]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/netdevice.h
net: verify GSO flag bits against netdev features
[mirror_ubuntu-artful-kernel.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/if.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_link.h>
32
33 #ifdef __KERNEL__
34 #include <linux/pm_qos.h>
35 #include <linux/timer.h>
36 #include <linux/delay.h>
37 #include <linux/atomic.h>
38 #include <asm/cache.h>
39 #include <asm/byteorder.h>
40
41 #include <linux/device.h>
42 #include <linux/percpu.h>
43 #include <linux/rculist.h>
44 #include <linux/dmaengine.h>
45 #include <linux/workqueue.h>
46
47 #include <linux/ethtool.h>
48 #include <net/net_namespace.h>
49 #include <net/dsa.h>
50 #ifdef CONFIG_DCB
51 #include <net/dcbnl.h>
52 #endif
53
54 #include <linux/netdev_features.h>
55
56 struct vlan_group;
57 struct netpoll_info;
58 struct phy_device;
59 /* 802.11 specific */
60 struct wireless_dev;
61 /* source back-compat hooks */
62 #define SET_ETHTOOL_OPS(netdev,ops) \
63 ( (netdev)->ethtool_ops = (ops) )
64
65 /* hardware address assignment types */
66 #define NET_ADDR_PERM 0 /* address is permanent (default) */
67 #define NET_ADDR_RANDOM 1 /* address is generated randomly */
68 #define NET_ADDR_STOLEN 2 /* address is stolen from other device */
69
70 /* Backlog congestion levels */
71 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
72 #define NET_RX_DROP 1 /* packet dropped */
73
74 /*
75 * Transmit return codes: transmit return codes originate from three different
76 * namespaces:
77 *
78 * - qdisc return codes
79 * - driver transmit return codes
80 * - errno values
81 *
82 * Drivers are allowed to return any one of those in their hard_start_xmit()
83 * function. Real network devices commonly used with qdiscs should only return
84 * the driver transmit return codes though - when qdiscs are used, the actual
85 * transmission happens asynchronously, so the value is not propagated to
86 * higher layers. Virtual network devices transmit synchronously, in this case
87 * the driver transmit return codes are consumed by dev_queue_xmit(), all
88 * others are propagated to higher layers.
89 */
90
91 /* qdisc ->enqueue() return codes. */
92 #define NET_XMIT_SUCCESS 0x00
93 #define NET_XMIT_DROP 0x01 /* skb dropped */
94 #define NET_XMIT_CN 0x02 /* congestion notification */
95 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
96 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
97
98 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
99 * indicates that the device will soon be dropping packets, or already drops
100 * some packets of the same priority; prompting us to send less aggressively. */
101 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
102 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
103
104 /* Driver transmit return codes */
105 #define NETDEV_TX_MASK 0xf0
106
107 enum netdev_tx {
108 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
109 NETDEV_TX_OK = 0x00, /* driver took care of packet */
110 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
111 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
112 };
113 typedef enum netdev_tx netdev_tx_t;
114
115 /*
116 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
117 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
118 */
119 static inline bool dev_xmit_complete(int rc)
120 {
121 /*
122 * Positive cases with an skb consumed by a driver:
123 * - successful transmission (rc == NETDEV_TX_OK)
124 * - error while transmitting (rc < 0)
125 * - error while queueing to a different device (rc & NET_XMIT_MASK)
126 */
127 if (likely(rc < NET_XMIT_MASK))
128 return true;
129
130 return false;
131 }
132
133 #endif
134
135 #define MAX_ADDR_LEN 32 /* Largest hardware address length */
136
137 /* Initial net device group. All devices belong to group 0 by default. */
138 #define INIT_NETDEV_GROUP 0
139
140 #ifdef __KERNEL__
141 /*
142 * Compute the worst case header length according to the protocols
143 * used.
144 */
145
146 #if defined(CONFIG_WLAN) || defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
147 # if defined(CONFIG_MAC80211_MESH)
148 # define LL_MAX_HEADER 128
149 # else
150 # define LL_MAX_HEADER 96
151 # endif
152 #elif defined(CONFIG_TR) || defined(CONFIG_TR_MODULE)
153 # define LL_MAX_HEADER 48
154 #else
155 # define LL_MAX_HEADER 32
156 #endif
157
158 #if !defined(CONFIG_NET_IPIP) && !defined(CONFIG_NET_IPIP_MODULE) && \
159 !defined(CONFIG_NET_IPGRE) && !defined(CONFIG_NET_IPGRE_MODULE) && \
160 !defined(CONFIG_IPV6_SIT) && !defined(CONFIG_IPV6_SIT_MODULE) && \
161 !defined(CONFIG_IPV6_TUNNEL) && !defined(CONFIG_IPV6_TUNNEL_MODULE)
162 #define MAX_HEADER LL_MAX_HEADER
163 #else
164 #define MAX_HEADER (LL_MAX_HEADER + 48)
165 #endif
166
167 /*
168 * Old network device statistics. Fields are native words
169 * (unsigned long) so they can be read and written atomically.
170 */
171
172 struct net_device_stats {
173 unsigned long rx_packets;
174 unsigned long tx_packets;
175 unsigned long rx_bytes;
176 unsigned long tx_bytes;
177 unsigned long rx_errors;
178 unsigned long tx_errors;
179 unsigned long rx_dropped;
180 unsigned long tx_dropped;
181 unsigned long multicast;
182 unsigned long collisions;
183 unsigned long rx_length_errors;
184 unsigned long rx_over_errors;
185 unsigned long rx_crc_errors;
186 unsigned long rx_frame_errors;
187 unsigned long rx_fifo_errors;
188 unsigned long rx_missed_errors;
189 unsigned long tx_aborted_errors;
190 unsigned long tx_carrier_errors;
191 unsigned long tx_fifo_errors;
192 unsigned long tx_heartbeat_errors;
193 unsigned long tx_window_errors;
194 unsigned long rx_compressed;
195 unsigned long tx_compressed;
196 };
197
198 #endif /* __KERNEL__ */
199
200
201 /* Media selection options. */
202 enum {
203 IF_PORT_UNKNOWN = 0,
204 IF_PORT_10BASE2,
205 IF_PORT_10BASET,
206 IF_PORT_AUI,
207 IF_PORT_100BASET,
208 IF_PORT_100BASETX,
209 IF_PORT_100BASEFX
210 };
211
212 #ifdef __KERNEL__
213
214 #include <linux/cache.h>
215 #include <linux/skbuff.h>
216
217 struct neighbour;
218 struct neigh_parms;
219 struct sk_buff;
220
221 struct netdev_hw_addr {
222 struct list_head list;
223 unsigned char addr[MAX_ADDR_LEN];
224 unsigned char type;
225 #define NETDEV_HW_ADDR_T_LAN 1
226 #define NETDEV_HW_ADDR_T_SAN 2
227 #define NETDEV_HW_ADDR_T_SLAVE 3
228 #define NETDEV_HW_ADDR_T_UNICAST 4
229 #define NETDEV_HW_ADDR_T_MULTICAST 5
230 bool synced;
231 bool global_use;
232 int refcount;
233 struct rcu_head rcu_head;
234 };
235
236 struct netdev_hw_addr_list {
237 struct list_head list;
238 int count;
239 };
240
241 #define netdev_hw_addr_list_count(l) ((l)->count)
242 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
243 #define netdev_hw_addr_list_for_each(ha, l) \
244 list_for_each_entry(ha, &(l)->list, list)
245
246 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
247 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
248 #define netdev_for_each_uc_addr(ha, dev) \
249 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
250
251 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
252 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
253 #define netdev_for_each_mc_addr(ha, dev) \
254 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
255
256 struct hh_cache {
257 u16 hh_len;
258 u16 __pad;
259 seqlock_t hh_lock;
260
261 /* cached hardware header; allow for machine alignment needs. */
262 #define HH_DATA_MOD 16
263 #define HH_DATA_OFF(__len) \
264 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
265 #define HH_DATA_ALIGN(__len) \
266 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
267 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
268 };
269
270 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
271 * Alternative is:
272 * dev->hard_header_len ? (dev->hard_header_len +
273 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
274 *
275 * We could use other alignment values, but we must maintain the
276 * relationship HH alignment <= LL alignment.
277 *
278 * LL_ALLOCATED_SPACE also takes into account the tailroom the device
279 * may need.
280 */
281 #define LL_RESERVED_SPACE(dev) \
282 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
283 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
284 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
285 #define LL_ALLOCATED_SPACE(dev) \
286 ((((dev)->hard_header_len+(dev)->needed_headroom+(dev)->needed_tailroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
287
288 struct header_ops {
289 int (*create) (struct sk_buff *skb, struct net_device *dev,
290 unsigned short type, const void *daddr,
291 const void *saddr, unsigned len);
292 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
293 int (*rebuild)(struct sk_buff *skb);
294 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
295 void (*cache_update)(struct hh_cache *hh,
296 const struct net_device *dev,
297 const unsigned char *haddr);
298 };
299
300 /* These flag bits are private to the generic network queueing
301 * layer, they may not be explicitly referenced by any other
302 * code.
303 */
304
305 enum netdev_state_t {
306 __LINK_STATE_START,
307 __LINK_STATE_PRESENT,
308 __LINK_STATE_NOCARRIER,
309 __LINK_STATE_LINKWATCH_PENDING,
310 __LINK_STATE_DORMANT,
311 };
312
313
314 /*
315 * This structure holds at boot time configured netdevice settings. They
316 * are then used in the device probing.
317 */
318 struct netdev_boot_setup {
319 char name[IFNAMSIZ];
320 struct ifmap map;
321 };
322 #define NETDEV_BOOT_SETUP_MAX 8
323
324 extern int __init netdev_boot_setup(char *str);
325
326 /*
327 * Structure for NAPI scheduling similar to tasklet but with weighting
328 */
329 struct napi_struct {
330 /* The poll_list must only be managed by the entity which
331 * changes the state of the NAPI_STATE_SCHED bit. This means
332 * whoever atomically sets that bit can add this napi_struct
333 * to the per-cpu poll_list, and whoever clears that bit
334 * can remove from the list right before clearing the bit.
335 */
336 struct list_head poll_list;
337
338 unsigned long state;
339 int weight;
340 int (*poll)(struct napi_struct *, int);
341 #ifdef CONFIG_NETPOLL
342 spinlock_t poll_lock;
343 int poll_owner;
344 #endif
345
346 unsigned int gro_count;
347
348 struct net_device *dev;
349 struct list_head dev_list;
350 struct sk_buff *gro_list;
351 struct sk_buff *skb;
352 };
353
354 enum {
355 NAPI_STATE_SCHED, /* Poll is scheduled */
356 NAPI_STATE_DISABLE, /* Disable pending */
357 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
358 };
359
360 enum gro_result {
361 GRO_MERGED,
362 GRO_MERGED_FREE,
363 GRO_HELD,
364 GRO_NORMAL,
365 GRO_DROP,
366 };
367 typedef enum gro_result gro_result_t;
368
369 /*
370 * enum rx_handler_result - Possible return values for rx_handlers.
371 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
372 * further.
373 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
374 * case skb->dev was changed by rx_handler.
375 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
376 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
377 *
378 * rx_handlers are functions called from inside __netif_receive_skb(), to do
379 * special processing of the skb, prior to delivery to protocol handlers.
380 *
381 * Currently, a net_device can only have a single rx_handler registered. Trying
382 * to register a second rx_handler will return -EBUSY.
383 *
384 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
385 * To unregister a rx_handler on a net_device, use
386 * netdev_rx_handler_unregister().
387 *
388 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
389 * do with the skb.
390 *
391 * If the rx_handler consumed to skb in some way, it should return
392 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
393 * the skb to be delivered in some other ways.
394 *
395 * If the rx_handler changed skb->dev, to divert the skb to another
396 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
397 * new device will be called if it exists.
398 *
399 * If the rx_handler consider the skb should be ignored, it should return
400 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
401 * are registred on exact device (ptype->dev == skb->dev).
402 *
403 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
404 * delivered, it should return RX_HANDLER_PASS.
405 *
406 * A device without a registered rx_handler will behave as if rx_handler
407 * returned RX_HANDLER_PASS.
408 */
409
410 enum rx_handler_result {
411 RX_HANDLER_CONSUMED,
412 RX_HANDLER_ANOTHER,
413 RX_HANDLER_EXACT,
414 RX_HANDLER_PASS,
415 };
416 typedef enum rx_handler_result rx_handler_result_t;
417 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
418
419 extern void __napi_schedule(struct napi_struct *n);
420
421 static inline int napi_disable_pending(struct napi_struct *n)
422 {
423 return test_bit(NAPI_STATE_DISABLE, &n->state);
424 }
425
426 /**
427 * napi_schedule_prep - check if napi can be scheduled
428 * @n: napi context
429 *
430 * Test if NAPI routine is already running, and if not mark
431 * it as running. This is used as a condition variable
432 * insure only one NAPI poll instance runs. We also make
433 * sure there is no pending NAPI disable.
434 */
435 static inline int napi_schedule_prep(struct napi_struct *n)
436 {
437 return !napi_disable_pending(n) &&
438 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
439 }
440
441 /**
442 * napi_schedule - schedule NAPI poll
443 * @n: napi context
444 *
445 * Schedule NAPI poll routine to be called if it is not already
446 * running.
447 */
448 static inline void napi_schedule(struct napi_struct *n)
449 {
450 if (napi_schedule_prep(n))
451 __napi_schedule(n);
452 }
453
454 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
455 static inline int napi_reschedule(struct napi_struct *napi)
456 {
457 if (napi_schedule_prep(napi)) {
458 __napi_schedule(napi);
459 return 1;
460 }
461 return 0;
462 }
463
464 /**
465 * napi_complete - NAPI processing complete
466 * @n: napi context
467 *
468 * Mark NAPI processing as complete.
469 */
470 extern void __napi_complete(struct napi_struct *n);
471 extern void napi_complete(struct napi_struct *n);
472
473 /**
474 * napi_disable - prevent NAPI from scheduling
475 * @n: napi context
476 *
477 * Stop NAPI from being scheduled on this context.
478 * Waits till any outstanding processing completes.
479 */
480 static inline void napi_disable(struct napi_struct *n)
481 {
482 set_bit(NAPI_STATE_DISABLE, &n->state);
483 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
484 msleep(1);
485 clear_bit(NAPI_STATE_DISABLE, &n->state);
486 }
487
488 /**
489 * napi_enable - enable NAPI scheduling
490 * @n: napi context
491 *
492 * Resume NAPI from being scheduled on this context.
493 * Must be paired with napi_disable.
494 */
495 static inline void napi_enable(struct napi_struct *n)
496 {
497 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
498 smp_mb__before_clear_bit();
499 clear_bit(NAPI_STATE_SCHED, &n->state);
500 }
501
502 #ifdef CONFIG_SMP
503 /**
504 * napi_synchronize - wait until NAPI is not running
505 * @n: napi context
506 *
507 * Wait until NAPI is done being scheduled on this context.
508 * Waits till any outstanding processing completes but
509 * does not disable future activations.
510 */
511 static inline void napi_synchronize(const struct napi_struct *n)
512 {
513 while (test_bit(NAPI_STATE_SCHED, &n->state))
514 msleep(1);
515 }
516 #else
517 # define napi_synchronize(n) barrier()
518 #endif
519
520 enum netdev_queue_state_t {
521 __QUEUE_STATE_XOFF,
522 __QUEUE_STATE_FROZEN,
523 #define QUEUE_STATE_XOFF_OR_FROZEN ((1 << __QUEUE_STATE_XOFF) | \
524 (1 << __QUEUE_STATE_FROZEN))
525 };
526
527 struct netdev_queue {
528 /*
529 * read mostly part
530 */
531 struct net_device *dev;
532 struct Qdisc *qdisc;
533 unsigned long state;
534 struct Qdisc *qdisc_sleeping;
535 #if defined(CONFIG_RPS) || defined(CONFIG_XPS)
536 struct kobject kobj;
537 #endif
538 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
539 int numa_node;
540 #endif
541 /*
542 * write mostly part
543 */
544 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
545 int xmit_lock_owner;
546 /*
547 * please use this field instead of dev->trans_start
548 */
549 unsigned long trans_start;
550 } ____cacheline_aligned_in_smp;
551
552 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
553 {
554 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
555 return q->numa_node;
556 #else
557 return NUMA_NO_NODE;
558 #endif
559 }
560
561 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
562 {
563 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
564 q->numa_node = node;
565 #endif
566 }
567
568 #ifdef CONFIG_RPS
569 /*
570 * This structure holds an RPS map which can be of variable length. The
571 * map is an array of CPUs.
572 */
573 struct rps_map {
574 unsigned int len;
575 struct rcu_head rcu;
576 u16 cpus[0];
577 };
578 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + (_num * sizeof(u16)))
579
580 /*
581 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
582 * tail pointer for that CPU's input queue at the time of last enqueue, and
583 * a hardware filter index.
584 */
585 struct rps_dev_flow {
586 u16 cpu;
587 u16 filter;
588 unsigned int last_qtail;
589 };
590 #define RPS_NO_FILTER 0xffff
591
592 /*
593 * The rps_dev_flow_table structure contains a table of flow mappings.
594 */
595 struct rps_dev_flow_table {
596 unsigned int mask;
597 struct rcu_head rcu;
598 struct work_struct free_work;
599 struct rps_dev_flow flows[0];
600 };
601 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
602 (_num * sizeof(struct rps_dev_flow)))
603
604 /*
605 * The rps_sock_flow_table contains mappings of flows to the last CPU
606 * on which they were processed by the application (set in recvmsg).
607 */
608 struct rps_sock_flow_table {
609 unsigned int mask;
610 u16 ents[0];
611 };
612 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
613 (_num * sizeof(u16)))
614
615 #define RPS_NO_CPU 0xffff
616
617 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
618 u32 hash)
619 {
620 if (table && hash) {
621 unsigned int cpu, index = hash & table->mask;
622
623 /* We only give a hint, preemption can change cpu under us */
624 cpu = raw_smp_processor_id();
625
626 if (table->ents[index] != cpu)
627 table->ents[index] = cpu;
628 }
629 }
630
631 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
632 u32 hash)
633 {
634 if (table && hash)
635 table->ents[hash & table->mask] = RPS_NO_CPU;
636 }
637
638 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
639
640 #ifdef CONFIG_RFS_ACCEL
641 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
642 u32 flow_id, u16 filter_id);
643 #endif
644
645 /* This structure contains an instance of an RX queue. */
646 struct netdev_rx_queue {
647 struct rps_map __rcu *rps_map;
648 struct rps_dev_flow_table __rcu *rps_flow_table;
649 struct kobject kobj;
650 struct net_device *dev;
651 } ____cacheline_aligned_in_smp;
652 #endif /* CONFIG_RPS */
653
654 #ifdef CONFIG_XPS
655 /*
656 * This structure holds an XPS map which can be of variable length. The
657 * map is an array of queues.
658 */
659 struct xps_map {
660 unsigned int len;
661 unsigned int alloc_len;
662 struct rcu_head rcu;
663 u16 queues[0];
664 };
665 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + (_num * sizeof(u16)))
666 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
667 / sizeof(u16))
668
669 /*
670 * This structure holds all XPS maps for device. Maps are indexed by CPU.
671 */
672 struct xps_dev_maps {
673 struct rcu_head rcu;
674 struct xps_map __rcu *cpu_map[0];
675 };
676 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
677 (nr_cpu_ids * sizeof(struct xps_map *)))
678 #endif /* CONFIG_XPS */
679
680 #define TC_MAX_QUEUE 16
681 #define TC_BITMASK 15
682 /* HW offloaded queuing disciplines txq count and offset maps */
683 struct netdev_tc_txq {
684 u16 count;
685 u16 offset;
686 };
687
688 /*
689 * This structure defines the management hooks for network devices.
690 * The following hooks can be defined; unless noted otherwise, they are
691 * optional and can be filled with a null pointer.
692 *
693 * int (*ndo_init)(struct net_device *dev);
694 * This function is called once when network device is registered.
695 * The network device can use this to any late stage initializaton
696 * or semantic validattion. It can fail with an error code which will
697 * be propogated back to register_netdev
698 *
699 * void (*ndo_uninit)(struct net_device *dev);
700 * This function is called when device is unregistered or when registration
701 * fails. It is not called if init fails.
702 *
703 * int (*ndo_open)(struct net_device *dev);
704 * This function is called when network device transistions to the up
705 * state.
706 *
707 * int (*ndo_stop)(struct net_device *dev);
708 * This function is called when network device transistions to the down
709 * state.
710 *
711 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
712 * struct net_device *dev);
713 * Called when a packet needs to be transmitted.
714 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
715 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
716 * Required can not be NULL.
717 *
718 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
719 * Called to decide which queue to when device supports multiple
720 * transmit queues.
721 *
722 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
723 * This function is called to allow device receiver to make
724 * changes to configuration when multicast or promiscious is enabled.
725 *
726 * void (*ndo_set_rx_mode)(struct net_device *dev);
727 * This function is called device changes address list filtering.
728 * If driver handles unicast address filtering, it should set
729 * IFF_UNICAST_FLT to its priv_flags.
730 *
731 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
732 * This function is called when the Media Access Control address
733 * needs to be changed. If this interface is not defined, the
734 * mac address can not be changed.
735 *
736 * int (*ndo_validate_addr)(struct net_device *dev);
737 * Test if Media Access Control address is valid for the device.
738 *
739 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
740 * Called when a user request an ioctl which can't be handled by
741 * the generic interface code. If not defined ioctl's return
742 * not supported error code.
743 *
744 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
745 * Used to set network devices bus interface parameters. This interface
746 * is retained for legacy reason, new devices should use the bus
747 * interface (PCI) for low level management.
748 *
749 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
750 * Called when a user wants to change the Maximum Transfer Unit
751 * of a device. If not defined, any request to change MTU will
752 * will return an error.
753 *
754 * void (*ndo_tx_timeout)(struct net_device *dev);
755 * Callback uses when the transmitter has not made any progress
756 * for dev->watchdog ticks.
757 *
758 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
759 * struct rtnl_link_stats64 *storage);
760 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
761 * Called when a user wants to get the network device usage
762 * statistics. Drivers must do one of the following:
763 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
764 * rtnl_link_stats64 structure passed by the caller.
765 * 2. Define @ndo_get_stats to update a net_device_stats structure
766 * (which should normally be dev->stats) and return a pointer to
767 * it. The structure may be changed asynchronously only if each
768 * field is written atomically.
769 * 3. Update dev->stats asynchronously and atomically, and define
770 * neither operation.
771 *
772 * void (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
773 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
774 * this function is called when a VLAN id is registered.
775 *
776 * void (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
777 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
778 * this function is called when a VLAN id is unregistered.
779 *
780 * void (*ndo_poll_controller)(struct net_device *dev);
781 *
782 * SR-IOV management functions.
783 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
784 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
785 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
786 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
787 * int (*ndo_get_vf_config)(struct net_device *dev,
788 * int vf, struct ifla_vf_info *ivf);
789 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
790 * struct nlattr *port[]);
791 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
792 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
793 * Called to setup 'tc' number of traffic classes in the net device. This
794 * is always called from the stack with the rtnl lock held and netif tx
795 * queues stopped. This allows the netdevice to perform queue management
796 * safely.
797 *
798 * Fiber Channel over Ethernet (FCoE) offload functions.
799 * int (*ndo_fcoe_enable)(struct net_device *dev);
800 * Called when the FCoE protocol stack wants to start using LLD for FCoE
801 * so the underlying device can perform whatever needed configuration or
802 * initialization to support acceleration of FCoE traffic.
803 *
804 * int (*ndo_fcoe_disable)(struct net_device *dev);
805 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
806 * so the underlying device can perform whatever needed clean-ups to
807 * stop supporting acceleration of FCoE traffic.
808 *
809 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
810 * struct scatterlist *sgl, unsigned int sgc);
811 * Called when the FCoE Initiator wants to initialize an I/O that
812 * is a possible candidate for Direct Data Placement (DDP). The LLD can
813 * perform necessary setup and returns 1 to indicate the device is set up
814 * successfully to perform DDP on this I/O, otherwise this returns 0.
815 *
816 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
817 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
818 * indicated by the FC exchange id 'xid', so the underlying device can
819 * clean up and reuse resources for later DDP requests.
820 *
821 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
822 * struct scatterlist *sgl, unsigned int sgc);
823 * Called when the FCoE Target wants to initialize an I/O that
824 * is a possible candidate for Direct Data Placement (DDP). The LLD can
825 * perform necessary setup and returns 1 to indicate the device is set up
826 * successfully to perform DDP on this I/O, otherwise this returns 0.
827 *
828 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
829 * Called when the underlying device wants to override default World Wide
830 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
831 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
832 * protocol stack to use.
833 *
834 * RFS acceleration.
835 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
836 * u16 rxq_index, u32 flow_id);
837 * Set hardware filter for RFS. rxq_index is the target queue index;
838 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
839 * Return the filter ID on success, or a negative error code.
840 *
841 * Slave management functions (for bridge, bonding, etc). User should
842 * call netdev_set_master() to set dev->master properly.
843 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
844 * Called to make another netdev an underling.
845 *
846 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
847 * Called to release previously enslaved netdev.
848 *
849 * Feature/offload setting functions.
850 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
851 * netdev_features_t features);
852 * Adjusts the requested feature flags according to device-specific
853 * constraints, and returns the resulting flags. Must not modify
854 * the device state.
855 *
856 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
857 * Called to update device configuration to new features. Passed
858 * feature set might be less than what was returned by ndo_fix_features()).
859 * Must return >0 or -errno if it changed dev->features itself.
860 *
861 */
862 struct net_device_ops {
863 int (*ndo_init)(struct net_device *dev);
864 void (*ndo_uninit)(struct net_device *dev);
865 int (*ndo_open)(struct net_device *dev);
866 int (*ndo_stop)(struct net_device *dev);
867 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
868 struct net_device *dev);
869 u16 (*ndo_select_queue)(struct net_device *dev,
870 struct sk_buff *skb);
871 void (*ndo_change_rx_flags)(struct net_device *dev,
872 int flags);
873 void (*ndo_set_rx_mode)(struct net_device *dev);
874 int (*ndo_set_mac_address)(struct net_device *dev,
875 void *addr);
876 int (*ndo_validate_addr)(struct net_device *dev);
877 int (*ndo_do_ioctl)(struct net_device *dev,
878 struct ifreq *ifr, int cmd);
879 int (*ndo_set_config)(struct net_device *dev,
880 struct ifmap *map);
881 int (*ndo_change_mtu)(struct net_device *dev,
882 int new_mtu);
883 int (*ndo_neigh_setup)(struct net_device *dev,
884 struct neigh_parms *);
885 void (*ndo_tx_timeout) (struct net_device *dev);
886
887 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
888 struct rtnl_link_stats64 *storage);
889 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
890
891 void (*ndo_vlan_rx_add_vid)(struct net_device *dev,
892 unsigned short vid);
893 void (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
894 unsigned short vid);
895 #ifdef CONFIG_NET_POLL_CONTROLLER
896 void (*ndo_poll_controller)(struct net_device *dev);
897 int (*ndo_netpoll_setup)(struct net_device *dev,
898 struct netpoll_info *info);
899 void (*ndo_netpoll_cleanup)(struct net_device *dev);
900 #endif
901 int (*ndo_set_vf_mac)(struct net_device *dev,
902 int queue, u8 *mac);
903 int (*ndo_set_vf_vlan)(struct net_device *dev,
904 int queue, u16 vlan, u8 qos);
905 int (*ndo_set_vf_tx_rate)(struct net_device *dev,
906 int vf, int rate);
907 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
908 int vf, bool setting);
909 int (*ndo_get_vf_config)(struct net_device *dev,
910 int vf,
911 struct ifla_vf_info *ivf);
912 int (*ndo_set_vf_port)(struct net_device *dev,
913 int vf,
914 struct nlattr *port[]);
915 int (*ndo_get_vf_port)(struct net_device *dev,
916 int vf, struct sk_buff *skb);
917 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
918 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
919 int (*ndo_fcoe_enable)(struct net_device *dev);
920 int (*ndo_fcoe_disable)(struct net_device *dev);
921 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
922 u16 xid,
923 struct scatterlist *sgl,
924 unsigned int sgc);
925 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
926 u16 xid);
927 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
928 u16 xid,
929 struct scatterlist *sgl,
930 unsigned int sgc);
931 #endif
932
933 #if defined(CONFIG_LIBFCOE) || defined(CONFIG_LIBFCOE_MODULE)
934 #define NETDEV_FCOE_WWNN 0
935 #define NETDEV_FCOE_WWPN 1
936 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
937 u64 *wwn, int type);
938 #endif
939
940 #ifdef CONFIG_RFS_ACCEL
941 int (*ndo_rx_flow_steer)(struct net_device *dev,
942 const struct sk_buff *skb,
943 u16 rxq_index,
944 u32 flow_id);
945 #endif
946 int (*ndo_add_slave)(struct net_device *dev,
947 struct net_device *slave_dev);
948 int (*ndo_del_slave)(struct net_device *dev,
949 struct net_device *slave_dev);
950 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
951 netdev_features_t features);
952 int (*ndo_set_features)(struct net_device *dev,
953 netdev_features_t features);
954 };
955
956 /*
957 * The DEVICE structure.
958 * Actually, this whole structure is a big mistake. It mixes I/O
959 * data with strictly "high-level" data, and it has to know about
960 * almost every data structure used in the INET module.
961 *
962 * FIXME: cleanup struct net_device such that network protocol info
963 * moves out.
964 */
965
966 struct net_device {
967
968 /*
969 * This is the first field of the "visible" part of this structure
970 * (i.e. as seen by users in the "Space.c" file). It is the name
971 * of the interface.
972 */
973 char name[IFNAMSIZ];
974
975 struct pm_qos_request pm_qos_req;
976
977 /* device name hash chain */
978 struct hlist_node name_hlist;
979 /* snmp alias */
980 char *ifalias;
981
982 /*
983 * I/O specific fields
984 * FIXME: Merge these and struct ifmap into one
985 */
986 unsigned long mem_end; /* shared mem end */
987 unsigned long mem_start; /* shared mem start */
988 unsigned long base_addr; /* device I/O address */
989 unsigned int irq; /* device IRQ number */
990
991 /*
992 * Some hardware also needs these fields, but they are not
993 * part of the usual set specified in Space.c.
994 */
995
996 unsigned long state;
997
998 struct list_head dev_list;
999 struct list_head napi_list;
1000 struct list_head unreg_list;
1001
1002 /* currently active device features */
1003 netdev_features_t features;
1004 /* user-changeable features */
1005 netdev_features_t hw_features;
1006 /* user-requested features */
1007 netdev_features_t wanted_features;
1008 /* mask of features inheritable by VLAN devices */
1009 netdev_features_t vlan_features;
1010
1011 /* Interface index. Unique device identifier */
1012 int ifindex;
1013 int iflink;
1014
1015 struct net_device_stats stats;
1016 atomic_long_t rx_dropped; /* dropped packets by core network
1017 * Do not use this in drivers.
1018 */
1019
1020 #ifdef CONFIG_WIRELESS_EXT
1021 /* List of functions to handle Wireless Extensions (instead of ioctl).
1022 * See <net/iw_handler.h> for details. Jean II */
1023 const struct iw_handler_def * wireless_handlers;
1024 /* Instance data managed by the core of Wireless Extensions. */
1025 struct iw_public_data * wireless_data;
1026 #endif
1027 /* Management operations */
1028 const struct net_device_ops *netdev_ops;
1029 const struct ethtool_ops *ethtool_ops;
1030
1031 /* Hardware header description */
1032 const struct header_ops *header_ops;
1033
1034 unsigned int flags; /* interface flags (a la BSD) */
1035 unsigned int priv_flags; /* Like 'flags' but invisible to userspace. */
1036 unsigned short gflags;
1037 unsigned short padded; /* How much padding added by alloc_netdev() */
1038
1039 unsigned char operstate; /* RFC2863 operstate */
1040 unsigned char link_mode; /* mapping policy to operstate */
1041
1042 unsigned char if_port; /* Selectable AUI, TP,..*/
1043 unsigned char dma; /* DMA channel */
1044
1045 unsigned int mtu; /* interface MTU value */
1046 unsigned short type; /* interface hardware type */
1047 unsigned short hard_header_len; /* hardware hdr length */
1048
1049 /* extra head- and tailroom the hardware may need, but not in all cases
1050 * can this be guaranteed, especially tailroom. Some cases also use
1051 * LL_MAX_HEADER instead to allocate the skb.
1052 */
1053 unsigned short needed_headroom;
1054 unsigned short needed_tailroom;
1055
1056 /* Interface address info. */
1057 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1058 unsigned char addr_assign_type; /* hw address assignment type */
1059 unsigned char addr_len; /* hardware address length */
1060 unsigned short dev_id; /* for shared network cards */
1061
1062 spinlock_t addr_list_lock;
1063 struct netdev_hw_addr_list uc; /* Unicast mac addresses */
1064 struct netdev_hw_addr_list mc; /* Multicast mac addresses */
1065 bool uc_promisc;
1066 unsigned int promiscuity;
1067 unsigned int allmulti;
1068
1069
1070 /* Protocol specific pointers */
1071
1072 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1073 struct vlan_group __rcu *vlgrp; /* VLAN group */
1074 #endif
1075 #ifdef CONFIG_NET_DSA
1076 void *dsa_ptr; /* dsa specific data */
1077 #endif
1078 void *atalk_ptr; /* AppleTalk link */
1079 struct in_device __rcu *ip_ptr; /* IPv4 specific data */
1080 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */
1081 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */
1082 void *ec_ptr; /* Econet specific data */
1083 void *ax25_ptr; /* AX.25 specific data */
1084 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data,
1085 assign before registering */
1086
1087 /*
1088 * Cache lines mostly used on receive path (including eth_type_trans())
1089 */
1090 unsigned long last_rx; /* Time of last Rx
1091 * This should not be set in
1092 * drivers, unless really needed,
1093 * because network stack (bonding)
1094 * use it if/when necessary, to
1095 * avoid dirtying this cache line.
1096 */
1097
1098 struct net_device *master; /* Pointer to master device of a group,
1099 * which this device is member of.
1100 */
1101
1102 /* Interface address info used in eth_type_trans() */
1103 unsigned char *dev_addr; /* hw address, (before bcast
1104 because most packets are
1105 unicast) */
1106
1107 struct netdev_hw_addr_list dev_addrs; /* list of device
1108 hw addresses */
1109
1110 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */
1111
1112 #if defined(CONFIG_RPS) || defined(CONFIG_XPS)
1113 struct kset *queues_kset;
1114
1115 struct netdev_rx_queue *_rx;
1116
1117 /* Number of RX queues allocated at register_netdev() time */
1118 unsigned int num_rx_queues;
1119
1120 /* Number of RX queues currently active in device */
1121 unsigned int real_num_rx_queues;
1122
1123 #ifdef CONFIG_RFS_ACCEL
1124 /* CPU reverse-mapping for RX completion interrupts, indexed
1125 * by RX queue number. Assigned by driver. This must only be
1126 * set if the ndo_rx_flow_steer operation is defined. */
1127 struct cpu_rmap *rx_cpu_rmap;
1128 #endif
1129 #endif
1130
1131 rx_handler_func_t __rcu *rx_handler;
1132 void __rcu *rx_handler_data;
1133
1134 struct netdev_queue __rcu *ingress_queue;
1135
1136 /*
1137 * Cache lines mostly used on transmit path
1138 */
1139 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1140
1141 /* Number of TX queues allocated at alloc_netdev_mq() time */
1142 unsigned int num_tx_queues;
1143
1144 /* Number of TX queues currently active in device */
1145 unsigned int real_num_tx_queues;
1146
1147 /* root qdisc from userspace point of view */
1148 struct Qdisc *qdisc;
1149
1150 unsigned long tx_queue_len; /* Max frames per queue allowed */
1151 spinlock_t tx_global_lock;
1152
1153 #ifdef CONFIG_XPS
1154 struct xps_dev_maps __rcu *xps_maps;
1155 #endif
1156
1157 /* These may be needed for future network-power-down code. */
1158
1159 /*
1160 * trans_start here is expensive for high speed devices on SMP,
1161 * please use netdev_queue->trans_start instead.
1162 */
1163 unsigned long trans_start; /* Time (in jiffies) of last Tx */
1164
1165 int watchdog_timeo; /* used by dev_watchdog() */
1166 struct timer_list watchdog_timer;
1167
1168 /* Number of references to this device */
1169 int __percpu *pcpu_refcnt;
1170
1171 /* delayed register/unregister */
1172 struct list_head todo_list;
1173 /* device index hash chain */
1174 struct hlist_node index_hlist;
1175
1176 struct list_head link_watch_list;
1177
1178 /* register/unregister state machine */
1179 enum { NETREG_UNINITIALIZED=0,
1180 NETREG_REGISTERED, /* completed register_netdevice */
1181 NETREG_UNREGISTERING, /* called unregister_netdevice */
1182 NETREG_UNREGISTERED, /* completed unregister todo */
1183 NETREG_RELEASED, /* called free_netdev */
1184 NETREG_DUMMY, /* dummy device for NAPI poll */
1185 } reg_state:8;
1186
1187 bool dismantle; /* device is going do be freed */
1188
1189 enum {
1190 RTNL_LINK_INITIALIZED,
1191 RTNL_LINK_INITIALIZING,
1192 } rtnl_link_state:16;
1193
1194 /* Called from unregister, can be used to call free_netdev */
1195 void (*destructor)(struct net_device *dev);
1196
1197 #ifdef CONFIG_NETPOLL
1198 struct netpoll_info *npinfo;
1199 #endif
1200
1201 #ifdef CONFIG_NET_NS
1202 /* Network namespace this network device is inside */
1203 struct net *nd_net;
1204 #endif
1205
1206 /* mid-layer private */
1207 union {
1208 void *ml_priv;
1209 struct pcpu_lstats __percpu *lstats; /* loopback stats */
1210 struct pcpu_tstats __percpu *tstats; /* tunnel stats */
1211 struct pcpu_dstats __percpu *dstats; /* dummy stats */
1212 };
1213 /* GARP */
1214 struct garp_port __rcu *garp_port;
1215
1216 /* class/net/name entry */
1217 struct device dev;
1218 /* space for optional device, statistics, and wireless sysfs groups */
1219 const struct attribute_group *sysfs_groups[4];
1220
1221 /* rtnetlink link ops */
1222 const struct rtnl_link_ops *rtnl_link_ops;
1223
1224 /* for setting kernel sock attribute on TCP connection setup */
1225 #define GSO_MAX_SIZE 65536
1226 unsigned int gso_max_size;
1227
1228 #ifdef CONFIG_DCB
1229 /* Data Center Bridging netlink ops */
1230 const struct dcbnl_rtnl_ops *dcbnl_ops;
1231 #endif
1232 u8 num_tc;
1233 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1234 u8 prio_tc_map[TC_BITMASK + 1];
1235
1236 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
1237 /* max exchange id for FCoE LRO by ddp */
1238 unsigned int fcoe_ddp_xid;
1239 #endif
1240 /* phy device may attach itself for hardware timestamping */
1241 struct phy_device *phydev;
1242
1243 /* group the device belongs to */
1244 int group;
1245 };
1246 #define to_net_dev(d) container_of(d, struct net_device, dev)
1247
1248 #define NETDEV_ALIGN 32
1249
1250 static inline
1251 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1252 {
1253 return dev->prio_tc_map[prio & TC_BITMASK];
1254 }
1255
1256 static inline
1257 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1258 {
1259 if (tc >= dev->num_tc)
1260 return -EINVAL;
1261
1262 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1263 return 0;
1264 }
1265
1266 static inline
1267 void netdev_reset_tc(struct net_device *dev)
1268 {
1269 dev->num_tc = 0;
1270 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1271 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1272 }
1273
1274 static inline
1275 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1276 {
1277 if (tc >= dev->num_tc)
1278 return -EINVAL;
1279
1280 dev->tc_to_txq[tc].count = count;
1281 dev->tc_to_txq[tc].offset = offset;
1282 return 0;
1283 }
1284
1285 static inline
1286 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1287 {
1288 if (num_tc > TC_MAX_QUEUE)
1289 return -EINVAL;
1290
1291 dev->num_tc = num_tc;
1292 return 0;
1293 }
1294
1295 static inline
1296 int netdev_get_num_tc(struct net_device *dev)
1297 {
1298 return dev->num_tc;
1299 }
1300
1301 static inline
1302 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1303 unsigned int index)
1304 {
1305 return &dev->_tx[index];
1306 }
1307
1308 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1309 void (*f)(struct net_device *,
1310 struct netdev_queue *,
1311 void *),
1312 void *arg)
1313 {
1314 unsigned int i;
1315
1316 for (i = 0; i < dev->num_tx_queues; i++)
1317 f(dev, &dev->_tx[i], arg);
1318 }
1319
1320 /*
1321 * Net namespace inlines
1322 */
1323 static inline
1324 struct net *dev_net(const struct net_device *dev)
1325 {
1326 return read_pnet(&dev->nd_net);
1327 }
1328
1329 static inline
1330 void dev_net_set(struct net_device *dev, struct net *net)
1331 {
1332 #ifdef CONFIG_NET_NS
1333 release_net(dev->nd_net);
1334 dev->nd_net = hold_net(net);
1335 #endif
1336 }
1337
1338 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1339 {
1340 #ifdef CONFIG_NET_DSA_TAG_DSA
1341 if (dev->dsa_ptr != NULL)
1342 return dsa_uses_dsa_tags(dev->dsa_ptr);
1343 #endif
1344
1345 return 0;
1346 }
1347
1348 #ifndef CONFIG_NET_NS
1349 static inline void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1350 {
1351 skb->dev = dev;
1352 }
1353 #else /* CONFIG_NET_NS */
1354 void skb_set_dev(struct sk_buff *skb, struct net_device *dev);
1355 #endif
1356
1357 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1358 {
1359 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1360 if (dev->dsa_ptr != NULL)
1361 return dsa_uses_trailer_tags(dev->dsa_ptr);
1362 #endif
1363
1364 return 0;
1365 }
1366
1367 /**
1368 * netdev_priv - access network device private data
1369 * @dev: network device
1370 *
1371 * Get network device private data
1372 */
1373 static inline void *netdev_priv(const struct net_device *dev)
1374 {
1375 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1376 }
1377
1378 /* Set the sysfs physical device reference for the network logical device
1379 * if set prior to registration will cause a symlink during initialization.
1380 */
1381 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1382
1383 /* Set the sysfs device type for the network logical device to allow
1384 * fin grained indentification of different network device types. For
1385 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1386 */
1387 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1388
1389 /**
1390 * netif_napi_add - initialize a napi context
1391 * @dev: network device
1392 * @napi: napi context
1393 * @poll: polling function
1394 * @weight: default weight
1395 *
1396 * netif_napi_add() must be used to initialize a napi context prior to calling
1397 * *any* of the other napi related functions.
1398 */
1399 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1400 int (*poll)(struct napi_struct *, int), int weight);
1401
1402 /**
1403 * netif_napi_del - remove a napi context
1404 * @napi: napi context
1405 *
1406 * netif_napi_del() removes a napi context from the network device napi list
1407 */
1408 void netif_napi_del(struct napi_struct *napi);
1409
1410 struct napi_gro_cb {
1411 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1412 void *frag0;
1413
1414 /* Length of frag0. */
1415 unsigned int frag0_len;
1416
1417 /* This indicates where we are processing relative to skb->data. */
1418 int data_offset;
1419
1420 /* This is non-zero if the packet may be of the same flow. */
1421 int same_flow;
1422
1423 /* This is non-zero if the packet cannot be merged with the new skb. */
1424 int flush;
1425
1426 /* Number of segments aggregated. */
1427 int count;
1428
1429 /* Free the skb? */
1430 int free;
1431 };
1432
1433 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1434
1435 struct packet_type {
1436 __be16 type; /* This is really htons(ether_type). */
1437 struct net_device *dev; /* NULL is wildcarded here */
1438 int (*func) (struct sk_buff *,
1439 struct net_device *,
1440 struct packet_type *,
1441 struct net_device *);
1442 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1443 netdev_features_t features);
1444 int (*gso_send_check)(struct sk_buff *skb);
1445 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1446 struct sk_buff *skb);
1447 int (*gro_complete)(struct sk_buff *skb);
1448 void *af_packet_priv;
1449 struct list_head list;
1450 };
1451
1452 #include <linux/notifier.h>
1453
1454 /* netdevice notifier chain. Please remember to update the rtnetlink
1455 * notification exclusion list in rtnetlink_event() when adding new
1456 * types.
1457 */
1458 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
1459 #define NETDEV_DOWN 0x0002
1460 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
1461 detected a hardware crash and restarted
1462 - we can use this eg to kick tcp sessions
1463 once done */
1464 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
1465 #define NETDEV_REGISTER 0x0005
1466 #define NETDEV_UNREGISTER 0x0006
1467 #define NETDEV_CHANGEMTU 0x0007
1468 #define NETDEV_CHANGEADDR 0x0008
1469 #define NETDEV_GOING_DOWN 0x0009
1470 #define NETDEV_CHANGENAME 0x000A
1471 #define NETDEV_FEAT_CHANGE 0x000B
1472 #define NETDEV_BONDING_FAILOVER 0x000C
1473 #define NETDEV_PRE_UP 0x000D
1474 #define NETDEV_PRE_TYPE_CHANGE 0x000E
1475 #define NETDEV_POST_TYPE_CHANGE 0x000F
1476 #define NETDEV_POST_INIT 0x0010
1477 #define NETDEV_UNREGISTER_BATCH 0x0011
1478 #define NETDEV_RELEASE 0x0012
1479 #define NETDEV_NOTIFY_PEERS 0x0013
1480 #define NETDEV_JOIN 0x0014
1481
1482 extern int register_netdevice_notifier(struct notifier_block *nb);
1483 extern int unregister_netdevice_notifier(struct notifier_block *nb);
1484 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1485
1486
1487 extern rwlock_t dev_base_lock; /* Device list lock */
1488
1489
1490 #define for_each_netdev(net, d) \
1491 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1492 #define for_each_netdev_reverse(net, d) \
1493 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1494 #define for_each_netdev_rcu(net, d) \
1495 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1496 #define for_each_netdev_safe(net, d, n) \
1497 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1498 #define for_each_netdev_continue(net, d) \
1499 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1500 #define for_each_netdev_continue_rcu(net, d) \
1501 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1502 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
1503
1504 static inline struct net_device *next_net_device(struct net_device *dev)
1505 {
1506 struct list_head *lh;
1507 struct net *net;
1508
1509 net = dev_net(dev);
1510 lh = dev->dev_list.next;
1511 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1512 }
1513
1514 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1515 {
1516 struct list_head *lh;
1517 struct net *net;
1518
1519 net = dev_net(dev);
1520 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1521 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1522 }
1523
1524 static inline struct net_device *first_net_device(struct net *net)
1525 {
1526 return list_empty(&net->dev_base_head) ? NULL :
1527 net_device_entry(net->dev_base_head.next);
1528 }
1529
1530 static inline struct net_device *first_net_device_rcu(struct net *net)
1531 {
1532 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1533
1534 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1535 }
1536
1537 extern int netdev_boot_setup_check(struct net_device *dev);
1538 extern unsigned long netdev_boot_base(const char *prefix, int unit);
1539 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1540 const char *hwaddr);
1541 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1542 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1543 extern void dev_add_pack(struct packet_type *pt);
1544 extern void dev_remove_pack(struct packet_type *pt);
1545 extern void __dev_remove_pack(struct packet_type *pt);
1546
1547 extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1548 unsigned short mask);
1549 extern struct net_device *dev_get_by_name(struct net *net, const char *name);
1550 extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1551 extern struct net_device *__dev_get_by_name(struct net *net, const char *name);
1552 extern int dev_alloc_name(struct net_device *dev, const char *name);
1553 extern int dev_open(struct net_device *dev);
1554 extern int dev_close(struct net_device *dev);
1555 extern void dev_disable_lro(struct net_device *dev);
1556 extern int dev_queue_xmit(struct sk_buff *skb);
1557 extern int register_netdevice(struct net_device *dev);
1558 extern void unregister_netdevice_queue(struct net_device *dev,
1559 struct list_head *head);
1560 extern void unregister_netdevice_many(struct list_head *head);
1561 static inline void unregister_netdevice(struct net_device *dev)
1562 {
1563 unregister_netdevice_queue(dev, NULL);
1564 }
1565
1566 extern int netdev_refcnt_read(const struct net_device *dev);
1567 extern void free_netdev(struct net_device *dev);
1568 extern void synchronize_net(void);
1569 extern int init_dummy_netdev(struct net_device *dev);
1570 extern void netdev_resync_ops(struct net_device *dev);
1571
1572 extern struct net_device *dev_get_by_index(struct net *net, int ifindex);
1573 extern struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1574 extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1575 extern int dev_restart(struct net_device *dev);
1576 #ifdef CONFIG_NETPOLL_TRAP
1577 extern int netpoll_trap(void);
1578 #endif
1579 extern int skb_gro_receive(struct sk_buff **head,
1580 struct sk_buff *skb);
1581 extern void skb_gro_reset_offset(struct sk_buff *skb);
1582
1583 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1584 {
1585 return NAPI_GRO_CB(skb)->data_offset;
1586 }
1587
1588 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1589 {
1590 return skb->len - NAPI_GRO_CB(skb)->data_offset;
1591 }
1592
1593 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1594 {
1595 NAPI_GRO_CB(skb)->data_offset += len;
1596 }
1597
1598 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1599 unsigned int offset)
1600 {
1601 return NAPI_GRO_CB(skb)->frag0 + offset;
1602 }
1603
1604 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1605 {
1606 return NAPI_GRO_CB(skb)->frag0_len < hlen;
1607 }
1608
1609 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1610 unsigned int offset)
1611 {
1612 if (!pskb_may_pull(skb, hlen))
1613 return NULL;
1614
1615 NAPI_GRO_CB(skb)->frag0 = NULL;
1616 NAPI_GRO_CB(skb)->frag0_len = 0;
1617 return skb->data + offset;
1618 }
1619
1620 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1621 {
1622 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1623 }
1624
1625 static inline void *skb_gro_network_header(struct sk_buff *skb)
1626 {
1627 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1628 skb_network_offset(skb);
1629 }
1630
1631 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1632 unsigned short type,
1633 const void *daddr, const void *saddr,
1634 unsigned len)
1635 {
1636 if (!dev->header_ops || !dev->header_ops->create)
1637 return 0;
1638
1639 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1640 }
1641
1642 static inline int dev_parse_header(const struct sk_buff *skb,
1643 unsigned char *haddr)
1644 {
1645 const struct net_device *dev = skb->dev;
1646
1647 if (!dev->header_ops || !dev->header_ops->parse)
1648 return 0;
1649 return dev->header_ops->parse(skb, haddr);
1650 }
1651
1652 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1653 extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1654 static inline int unregister_gifconf(unsigned int family)
1655 {
1656 return register_gifconf(family, NULL);
1657 }
1658
1659 /*
1660 * Incoming packets are placed on per-cpu queues
1661 */
1662 struct softnet_data {
1663 struct Qdisc *output_queue;
1664 struct Qdisc **output_queue_tailp;
1665 struct list_head poll_list;
1666 struct sk_buff *completion_queue;
1667 struct sk_buff_head process_queue;
1668
1669 /* stats */
1670 unsigned int processed;
1671 unsigned int time_squeeze;
1672 unsigned int cpu_collision;
1673 unsigned int received_rps;
1674
1675 #ifdef CONFIG_RPS
1676 struct softnet_data *rps_ipi_list;
1677
1678 /* Elements below can be accessed between CPUs for RPS */
1679 struct call_single_data csd ____cacheline_aligned_in_smp;
1680 struct softnet_data *rps_ipi_next;
1681 unsigned int cpu;
1682 unsigned int input_queue_head;
1683 unsigned int input_queue_tail;
1684 #endif
1685 unsigned dropped;
1686 struct sk_buff_head input_pkt_queue;
1687 struct napi_struct backlog;
1688 };
1689
1690 static inline void input_queue_head_incr(struct softnet_data *sd)
1691 {
1692 #ifdef CONFIG_RPS
1693 sd->input_queue_head++;
1694 #endif
1695 }
1696
1697 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1698 unsigned int *qtail)
1699 {
1700 #ifdef CONFIG_RPS
1701 *qtail = ++sd->input_queue_tail;
1702 #endif
1703 }
1704
1705 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1706
1707 extern void __netif_schedule(struct Qdisc *q);
1708
1709 static inline void netif_schedule_queue(struct netdev_queue *txq)
1710 {
1711 if (!test_bit(__QUEUE_STATE_XOFF, &txq->state))
1712 __netif_schedule(txq->qdisc);
1713 }
1714
1715 static inline void netif_tx_schedule_all(struct net_device *dev)
1716 {
1717 unsigned int i;
1718
1719 for (i = 0; i < dev->num_tx_queues; i++)
1720 netif_schedule_queue(netdev_get_tx_queue(dev, i));
1721 }
1722
1723 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1724 {
1725 clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1726 }
1727
1728 /**
1729 * netif_start_queue - allow transmit
1730 * @dev: network device
1731 *
1732 * Allow upper layers to call the device hard_start_xmit routine.
1733 */
1734 static inline void netif_start_queue(struct net_device *dev)
1735 {
1736 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1737 }
1738
1739 static inline void netif_tx_start_all_queues(struct net_device *dev)
1740 {
1741 unsigned int i;
1742
1743 for (i = 0; i < dev->num_tx_queues; i++) {
1744 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1745 netif_tx_start_queue(txq);
1746 }
1747 }
1748
1749 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1750 {
1751 #ifdef CONFIG_NETPOLL_TRAP
1752 if (netpoll_trap()) {
1753 netif_tx_start_queue(dev_queue);
1754 return;
1755 }
1756 #endif
1757 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state))
1758 __netif_schedule(dev_queue->qdisc);
1759 }
1760
1761 /**
1762 * netif_wake_queue - restart transmit
1763 * @dev: network device
1764 *
1765 * Allow upper layers to call the device hard_start_xmit routine.
1766 * Used for flow control when transmit resources are available.
1767 */
1768 static inline void netif_wake_queue(struct net_device *dev)
1769 {
1770 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1771 }
1772
1773 static inline void netif_tx_wake_all_queues(struct net_device *dev)
1774 {
1775 unsigned int i;
1776
1777 for (i = 0; i < dev->num_tx_queues; i++) {
1778 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1779 netif_tx_wake_queue(txq);
1780 }
1781 }
1782
1783 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1784 {
1785 if (WARN_ON(!dev_queue)) {
1786 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
1787 return;
1788 }
1789 set_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1790 }
1791
1792 /**
1793 * netif_stop_queue - stop transmitted packets
1794 * @dev: network device
1795 *
1796 * Stop upper layers calling the device hard_start_xmit routine.
1797 * Used for flow control when transmit resources are unavailable.
1798 */
1799 static inline void netif_stop_queue(struct net_device *dev)
1800 {
1801 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1802 }
1803
1804 static inline void netif_tx_stop_all_queues(struct net_device *dev)
1805 {
1806 unsigned int i;
1807
1808 for (i = 0; i < dev->num_tx_queues; i++) {
1809 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1810 netif_tx_stop_queue(txq);
1811 }
1812 }
1813
1814 static inline int netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1815 {
1816 return test_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1817 }
1818
1819 /**
1820 * netif_queue_stopped - test if transmit queue is flowblocked
1821 * @dev: network device
1822 *
1823 * Test if transmit queue on device is currently unable to send.
1824 */
1825 static inline int netif_queue_stopped(const struct net_device *dev)
1826 {
1827 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1828 }
1829
1830 static inline int netif_tx_queue_frozen_or_stopped(const struct netdev_queue *dev_queue)
1831 {
1832 return dev_queue->state & QUEUE_STATE_XOFF_OR_FROZEN;
1833 }
1834
1835 /**
1836 * netif_running - test if up
1837 * @dev: network device
1838 *
1839 * Test if the device has been brought up.
1840 */
1841 static inline int netif_running(const struct net_device *dev)
1842 {
1843 return test_bit(__LINK_STATE_START, &dev->state);
1844 }
1845
1846 /*
1847 * Routines to manage the subqueues on a device. We only need start
1848 * stop, and a check if it's stopped. All other device management is
1849 * done at the overall netdevice level.
1850 * Also test the device if we're multiqueue.
1851 */
1852
1853 /**
1854 * netif_start_subqueue - allow sending packets on subqueue
1855 * @dev: network device
1856 * @queue_index: sub queue index
1857 *
1858 * Start individual transmit queue of a device with multiple transmit queues.
1859 */
1860 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
1861 {
1862 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1863
1864 netif_tx_start_queue(txq);
1865 }
1866
1867 /**
1868 * netif_stop_subqueue - stop sending packets on subqueue
1869 * @dev: network device
1870 * @queue_index: sub queue index
1871 *
1872 * Stop individual transmit queue of a device with multiple transmit queues.
1873 */
1874 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
1875 {
1876 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1877 #ifdef CONFIG_NETPOLL_TRAP
1878 if (netpoll_trap())
1879 return;
1880 #endif
1881 netif_tx_stop_queue(txq);
1882 }
1883
1884 /**
1885 * netif_subqueue_stopped - test status of subqueue
1886 * @dev: network device
1887 * @queue_index: sub queue index
1888 *
1889 * Check individual transmit queue of a device with multiple transmit queues.
1890 */
1891 static inline int __netif_subqueue_stopped(const struct net_device *dev,
1892 u16 queue_index)
1893 {
1894 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1895
1896 return netif_tx_queue_stopped(txq);
1897 }
1898
1899 static inline int netif_subqueue_stopped(const struct net_device *dev,
1900 struct sk_buff *skb)
1901 {
1902 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
1903 }
1904
1905 /**
1906 * netif_wake_subqueue - allow sending packets on subqueue
1907 * @dev: network device
1908 * @queue_index: sub queue index
1909 *
1910 * Resume individual transmit queue of a device with multiple transmit queues.
1911 */
1912 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
1913 {
1914 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1915 #ifdef CONFIG_NETPOLL_TRAP
1916 if (netpoll_trap())
1917 return;
1918 #endif
1919 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &txq->state))
1920 __netif_schedule(txq->qdisc);
1921 }
1922
1923 /*
1924 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
1925 * as a distribution range limit for the returned value.
1926 */
1927 static inline u16 skb_tx_hash(const struct net_device *dev,
1928 const struct sk_buff *skb)
1929 {
1930 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
1931 }
1932
1933 /**
1934 * netif_is_multiqueue - test if device has multiple transmit queues
1935 * @dev: network device
1936 *
1937 * Check if device has multiple transmit queues
1938 */
1939 static inline int netif_is_multiqueue(const struct net_device *dev)
1940 {
1941 return dev->num_tx_queues > 1;
1942 }
1943
1944 extern int netif_set_real_num_tx_queues(struct net_device *dev,
1945 unsigned int txq);
1946
1947 #ifdef CONFIG_RPS
1948 extern int netif_set_real_num_rx_queues(struct net_device *dev,
1949 unsigned int rxq);
1950 #else
1951 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
1952 unsigned int rxq)
1953 {
1954 return 0;
1955 }
1956 #endif
1957
1958 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
1959 const struct net_device *from_dev)
1960 {
1961 netif_set_real_num_tx_queues(to_dev, from_dev->real_num_tx_queues);
1962 #ifdef CONFIG_RPS
1963 return netif_set_real_num_rx_queues(to_dev,
1964 from_dev->real_num_rx_queues);
1965 #else
1966 return 0;
1967 #endif
1968 }
1969
1970 /* Use this variant when it is known for sure that it
1971 * is executing from hardware interrupt context or with hardware interrupts
1972 * disabled.
1973 */
1974 extern void dev_kfree_skb_irq(struct sk_buff *skb);
1975
1976 /* Use this variant in places where it could be invoked
1977 * from either hardware interrupt or other context, with hardware interrupts
1978 * either disabled or enabled.
1979 */
1980 extern void dev_kfree_skb_any(struct sk_buff *skb);
1981
1982 extern int netif_rx(struct sk_buff *skb);
1983 extern int netif_rx_ni(struct sk_buff *skb);
1984 extern int netif_receive_skb(struct sk_buff *skb);
1985 extern gro_result_t dev_gro_receive(struct napi_struct *napi,
1986 struct sk_buff *skb);
1987 extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb);
1988 extern gro_result_t napi_gro_receive(struct napi_struct *napi,
1989 struct sk_buff *skb);
1990 extern void napi_gro_flush(struct napi_struct *napi);
1991 extern struct sk_buff * napi_get_frags(struct napi_struct *napi);
1992 extern gro_result_t napi_frags_finish(struct napi_struct *napi,
1993 struct sk_buff *skb,
1994 gro_result_t ret);
1995 extern struct sk_buff * napi_frags_skb(struct napi_struct *napi);
1996 extern gro_result_t napi_gro_frags(struct napi_struct *napi);
1997
1998 static inline void napi_free_frags(struct napi_struct *napi)
1999 {
2000 kfree_skb(napi->skb);
2001 napi->skb = NULL;
2002 }
2003
2004 extern int netdev_rx_handler_register(struct net_device *dev,
2005 rx_handler_func_t *rx_handler,
2006 void *rx_handler_data);
2007 extern void netdev_rx_handler_unregister(struct net_device *dev);
2008
2009 extern int dev_valid_name(const char *name);
2010 extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2011 extern int dev_ethtool(struct net *net, struct ifreq *);
2012 extern unsigned dev_get_flags(const struct net_device *);
2013 extern int __dev_change_flags(struct net_device *, unsigned int flags);
2014 extern int dev_change_flags(struct net_device *, unsigned);
2015 extern void __dev_notify_flags(struct net_device *, unsigned int old_flags);
2016 extern int dev_change_name(struct net_device *, const char *);
2017 extern int dev_set_alias(struct net_device *, const char *, size_t);
2018 extern int dev_change_net_namespace(struct net_device *,
2019 struct net *, const char *);
2020 extern int dev_set_mtu(struct net_device *, int);
2021 extern void dev_set_group(struct net_device *, int);
2022 extern int dev_set_mac_address(struct net_device *,
2023 struct sockaddr *);
2024 extern int dev_hard_start_xmit(struct sk_buff *skb,
2025 struct net_device *dev,
2026 struct netdev_queue *txq);
2027 extern int dev_forward_skb(struct net_device *dev,
2028 struct sk_buff *skb);
2029
2030 extern int netdev_budget;
2031
2032 /* Called by rtnetlink.c:rtnl_unlock() */
2033 extern void netdev_run_todo(void);
2034
2035 /**
2036 * dev_put - release reference to device
2037 * @dev: network device
2038 *
2039 * Release reference to device to allow it to be freed.
2040 */
2041 static inline void dev_put(struct net_device *dev)
2042 {
2043 irqsafe_cpu_dec(*dev->pcpu_refcnt);
2044 }
2045
2046 /**
2047 * dev_hold - get reference to device
2048 * @dev: network device
2049 *
2050 * Hold reference to device to keep it from being freed.
2051 */
2052 static inline void dev_hold(struct net_device *dev)
2053 {
2054 irqsafe_cpu_inc(*dev->pcpu_refcnt);
2055 }
2056
2057 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2058 * and _off may be called from IRQ context, but it is caller
2059 * who is responsible for serialization of these calls.
2060 *
2061 * The name carrier is inappropriate, these functions should really be
2062 * called netif_lowerlayer_*() because they represent the state of any
2063 * kind of lower layer not just hardware media.
2064 */
2065
2066 extern void linkwatch_fire_event(struct net_device *dev);
2067 extern void linkwatch_forget_dev(struct net_device *dev);
2068
2069 /**
2070 * netif_carrier_ok - test if carrier present
2071 * @dev: network device
2072 *
2073 * Check if carrier is present on device
2074 */
2075 static inline int netif_carrier_ok(const struct net_device *dev)
2076 {
2077 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2078 }
2079
2080 extern unsigned long dev_trans_start(struct net_device *dev);
2081
2082 extern void __netdev_watchdog_up(struct net_device *dev);
2083
2084 extern void netif_carrier_on(struct net_device *dev);
2085
2086 extern void netif_carrier_off(struct net_device *dev);
2087
2088 extern void netif_notify_peers(struct net_device *dev);
2089
2090 /**
2091 * netif_dormant_on - mark device as dormant.
2092 * @dev: network device
2093 *
2094 * Mark device as dormant (as per RFC2863).
2095 *
2096 * The dormant state indicates that the relevant interface is not
2097 * actually in a condition to pass packets (i.e., it is not 'up') but is
2098 * in a "pending" state, waiting for some external event. For "on-
2099 * demand" interfaces, this new state identifies the situation where the
2100 * interface is waiting for events to place it in the up state.
2101 *
2102 */
2103 static inline void netif_dormant_on(struct net_device *dev)
2104 {
2105 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2106 linkwatch_fire_event(dev);
2107 }
2108
2109 /**
2110 * netif_dormant_off - set device as not dormant.
2111 * @dev: network device
2112 *
2113 * Device is not in dormant state.
2114 */
2115 static inline void netif_dormant_off(struct net_device *dev)
2116 {
2117 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2118 linkwatch_fire_event(dev);
2119 }
2120
2121 /**
2122 * netif_dormant - test if carrier present
2123 * @dev: network device
2124 *
2125 * Check if carrier is present on device
2126 */
2127 static inline int netif_dormant(const struct net_device *dev)
2128 {
2129 return test_bit(__LINK_STATE_DORMANT, &dev->state);
2130 }
2131
2132
2133 /**
2134 * netif_oper_up - test if device is operational
2135 * @dev: network device
2136 *
2137 * Check if carrier is operational
2138 */
2139 static inline int netif_oper_up(const struct net_device *dev)
2140 {
2141 return (dev->operstate == IF_OPER_UP ||
2142 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2143 }
2144
2145 /**
2146 * netif_device_present - is device available or removed
2147 * @dev: network device
2148 *
2149 * Check if device has not been removed from system.
2150 */
2151 static inline int netif_device_present(struct net_device *dev)
2152 {
2153 return test_bit(__LINK_STATE_PRESENT, &dev->state);
2154 }
2155
2156 extern void netif_device_detach(struct net_device *dev);
2157
2158 extern void netif_device_attach(struct net_device *dev);
2159
2160 /*
2161 * Network interface message level settings
2162 */
2163
2164 enum {
2165 NETIF_MSG_DRV = 0x0001,
2166 NETIF_MSG_PROBE = 0x0002,
2167 NETIF_MSG_LINK = 0x0004,
2168 NETIF_MSG_TIMER = 0x0008,
2169 NETIF_MSG_IFDOWN = 0x0010,
2170 NETIF_MSG_IFUP = 0x0020,
2171 NETIF_MSG_RX_ERR = 0x0040,
2172 NETIF_MSG_TX_ERR = 0x0080,
2173 NETIF_MSG_TX_QUEUED = 0x0100,
2174 NETIF_MSG_INTR = 0x0200,
2175 NETIF_MSG_TX_DONE = 0x0400,
2176 NETIF_MSG_RX_STATUS = 0x0800,
2177 NETIF_MSG_PKTDATA = 0x1000,
2178 NETIF_MSG_HW = 0x2000,
2179 NETIF_MSG_WOL = 0x4000,
2180 };
2181
2182 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
2183 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
2184 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
2185 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
2186 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
2187 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
2188 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
2189 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
2190 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2191 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
2192 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
2193 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
2194 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
2195 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
2196 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
2197
2198 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2199 {
2200 /* use default */
2201 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2202 return default_msg_enable_bits;
2203 if (debug_value == 0) /* no output */
2204 return 0;
2205 /* set low N bits */
2206 return (1 << debug_value) - 1;
2207 }
2208
2209 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2210 {
2211 spin_lock(&txq->_xmit_lock);
2212 txq->xmit_lock_owner = cpu;
2213 }
2214
2215 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2216 {
2217 spin_lock_bh(&txq->_xmit_lock);
2218 txq->xmit_lock_owner = smp_processor_id();
2219 }
2220
2221 static inline int __netif_tx_trylock(struct netdev_queue *txq)
2222 {
2223 int ok = spin_trylock(&txq->_xmit_lock);
2224 if (likely(ok))
2225 txq->xmit_lock_owner = smp_processor_id();
2226 return ok;
2227 }
2228
2229 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2230 {
2231 txq->xmit_lock_owner = -1;
2232 spin_unlock(&txq->_xmit_lock);
2233 }
2234
2235 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2236 {
2237 txq->xmit_lock_owner = -1;
2238 spin_unlock_bh(&txq->_xmit_lock);
2239 }
2240
2241 static inline void txq_trans_update(struct netdev_queue *txq)
2242 {
2243 if (txq->xmit_lock_owner != -1)
2244 txq->trans_start = jiffies;
2245 }
2246
2247 /**
2248 * netif_tx_lock - grab network device transmit lock
2249 * @dev: network device
2250 *
2251 * Get network device transmit lock
2252 */
2253 static inline void netif_tx_lock(struct net_device *dev)
2254 {
2255 unsigned int i;
2256 int cpu;
2257
2258 spin_lock(&dev->tx_global_lock);
2259 cpu = smp_processor_id();
2260 for (i = 0; i < dev->num_tx_queues; i++) {
2261 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2262
2263 /* We are the only thread of execution doing a
2264 * freeze, but we have to grab the _xmit_lock in
2265 * order to synchronize with threads which are in
2266 * the ->hard_start_xmit() handler and already
2267 * checked the frozen bit.
2268 */
2269 __netif_tx_lock(txq, cpu);
2270 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2271 __netif_tx_unlock(txq);
2272 }
2273 }
2274
2275 static inline void netif_tx_lock_bh(struct net_device *dev)
2276 {
2277 local_bh_disable();
2278 netif_tx_lock(dev);
2279 }
2280
2281 static inline void netif_tx_unlock(struct net_device *dev)
2282 {
2283 unsigned int i;
2284
2285 for (i = 0; i < dev->num_tx_queues; i++) {
2286 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2287
2288 /* No need to grab the _xmit_lock here. If the
2289 * queue is not stopped for another reason, we
2290 * force a schedule.
2291 */
2292 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2293 netif_schedule_queue(txq);
2294 }
2295 spin_unlock(&dev->tx_global_lock);
2296 }
2297
2298 static inline void netif_tx_unlock_bh(struct net_device *dev)
2299 {
2300 netif_tx_unlock(dev);
2301 local_bh_enable();
2302 }
2303
2304 #define HARD_TX_LOCK(dev, txq, cpu) { \
2305 if ((dev->features & NETIF_F_LLTX) == 0) { \
2306 __netif_tx_lock(txq, cpu); \
2307 } \
2308 }
2309
2310 #define HARD_TX_UNLOCK(dev, txq) { \
2311 if ((dev->features & NETIF_F_LLTX) == 0) { \
2312 __netif_tx_unlock(txq); \
2313 } \
2314 }
2315
2316 static inline void netif_tx_disable(struct net_device *dev)
2317 {
2318 unsigned int i;
2319 int cpu;
2320
2321 local_bh_disable();
2322 cpu = smp_processor_id();
2323 for (i = 0; i < dev->num_tx_queues; i++) {
2324 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2325
2326 __netif_tx_lock(txq, cpu);
2327 netif_tx_stop_queue(txq);
2328 __netif_tx_unlock(txq);
2329 }
2330 local_bh_enable();
2331 }
2332
2333 static inline void netif_addr_lock(struct net_device *dev)
2334 {
2335 spin_lock(&dev->addr_list_lock);
2336 }
2337
2338 static inline void netif_addr_lock_bh(struct net_device *dev)
2339 {
2340 spin_lock_bh(&dev->addr_list_lock);
2341 }
2342
2343 static inline void netif_addr_unlock(struct net_device *dev)
2344 {
2345 spin_unlock(&dev->addr_list_lock);
2346 }
2347
2348 static inline void netif_addr_unlock_bh(struct net_device *dev)
2349 {
2350 spin_unlock_bh(&dev->addr_list_lock);
2351 }
2352
2353 /*
2354 * dev_addrs walker. Should be used only for read access. Call with
2355 * rcu_read_lock held.
2356 */
2357 #define for_each_dev_addr(dev, ha) \
2358 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2359
2360 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2361
2362 extern void ether_setup(struct net_device *dev);
2363
2364 /* Support for loadable net-drivers */
2365 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2366 void (*setup)(struct net_device *),
2367 unsigned int txqs, unsigned int rxqs);
2368 #define alloc_netdev(sizeof_priv, name, setup) \
2369 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2370
2371 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2372 alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2373
2374 extern int register_netdev(struct net_device *dev);
2375 extern void unregister_netdev(struct net_device *dev);
2376
2377 /* General hardware address lists handling functions */
2378 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2379 struct netdev_hw_addr_list *from_list,
2380 int addr_len, unsigned char addr_type);
2381 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2382 struct netdev_hw_addr_list *from_list,
2383 int addr_len, unsigned char addr_type);
2384 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2385 struct netdev_hw_addr_list *from_list,
2386 int addr_len);
2387 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2388 struct netdev_hw_addr_list *from_list,
2389 int addr_len);
2390 extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2391 extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2392
2393 /* Functions used for device addresses handling */
2394 extern int dev_addr_add(struct net_device *dev, unsigned char *addr,
2395 unsigned char addr_type);
2396 extern int dev_addr_del(struct net_device *dev, unsigned char *addr,
2397 unsigned char addr_type);
2398 extern int dev_addr_add_multiple(struct net_device *to_dev,
2399 struct net_device *from_dev,
2400 unsigned char addr_type);
2401 extern int dev_addr_del_multiple(struct net_device *to_dev,
2402 struct net_device *from_dev,
2403 unsigned char addr_type);
2404 extern void dev_addr_flush(struct net_device *dev);
2405 extern int dev_addr_init(struct net_device *dev);
2406
2407 /* Functions used for unicast addresses handling */
2408 extern int dev_uc_add(struct net_device *dev, unsigned char *addr);
2409 extern int dev_uc_del(struct net_device *dev, unsigned char *addr);
2410 extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2411 extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2412 extern void dev_uc_flush(struct net_device *dev);
2413 extern void dev_uc_init(struct net_device *dev);
2414
2415 /* Functions used for multicast addresses handling */
2416 extern int dev_mc_add(struct net_device *dev, unsigned char *addr);
2417 extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr);
2418 extern int dev_mc_del(struct net_device *dev, unsigned char *addr);
2419 extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr);
2420 extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2421 extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2422 extern void dev_mc_flush(struct net_device *dev);
2423 extern void dev_mc_init(struct net_device *dev);
2424
2425 /* Functions used for secondary unicast and multicast support */
2426 extern void dev_set_rx_mode(struct net_device *dev);
2427 extern void __dev_set_rx_mode(struct net_device *dev);
2428 extern int dev_set_promiscuity(struct net_device *dev, int inc);
2429 extern int dev_set_allmulti(struct net_device *dev, int inc);
2430 extern void netdev_state_change(struct net_device *dev);
2431 extern int netdev_bonding_change(struct net_device *dev,
2432 unsigned long event);
2433 extern void netdev_features_change(struct net_device *dev);
2434 /* Load a device via the kmod */
2435 extern void dev_load(struct net *net, const char *name);
2436 extern void dev_mcast_init(void);
2437 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2438 struct rtnl_link_stats64 *storage);
2439
2440 extern int netdev_max_backlog;
2441 extern int netdev_tstamp_prequeue;
2442 extern int weight_p;
2443 extern int bpf_jit_enable;
2444 extern int netdev_set_master(struct net_device *dev, struct net_device *master);
2445 extern int netdev_set_bond_master(struct net_device *dev,
2446 struct net_device *master);
2447 extern int skb_checksum_help(struct sk_buff *skb);
2448 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb,
2449 netdev_features_t features);
2450 #ifdef CONFIG_BUG
2451 extern void netdev_rx_csum_fault(struct net_device *dev);
2452 #else
2453 static inline void netdev_rx_csum_fault(struct net_device *dev)
2454 {
2455 }
2456 #endif
2457 /* rx skb timestamps */
2458 extern void net_enable_timestamp(void);
2459 extern void net_disable_timestamp(void);
2460
2461 #ifdef CONFIG_PROC_FS
2462 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
2463 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2464 extern void dev_seq_stop(struct seq_file *seq, void *v);
2465 #endif
2466
2467 extern int netdev_class_create_file(struct class_attribute *class_attr);
2468 extern void netdev_class_remove_file(struct class_attribute *class_attr);
2469
2470 extern struct kobj_ns_type_operations net_ns_type_operations;
2471
2472 extern const char *netdev_drivername(const struct net_device *dev);
2473
2474 extern void linkwatch_run_queue(void);
2475
2476 static inline netdev_features_t netdev_get_wanted_features(
2477 struct net_device *dev)
2478 {
2479 return (dev->features & ~dev->hw_features) | dev->wanted_features;
2480 }
2481 netdev_features_t netdev_increment_features(netdev_features_t all,
2482 netdev_features_t one, netdev_features_t mask);
2483 int __netdev_update_features(struct net_device *dev);
2484 void netdev_update_features(struct net_device *dev);
2485 void netdev_change_features(struct net_device *dev);
2486
2487 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2488 struct net_device *dev);
2489
2490 netdev_features_t netif_skb_features(struct sk_buff *skb);
2491
2492 static inline int net_gso_ok(netdev_features_t features, int gso_type)
2493 {
2494 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
2495
2496 /* check flags correspondence */
2497 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
2498 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
2499 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
2500 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
2501 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
2502 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
2503
2504 return (features & feature) == feature;
2505 }
2506
2507 static inline int skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
2508 {
2509 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2510 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2511 }
2512
2513 static inline int netif_needs_gso(struct sk_buff *skb,
2514 netdev_features_t features)
2515 {
2516 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2517 unlikely(skb->ip_summed != CHECKSUM_PARTIAL));
2518 }
2519
2520 static inline void netif_set_gso_max_size(struct net_device *dev,
2521 unsigned int size)
2522 {
2523 dev->gso_max_size = size;
2524 }
2525
2526 static inline int netif_is_bond_slave(struct net_device *dev)
2527 {
2528 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2529 }
2530
2531 extern struct pernet_operations __net_initdata loopback_net_ops;
2532
2533 /* Logging, debugging and troubleshooting/diagnostic helpers. */
2534
2535 /* netdev_printk helpers, similar to dev_printk */
2536
2537 static inline const char *netdev_name(const struct net_device *dev)
2538 {
2539 if (dev->reg_state != NETREG_REGISTERED)
2540 return "(unregistered net_device)";
2541 return dev->name;
2542 }
2543
2544 extern int __netdev_printk(const char *level, const struct net_device *dev,
2545 struct va_format *vaf);
2546
2547 extern __printf(3, 4)
2548 int netdev_printk(const char *level, const struct net_device *dev,
2549 const char *format, ...);
2550 extern __printf(2, 3)
2551 int netdev_emerg(const struct net_device *dev, const char *format, ...);
2552 extern __printf(2, 3)
2553 int netdev_alert(const struct net_device *dev, const char *format, ...);
2554 extern __printf(2, 3)
2555 int netdev_crit(const struct net_device *dev, const char *format, ...);
2556 extern __printf(2, 3)
2557 int netdev_err(const struct net_device *dev, const char *format, ...);
2558 extern __printf(2, 3)
2559 int netdev_warn(const struct net_device *dev, const char *format, ...);
2560 extern __printf(2, 3)
2561 int netdev_notice(const struct net_device *dev, const char *format, ...);
2562 extern __printf(2, 3)
2563 int netdev_info(const struct net_device *dev, const char *format, ...);
2564
2565 #define MODULE_ALIAS_NETDEV(device) \
2566 MODULE_ALIAS("netdev-" device)
2567
2568 #if defined(DEBUG)
2569 #define netdev_dbg(__dev, format, args...) \
2570 netdev_printk(KERN_DEBUG, __dev, format, ##args)
2571 #elif defined(CONFIG_DYNAMIC_DEBUG)
2572 #define netdev_dbg(__dev, format, args...) \
2573 do { \
2574 dynamic_netdev_dbg(__dev, format, ##args); \
2575 } while (0)
2576 #else
2577 #define netdev_dbg(__dev, format, args...) \
2578 ({ \
2579 if (0) \
2580 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2581 0; \
2582 })
2583 #endif
2584
2585 #if defined(VERBOSE_DEBUG)
2586 #define netdev_vdbg netdev_dbg
2587 #else
2588
2589 #define netdev_vdbg(dev, format, args...) \
2590 ({ \
2591 if (0) \
2592 netdev_printk(KERN_DEBUG, dev, format, ##args); \
2593 0; \
2594 })
2595 #endif
2596
2597 /*
2598 * netdev_WARN() acts like dev_printk(), but with the key difference
2599 * of using a WARN/WARN_ON to get the message out, including the
2600 * file/line information and a backtrace.
2601 */
2602 #define netdev_WARN(dev, format, args...) \
2603 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2604
2605 /* netif printk helpers, similar to netdev_printk */
2606
2607 #define netif_printk(priv, type, level, dev, fmt, args...) \
2608 do { \
2609 if (netif_msg_##type(priv)) \
2610 netdev_printk(level, (dev), fmt, ##args); \
2611 } while (0)
2612
2613 #define netif_level(level, priv, type, dev, fmt, args...) \
2614 do { \
2615 if (netif_msg_##type(priv)) \
2616 netdev_##level(dev, fmt, ##args); \
2617 } while (0)
2618
2619 #define netif_emerg(priv, type, dev, fmt, args...) \
2620 netif_level(emerg, priv, type, dev, fmt, ##args)
2621 #define netif_alert(priv, type, dev, fmt, args...) \
2622 netif_level(alert, priv, type, dev, fmt, ##args)
2623 #define netif_crit(priv, type, dev, fmt, args...) \
2624 netif_level(crit, priv, type, dev, fmt, ##args)
2625 #define netif_err(priv, type, dev, fmt, args...) \
2626 netif_level(err, priv, type, dev, fmt, ##args)
2627 #define netif_warn(priv, type, dev, fmt, args...) \
2628 netif_level(warn, priv, type, dev, fmt, ##args)
2629 #define netif_notice(priv, type, dev, fmt, args...) \
2630 netif_level(notice, priv, type, dev, fmt, ##args)
2631 #define netif_info(priv, type, dev, fmt, args...) \
2632 netif_level(info, priv, type, dev, fmt, ##args)
2633
2634 #if defined(DEBUG)
2635 #define netif_dbg(priv, type, dev, format, args...) \
2636 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2637 #elif defined(CONFIG_DYNAMIC_DEBUG)
2638 #define netif_dbg(priv, type, netdev, format, args...) \
2639 do { \
2640 if (netif_msg_##type(priv)) \
2641 dynamic_netdev_dbg(netdev, format, ##args); \
2642 } while (0)
2643 #else
2644 #define netif_dbg(priv, type, dev, format, args...) \
2645 ({ \
2646 if (0) \
2647 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2648 0; \
2649 })
2650 #endif
2651
2652 #if defined(VERBOSE_DEBUG)
2653 #define netif_vdbg netif_dbg
2654 #else
2655 #define netif_vdbg(priv, type, dev, format, args...) \
2656 ({ \
2657 if (0) \
2658 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2659 0; \
2660 })
2661 #endif
2662
2663 #endif /* __KERNEL__ */
2664
2665 #endif /* _LINUX_NETDEVICE_H */