIF_F_FCOE_CRC | NETIF_F_FCOE_MTU | \
1063 NETIF_F_FSO)
1064
1065 /*
1066 * If one device supports one of these features, then enable them
1067 * for all in netdev_increment_features.
1068 */
1069 #define NETIF_F_ONE_FOR_ALL (NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ROBUST | \
1070 NETIF_F_SG | NETIF_F_HIGHDMA | \
1071 NETIF_F_FRAGLIST | NETIF_F_VLAN_CHALLENGED)
1072 /*
1073 * If one device doesn't support one of these features, then disable it
1074 * for all in netdev_increment_features.
1075 */
1076 #define NETIF_F_ALL_FOR_ALL (NETIF_F_NOCACHE_COPY | NETIF_F_FSO)
1077
1078 /* changeable features with no special hardware requirements */
1079 #define NETIF_F_SOFT_FEATURES (NETIF_F_GSO | NETIF_F_GRO)
1080
1081 /* Interface index. Unique device identifier */
1082 int ifindex;
1083 int iflink;
1084
1085 struct net_device_stats stats;
1086 atomic_long_t rx_dropped; /* dropped packets by core network
1087 * Do not use this in drivers.
1088 */
1089
1090 #ifdef CONFIG_WIRELESS_EXT
1091 /* List of functions to handle Wireless Extensions (instead of ioctl).
1092 * See <net/iw_handler.h> for details. Jean II */
1093 const struct iw_handler_def * wireless_handlers;
1094 /* Instance data managed by the core of Wireless Extensions. */
1095 struct iw_public_data * wireless_data;
1096 #endif
1097 /* Management operations */
1098 const struct net_device_ops *netdev_ops;
1099 const struct ethtool_ops *ethtool_ops;
1100
1101 /* Hardware header description */
1102 const struct header_ops *header_ops;
1103
1104 unsigned int flags; /* interface flags (a la BSD) */
1105 unsigned int priv_flags; /* Like 'flags' but invisible to userspace. */
1106 unsigned short gflags;
1107 unsigned short padded; /* How much padding added by alloc_netdev() */
1108
1109 unsigned char operstate; /* RFC2863 operstate */
1110 unsigned char link_mode; /* mapping policy to operstate */
1111
1112 unsigned char if_port; /* Selectable AUI, TP,..*/
1113 unsigned char dma; /* DMA channel */
1114
1115 unsigned int mtu; /* interface MTU value */
1116 unsigned short type; /* interface hardware type */
1117 unsigned short hard_header_len; /* hardware hdr length */
1118
1119 /* extra head- and tailroom the hardware may need, but not in all cases
1120 * can this be guaranteed, especially tailroom. Some cases also use
1121 * LL_MAX_HEADER instead to allocate the skb.
1122 */
1123 unsigned short needed_headroom;
1124 unsigned short needed_tailroom;
1125
1126 /* Interface address info. */
1127 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1128 unsigned char addr_assign_type; /* hw address assignment type */
1129 unsigned char addr_len; /* hardware address length */
1130 unsigned short dev_id; /* for shared network cards */
1131
1132 spinlock_t addr_list_lock;
1133 struct netdev_hw_addr_list uc; /* Unicast mac addresses */
1134 struct netdev_hw_addr_list mc; /* Multicast mac addresses */
1135 int uc_promisc;
1136 unsigned int promiscuity;
1137 unsigned int allmulti;
1138
1139
1140 /* Protocol specific pointers */
1141
1142 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1143 struct vlan_group __rcu *vlgrp; /* VLAN group */
1144 #endif
1145 #ifdef CONFIG_NET_DSA
1146 void *dsa_ptr; /* dsa specific data */
1147 #endif
1148 void *atalk_ptr; /* AppleTalk link */
1149 struct in_device __rcu *ip_ptr; /* IPv4 specific data */
1150 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */
1151 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */
1152 void *ec_ptr; /* Econet specific data */
1153 void *ax25_ptr; /* AX.25 specific data */
1154 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data,
1155 assign before registering */
1156
1157 /*
1158 * Cache lines mostly used on receive path (including eth_type_trans())
1159 */
1160 unsigned long last_rx; /* Time of last Rx
1161 * This should not be set in
1162 * drivers, unless really needed,
1163 * because network stack (bonding)
1164 * use it if/when necessary, to
1165 * avoid dirtying this cache line.
1166 */
1167
1168 struct net_device *master; /* Pointer to master device of a group,
1169 * which this device is member of.
1170 */
1171
1172 /* Interface address info used in eth_type_trans() */
1173 unsigned char *dev_addr; /* hw address, (before bcast
1174 because most packets are
1175 unicast) */
1176
1177 struct netdev_hw_addr_list dev_addrs; /* list of device
1178 hw addresses */
1179
1180 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */
1181
1182 #if defined(CONFIG_RPS) || defined(CONFIG_XPS)
1183 struct kset *queues_kset;
1184
1185 struct netdev_rx_queue *_rx;
1186
1187 /* Number of RX queues allocated at register_netdev() time */
1188 unsigned int num_rx_queues;
1189
1190 /* Number of RX queues currently active in device */
1191 unsigned int real_num_rx_queues;
1192
1193 #ifdef CONFIG_RFS_ACCEL
1194 /* CPU reverse-mapping for RX completion interrupts, indexed
1195 * by RX queue number. Assigned by driver. This must only be
1196 * set if the ndo_rx_flow_steer operation is defined. */
1197 struct cpu_rmap *rx_cpu_rmap;
1198 #endif
1199 #endif
1200
1201 rx_handler_func_t __rcu *rx_handler;
1202 void __rcu *rx_handler_data;
1203
1204 struct netdev_queue __rcu *ingress_queue;
1205
1206 /*
1207 * Cache lines mostly used on transmit path
1208 */
1209 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1210
1211 /* Number of TX queues allocated at alloc_netdev_mq() time */
1212 unsigned int num_tx_queues;
1213
1214 /* Number of TX queues currently active in device */
1215 unsigned int real_num_tx_queues;
1216
1217 /* root qdisc from userspace point of view */
1218 struct Qdisc *qdisc;
1219
1220 unsigned long tx_queue_len; /* Max frames per queue allowed */
1221 spinlock_t tx_global_lock;
1222
1223 #ifdef CONFIG_XPS
1224 struct xps_dev_maps __rcu *xps_maps;
1225 #endif
1226
1227 /* These may be needed for future network-power-down code. */
1228
1229 /*
1230 * trans_start here is expensive for high speed devices on SMP,
1231 * please use netdev_queue->trans_start instead.
1232 */
1233 unsigned long trans_start; /* Time (in jiffies) of last Tx */
1234
1235 int watchdog_timeo; /* used by dev_watchdog() */
1236 struct timer_list watchdog_timer;
1237
1238 /* Number of references to this device */
1239 int __percpu *pcpu_refcnt;
1240
1241 /* delayed register/unregister */
1242 struct list_head todo_list;
1243 /* device index hash chain */
1244 struct hlist_node index_hlist;
1245
1246 struct list_head link_watch_list;
1247
1248 /* register/unregister state machine */
1249 enum { NETREG_UNINITIALIZED=0,
1250 NETREG_REGISTERED, /* completed register_netdevice */
1251 NETREG_UNREGISTERING, /* called unregister_netdevice */
1252 NETREG_UNREGISTERED, /* completed unregister todo */
1253 NETREG_RELEASED, /* called free_netdev */
1254 NETREG_DUMMY, /* dummy device for NAPI poll */
1255 } reg_state:8;
1256
1257 bool dismantle; /* device is going do be freed */
1258
1259 enum {
1260 RTNL_LINK_INITIALIZED,
1261 RTNL_LINK_INITIALIZING,
1262 } rtnl_link_state:16;
1263
1264 /* Called from unregister, can be used to call free_netdev */
1265 void (*destructor)(struct net_device *dev);
1266
1267 #ifdef CONFIG_NETPOLL
1268 struct netpoll_info *npinfo;
1269 #endif
1270
1271 #ifdef CONFIG_NET_NS
1272 /* Network namespace this network device is inside */
1273 struct net *nd_net;
1274 #endif
1275
1276 /* mid-layer private */
1277 union {
1278 void *ml_priv;
1279 struct pcpu_lstats __percpu *lstats; /* loopback stats */
1280 struct pcpu_tstats __percpu *tstats; /* tunnel stats */
1281 struct pcpu_dstats __percpu *dstats; /* dummy stats */
1282 };
1283 /* GARP */
1284 struct garp_port __rcu *garp_port;
1285
1286 /* class/net/name entry */
1287 struct device dev;
1288 /* space for optional device, statistics, and wireless sysfs groups */
1289 const struct attribute_group *sysfs_groups[4];
1290
1291 /* rtnetlink link ops */
1292 const struct rtnl_link_ops *rtnl_link_ops;
1293
1294 /* for setting kernel sock attribute on TCP connection setup */
1295 #define GSO_MAX_SIZE 65536
1296 unsigned int gso_max_size;
1297
1298 #ifdef CONFIG_DCB
1299 /* Data Center Bridging netlink ops */
1300 const struct dcbnl_rtnl_ops *dcbnl_ops;
1301 #endif
1302 u8 num_tc;
1303 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1304 u8 prio_tc_map[TC_BITMASK + 1];
1305
1306 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
1307 /* max exchange id for FCoE LRO by ddp */
1308 unsigned int fcoe_ddp_xid;
1309 #endif
1310 /* phy device may attach itself for hardware timestamping */
1311 struct phy_device *phydev;
1312
1313 /* group the device belongs to */
1314 int group;
1315 };
1316 #define to_net_dev(d) container_of(d, struct net_device, dev)
1317
1318 #define NETDEV_ALIGN 32
1319
1320 static inline
1321 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1322 {
1323 return dev->prio_tc_map[prio & TC_BITMASK];
1324 }
1325
1326 static inline
1327 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1328 {
1329 if (tc >= dev->num_tc)
1330 return -EINVAL;
1331
1332 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1333 return 0;
1334 }
1335
1336 static inline
1337 void netdev_reset_tc(struct net_device *dev)
1338 {
1339 dev->num_tc = 0;
1340 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1341 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1342 }
1343
1344 static inline
1345 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1346 {
1347 if (tc >= dev->num_tc)
1348 return -EINVAL;
1349
1350 dev->tc_to_txq[tc].count = count;
1351 dev->tc_to_txq[tc].offset = offset;
1352 return 0;
1353 }
1354
1355 static inline
1356 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1357 {
1358 if (num_tc > TC_MAX_QUEUE)
1359 return -EINVAL;
1360
1361 dev->num_tc = num_tc;
1362 return 0;
1363 }
1364
1365 static inline
1366 int netdev_get_num_tc(struct net_device *dev)
1367 {
1368 return dev->num_tc;
1369 }
1370
1371 static inline
1372 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1373 unsigned int index)
1374 {
1375 return &dev->_tx[index];
1376 }
1377
1378 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1379 void (*f)(struct net_device *,
1380 struct netdev_queue *,
1381 void *),
1382 void *arg)
1383 {
1384 unsigned int i;
1385
1386 for (i = 0; i < dev->num_tx_queues; i++)
1387 f(dev, &dev->_tx[i], arg);
1388 }
1389
1390 /*
1391 * Net namespace inlines
1392 */
1393 static inline
1394 struct net *dev_net(const struct net_device *dev)
1395 {
1396 return read_pnet(&dev->nd_net);
1397 }
1398
1399 static inline
1400 void dev_net_set(struct net_device *dev, struct net *net)
1401 {
1402 #ifdef CONFIG_NET_NS
1403 release_net(dev->nd_net);
1404 dev->nd_net = hold_net(net);
1405 #endif
1406 }
1407
1408 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1409 {
1410 #ifdef CONFIG_NET_DSA_TAG_DSA
1411 if (dev->dsa_ptr != NULL)
1412 return dsa_uses_dsa_tags(dev->dsa_ptr);
1413 #endif
1414
1415 return 0;
1416 }
1417
1418 #ifndef CONFIG_NET_NS
1419 static inline void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1420 {
1421 skb->dev = dev;
1422 }
1423 #else /* CONFIG_NET_NS */
1424 void skb_set_dev(struct sk_buff *skb, struct net_device *dev);
1425 #endif
1426
1427 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1428 {
1429 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1430 if (dev->dsa_ptr != NULL)
1431 return dsa_uses_trailer_tags(dev->dsa_ptr);
1432 #endif
1433
1434 return 0;
1435 }
1436
1437 /**
1438 * netdev_priv - access network device private data
1439 * @dev: network device
1440 *
1441 * Get network device private data
1442 */
1443 static inline void *netdev_priv(const struct net_device *dev)
1444 {
1445 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1446 }
1447
1448 /* Set the sysfs physical device reference for the network logical device
1449 * if set prior to registration will cause a symlink during initialization.
1450 */
1451 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1452
1453 /* Set the sysfs device type for the network logical device to allow
1454 * fin grained indentification of different network device types. For
1455 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1456 */
1457 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1458
1459 /**
1460 * netif_napi_add - initialize a napi context
1461 * @dev: network device
1462 * @napi: napi context
1463 * @poll: polling function
1464 * @weight: default weight
1465 *
1466 * netif_napi_add() must be used to initialize a napi context prior to calling
1467 * *any* of the other napi related functions.
1468 */
1469 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1470 int (*poll)(struct napi_struct *, int), int weight);
1471
1472 /**
1473 * netif_napi_del - remove a napi context
1474 * @napi: napi context
1475 *
1476 * netif_napi_del() removes a napi context from the network device napi list
1477 */
1478 void netif_napi_del(struct napi_struct *napi);
1479
1480 struct napi_gro_cb {
1481 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1482 void *frag0;
1483
1484 /* Length of frag0. */
1485 unsigned int frag0_len;
1486
1487 /* This indicates where we are processing relative to skb->data. */
1488 int data_offset;
1489
1490 /* This is non-zero if the packet may be of the same flow. */
1491 int same_flow;
1492
1493 /* This is non-zero if the packet cannot be merged with the new skb. */
1494 int flush;
1495
1496 /* Number of segments aggregated. */
1497 int count;
1498
1499 /* Free the skb? */
1500 int free;
1501 };
1502
1503 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1504
1505 struct packet_type {
1506 __be16 type; /* This is really htons(ether_type). */
1507 struct net_device *dev; /* NULL is wildcarded here */
1508 int (*func) (struct sk_buff *,
1509 struct net_device *,
1510 struct packet_type *,
1511 struct net_device *);
1512 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1513 u32 features);
1514 int (*gso_send_check)(struct sk_buff *skb);
1515 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1516 struct sk_buff *skb);
1517 int (*gro_complete)(struct sk_buff *skb);
1518 void *af_packet_priv;
1519 struct list_head list;
1520 };
1521
1522 #include <linux/notifier.h>
1523
1524 /* netdevice notifier chain. Please remember to update the rtnetlink
1525 * notification exclusion list in rtnetlink_event() when adding new
1526 * types.
1527 */
1528 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
1529 #define NETDEV_DOWN 0x0002
1530 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
1531 detected a hardware crash and restarted
1532 - we can use this eg to kick tcp sessions
1533 once done */
1534 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
1535 #define NETDEV_REGISTER 0x0005
1536 #define NETDEV_UNREGISTER 0x0006
1537 #define NETDEV_CHANGEMTU 0x0007
1538 #define NETDEV_CHANGEADDR 0x0008
1539 #define NETDEV_GOING_DOWN 0x0009
1540 #define NETDEV_CHANGENAME 0x000A
1541 #define NETDEV_FEAT_CHANGE 0x000B
1542 #define NETDEV_BONDING_FAILOVER 0x000C
1543 #define NETDEV_PRE_UP 0x000D
1544 #define NETDEV_PRE_TYPE_CHANGE 0x000E
1545 #define NETDEV_POST_TYPE_CHANGE 0x000F
1546 #define NETDEV_POST_INIT 0x0010
1547 #define NETDEV_UNREGISTER_BATCH 0x0011
1548 #define NETDEV_RELEASE 0x0012
1549 #define NETDEV_NOTIFY_PEERS 0x0013
1550 #define NETDEV_JOIN 0x0014
1551
1552 extern int register_netdevice_notifier(struct notifier_block *nb);
1553 extern int unregister_netdevice_notifier(struct notifier_block *nb);
1554 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1555
1556
1557 extern rwlock_t dev_base_lock; /* Device list lock */
1558
1559
1560 #define for_each_netdev(net, d) \
1561 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1562 #define for_each_netdev_reverse(net, d) \
1563 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1564 #define for_each_netdev_rcu(net, d) \
1565 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1566 #define for_each_netdev_safe(net, d, n) \
1567 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1568 #define for_each_netdev_continue(net, d) \
1569 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1570 #define for_each_netdev_continue_rcu(net, d) \
1571 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1572 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
1573
1574 static inline struct net_device *next_net_device(struct net_device *dev)
1575 {
1576 struct list_head *lh;
1577 struct net *net;
1578
1579 net = dev_net(dev);
1580 lh = dev->dev_list.next;
1581 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1582 }
1583
1584 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1585 {
1586 struct list_head *lh;
1587 struct net *net;
1588
1589 net = dev_net(dev);
1590 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1591 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1592 }
1593
1594 static inline struct net_device *first_net_device(struct net *net)
1595 {
1596 return list_empty(&net->dev_base_head) ? NULL :
1597 net_device_entry(net->dev_base_head.next);
1598 }
1599
1600 static inline struct net_device *first_net_device_rcu(struct net *net)
1601 {
1602 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1603
1604 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1605 }
1606
1607 extern int netdev_boot_setup_check(struct net_device *dev);
1608 extern unsigned long netdev_boot_base(const char *prefix, int unit);
1609 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1610 const char *hwaddr);
1611 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1612 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1613 extern void dev_add_pack(struct packet_type *pt);
1614 extern void dev_remove_pack(struct packet_type *pt);
1615 extern void __dev_remove_pack(struct packet_type *pt);
1616
1617 extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1618 unsigned short mask);
1619 extern struct net_device *dev_get_by_name(struct net *net, const char *name);
1620 extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1621 extern struct net_device *__dev_get_by_name(struct net *net, const char *name);
1622 extern int dev_alloc_name(struct net_device *dev, const char *name);
1623 extern int dev_open(struct net_device *dev);
1624 extern int dev_close(struct net_device *dev);
1625 extern void dev_disable_lro(struct net_device *dev);
1626 extern int dev_queue_xmit(struct sk_buff *skb);
1627 extern int register_netdevice(struct net_device *dev);
1628 extern void unregister_netdevice_queue(struct net_device *dev,
1629 struct list_head *head);
1630 extern void unregister_netdevice_many(struct list_head *head);
1631 static inline void unregister_netdevice(struct net_device *dev)
1632 {
1633 unregister_netdevice_queue(dev, NULL);
1634 }
1635
1636 extern int netdev_refcnt_read(const struct net_device *dev);
1637 extern void free_netdev(struct net_device *dev);
1638 extern void synchronize_net(void);
1639 extern int init_dummy_netdev(struct net_device *dev);
1640 extern void netdev_resync_ops(struct net_device *dev);
1641
1642 extern struct net_device *dev_get_by_index(struct net *net, int ifindex);
1643 extern struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1644 extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1645 extern int dev_restart(struct net_device *dev);
1646 #ifdef CONFIG_NETPOLL_TRAP
1647 extern int netpoll_trap(void);
1648 #endif
1649 extern int skb_gro_receive(struct sk_buff **head,
1650 struct sk_buff *skb);
1651 extern void skb_gro_reset_offset(struct sk_buff *skb);
1652
1653 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1654 {
1655 return NAPI_GRO_CB(skb)->data_offset;
1656 }
1657
1658 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1659 {
1660 return skb->len - NAPI_GRO_CB(skb)->data_offset;
1661 }
1662
1663 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1664 {
1665 NAPI_GRO_CB(skb)->data_offset += len;
1666 }
1667
1668 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1669 unsigned int offset)
1670 {
1671 return NAPI_GRO_CB(skb)->frag0 + offset;
1672 }
1673
1674 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1675 {
1676 return NAPI_GRO_CB(skb)->frag0_len < hlen;
1677 }
1678
1679 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1680 unsigned int offset)
1681 {
1682 NAPI_GRO_CB(skb)->frag0 = NULL;
1683 NAPI_GRO_CB(skb)->frag0_len = 0;
1684 return pskb_may_pull(skb, hlen) ? skb->data + offset : NULL;
1685 }
1686
1687 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1688 {
1689 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1690 }
1691
1692 static inline void *skb_gro_network_header(struct sk_buff *skb)
1693 {
1694 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1695 skb_network_offset(skb);
1696 }
1697
1698 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1699 unsigned short type,
1700 const void *daddr, const void *saddr,
1701 unsigned len)
1702 {
1703 if (!dev->header_ops || !dev->header_ops->create)
1704 return 0;
1705
1706 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1707 }
1708
1709 static inline int dev_parse_header(const struct sk_buff *skb,
1710 unsigned char *haddr)
1711 {
1712 const struct net_device *dev = skb->dev;
1713
1714 if (!dev->header_ops || !dev->header_ops->parse)
1715 return 0;
1716 return dev->header_ops->parse(skb, haddr);
1717 }
1718
1719 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1720 extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1721 static inline int unregister_gifconf(unsigned int family)
1722 {
1723 return register_gifconf(family, NULL);
1724 }
1725
1726 /*
1727 * Incoming packets are placed on per-cpu queues
1728 */
1729 struct softnet_data {
1730 struct Qdisc *output_queue;
1731 struct Qdisc **output_queue_tailp;
1732 struct list_head poll_list;
1733 struct sk_buff *completion_queue;
1734 struct sk_buff_head process_queue;
1735
1736 /* stats */
1737 unsigned int processed;
1738 unsigned int time_squeeze;
1739 unsigned int cpu_collision;
1740 unsigned int received_rps;
1741
1742 #ifdef CONFIG_RPS
1743 struct softnet_data *rps_ipi_list;
1744
1745 /* Elements below can be accessed between CPUs for RPS */
1746 struct call_single_data csd ____cacheline_aligned_in_smp;
1747 struct softnet_data *rps_ipi_next;
1748 unsigned int cpu;
1749 unsigned int input_queue_head;
1750 unsigned int input_queue_tail;
1751 #endif
1752 unsigned dropped;
1753 struct sk_buff_head input_pkt_queue;
1754 struct napi_struct backlog;
1755 };
1756
1757 static inline void input_queue_head_incr(struct softnet_data *sd)
1758 {
1759 #ifdef CONFIG_RPS
1760 sd->input_queue_head++;
1761 #endif
1762 }
1763
1764 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1765 unsigned int *qtail)
1766 {
1767 #ifdef CONFIG_RPS
1768 *qtail = ++sd->input_queue_tail;
1769 #endif
1770 }
1771
1772 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1773
1774 extern void __netif_schedule(struct Qdisc *q);
1775
1776 static inline void netif_schedule_queue(struct netdev_queue *txq)
1777 {
1778 if (!test_bit(__QUEUE_STATE_XOFF, &txq->state))
1779 __netif_schedule(txq->qdisc);
1780 }
1781
1782 static inline void netif_tx_schedule_all(struct net_device *dev)
1783 {
1784 unsigned int i;
1785
1786 for (i = 0; i < dev->num_tx_queues; i++)
1787 netif_schedule_queue(netdev_get_tx_queue(dev, i));
1788 }
1789
1790 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1791 {
1792 clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1793 }
1794
1795 /**
1796 * netif_start_queue - allow transmit
1797 * @dev: network device
1798 *
1799 * Allow upper layers to call the device hard_start_xmit routine.
1800 */
1801 static inline void netif_start_queue(struct net_device *dev)
1802 {
1803 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1804 }
1805
1806 static inline void netif_tx_start_all_queues(struct net_device *dev)
1807 {
1808 unsigned int i;
1809
1810 for (i = 0; i < dev->num_tx_queues; i++) {
1811 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1812 netif_tx_start_queue(txq);
1813 }
1814 }
1815
1816 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1817 {
1818 #ifdef CONFIG_NETPOLL_TRAP
1819 if (netpoll_trap()) {
1820 netif_tx_start_queue(dev_queue);
1821 return;
1822 }
1823 #endif
1824 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state))
1825 __netif_schedule(dev_queue->qdisc);
1826 }
1827
1828 /**
1829 * netif_wake_queue - restart transmit
1830 * @dev: network device
1831 *
1832 * Allow upper layers to call the device hard_start_xmit routine.
1833 * Used for flow control when transmit resources are available.
1834 */
1835 static inline void netif_wake_queue(struct net_device *dev)
1836 {
1837 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1838 }
1839
1840 static inline void netif_tx_wake_all_queues(struct net_device *dev)
1841 {
1842 unsigned int i;
1843
1844 for (i = 0; i < dev->num_tx_queues; i++) {
1845 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1846 netif_tx_wake_queue(txq);
1847 }
1848 }
1849
1850 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1851 {
1852 if (WARN_ON(!dev_queue)) {
1853 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
1854 return;
1855 }
1856 set_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1857 }
1858
1859 /**
1860 * netif_stop_queue - stop transmitted packets
1861 * @dev: network device
1862 *
1863 * Stop upper layers calling the device hard_start_xmit routine.
1864 * Used for flow control when transmit resources are unavailable.
1865 */
1866 static inline void netif_stop_queue(struct net_device *dev)
1867 {
1868 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1869 }
1870
1871 static inline void netif_tx_stop_all_queues(struct net_device *dev)
1872 {
1873 unsigned int i;
1874
1875 for (i = 0; i < dev->num_tx_queues; i++) {
1876 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1877 netif_tx_stop_queue(txq);
1878 }
1879 }
1880
1881 static inline int netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1882 {
1883 return test_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1884 }
1885
1886 /**
1887 * netif_queue_stopped - test if transmit queue is flowblocked
1888 * @dev: network device
1889 *
1890 * Test if transmit queue on device is currently unable to send.
1891 */
1892 static inline int netif_queue_stopped(const struct net_device *dev)
1893 {
1894 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1895 }
1896
1897 static inline int netif_tx_queue_frozen_or_stopped(const struct netdev_queue *dev_queue)
1898 {
1899 return dev_queue->state & QUEUE_STATE_XOFF_OR_FROZEN;
1900 }
1901
1902 /**
1903 * netif_running - test if up
1904 * @dev: network device
1905 *
1906 * Test if the device has been brought up.
1907 */
1908 static inline int netif_running(const struct net_device *dev)
1909 {
1910 return test_bit(__LINK_STATE_START, &dev->state);
1911 }
1912
1913 /*
1914 * Routines to manage the subqueues on a device. We only need start
1915 * stop, and a check if it's stopped. All other device management is
1916 * done at the overall netdevice level.
1917 * Also test the device if we're multiqueue.
1918 */
1919
1920 /**
1921 * netif_start_subqueue - allow sending packets on subqueue
1922 * @dev: network device
1923 * @queue_index: sub queue index
1924 *
1925 * Start individual transmit queue of a device with multiple transmit queues.
1926 */
1927 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
1928 {
1929 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1930
1931 netif_tx_start_queue(txq);
1932 }
1933
1934 /**
1935 * netif_stop_subqueue - stop sending packets on subqueue
1936 * @dev: network device
1937 * @queue_index: sub queue index
1938 *
1939 * Stop individual transmit queue of a device with multiple transmit queues.
1940 */
1941 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
1942 {
1943 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1944 #ifdef CONFIG_NETPOLL_TRAP
1945 if (netpoll_trap())
1946 return;
1947 #endif
1948 netif_tx_stop_queue(txq);
1949 }
1950
1951 /**
1952 * netif_subqueue_stopped - test status of subqueue
1953 * @dev: network device
1954 * @queue_index: sub queue index
1955 *
1956 * Check individual transmit queue of a device with multiple transmit queues.
1957 */
1958 static inline int __netif_subqueue_stopped(const struct net_device *dev,
1959 u16 queue_index)
1960 {
1961 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1962
1963 return netif_tx_queue_stopped(txq);
1964 }
1965
1966 static inline int netif_subqueue_stopped(const struct net_device *dev,
1967 struct sk_buff *skb)
1968 {
1969 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
1970 }
1971
1972 /**
1973 * netif_wake_subqueue - allow sending packets on subqueue
1974 * @dev: network device
1975 * @queue_index: sub queue index
1976 *
1977 * Resume individual transmit queue of a device with multiple transmit queues.
1978 */
1979 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
1980 {
1981 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1982 #ifdef CONFIG_NETPOLL_TRAP
1983 if (netpoll_trap())
1984 return;
1985 #endif
1986 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &txq->state))
1987 __netif_schedule(txq->qdisc);
1988 }
1989
1990 /*
1991 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
1992 * as a distribution range limit for the returned value.
1993 */
1994 static inline u16 skb_tx_hash(const struct net_device *dev,
1995 const struct sk_buff *skb)
1996 {
1997 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
1998 }
1999
2000 /**
2001 * netif_is_multiqueue - test if device has multiple transmit queues
2002 * @dev: network device
2003 *
2004 * Check if device has multiple transmit queues
2005 */
2006 static inline int netif_is_multiqueue(const struct net_device *dev)
2007 {
2008 return dev->num_tx_queues > 1;
2009 }
2010
2011 extern int netif_set_real_num_tx_queues(struct net_device *dev,
2012 unsigned int txq);
2013
2014 #ifdef CONFIG_RPS
2015 extern int netif_set_real_num_rx_queues(struct net_device *dev,
2016 unsigned int rxq);
2017 #else
2018 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2019 unsigned int rxq)
2020 {
2021 return 0;
2022 }
2023 #endif
2024
2025 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2026 const struct net_device *from_dev)
2027 {
2028 netif_set_real_num_tx_queues(to_dev, from_dev->real_num_tx_queues);
2029 #ifdef CONFIG_RPS
2030 return netif_set_real_num_rx_queues(to_dev,
2031 from_dev->real_num_rx_queues);
2032 #else
2033 return 0;
2034 #endif
2035 }
2036
2037 /* Use this variant when it is known for sure that it
2038 * is executing from hardware interrupt context or with hardware interrupts
2039 * disabled.
2040 */
2041 extern void dev_kfree_skb_irq(struct sk_buff *skb);
2042
2043 /* Use this variant in places where it could be invoked
2044 * from either hardware interrupt or other context, with hardware interrupts
2045 * either disabled or enabled.
2046 */
2047 extern void dev_kfree_skb_any(struct sk_buff *skb);
2048
2049 extern int netif_rx(struct sk_buff *skb);
2050 extern int netif_rx_ni(struct sk_buff *skb);
2051 extern int netif_receive_skb(struct sk_buff *skb);
2052 extern gro_result_t dev_gro_receive(struct napi_struct *napi,
2053 struct sk_buff *skb);
2054 extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb);
2055 extern gro_result_t napi_gro_receive(struct napi_struct *napi,
2056 struct sk_buff *skb);
2057 extern void napi_gro_flush(struct napi_struct *napi);
2058 extern struct sk_buff * napi_get_frags(struct napi_struct *napi);
2059 extern gro_result_t napi_frags_finish(struct napi_struct *napi,
2060 struct sk_buff *skb,
2061 gro_result_t ret);
2062 extern struct sk_buff * napi_frags_skb(struct napi_struct *napi);
2063 extern gro_result_t napi_gro_frags(struct napi_struct *napi);
2064
2065 static inline void napi_free_frags(struct napi_struct *napi)
2066 {
2067 kfree_skb(napi->skb);
2068 napi->skb = NULL;
2069 }
2070
2071 extern int netdev_rx_handler_register(struct net_device *dev,
2072 rx_handler_func_t *rx_handler,
2073 void *rx_handler_data);
2074 extern void netdev_rx_handler_unregister(struct net_device *dev);
2075
2076 extern int dev_valid_name(const char *name);
2077 extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2078 extern int dev_ethtool(struct net *net, struct ifreq *);
2079 extern unsigned dev_get_flags(const struct net_device *);
2080 extern int __dev_change_flags(struct net_device *, unsigned int flags);
2081 extern int dev_change_flags(struct net_device *, unsigned);
2082 extern void __dev_notify_flags(struct net_device *, unsigned int old_flags);
2083 extern int dev_change_name(struct net_device *, const char *);
2084 extern int dev_set_alias(struct net_device *, const char *, size_t);
2085 extern int dev_change_net_namespace(struct net_device *,
2086 struct net *, const char *);
2087 extern int dev_set_mtu(struct net_device *, int);
2088 extern void dev_set_group(struct net_device *, int);
2089 extern int dev_set_mac_address(struct net_device *,
2090 struct sockaddr *);
2091 extern int dev_hard_start_xmit(struct sk_buff *skb,
2092 struct net_device *dev,
2093 struct netdev_queue *txq);
2094 extern int dev_forward_skb(struct net_device *dev,
2095 struct sk_buff *skb);
2096
2097 extern int netdev_budget;
2098
2099 /* Called by rtnetlink.c:rtnl_unlock() */
2100 extern void netdev_run_todo(void);
2101
2102 /**
2103 * dev_put - release reference to device
2104 * @dev: network device
2105 *
2106 * Release reference to device to allow it to be freed.
2107 */
2108 static inline void dev_put(struct net_device *dev)
2109 {
2110 irqsafe_cpu_dec(*dev->pcpu_refcnt);
2111 }
2112
2113 /**
2114 * dev_hold - get reference to device
2115 * @dev: network device
2116 *
2117 * Hold reference to device to keep it from being freed.
2118 */
2119 static inline void dev_hold(struct net_device *dev)
2120 {
2121 irqsafe_cpu_inc(*dev->pcpu_refcnt);
2122 }
2123
2124 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2125 * and _off may be called from IRQ context, but it is caller
2126 * who is responsible for serialization of these calls.
2127 *
2128 * The name carrier is inappropriate, these functions should really be
2129 * called netif_lowerlayer_*() because they represent the state of any
2130 * kind of lower layer not just hardware media.
2131 */
2132
2133 extern void linkwatch_fire_event(struct net_device *dev);
2134 extern void linkwatch_forget_dev(struct net_device *dev);
2135
2136 /**
2137 * netif_carrier_ok - test if carrier present
2138 * @dev: network device
2139 *
2140 * Check if carrier is present on device
2141 */
2142 static inline int netif_carrier_ok(const struct net_device *dev)
2143 {
2144 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2145 }
2146
2147 extern unsigned long dev_trans_start(struct net_device *dev);
2148
2149 extern void __netdev_watchdog_up(struct net_device *dev);
2150
2151 extern void netif_carrier_on(struct net_device *dev);
2152
2153 extern void netif_carrier_off(struct net_device *dev);
2154
2155 extern void netif_notify_peers(struct net_device *dev);
2156
2157 /**
2158 * netif_dormant_on - mark device as dormant.
2159 * @dev: network device
2160 *
2161 * Mark device as dormant (as per RFC2863).
2162 *
2163 * The dormant state indicates that the relevant interface is not
2164 * actually in a condition to pass packets (i.e., it is not 'up') but is
2165 * in a "pending" state, waiting for some external event. For "on-
2166 * demand" interfaces, this new state identifies the situation where the
2167 * interface is waiting for events to place it in the up state.
2168 *
2169 */
2170 static inline void netif_dormant_on(struct net_device *dev)
2171 {
2172 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2173 linkwatch_fire_event(dev);
2174 }
2175
2176 /**
2177 * netif_dormant_off - set device as not dormant.
2178 * @dev: network device
2179 *
2180 * Device is not in dormant state.
2181 */
2182 static inline void netif_dormant_off(struct net_device *dev)
2183 {
2184 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2185 linkwatch_fire_event(dev);
2186 }
2187
2188 /**
2189 * netif_dormant - test if carrier present
2190 * @dev: network device
2191 *
2192 * Check if carrier is present on device
2193 */
2194 static inline int netif_dormant(const struct net_device *dev)
2195 {
2196 return test_bit(__LINK_STATE_DORMANT, &dev->state);
2197 }
2198
2199
2200 /**
2201 * netif_oper_up - test if device is operational
2202 * @dev: network device
2203 *
2204 * Check if carrier is operational
2205 */
2206 static inline int netif_oper_up(const struct net_device *dev)
2207 {
2208 return (dev->operstate == IF_OPER_UP ||
2209 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2210 }
2211
2212 /**
2213 * netif_device_present - is device available or removed
2214 * @dev: network device
2215 *
2216 * Check if device has not been removed from system.
2217 */
2218 static inline int netif_device_present(struct net_device *dev)
2219 {
2220 return test_bit(__LINK_STATE_PRESENT, &dev->state);
2221 }
2222
2223 extern void netif_device_detach(struct net_device *dev);
2224
2225 extern void netif_device_attach(struct net_device *dev);
2226
2227 /*
2228 * Network interface message level settings
2229 */
2230
2231 enum {
2232 NETIF_MSG_DRV = 0x0001,
2233 NETIF_MSG_PROBE = 0x0002,
2234 NETIF_MSG_LINK = 0x0004,
2235 NETIF_MSG_TIMER = 0x0008,
2236 NETIF_MSG_IFDOWN = 0x0010,
2237 NETIF_MSG_IFUP = 0x0020,
2238 NETIF_MSG_RX_ERR = 0x0040,
2239 NETIF_MSG_TX_ERR = 0x0080,
2240 NETIF_MSG_TX_QUEUED = 0x0100,
2241 NETIF_MSG_INTR = 0x0200,
2242 NETIF_MSG_TX_DONE = 0x0400,
2243 NETIF_MSG_RX_STATUS = 0x0800,
2244 NETIF_MSG_PKTDATA = 0x1000,
2245 NETIF_MSG_HW = 0x2000,
2246 NETIF_MSG_WOL = 0x4000,
2247 };
2248
2249 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
2250 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
2251 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
2252 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
2253 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
2254 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
2255 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
2256 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
2257 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2258 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
2259 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
2260 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
2261 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
2262 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
2263 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
2264
2265 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2266 {
2267 /* use default */
2268 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2269 return default_msg_enable_bits;
2270 if (debug_value == 0) /* no output */
2271 return 0;
2272 /* set low N bits */
2273 return (1 << debug_value) - 1;
2274 }
2275
2276 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2277 {
2278 spin_lock(&txq->_xmit_lock);
2279 txq->xmit_lock_owner = cpu;
2280 }
2281
2282 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2283 {
2284 spin_lock_bh(&txq->_xmit_lock);
2285 txq->xmit_lock_owner = smp_processor_id();
2286 }
2287
2288 static inline int __netif_tx_trylock(struct netdev_queue *txq)
2289 {
2290 int ok = spin_trylock(&txq->_xmit_lock);
2291 if (likely(ok))
2292 txq->xmit_lock_owner = smp_processor_id();
2293 return ok;
2294 }
2295
2296 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2297 {
2298 txq->xmit_lock_owner = -1;
2299 spin_unlock(&txq->_xmit_lock);
2300 }
2301
2302 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2303 {
2304 txq->xmit_lock_owner = -1;
2305 spin_unlock_bh(&txq->_xmit_lock);
2306 }
2307
2308 static inline void txq_trans_update(struct netdev_queue *txq)
2309 {
2310 if (txq->xmit_lock_owner != -1)
2311 txq->trans_start = jiffies;
2312 }
2313
2314 /**
2315 * netif_tx_lock - grab network device transmit lock
2316 * @dev: network device
2317 *
2318 * Get network device transmit lock
2319 */
2320 static inline void netif_tx_lock(struct net_device *dev)
2321 {
2322 unsigned int i;
2323 int cpu;
2324
2325 spin_lock(&dev->tx_global_lock);
2326 cpu = smp_processor_id();
2327 for (i = 0; i < dev->num_tx_queues; i++) {
2328 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2329
2330 /* We are the only thread of execution doing a
2331 * freeze, but we have to grab the _xmit_lock in
2332 * order to synchronize with threads which are in
2333 * the ->hard_start_xmit() handler and already
2334 * checked the frozen bit.
2335 */
2336 __netif_tx_lock(txq, cpu);
2337 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2338 __netif_tx_unlock(txq);
2339 }
2340 }
2341
2342 static inline void netif_tx_lock_bh(struct net_device *dev)
2343 {
2344 local_bh_disable();
2345 netif_tx_lock(dev);
2346 }
2347
2348 static inline void netif_tx_unlock(struct net_device *dev)
2349 {
2350 unsigned int i;
2351
2352 for (i = 0; i < dev->num_tx_queues; i++) {
2353 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2354
2355 /* No need to grab the _xmit_lock here. If the
2356 * queue is not stopped for another reason, we
2357 * force a schedule.
2358 */
2359 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2360 netif_schedule_queue(txq);
2361 }
2362 spin_unlock(&dev->tx_global_lock);
2363 }
2364
2365 static inline void netif_tx_unlock_bh(struct net_device *dev)
2366 {
2367 netif_tx_unlock(dev);
2368 local_bh_enable();
2369 }
2370
2371 #define HARD_TX_LOCK(dev, txq, cpu) { \
2372 if ((dev->features & NETIF_F_LLTX) == 0) { \
2373 __netif_tx_lock(txq, cpu); \
2374 } \
2375 }
2376
2377 #define HARD_TX_UNLOCK(dev, txq) { \
2378 if ((dev->features & NETIF_F_LLTX) == 0) { \
2379 __netif_tx_unlock(txq); \
2380 } \
2381 }
2382
2383 static inline void netif_tx_disable(struct net_device *dev)
2384 {
2385 unsigned int i;
2386 int cpu;
2387
2388 local_bh_disable();
2389 cpu = smp_processor_id();
2390 for (i = 0; i < dev->num_tx_queues; i++) {
2391 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2392
2393 __netif_tx_lock(txq, cpu);
2394 netif_tx_stop_queue(txq);
2395 __netif_tx_unlock(txq);
2396 }
2397 local_bh_enable();
2398 }
2399
2400 static inline void netif_addr_lock(struct net_device *dev)
2401 {
2402 spin_lock(&dev->addr_list_lock);
2403 }
2404
2405 static inline void netif_addr_lock_bh(struct net_device *dev)
2406 {
2407 spin_lock_bh(&dev->addr_list_lock);
2408 }
2409
2410 static inline void netif_addr_unlock(struct net_device *dev)
2411 {
2412 spin_unlock(&dev->addr_list_lock);
2413 }
2414
2415 static inline void netif_addr_unlock_bh(struct net_device *dev)
2416 {
2417 spin_unlock_bh(&dev->addr_list_lock);
2418 }
2419
2420 /*
2421 * dev_addrs walker. Should be used only for read access. Call with
2422 * rcu_read_lock held.
2423 */
2424 #define for_each_dev_addr(dev, ha) \
2425 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2426
2427 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2428
2429 extern void ether_setup(struct net_device *dev);
2430
2431 /* Support for loadable net-drivers */
2432 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2433 void (*setup)(struct net_device *),
2434 unsigned int txqs, unsigned int rxqs);
2435 #define alloc_netdev(sizeof_priv, name, setup) \
2436 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2437
2438 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2439 alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2440
2441 extern int register_netdev(struct net_device *dev);
2442 extern void unregister_netdev(struct net_device *dev);
2443
2444 /* General hardware address lists handling functions */
2445 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2446 struct netdev_hw_addr_list *from_list,
2447 int addr_len, unsigned char addr_type);
2448 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2449 struct netdev_hw_addr_list *from_list,
2450 int addr_len, unsigned char addr_type);
2451 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2452 struct netdev_hw_addr_list *from_list,
2453 int addr_len);
2454 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2455 struct netdev_hw_addr_list *from_list,
2456 int addr_len);
2457 extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2458 extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2459
2460 /* Functions used for device addresses handling */
2461 extern int dev_addr_add(struct net_device *dev, unsigned char *addr,
2462 unsigned char addr_type);
2463 extern int dev_addr_del(struct net_device *dev, unsigned char *addr,
2464 unsigned char addr_type);
2465 extern int dev_addr_add_multiple(struct net_device *to_dev,
2466 struct net_device *from_dev,
2467 unsigned char addr_type);
2468 extern int dev_addr_del_multiple(struct net_device *to_dev,
2469 struct net_device *from_dev,
2470 unsigned char addr_type);
2471 extern void dev_addr_flush(struct net_device *dev);
2472 extern int dev_addr_init(struct net_device *dev);
2473
2474 /* Functions used for unicast addresses handling */
2475 extern int dev_uc_add(struct net_device *dev, unsigned char *addr);
2476 extern int dev_uc_del(struct net_device *dev, unsigned char *addr);
2477 extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2478 extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2479 extern void dev_uc_flush(struct net_device *dev);
2480 extern void dev_uc_init(struct net_device *dev);
2481
2482 /* Functions used for multicast addresses handling */
2483 extern int dev_mc_add(struct net_device *dev, unsigned char *addr);
2484 extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr);
2485 extern int dev_mc_del(struct net_device *dev, unsigned char *addr);
2486 extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr);
2487 extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2488 extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2489 extern void dev_mc_flush(struct net_device *dev);
2490 extern void dev_mc_init(struct net_device *dev);
2491
2492 /* Functions used for secondary unicast and multicast support */
2493 extern void dev_set_rx_mode(struct net_device *dev);
2494 extern void __dev_set_rx_mode(struct net_device *dev);
2495 extern int dev_set_promiscuity(struct net_device *dev, int inc);
2496 extern int dev_set_allmulti(struct net_device *dev, int inc);
2497 extern void netdev_state_change(struct net_device *dev);
2498 extern int netdev_bonding_change(struct net_device *dev,
2499 unsigned long event);
2500 extern void netdev_features_change(struct net_device *dev);
2501 /* Load a device via the kmod */
2502 extern void dev_load(struct net *net, const char *name);
2503 extern void dev_mcast_init(void);
2504 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2505 struct rtnl_link_stats64 *storage);
2506
2507 extern int netdev_max_backlog;
2508 extern int netdev_tstamp_prequeue;
2509 extern int weight_p;
2510 extern int bpf_jit_enable;
2511 extern int netdev_set_master(struct net_device *dev, struct net_device *master);
2512 extern int netdev_set_bond_master(struct net_device *dev,
2513 struct net_device *master);
2514 extern int skb_checksum_help(struct sk_buff *skb);
2515 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features);
2516 #ifdef CONFIG_BUG
2517 extern void netdev_rx_csum_fault(struct net_device *dev);
2518 #else
2519 static inline void netdev_rx_csum_fault(struct net_device *dev)
2520 {
2521 }
2522 #endif
2523 /* rx skb timestamps */
2524 extern void net_enable_timestamp(void);
2525 extern void net_disable_timestamp(void);
2526
2527 #ifdef CONFIG_PROC_FS
2528 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
2529 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2530 extern void dev_seq_stop(struct seq_file *seq, void *v);
2531 #endif
2532
2533 extern int netdev_class_create_file(struct class_attribute *class_attr);
2534 extern void netdev_class_remove_file(struct class_attribute *class_attr);
2535
2536 extern struct kobj_ns_type_operations net_ns_type_operations;
2537
2538 extern const char *netdev_drivername(const struct net_device *dev);
2539
2540 extern void linkwatch_run_queue(void);
2541
2542 static inline u32 netdev_get_wanted_features(struct net_device *dev)
2543 {
2544 return (dev->features & ~dev->hw_features) | dev->wanted_features;
2545 }
2546 u32 netdev_increment_features(u32 all, u32 one, u32 mask);
2547 int __netdev_update_features(struct net_device *dev);
2548 void netdev_update_features(struct net_device *dev);
2549 void netdev_change_features(struct net_device *dev);
2550
2551 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2552 struct net_device *dev);
2553
2554 u32 netif_skb_features(struct sk_buff *skb);
2555
2556 static inline int net_gso_ok(u32 features, int gso_type)
2557 {
2558 int feature = gso_type << NETIF_F_GSO_SHIFT;
2559 return (features & feature) == feature;
2560 }
2561
2562 static inline int skb_gso_ok(struct sk_buff *skb, u32 features)
2563 {
2564 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2565 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2566 }
2567
2568 static inline int netif_needs_gso(struct sk_buff *skb, int features)
2569 {
2570 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2571 unlikely(skb->ip_summed != CHECKSUM_PARTIAL));
2572 }
2573
2574 static inline void netif_set_gso_max_size(struct net_device *dev,
2575 unsigned int size)
2576 {
2577 dev->gso_max_size = size;
2578 }
2579
2580 static inline int netif_is_bond_slave(struct net_device *dev)
2581 {
2582 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2583 }
2584
2585 extern struct pernet_operations __net_initdata loopback_net_ops;
2586
2587 int dev_ethtool_get_settings(struct net_device *dev,
2588 struct ethtool_cmd *cmd);
2589
2590 static inline u32 dev_ethtool_get_rx_csum(struct net_device *dev)
2591 {
2592 if (dev->features & NETIF_F_RXCSUM)
2593 return 1;
2594 if (!dev->ethtool_ops || !dev->ethtool_ops->get_rx_csum)
2595 return 0;
2596 return dev->ethtool_ops->get_rx_csum(dev);
2597 }
2598
2599 static inline u32 dev_ethtool_get_flags(struct net_device *dev)
2600 {
2601 if (!dev->ethtool_ops || !dev->ethtool_ops->get_flags)
2602 return 0;
2603 return dev->ethtool_ops->get_flags(dev);
2604 }
2605
2606 /* Logging, debugging and troubleshooting/diagnostic helpers. */
2607
2608 /* netdev_printk helpers, similar to dev_printk */
2609
2610 static inline const char *netdev_name(const struct net_device *dev)
2611 {
2612 if (dev->reg_state != NETREG_REGISTERED)
2613 return "(unregistered net_device)";
2614 return dev->name;
2615 }
2616
2617 extern int netdev_printk(const char *level, const struct net_device *dev,
2618 const char *format, ...)
2619 __attribute__ ((format (printf, 3, 4)));
2620 extern int netdev_emerg(const struct net_device *dev, const char *format, ...)
2621 __attribute__ ((format (printf, 2, 3)));
2622 extern int netdev_alert(const struct net_device *dev, const char *format, ...)
2623 __attribute__ ((format (printf, 2, 3)));
2624 extern int netdev_crit(const struct net_device *dev, const char *format, ...)
2625 __attribute__ ((format (printf, 2, 3)));
2626 extern int netdev_err(const struct net_device *dev, const char *format, ...)
2627 __attribute__ ((format (printf, 2, 3)));
2628 extern int netdev_warn(const struct net_device *dev, const char *format, ...)
2629 __attribute__ ((format (printf, 2, 3)));
2630 extern int netdev_notice(const struct net_device *dev, const char *format, ...)
2631 __attribute__ ((format (printf, 2, 3)));
2632 extern int netdev_info(const struct net_device *dev, const char *format, ...)
2633 __attribute__ ((format (printf, 2, 3)));
2634
2635 #define MODULE_ALIAS_NETDEV(device) \
2636 MODULE_ALIAS("netdev-" device)
2637
2638 #if defined(DEBUG)
2639 #define netdev_dbg(__dev, format, args...) \
2640 netdev_printk(KERN_DEBUG, __dev, format, ##args)
2641 #elif defined(CONFIG_DYNAMIC_DEBUG)
2642 #define netdev_dbg(__dev, format, args...) \
2643 do { \
2644 dynamic_dev_dbg((__dev)->dev.parent, "%s: " format, \
2645 netdev_name(__dev), ##args); \
2646 } while (0)
2647 #else
2648 #define netdev_dbg(__dev, format, args...) \
2649 ({ \
2650 if (0) \
2651 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2652 0; \
2653 })
2654 #endif
2655
2656 #if defined(VERBOSE_DEBUG)
2657 #define netdev_vdbg netdev_dbg
2658 #else
2659
2660 #define netdev_vdbg(dev, format, args...) \
2661 ({ \
2662 if (0) \
2663 netdev_printk(KERN_DEBUG, dev, format, ##args); \
2664 0; \
2665 })
2666 #endif
2667
2668 /*
2669 * netdev_WARN() acts like dev_printk(), but with the key difference
2670 * of using a WARN/WARN_ON to get the message out, including the
2671 * file/line information and a backtrace.
2672 */
2673 #define netdev_WARN(dev, format, args...) \
2674 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2675
2676 /* netif printk helpers, similar to netdev_printk */
2677
2678 #define netif_printk(priv, type, level, dev, fmt, args...) \
2679 do { \
2680 if (netif_msg_##type(priv)) \
2681 netdev_printk(level, (dev), fmt, ##args); \
2682 } while (0)
2683
2684 #define netif_level(level, priv, type, dev, fmt, args...) \
2685 do { \
2686 if (netif_msg_##type(priv)) \
2687 netdev_##level(dev, fmt, ##args); \
2688 } while (0)
2689
2690 #define netif_emerg(priv, type, dev, fmt, args...) \
2691 netif_level(emerg, priv, type, dev, fmt, ##args)
2692 #define netif_alert(priv, type, dev, fmt, args...) \
2693 netif_level(alert, priv, type, dev, fmt, ##args)
2694 #define netif_crit(priv, type, dev, fmt, args...) \
2695 netif_level(crit, priv, type, dev, fmt, ##args)
2696 #define netif_err(priv, type, dev, fmt, args...) \
2697 netif_level(err, priv, type, dev, fmt, ##args)
2698 #define netif_warn(priv, type, dev, fmt, args...) \
2699 netif_level(warn, priv, type, dev, fmt, ##args)
2700 #define netif_notice(priv, type, dev, fmt, args...) \
2701 netif_level(notice, priv, type, dev, fmt, ##args)
2702 #define netif_info(priv, type, dev, fmt, args...) \
2703 netif_level(info, priv, type, dev, fmt, ##args)
2704
2705 #if defined(DEBUG)
2706 #define netif_dbg(priv, type, dev, format, args...) \
2707 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2708 #elif defined(CONFIG_DYNAMIC_DEBUG)
2709 #define netif_dbg(priv, type, netdev, format, args...) \
2710 do { \
2711 if (netif_msg_##type(priv)) \
2712 dynamic_dev_dbg((netdev)->dev.parent, \
2713 "%s: " format, \
2714 netdev_name(netdev), ##args); \
2715 } while (0)
2716 #else
2717 #define netif_dbg(priv, type, dev, format, args...) \
2718 ({ \
2719 if (0) \
2720 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2721 0; \
2722 })
2723 #endif
2724
2725 #if defined(VERBOSE_DEBUG)
2726 #define netif_vdbg netif_dbg
2727 #else
2728 #define netif_vdbg(priv, type, dev, format, args...) \
2729 ({ \
2730 if (0) \
2731 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2732 0; \
2733 })
2734 #endif
2735
2736 #endif /* __KERNEL__ */
2737
2738 #endif /* _LINUX_NETDEVICE_H */