]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - include/linux/netdevice.h
Merge remote-tracking branches 'asoc/topic/atmel', 'asoc/topic/bcm2835' and 'asoc...
[mirror_ubuntu-zesty-kernel.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 #include <uapi/linux/if_bonding.h>
54
55 struct netpoll_info;
56 struct device;
57 struct phy_device;
58 /* 802.11 specific */
59 struct wireless_dev;
60 /* 802.15.4 specific */
61 struct wpan_dev;
62 struct mpls_dev;
63
64 void netdev_set_default_ethtool_ops(struct net_device *dev,
65 const struct ethtool_ops *ops);
66
67 /* Backlog congestion levels */
68 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
69 #define NET_RX_DROP 1 /* packet dropped */
70
71 /*
72 * Transmit return codes: transmit return codes originate from three different
73 * namespaces:
74 *
75 * - qdisc return codes
76 * - driver transmit return codes
77 * - errno values
78 *
79 * Drivers are allowed to return any one of those in their hard_start_xmit()
80 * function. Real network devices commonly used with qdiscs should only return
81 * the driver transmit return codes though - when qdiscs are used, the actual
82 * transmission happens asynchronously, so the value is not propagated to
83 * higher layers. Virtual network devices transmit synchronously, in this case
84 * the driver transmit return codes are consumed by dev_queue_xmit(), all
85 * others are propagated to higher layers.
86 */
87
88 /* qdisc ->enqueue() return codes. */
89 #define NET_XMIT_SUCCESS 0x00
90 #define NET_XMIT_DROP 0x01 /* skb dropped */
91 #define NET_XMIT_CN 0x02 /* congestion notification */
92 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
93 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
94
95 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
96 * indicates that the device will soon be dropping packets, or already drops
97 * some packets of the same priority; prompting us to send less aggressively. */
98 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
99 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
100
101 /* Driver transmit return codes */
102 #define NETDEV_TX_MASK 0xf0
103
104 enum netdev_tx {
105 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
106 NETDEV_TX_OK = 0x00, /* driver took care of packet */
107 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
108 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
109 };
110 typedef enum netdev_tx netdev_tx_t;
111
112 /*
113 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
114 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
115 */
116 static inline bool dev_xmit_complete(int rc)
117 {
118 /*
119 * Positive cases with an skb consumed by a driver:
120 * - successful transmission (rc == NETDEV_TX_OK)
121 * - error while transmitting (rc < 0)
122 * - error while queueing to a different device (rc & NET_XMIT_MASK)
123 */
124 if (likely(rc < NET_XMIT_MASK))
125 return true;
126
127 return false;
128 }
129
130 /*
131 * Compute the worst case header length according to the protocols
132 * used.
133 */
134
135 #if defined(CONFIG_HYPERV_NET)
136 # define LL_MAX_HEADER 128
137 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
138 # if defined(CONFIG_MAC80211_MESH)
139 # define LL_MAX_HEADER 128
140 # else
141 # define LL_MAX_HEADER 96
142 # endif
143 #else
144 # define LL_MAX_HEADER 32
145 #endif
146
147 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
148 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
149 #define MAX_HEADER LL_MAX_HEADER
150 #else
151 #define MAX_HEADER (LL_MAX_HEADER + 48)
152 #endif
153
154 /*
155 * Old network device statistics. Fields are native words
156 * (unsigned long) so they can be read and written atomically.
157 */
158
159 struct net_device_stats {
160 unsigned long rx_packets;
161 unsigned long tx_packets;
162 unsigned long rx_bytes;
163 unsigned long tx_bytes;
164 unsigned long rx_errors;
165 unsigned long tx_errors;
166 unsigned long rx_dropped;
167 unsigned long tx_dropped;
168 unsigned long multicast;
169 unsigned long collisions;
170 unsigned long rx_length_errors;
171 unsigned long rx_over_errors;
172 unsigned long rx_crc_errors;
173 unsigned long rx_frame_errors;
174 unsigned long rx_fifo_errors;
175 unsigned long rx_missed_errors;
176 unsigned long tx_aborted_errors;
177 unsigned long tx_carrier_errors;
178 unsigned long tx_fifo_errors;
179 unsigned long tx_heartbeat_errors;
180 unsigned long tx_window_errors;
181 unsigned long rx_compressed;
182 unsigned long tx_compressed;
183 };
184
185
186 #include <linux/cache.h>
187 #include <linux/skbuff.h>
188
189 #ifdef CONFIG_RPS
190 #include <linux/static_key.h>
191 extern struct static_key rps_needed;
192 #endif
193
194 struct neighbour;
195 struct neigh_parms;
196 struct sk_buff;
197
198 struct netdev_hw_addr {
199 struct list_head list;
200 unsigned char addr[MAX_ADDR_LEN];
201 unsigned char type;
202 #define NETDEV_HW_ADDR_T_LAN 1
203 #define NETDEV_HW_ADDR_T_SAN 2
204 #define NETDEV_HW_ADDR_T_SLAVE 3
205 #define NETDEV_HW_ADDR_T_UNICAST 4
206 #define NETDEV_HW_ADDR_T_MULTICAST 5
207 bool global_use;
208 int sync_cnt;
209 int refcount;
210 int synced;
211 struct rcu_head rcu_head;
212 };
213
214 struct netdev_hw_addr_list {
215 struct list_head list;
216 int count;
217 };
218
219 #define netdev_hw_addr_list_count(l) ((l)->count)
220 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
221 #define netdev_hw_addr_list_for_each(ha, l) \
222 list_for_each_entry(ha, &(l)->list, list)
223
224 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
225 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
226 #define netdev_for_each_uc_addr(ha, dev) \
227 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
228
229 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
230 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
231 #define netdev_for_each_mc_addr(ha, dev) \
232 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
233
234 struct hh_cache {
235 u16 hh_len;
236 u16 __pad;
237 seqlock_t hh_lock;
238
239 /* cached hardware header; allow for machine alignment needs. */
240 #define HH_DATA_MOD 16
241 #define HH_DATA_OFF(__len) \
242 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
243 #define HH_DATA_ALIGN(__len) \
244 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
245 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
246 };
247
248 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
249 * Alternative is:
250 * dev->hard_header_len ? (dev->hard_header_len +
251 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
252 *
253 * We could use other alignment values, but we must maintain the
254 * relationship HH alignment <= LL alignment.
255 */
256 #define LL_RESERVED_SPACE(dev) \
257 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
258 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
259 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
260
261 struct header_ops {
262 int (*create) (struct sk_buff *skb, struct net_device *dev,
263 unsigned short type, const void *daddr,
264 const void *saddr, unsigned int len);
265 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
266 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
267 void (*cache_update)(struct hh_cache *hh,
268 const struct net_device *dev,
269 const unsigned char *haddr);
270 };
271
272 /* These flag bits are private to the generic network queueing
273 * layer, they may not be explicitly referenced by any other
274 * code.
275 */
276
277 enum netdev_state_t {
278 __LINK_STATE_START,
279 __LINK_STATE_PRESENT,
280 __LINK_STATE_NOCARRIER,
281 __LINK_STATE_LINKWATCH_PENDING,
282 __LINK_STATE_DORMANT,
283 };
284
285
286 /*
287 * This structure holds at boot time configured netdevice settings. They
288 * are then used in the device probing.
289 */
290 struct netdev_boot_setup {
291 char name[IFNAMSIZ];
292 struct ifmap map;
293 };
294 #define NETDEV_BOOT_SETUP_MAX 8
295
296 int __init netdev_boot_setup(char *str);
297
298 /*
299 * Structure for NAPI scheduling similar to tasklet but with weighting
300 */
301 struct napi_struct {
302 /* The poll_list must only be managed by the entity which
303 * changes the state of the NAPI_STATE_SCHED bit. This means
304 * whoever atomically sets that bit can add this napi_struct
305 * to the per-cpu poll_list, and whoever clears that bit
306 * can remove from the list right before clearing the bit.
307 */
308 struct list_head poll_list;
309
310 unsigned long state;
311 int weight;
312 unsigned int gro_count;
313 int (*poll)(struct napi_struct *, int);
314 #ifdef CONFIG_NETPOLL
315 spinlock_t poll_lock;
316 int poll_owner;
317 #endif
318 struct net_device *dev;
319 struct sk_buff *gro_list;
320 struct sk_buff *skb;
321 struct hrtimer timer;
322 struct list_head dev_list;
323 struct hlist_node napi_hash_node;
324 unsigned int napi_id;
325 };
326
327 enum {
328 NAPI_STATE_SCHED, /* Poll is scheduled */
329 NAPI_STATE_DISABLE, /* Disable pending */
330 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
331 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */
332 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
333 };
334
335 enum gro_result {
336 GRO_MERGED,
337 GRO_MERGED_FREE,
338 GRO_HELD,
339 GRO_NORMAL,
340 GRO_DROP,
341 };
342 typedef enum gro_result gro_result_t;
343
344 /*
345 * enum rx_handler_result - Possible return values for rx_handlers.
346 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
347 * further.
348 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
349 * case skb->dev was changed by rx_handler.
350 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
351 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
352 *
353 * rx_handlers are functions called from inside __netif_receive_skb(), to do
354 * special processing of the skb, prior to delivery to protocol handlers.
355 *
356 * Currently, a net_device can only have a single rx_handler registered. Trying
357 * to register a second rx_handler will return -EBUSY.
358 *
359 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
360 * To unregister a rx_handler on a net_device, use
361 * netdev_rx_handler_unregister().
362 *
363 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
364 * do with the skb.
365 *
366 * If the rx_handler consumed to skb in some way, it should return
367 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
368 * the skb to be delivered in some other ways.
369 *
370 * If the rx_handler changed skb->dev, to divert the skb to another
371 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
372 * new device will be called if it exists.
373 *
374 * If the rx_handler consider the skb should be ignored, it should return
375 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
376 * are registered on exact device (ptype->dev == skb->dev).
377 *
378 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
379 * delivered, it should return RX_HANDLER_PASS.
380 *
381 * A device without a registered rx_handler will behave as if rx_handler
382 * returned RX_HANDLER_PASS.
383 */
384
385 enum rx_handler_result {
386 RX_HANDLER_CONSUMED,
387 RX_HANDLER_ANOTHER,
388 RX_HANDLER_EXACT,
389 RX_HANDLER_PASS,
390 };
391 typedef enum rx_handler_result rx_handler_result_t;
392 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
393
394 void __napi_schedule(struct napi_struct *n);
395 void __napi_schedule_irqoff(struct napi_struct *n);
396
397 static inline bool napi_disable_pending(struct napi_struct *n)
398 {
399 return test_bit(NAPI_STATE_DISABLE, &n->state);
400 }
401
402 /**
403 * napi_schedule_prep - check if napi can be scheduled
404 * @n: napi context
405 *
406 * Test if NAPI routine is already running, and if not mark
407 * it as running. This is used as a condition variable
408 * insure only one NAPI poll instance runs. We also make
409 * sure there is no pending NAPI disable.
410 */
411 static inline bool napi_schedule_prep(struct napi_struct *n)
412 {
413 return !napi_disable_pending(n) &&
414 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
415 }
416
417 /**
418 * napi_schedule - schedule NAPI poll
419 * @n: napi context
420 *
421 * Schedule NAPI poll routine to be called if it is not already
422 * running.
423 */
424 static inline void napi_schedule(struct napi_struct *n)
425 {
426 if (napi_schedule_prep(n))
427 __napi_schedule(n);
428 }
429
430 /**
431 * napi_schedule_irqoff - schedule NAPI poll
432 * @n: napi context
433 *
434 * Variant of napi_schedule(), assuming hard irqs are masked.
435 */
436 static inline void napi_schedule_irqoff(struct napi_struct *n)
437 {
438 if (napi_schedule_prep(n))
439 __napi_schedule_irqoff(n);
440 }
441
442 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
443 static inline bool napi_reschedule(struct napi_struct *napi)
444 {
445 if (napi_schedule_prep(napi)) {
446 __napi_schedule(napi);
447 return true;
448 }
449 return false;
450 }
451
452 void __napi_complete(struct napi_struct *n);
453 void napi_complete_done(struct napi_struct *n, int work_done);
454 /**
455 * napi_complete - NAPI processing complete
456 * @n: napi context
457 *
458 * Mark NAPI processing as complete.
459 * Consider using napi_complete_done() instead.
460 */
461 static inline void napi_complete(struct napi_struct *n)
462 {
463 return napi_complete_done(n, 0);
464 }
465
466 /**
467 * napi_hash_add - add a NAPI to global hashtable
468 * @napi: napi context
469 *
470 * generate a new napi_id and store a @napi under it in napi_hash
471 * Used for busy polling (CONFIG_NET_RX_BUSY_POLL)
472 * Note: This is normally automatically done from netif_napi_add(),
473 * so might disappear in a future linux version.
474 */
475 void napi_hash_add(struct napi_struct *napi);
476
477 /**
478 * napi_hash_del - remove a NAPI from global table
479 * @napi: napi context
480 *
481 * Warning: caller must observe rcu grace period
482 * before freeing memory containing @napi, if
483 * this function returns true.
484 * Note: core networking stack automatically calls it
485 * from netif_napi_del()
486 * Drivers might want to call this helper to combine all
487 * the needed rcu grace periods into a single one.
488 */
489 bool napi_hash_del(struct napi_struct *napi);
490
491 /**
492 * napi_disable - prevent NAPI from scheduling
493 * @n: napi context
494 *
495 * Stop NAPI from being scheduled on this context.
496 * Waits till any outstanding processing completes.
497 */
498 void napi_disable(struct napi_struct *n);
499
500 /**
501 * napi_enable - enable NAPI scheduling
502 * @n: napi context
503 *
504 * Resume NAPI from being scheduled on this context.
505 * Must be paired with napi_disable.
506 */
507 static inline void napi_enable(struct napi_struct *n)
508 {
509 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
510 smp_mb__before_atomic();
511 clear_bit(NAPI_STATE_SCHED, &n->state);
512 clear_bit(NAPI_STATE_NPSVC, &n->state);
513 }
514
515 /**
516 * napi_synchronize - wait until NAPI is not running
517 * @n: napi context
518 *
519 * Wait until NAPI is done being scheduled on this context.
520 * Waits till any outstanding processing completes but
521 * does not disable future activations.
522 */
523 static inline void napi_synchronize(const struct napi_struct *n)
524 {
525 if (IS_ENABLED(CONFIG_SMP))
526 while (test_bit(NAPI_STATE_SCHED, &n->state))
527 msleep(1);
528 else
529 barrier();
530 }
531
532 enum netdev_queue_state_t {
533 __QUEUE_STATE_DRV_XOFF,
534 __QUEUE_STATE_STACK_XOFF,
535 __QUEUE_STATE_FROZEN,
536 };
537
538 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
539 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
540 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
541
542 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
543 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
544 QUEUE_STATE_FROZEN)
545 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
546 QUEUE_STATE_FROZEN)
547
548 /*
549 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
550 * netif_tx_* functions below are used to manipulate this flag. The
551 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
552 * queue independently. The netif_xmit_*stopped functions below are called
553 * to check if the queue has been stopped by the driver or stack (either
554 * of the XOFF bits are set in the state). Drivers should not need to call
555 * netif_xmit*stopped functions, they should only be using netif_tx_*.
556 */
557
558 struct netdev_queue {
559 /*
560 * read mostly part
561 */
562 struct net_device *dev;
563 struct Qdisc __rcu *qdisc;
564 struct Qdisc *qdisc_sleeping;
565 #ifdef CONFIG_SYSFS
566 struct kobject kobj;
567 #endif
568 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
569 int numa_node;
570 #endif
571 /*
572 * write mostly part
573 */
574 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
575 int xmit_lock_owner;
576 /*
577 * please use this field instead of dev->trans_start
578 */
579 unsigned long trans_start;
580
581 /*
582 * Number of TX timeouts for this queue
583 * (/sys/class/net/DEV/Q/trans_timeout)
584 */
585 unsigned long trans_timeout;
586
587 unsigned long state;
588
589 #ifdef CONFIG_BQL
590 struct dql dql;
591 #endif
592 unsigned long tx_maxrate;
593 } ____cacheline_aligned_in_smp;
594
595 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
596 {
597 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
598 return q->numa_node;
599 #else
600 return NUMA_NO_NODE;
601 #endif
602 }
603
604 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
605 {
606 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
607 q->numa_node = node;
608 #endif
609 }
610
611 #ifdef CONFIG_RPS
612 /*
613 * This structure holds an RPS map which can be of variable length. The
614 * map is an array of CPUs.
615 */
616 struct rps_map {
617 unsigned int len;
618 struct rcu_head rcu;
619 u16 cpus[0];
620 };
621 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
622
623 /*
624 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
625 * tail pointer for that CPU's input queue at the time of last enqueue, and
626 * a hardware filter index.
627 */
628 struct rps_dev_flow {
629 u16 cpu;
630 u16 filter;
631 unsigned int last_qtail;
632 };
633 #define RPS_NO_FILTER 0xffff
634
635 /*
636 * The rps_dev_flow_table structure contains a table of flow mappings.
637 */
638 struct rps_dev_flow_table {
639 unsigned int mask;
640 struct rcu_head rcu;
641 struct rps_dev_flow flows[0];
642 };
643 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
644 ((_num) * sizeof(struct rps_dev_flow)))
645
646 /*
647 * The rps_sock_flow_table contains mappings of flows to the last CPU
648 * on which they were processed by the application (set in recvmsg).
649 * Each entry is a 32bit value. Upper part is the high order bits
650 * of flow hash, lower part is cpu number.
651 * rps_cpu_mask is used to partition the space, depending on number of
652 * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
653 * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f,
654 * meaning we use 32-6=26 bits for the hash.
655 */
656 struct rps_sock_flow_table {
657 u32 mask;
658
659 u32 ents[0] ____cacheline_aligned_in_smp;
660 };
661 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
662
663 #define RPS_NO_CPU 0xffff
664
665 extern u32 rps_cpu_mask;
666 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
667
668 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
669 u32 hash)
670 {
671 if (table && hash) {
672 unsigned int index = hash & table->mask;
673 u32 val = hash & ~rps_cpu_mask;
674
675 /* We only give a hint, preemption can change cpu under us */
676 val |= raw_smp_processor_id();
677
678 if (table->ents[index] != val)
679 table->ents[index] = val;
680 }
681 }
682
683 #ifdef CONFIG_RFS_ACCEL
684 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
685 u16 filter_id);
686 #endif
687 #endif /* CONFIG_RPS */
688
689 /* This structure contains an instance of an RX queue. */
690 struct netdev_rx_queue {
691 #ifdef CONFIG_RPS
692 struct rps_map __rcu *rps_map;
693 struct rps_dev_flow_table __rcu *rps_flow_table;
694 #endif
695 struct kobject kobj;
696 struct net_device *dev;
697 } ____cacheline_aligned_in_smp;
698
699 /*
700 * RX queue sysfs structures and functions.
701 */
702 struct rx_queue_attribute {
703 struct attribute attr;
704 ssize_t (*show)(struct netdev_rx_queue *queue,
705 struct rx_queue_attribute *attr, char *buf);
706 ssize_t (*store)(struct netdev_rx_queue *queue,
707 struct rx_queue_attribute *attr, const char *buf, size_t len);
708 };
709
710 #ifdef CONFIG_XPS
711 /*
712 * This structure holds an XPS map which can be of variable length. The
713 * map is an array of queues.
714 */
715 struct xps_map {
716 unsigned int len;
717 unsigned int alloc_len;
718 struct rcu_head rcu;
719 u16 queues[0];
720 };
721 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
722 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
723 - sizeof(struct xps_map)) / sizeof(u16))
724
725 /*
726 * This structure holds all XPS maps for device. Maps are indexed by CPU.
727 */
728 struct xps_dev_maps {
729 struct rcu_head rcu;
730 struct xps_map __rcu *cpu_map[0];
731 };
732 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
733 (nr_cpu_ids * sizeof(struct xps_map *)))
734 #endif /* CONFIG_XPS */
735
736 #define TC_MAX_QUEUE 16
737 #define TC_BITMASK 15
738 /* HW offloaded queuing disciplines txq count and offset maps */
739 struct netdev_tc_txq {
740 u16 count;
741 u16 offset;
742 };
743
744 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
745 /*
746 * This structure is to hold information about the device
747 * configured to run FCoE protocol stack.
748 */
749 struct netdev_fcoe_hbainfo {
750 char manufacturer[64];
751 char serial_number[64];
752 char hardware_version[64];
753 char driver_version[64];
754 char optionrom_version[64];
755 char firmware_version[64];
756 char model[256];
757 char model_description[256];
758 };
759 #endif
760
761 #define MAX_PHYS_ITEM_ID_LEN 32
762
763 /* This structure holds a unique identifier to identify some
764 * physical item (port for example) used by a netdevice.
765 */
766 struct netdev_phys_item_id {
767 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
768 unsigned char id_len;
769 };
770
771 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
772 struct netdev_phys_item_id *b)
773 {
774 return a->id_len == b->id_len &&
775 memcmp(a->id, b->id, a->id_len) == 0;
776 }
777
778 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
779 struct sk_buff *skb);
780
781 /*
782 * This structure defines the management hooks for network devices.
783 * The following hooks can be defined; unless noted otherwise, they are
784 * optional and can be filled with a null pointer.
785 *
786 * int (*ndo_init)(struct net_device *dev);
787 * This function is called once when network device is registered.
788 * The network device can use this to any late stage initializaton
789 * or semantic validattion. It can fail with an error code which will
790 * be propogated back to register_netdev
791 *
792 * void (*ndo_uninit)(struct net_device *dev);
793 * This function is called when device is unregistered or when registration
794 * fails. It is not called if init fails.
795 *
796 * int (*ndo_open)(struct net_device *dev);
797 * This function is called when network device transistions to the up
798 * state.
799 *
800 * int (*ndo_stop)(struct net_device *dev);
801 * This function is called when network device transistions to the down
802 * state.
803 *
804 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
805 * struct net_device *dev);
806 * Called when a packet needs to be transmitted.
807 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
808 * the queue before that can happen; it's for obsolete devices and weird
809 * corner cases, but the stack really does a non-trivial amount
810 * of useless work if you return NETDEV_TX_BUSY.
811 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
812 * Required can not be NULL.
813 *
814 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
815 * netdev_features_t features);
816 * Adjusts the requested feature flags according to device-specific
817 * constraints, and returns the resulting flags. Must not modify
818 * the device state.
819 *
820 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
821 * void *accel_priv, select_queue_fallback_t fallback);
822 * Called to decide which queue to when device supports multiple
823 * transmit queues.
824 *
825 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
826 * This function is called to allow device receiver to make
827 * changes to configuration when multicast or promiscious is enabled.
828 *
829 * void (*ndo_set_rx_mode)(struct net_device *dev);
830 * This function is called device changes address list filtering.
831 * If driver handles unicast address filtering, it should set
832 * IFF_UNICAST_FLT to its priv_flags.
833 *
834 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
835 * This function is called when the Media Access Control address
836 * needs to be changed. If this interface is not defined, the
837 * mac address can not be changed.
838 *
839 * int (*ndo_validate_addr)(struct net_device *dev);
840 * Test if Media Access Control address is valid for the device.
841 *
842 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
843 * Called when a user request an ioctl which can't be handled by
844 * the generic interface code. If not defined ioctl's return
845 * not supported error code.
846 *
847 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
848 * Used to set network devices bus interface parameters. This interface
849 * is retained for legacy reason, new devices should use the bus
850 * interface (PCI) for low level management.
851 *
852 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
853 * Called when a user wants to change the Maximum Transfer Unit
854 * of a device. If not defined, any request to change MTU will
855 * will return an error.
856 *
857 * void (*ndo_tx_timeout)(struct net_device *dev);
858 * Callback uses when the transmitter has not made any progress
859 * for dev->watchdog ticks.
860 *
861 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
862 * struct rtnl_link_stats64 *storage);
863 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
864 * Called when a user wants to get the network device usage
865 * statistics. Drivers must do one of the following:
866 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
867 * rtnl_link_stats64 structure passed by the caller.
868 * 2. Define @ndo_get_stats to update a net_device_stats structure
869 * (which should normally be dev->stats) and return a pointer to
870 * it. The structure may be changed asynchronously only if each
871 * field is written atomically.
872 * 3. Update dev->stats asynchronously and atomically, and define
873 * neither operation.
874 *
875 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
876 * If device support VLAN filtering this function is called when a
877 * VLAN id is registered.
878 *
879 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
880 * If device support VLAN filtering this function is called when a
881 * VLAN id is unregistered.
882 *
883 * void (*ndo_poll_controller)(struct net_device *dev);
884 *
885 * SR-IOV management functions.
886 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
887 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
888 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
889 * int max_tx_rate);
890 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
891 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
892 * int (*ndo_get_vf_config)(struct net_device *dev,
893 * int vf, struct ifla_vf_info *ivf);
894 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
895 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
896 * struct nlattr *port[]);
897 *
898 * Enable or disable the VF ability to query its RSS Redirection Table and
899 * Hash Key. This is needed since on some devices VF share this information
900 * with PF and querying it may adduce a theoretical security risk.
901 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
902 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
903 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
904 * Called to setup 'tc' number of traffic classes in the net device. This
905 * is always called from the stack with the rtnl lock held and netif tx
906 * queues stopped. This allows the netdevice to perform queue management
907 * safely.
908 *
909 * Fiber Channel over Ethernet (FCoE) offload functions.
910 * int (*ndo_fcoe_enable)(struct net_device *dev);
911 * Called when the FCoE protocol stack wants to start using LLD for FCoE
912 * so the underlying device can perform whatever needed configuration or
913 * initialization to support acceleration of FCoE traffic.
914 *
915 * int (*ndo_fcoe_disable)(struct net_device *dev);
916 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
917 * so the underlying device can perform whatever needed clean-ups to
918 * stop supporting acceleration of FCoE traffic.
919 *
920 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
921 * struct scatterlist *sgl, unsigned int sgc);
922 * Called when the FCoE Initiator wants to initialize an I/O that
923 * is a possible candidate for Direct Data Placement (DDP). The LLD can
924 * perform necessary setup and returns 1 to indicate the device is set up
925 * successfully to perform DDP on this I/O, otherwise this returns 0.
926 *
927 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
928 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
929 * indicated by the FC exchange id 'xid', so the underlying device can
930 * clean up and reuse resources for later DDP requests.
931 *
932 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
933 * struct scatterlist *sgl, unsigned int sgc);
934 * Called when the FCoE Target wants to initialize an I/O that
935 * is a possible candidate for Direct Data Placement (DDP). The LLD can
936 * perform necessary setup and returns 1 to indicate the device is set up
937 * successfully to perform DDP on this I/O, otherwise this returns 0.
938 *
939 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
940 * struct netdev_fcoe_hbainfo *hbainfo);
941 * Called when the FCoE Protocol stack wants information on the underlying
942 * device. This information is utilized by the FCoE protocol stack to
943 * register attributes with Fiber Channel management service as per the
944 * FC-GS Fabric Device Management Information(FDMI) specification.
945 *
946 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
947 * Called when the underlying device wants to override default World Wide
948 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
949 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
950 * protocol stack to use.
951 *
952 * RFS acceleration.
953 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
954 * u16 rxq_index, u32 flow_id);
955 * Set hardware filter for RFS. rxq_index is the target queue index;
956 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
957 * Return the filter ID on success, or a negative error code.
958 *
959 * Slave management functions (for bridge, bonding, etc).
960 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
961 * Called to make another netdev an underling.
962 *
963 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
964 * Called to release previously enslaved netdev.
965 *
966 * Feature/offload setting functions.
967 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
968 * Called to update device configuration to new features. Passed
969 * feature set might be less than what was returned by ndo_fix_features()).
970 * Must return >0 or -errno if it changed dev->features itself.
971 *
972 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
973 * struct net_device *dev,
974 * const unsigned char *addr, u16 vid, u16 flags)
975 * Adds an FDB entry to dev for addr.
976 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
977 * struct net_device *dev,
978 * const unsigned char *addr, u16 vid)
979 * Deletes the FDB entry from dev coresponding to addr.
980 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
981 * struct net_device *dev, struct net_device *filter_dev,
982 * int idx)
983 * Used to add FDB entries to dump requests. Implementers should add
984 * entries to skb and update idx with the number of entries.
985 *
986 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
987 * u16 flags)
988 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
989 * struct net_device *dev, u32 filter_mask,
990 * int nlflags)
991 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
992 * u16 flags);
993 *
994 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
995 * Called to change device carrier. Soft-devices (like dummy, team, etc)
996 * which do not represent real hardware may define this to allow their
997 * userspace components to manage their virtual carrier state. Devices
998 * that determine carrier state from physical hardware properties (eg
999 * network cables) or protocol-dependent mechanisms (eg
1000 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1001 *
1002 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1003 * struct netdev_phys_item_id *ppid);
1004 * Called to get ID of physical port of this device. If driver does
1005 * not implement this, it is assumed that the hw is not able to have
1006 * multiple net devices on single physical port.
1007 *
1008 * void (*ndo_add_vxlan_port)(struct net_device *dev,
1009 * sa_family_t sa_family, __be16 port);
1010 * Called by vxlan to notiy a driver about the UDP port and socket
1011 * address family that vxlan is listnening to. It is called only when
1012 * a new port starts listening. The operation is protected by the
1013 * vxlan_net->sock_lock.
1014 *
1015 * void (*ndo_add_geneve_port)(struct net_device *dev,
1016 * sa_family_t sa_family, __be16 port);
1017 * Called by geneve to notify a driver about the UDP port and socket
1018 * address family that geneve is listnening to. It is called only when
1019 * a new port starts listening. The operation is protected by the
1020 * geneve_net->sock_lock.
1021 *
1022 * void (*ndo_del_geneve_port)(struct net_device *dev,
1023 * sa_family_t sa_family, __be16 port);
1024 * Called by geneve to notify the driver about a UDP port and socket
1025 * address family that geneve is not listening to anymore. The operation
1026 * is protected by the geneve_net->sock_lock.
1027 *
1028 * void (*ndo_del_vxlan_port)(struct net_device *dev,
1029 * sa_family_t sa_family, __be16 port);
1030 * Called by vxlan to notify the driver about a UDP port and socket
1031 * address family that vxlan is not listening to anymore. The operation
1032 * is protected by the vxlan_net->sock_lock.
1033 *
1034 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1035 * struct net_device *dev)
1036 * Called by upper layer devices to accelerate switching or other
1037 * station functionality into hardware. 'pdev is the lowerdev
1038 * to use for the offload and 'dev' is the net device that will
1039 * back the offload. Returns a pointer to the private structure
1040 * the upper layer will maintain.
1041 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1042 * Called by upper layer device to delete the station created
1043 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1044 * the station and priv is the structure returned by the add
1045 * operation.
1046 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1047 * struct net_device *dev,
1048 * void *priv);
1049 * Callback to use for xmit over the accelerated station. This
1050 * is used in place of ndo_start_xmit on accelerated net
1051 * devices.
1052 * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1053 * struct net_device *dev
1054 * netdev_features_t features);
1055 * Called by core transmit path to determine if device is capable of
1056 * performing offload operations on a given packet. This is to give
1057 * the device an opportunity to implement any restrictions that cannot
1058 * be otherwise expressed by feature flags. The check is called with
1059 * the set of features that the stack has calculated and it returns
1060 * those the driver believes to be appropriate.
1061 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1062 * int queue_index, u32 maxrate);
1063 * Called when a user wants to set a max-rate limitation of specific
1064 * TX queue.
1065 * int (*ndo_get_iflink)(const struct net_device *dev);
1066 * Called to get the iflink value of this device.
1067 * void (*ndo_change_proto_down)(struct net_device *dev,
1068 * bool proto_down);
1069 * This function is used to pass protocol port error state information
1070 * to the switch driver. The switch driver can react to the proto_down
1071 * by doing a phys down on the associated switch port.
1072 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1073 * This function is used to get egress tunnel information for given skb.
1074 * This is useful for retrieving outer tunnel header parameters while
1075 * sampling packet.
1076 *
1077 */
1078 struct net_device_ops {
1079 int (*ndo_init)(struct net_device *dev);
1080 void (*ndo_uninit)(struct net_device *dev);
1081 int (*ndo_open)(struct net_device *dev);
1082 int (*ndo_stop)(struct net_device *dev);
1083 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1084 struct net_device *dev);
1085 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1086 struct net_device *dev,
1087 netdev_features_t features);
1088 u16 (*ndo_select_queue)(struct net_device *dev,
1089 struct sk_buff *skb,
1090 void *accel_priv,
1091 select_queue_fallback_t fallback);
1092 void (*ndo_change_rx_flags)(struct net_device *dev,
1093 int flags);
1094 void (*ndo_set_rx_mode)(struct net_device *dev);
1095 int (*ndo_set_mac_address)(struct net_device *dev,
1096 void *addr);
1097 int (*ndo_validate_addr)(struct net_device *dev);
1098 int (*ndo_do_ioctl)(struct net_device *dev,
1099 struct ifreq *ifr, int cmd);
1100 int (*ndo_set_config)(struct net_device *dev,
1101 struct ifmap *map);
1102 int (*ndo_change_mtu)(struct net_device *dev,
1103 int new_mtu);
1104 int (*ndo_neigh_setup)(struct net_device *dev,
1105 struct neigh_parms *);
1106 void (*ndo_tx_timeout) (struct net_device *dev);
1107
1108 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1109 struct rtnl_link_stats64 *storage);
1110 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1111
1112 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1113 __be16 proto, u16 vid);
1114 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1115 __be16 proto, u16 vid);
1116 #ifdef CONFIG_NET_POLL_CONTROLLER
1117 void (*ndo_poll_controller)(struct net_device *dev);
1118 int (*ndo_netpoll_setup)(struct net_device *dev,
1119 struct netpoll_info *info);
1120 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1121 #endif
1122 #ifdef CONFIG_NET_RX_BUSY_POLL
1123 int (*ndo_busy_poll)(struct napi_struct *dev);
1124 #endif
1125 int (*ndo_set_vf_mac)(struct net_device *dev,
1126 int queue, u8 *mac);
1127 int (*ndo_set_vf_vlan)(struct net_device *dev,
1128 int queue, u16 vlan, u8 qos);
1129 int (*ndo_set_vf_rate)(struct net_device *dev,
1130 int vf, int min_tx_rate,
1131 int max_tx_rate);
1132 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1133 int vf, bool setting);
1134 int (*ndo_set_vf_trust)(struct net_device *dev,
1135 int vf, bool setting);
1136 int (*ndo_get_vf_config)(struct net_device *dev,
1137 int vf,
1138 struct ifla_vf_info *ivf);
1139 int (*ndo_set_vf_link_state)(struct net_device *dev,
1140 int vf, int link_state);
1141 int (*ndo_get_vf_stats)(struct net_device *dev,
1142 int vf,
1143 struct ifla_vf_stats
1144 *vf_stats);
1145 int (*ndo_set_vf_port)(struct net_device *dev,
1146 int vf,
1147 struct nlattr *port[]);
1148 int (*ndo_get_vf_port)(struct net_device *dev,
1149 int vf, struct sk_buff *skb);
1150 int (*ndo_set_vf_rss_query_en)(
1151 struct net_device *dev,
1152 int vf, bool setting);
1153 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
1154 #if IS_ENABLED(CONFIG_FCOE)
1155 int (*ndo_fcoe_enable)(struct net_device *dev);
1156 int (*ndo_fcoe_disable)(struct net_device *dev);
1157 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1158 u16 xid,
1159 struct scatterlist *sgl,
1160 unsigned int sgc);
1161 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1162 u16 xid);
1163 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1164 u16 xid,
1165 struct scatterlist *sgl,
1166 unsigned int sgc);
1167 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1168 struct netdev_fcoe_hbainfo *hbainfo);
1169 #endif
1170
1171 #if IS_ENABLED(CONFIG_LIBFCOE)
1172 #define NETDEV_FCOE_WWNN 0
1173 #define NETDEV_FCOE_WWPN 1
1174 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1175 u64 *wwn, int type);
1176 #endif
1177
1178 #ifdef CONFIG_RFS_ACCEL
1179 int (*ndo_rx_flow_steer)(struct net_device *dev,
1180 const struct sk_buff *skb,
1181 u16 rxq_index,
1182 u32 flow_id);
1183 #endif
1184 int (*ndo_add_slave)(struct net_device *dev,
1185 struct net_device *slave_dev);
1186 int (*ndo_del_slave)(struct net_device *dev,
1187 struct net_device *slave_dev);
1188 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1189 netdev_features_t features);
1190 int (*ndo_set_features)(struct net_device *dev,
1191 netdev_features_t features);
1192 int (*ndo_neigh_construct)(struct neighbour *n);
1193 void (*ndo_neigh_destroy)(struct neighbour *n);
1194
1195 int (*ndo_fdb_add)(struct ndmsg *ndm,
1196 struct nlattr *tb[],
1197 struct net_device *dev,
1198 const unsigned char *addr,
1199 u16 vid,
1200 u16 flags);
1201 int (*ndo_fdb_del)(struct ndmsg *ndm,
1202 struct nlattr *tb[],
1203 struct net_device *dev,
1204 const unsigned char *addr,
1205 u16 vid);
1206 int (*ndo_fdb_dump)(struct sk_buff *skb,
1207 struct netlink_callback *cb,
1208 struct net_device *dev,
1209 struct net_device *filter_dev,
1210 int idx);
1211
1212 int (*ndo_bridge_setlink)(struct net_device *dev,
1213 struct nlmsghdr *nlh,
1214 u16 flags);
1215 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1216 u32 pid, u32 seq,
1217 struct net_device *dev,
1218 u32 filter_mask,
1219 int nlflags);
1220 int (*ndo_bridge_dellink)(struct net_device *dev,
1221 struct nlmsghdr *nlh,
1222 u16 flags);
1223 int (*ndo_change_carrier)(struct net_device *dev,
1224 bool new_carrier);
1225 int (*ndo_get_phys_port_id)(struct net_device *dev,
1226 struct netdev_phys_item_id *ppid);
1227 int (*ndo_get_phys_port_name)(struct net_device *dev,
1228 char *name, size_t len);
1229 void (*ndo_add_vxlan_port)(struct net_device *dev,
1230 sa_family_t sa_family,
1231 __be16 port);
1232 void (*ndo_del_vxlan_port)(struct net_device *dev,
1233 sa_family_t sa_family,
1234 __be16 port);
1235 void (*ndo_add_geneve_port)(struct net_device *dev,
1236 sa_family_t sa_family,
1237 __be16 port);
1238 void (*ndo_del_geneve_port)(struct net_device *dev,
1239 sa_family_t sa_family,
1240 __be16 port);
1241 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1242 struct net_device *dev);
1243 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1244 void *priv);
1245
1246 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1247 struct net_device *dev,
1248 void *priv);
1249 int (*ndo_get_lock_subclass)(struct net_device *dev);
1250 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1251 int queue_index,
1252 u32 maxrate);
1253 int (*ndo_get_iflink)(const struct net_device *dev);
1254 int (*ndo_change_proto_down)(struct net_device *dev,
1255 bool proto_down);
1256 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1257 struct sk_buff *skb);
1258 };
1259
1260 /**
1261 * enum net_device_priv_flags - &struct net_device priv_flags
1262 *
1263 * These are the &struct net_device, they are only set internally
1264 * by drivers and used in the kernel. These flags are invisible to
1265 * userspace, this means that the order of these flags can change
1266 * during any kernel release.
1267 *
1268 * You should have a pretty good reason to be extending these flags.
1269 *
1270 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1271 * @IFF_EBRIDGE: Ethernet bridging device
1272 * @IFF_BONDING: bonding master or slave
1273 * @IFF_ISATAP: ISATAP interface (RFC4214)
1274 * @IFF_WAN_HDLC: WAN HDLC device
1275 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1276 * release skb->dst
1277 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1278 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1279 * @IFF_MACVLAN_PORT: device used as macvlan port
1280 * @IFF_BRIDGE_PORT: device used as bridge port
1281 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1282 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1283 * @IFF_UNICAST_FLT: Supports unicast filtering
1284 * @IFF_TEAM_PORT: device used as team port
1285 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1286 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1287 * change when it's running
1288 * @IFF_MACVLAN: Macvlan device
1289 * @IFF_L3MDEV_MASTER: device is an L3 master device
1290 * @IFF_NO_QUEUE: device can run without qdisc attached
1291 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1292 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1293 * @IFF_TEAM: device is a team device
1294 */
1295 enum netdev_priv_flags {
1296 IFF_802_1Q_VLAN = 1<<0,
1297 IFF_EBRIDGE = 1<<1,
1298 IFF_BONDING = 1<<2,
1299 IFF_ISATAP = 1<<3,
1300 IFF_WAN_HDLC = 1<<4,
1301 IFF_XMIT_DST_RELEASE = 1<<5,
1302 IFF_DONT_BRIDGE = 1<<6,
1303 IFF_DISABLE_NETPOLL = 1<<7,
1304 IFF_MACVLAN_PORT = 1<<8,
1305 IFF_BRIDGE_PORT = 1<<9,
1306 IFF_OVS_DATAPATH = 1<<10,
1307 IFF_TX_SKB_SHARING = 1<<11,
1308 IFF_UNICAST_FLT = 1<<12,
1309 IFF_TEAM_PORT = 1<<13,
1310 IFF_SUPP_NOFCS = 1<<14,
1311 IFF_LIVE_ADDR_CHANGE = 1<<15,
1312 IFF_MACVLAN = 1<<16,
1313 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1314 IFF_IPVLAN_MASTER = 1<<18,
1315 IFF_IPVLAN_SLAVE = 1<<19,
1316 IFF_L3MDEV_MASTER = 1<<20,
1317 IFF_NO_QUEUE = 1<<21,
1318 IFF_OPENVSWITCH = 1<<22,
1319 IFF_L3MDEV_SLAVE = 1<<23,
1320 IFF_TEAM = 1<<24,
1321 };
1322
1323 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1324 #define IFF_EBRIDGE IFF_EBRIDGE
1325 #define IFF_BONDING IFF_BONDING
1326 #define IFF_ISATAP IFF_ISATAP
1327 #define IFF_WAN_HDLC IFF_WAN_HDLC
1328 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1329 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1330 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1331 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1332 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1333 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1334 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1335 #define IFF_UNICAST_FLT IFF_UNICAST_FLT
1336 #define IFF_TEAM_PORT IFF_TEAM_PORT
1337 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1338 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1339 #define IFF_MACVLAN IFF_MACVLAN
1340 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1341 #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER
1342 #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE
1343 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1344 #define IFF_NO_QUEUE IFF_NO_QUEUE
1345 #define IFF_OPENVSWITCH IFF_OPENVSWITCH
1346 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1347 #define IFF_TEAM IFF_TEAM
1348
1349 /**
1350 * struct net_device - The DEVICE structure.
1351 * Actually, this whole structure is a big mistake. It mixes I/O
1352 * data with strictly "high-level" data, and it has to know about
1353 * almost every data structure used in the INET module.
1354 *
1355 * @name: This is the first field of the "visible" part of this structure
1356 * (i.e. as seen by users in the "Space.c" file). It is the name
1357 * of the interface.
1358 *
1359 * @name_hlist: Device name hash chain, please keep it close to name[]
1360 * @ifalias: SNMP alias
1361 * @mem_end: Shared memory end
1362 * @mem_start: Shared memory start
1363 * @base_addr: Device I/O address
1364 * @irq: Device IRQ number
1365 *
1366 * @carrier_changes: Stats to monitor carrier on<->off transitions
1367 *
1368 * @state: Generic network queuing layer state, see netdev_state_t
1369 * @dev_list: The global list of network devices
1370 * @napi_list: List entry, that is used for polling napi devices
1371 * @unreg_list: List entry, that is used, when we are unregistering the
1372 * device, see the function unregister_netdev
1373 * @close_list: List entry, that is used, when we are closing the device
1374 *
1375 * @adj_list: Directly linked devices, like slaves for bonding
1376 * @all_adj_list: All linked devices, *including* neighbours
1377 * @features: Currently active device features
1378 * @hw_features: User-changeable features
1379 *
1380 * @wanted_features: User-requested features
1381 * @vlan_features: Mask of features inheritable by VLAN devices
1382 *
1383 * @hw_enc_features: Mask of features inherited by encapsulating devices
1384 * This field indicates what encapsulation
1385 * offloads the hardware is capable of doing,
1386 * and drivers will need to set them appropriately.
1387 *
1388 * @mpls_features: Mask of features inheritable by MPLS
1389 *
1390 * @ifindex: interface index
1391 * @group: The group, that the device belongs to
1392 *
1393 * @stats: Statistics struct, which was left as a legacy, use
1394 * rtnl_link_stats64 instead
1395 *
1396 * @rx_dropped: Dropped packets by core network,
1397 * do not use this in drivers
1398 * @tx_dropped: Dropped packets by core network,
1399 * do not use this in drivers
1400 *
1401 * @wireless_handlers: List of functions to handle Wireless Extensions,
1402 * instead of ioctl,
1403 * see <net/iw_handler.h> for details.
1404 * @wireless_data: Instance data managed by the core of wireless extensions
1405 *
1406 * @netdev_ops: Includes several pointers to callbacks,
1407 * if one wants to override the ndo_*() functions
1408 * @ethtool_ops: Management operations
1409 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1410 * of Layer 2 headers.
1411 *
1412 * @flags: Interface flags (a la BSD)
1413 * @priv_flags: Like 'flags' but invisible to userspace,
1414 * see if.h for the definitions
1415 * @gflags: Global flags ( kept as legacy )
1416 * @padded: How much padding added by alloc_netdev()
1417 * @operstate: RFC2863 operstate
1418 * @link_mode: Mapping policy to operstate
1419 * @if_port: Selectable AUI, TP, ...
1420 * @dma: DMA channel
1421 * @mtu: Interface MTU value
1422 * @type: Interface hardware type
1423 * @hard_header_len: Hardware header length, which means that this is the
1424 * minimum size of a packet.
1425 *
1426 * @needed_headroom: Extra headroom the hardware may need, but not in all
1427 * cases can this be guaranteed
1428 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1429 * cases can this be guaranteed. Some cases also use
1430 * LL_MAX_HEADER instead to allocate the skb
1431 *
1432 * interface address info:
1433 *
1434 * @perm_addr: Permanent hw address
1435 * @addr_assign_type: Hw address assignment type
1436 * @addr_len: Hardware address length
1437 * @neigh_priv_len; Used in neigh_alloc(),
1438 * initialized only in atm/clip.c
1439 * @dev_id: Used to differentiate devices that share
1440 * the same link layer address
1441 * @dev_port: Used to differentiate devices that share
1442 * the same function
1443 * @addr_list_lock: XXX: need comments on this one
1444 * @uc_promisc: Counter, that indicates, that promiscuous mode
1445 * has been enabled due to the need to listen to
1446 * additional unicast addresses in a device that
1447 * does not implement ndo_set_rx_mode()
1448 * @uc: unicast mac addresses
1449 * @mc: multicast mac addresses
1450 * @dev_addrs: list of device hw addresses
1451 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1452 * @promiscuity: Number of times, the NIC is told to work in
1453 * Promiscuous mode, if it becomes 0 the NIC will
1454 * exit from working in Promiscuous mode
1455 * @allmulti: Counter, enables or disables allmulticast mode
1456 *
1457 * @vlan_info: VLAN info
1458 * @dsa_ptr: dsa specific data
1459 * @tipc_ptr: TIPC specific data
1460 * @atalk_ptr: AppleTalk link
1461 * @ip_ptr: IPv4 specific data
1462 * @dn_ptr: DECnet specific data
1463 * @ip6_ptr: IPv6 specific data
1464 * @ax25_ptr: AX.25 specific data
1465 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1466 *
1467 * @last_rx: Time of last Rx
1468 * @dev_addr: Hw address (before bcast,
1469 * because most packets are unicast)
1470 *
1471 * @_rx: Array of RX queues
1472 * @num_rx_queues: Number of RX queues
1473 * allocated at register_netdev() time
1474 * @real_num_rx_queues: Number of RX queues currently active in device
1475 *
1476 * @rx_handler: handler for received packets
1477 * @rx_handler_data: XXX: need comments on this one
1478 * @ingress_queue: XXX: need comments on this one
1479 * @broadcast: hw bcast address
1480 *
1481 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1482 * indexed by RX queue number. Assigned by driver.
1483 * This must only be set if the ndo_rx_flow_steer
1484 * operation is defined
1485 * @index_hlist: Device index hash chain
1486 *
1487 * @_tx: Array of TX queues
1488 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1489 * @real_num_tx_queues: Number of TX queues currently active in device
1490 * @qdisc: Root qdisc from userspace point of view
1491 * @tx_queue_len: Max frames per queue allowed
1492 * @tx_global_lock: XXX: need comments on this one
1493 *
1494 * @xps_maps: XXX: need comments on this one
1495 *
1496 * @offload_fwd_mark: Offload device fwding mark
1497 *
1498 * @trans_start: Time (in jiffies) of last Tx
1499 * @watchdog_timeo: Represents the timeout that is used by
1500 * the watchdog ( see dev_watchdog() )
1501 * @watchdog_timer: List of timers
1502 *
1503 * @pcpu_refcnt: Number of references to this device
1504 * @todo_list: Delayed register/unregister
1505 * @link_watch_list: XXX: need comments on this one
1506 *
1507 * @reg_state: Register/unregister state machine
1508 * @dismantle: Device is going to be freed
1509 * @rtnl_link_state: This enum represents the phases of creating
1510 * a new link
1511 *
1512 * @destructor: Called from unregister,
1513 * can be used to call free_netdev
1514 * @npinfo: XXX: need comments on this one
1515 * @nd_net: Network namespace this network device is inside
1516 *
1517 * @ml_priv: Mid-layer private
1518 * @lstats: Loopback statistics
1519 * @tstats: Tunnel statistics
1520 * @dstats: Dummy statistics
1521 * @vstats: Virtual ethernet statistics
1522 *
1523 * @garp_port: GARP
1524 * @mrp_port: MRP
1525 *
1526 * @dev: Class/net/name entry
1527 * @sysfs_groups: Space for optional device, statistics and wireless
1528 * sysfs groups
1529 *
1530 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1531 * @rtnl_link_ops: Rtnl_link_ops
1532 *
1533 * @gso_max_size: Maximum size of generic segmentation offload
1534 * @gso_max_segs: Maximum number of segments that can be passed to the
1535 * NIC for GSO
1536 * @gso_min_segs: Minimum number of segments that can be passed to the
1537 * NIC for GSO
1538 *
1539 * @dcbnl_ops: Data Center Bridging netlink ops
1540 * @num_tc: Number of traffic classes in the net device
1541 * @tc_to_txq: XXX: need comments on this one
1542 * @prio_tc_map XXX: need comments on this one
1543 *
1544 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1545 *
1546 * @priomap: XXX: need comments on this one
1547 * @phydev: Physical device may attach itself
1548 * for hardware timestamping
1549 *
1550 * @qdisc_tx_busylock: XXX: need comments on this one
1551 *
1552 * @proto_down: protocol port state information can be sent to the
1553 * switch driver and used to set the phys state of the
1554 * switch port.
1555 *
1556 * FIXME: cleanup struct net_device such that network protocol info
1557 * moves out.
1558 */
1559
1560 struct net_device {
1561 char name[IFNAMSIZ];
1562 struct hlist_node name_hlist;
1563 char *ifalias;
1564 /*
1565 * I/O specific fields
1566 * FIXME: Merge these and struct ifmap into one
1567 */
1568 unsigned long mem_end;
1569 unsigned long mem_start;
1570 unsigned long base_addr;
1571 int irq;
1572
1573 atomic_t carrier_changes;
1574
1575 /*
1576 * Some hardware also needs these fields (state,dev_list,
1577 * napi_list,unreg_list,close_list) but they are not
1578 * part of the usual set specified in Space.c.
1579 */
1580
1581 unsigned long state;
1582
1583 struct list_head dev_list;
1584 struct list_head napi_list;
1585 struct list_head unreg_list;
1586 struct list_head close_list;
1587 struct list_head ptype_all;
1588 struct list_head ptype_specific;
1589
1590 struct {
1591 struct list_head upper;
1592 struct list_head lower;
1593 } adj_list;
1594
1595 struct {
1596 struct list_head upper;
1597 struct list_head lower;
1598 } all_adj_list;
1599
1600 netdev_features_t features;
1601 netdev_features_t hw_features;
1602 netdev_features_t wanted_features;
1603 netdev_features_t vlan_features;
1604 netdev_features_t hw_enc_features;
1605 netdev_features_t mpls_features;
1606
1607 int ifindex;
1608 int group;
1609
1610 struct net_device_stats stats;
1611
1612 atomic_long_t rx_dropped;
1613 atomic_long_t tx_dropped;
1614
1615 #ifdef CONFIG_WIRELESS_EXT
1616 const struct iw_handler_def * wireless_handlers;
1617 struct iw_public_data * wireless_data;
1618 #endif
1619 const struct net_device_ops *netdev_ops;
1620 const struct ethtool_ops *ethtool_ops;
1621 #ifdef CONFIG_NET_SWITCHDEV
1622 const struct switchdev_ops *switchdev_ops;
1623 #endif
1624 #ifdef CONFIG_NET_L3_MASTER_DEV
1625 const struct l3mdev_ops *l3mdev_ops;
1626 #endif
1627
1628 const struct header_ops *header_ops;
1629
1630 unsigned int flags;
1631 unsigned int priv_flags;
1632
1633 unsigned short gflags;
1634 unsigned short padded;
1635
1636 unsigned char operstate;
1637 unsigned char link_mode;
1638
1639 unsigned char if_port;
1640 unsigned char dma;
1641
1642 unsigned int mtu;
1643 unsigned short type;
1644 unsigned short hard_header_len;
1645
1646 unsigned short needed_headroom;
1647 unsigned short needed_tailroom;
1648
1649 /* Interface address info. */
1650 unsigned char perm_addr[MAX_ADDR_LEN];
1651 unsigned char addr_assign_type;
1652 unsigned char addr_len;
1653 unsigned short neigh_priv_len;
1654 unsigned short dev_id;
1655 unsigned short dev_port;
1656 spinlock_t addr_list_lock;
1657 unsigned char name_assign_type;
1658 bool uc_promisc;
1659 struct netdev_hw_addr_list uc;
1660 struct netdev_hw_addr_list mc;
1661 struct netdev_hw_addr_list dev_addrs;
1662
1663 #ifdef CONFIG_SYSFS
1664 struct kset *queues_kset;
1665 #endif
1666 unsigned int promiscuity;
1667 unsigned int allmulti;
1668
1669
1670 /* Protocol specific pointers */
1671
1672 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1673 struct vlan_info __rcu *vlan_info;
1674 #endif
1675 #if IS_ENABLED(CONFIG_NET_DSA)
1676 struct dsa_switch_tree *dsa_ptr;
1677 #endif
1678 #if IS_ENABLED(CONFIG_TIPC)
1679 struct tipc_bearer __rcu *tipc_ptr;
1680 #endif
1681 void *atalk_ptr;
1682 struct in_device __rcu *ip_ptr;
1683 struct dn_dev __rcu *dn_ptr;
1684 struct inet6_dev __rcu *ip6_ptr;
1685 void *ax25_ptr;
1686 struct wireless_dev *ieee80211_ptr;
1687 struct wpan_dev *ieee802154_ptr;
1688 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1689 struct mpls_dev __rcu *mpls_ptr;
1690 #endif
1691
1692 /*
1693 * Cache lines mostly used on receive path (including eth_type_trans())
1694 */
1695 unsigned long last_rx;
1696
1697 /* Interface address info used in eth_type_trans() */
1698 unsigned char *dev_addr;
1699
1700
1701 #ifdef CONFIG_SYSFS
1702 struct netdev_rx_queue *_rx;
1703
1704 unsigned int num_rx_queues;
1705 unsigned int real_num_rx_queues;
1706
1707 #endif
1708
1709 unsigned long gro_flush_timeout;
1710 rx_handler_func_t __rcu *rx_handler;
1711 void __rcu *rx_handler_data;
1712
1713 #ifdef CONFIG_NET_CLS_ACT
1714 struct tcf_proto __rcu *ingress_cl_list;
1715 #endif
1716 struct netdev_queue __rcu *ingress_queue;
1717 #ifdef CONFIG_NETFILTER_INGRESS
1718 struct list_head nf_hooks_ingress;
1719 #endif
1720
1721 unsigned char broadcast[MAX_ADDR_LEN];
1722 #ifdef CONFIG_RFS_ACCEL
1723 struct cpu_rmap *rx_cpu_rmap;
1724 #endif
1725 struct hlist_node index_hlist;
1726
1727 /*
1728 * Cache lines mostly used on transmit path
1729 */
1730 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1731 unsigned int num_tx_queues;
1732 unsigned int real_num_tx_queues;
1733 struct Qdisc *qdisc;
1734 unsigned long tx_queue_len;
1735 spinlock_t tx_global_lock;
1736 int watchdog_timeo;
1737
1738 #ifdef CONFIG_XPS
1739 struct xps_dev_maps __rcu *xps_maps;
1740 #endif
1741 #ifdef CONFIG_NET_CLS_ACT
1742 struct tcf_proto __rcu *egress_cl_list;
1743 #endif
1744 #ifdef CONFIG_NET_SWITCHDEV
1745 u32 offload_fwd_mark;
1746 #endif
1747
1748 /* These may be needed for future network-power-down code. */
1749
1750 /*
1751 * trans_start here is expensive for high speed devices on SMP,
1752 * please use netdev_queue->trans_start instead.
1753 */
1754 unsigned long trans_start;
1755
1756 struct timer_list watchdog_timer;
1757
1758 int __percpu *pcpu_refcnt;
1759 struct list_head todo_list;
1760
1761 struct list_head link_watch_list;
1762
1763 enum { NETREG_UNINITIALIZED=0,
1764 NETREG_REGISTERED, /* completed register_netdevice */
1765 NETREG_UNREGISTERING, /* called unregister_netdevice */
1766 NETREG_UNREGISTERED, /* completed unregister todo */
1767 NETREG_RELEASED, /* called free_netdev */
1768 NETREG_DUMMY, /* dummy device for NAPI poll */
1769 } reg_state:8;
1770
1771 bool dismantle;
1772
1773 enum {
1774 RTNL_LINK_INITIALIZED,
1775 RTNL_LINK_INITIALIZING,
1776 } rtnl_link_state:16;
1777
1778 void (*destructor)(struct net_device *dev);
1779
1780 #ifdef CONFIG_NETPOLL
1781 struct netpoll_info __rcu *npinfo;
1782 #endif
1783
1784 possible_net_t nd_net;
1785
1786 /* mid-layer private */
1787 union {
1788 void *ml_priv;
1789 struct pcpu_lstats __percpu *lstats;
1790 struct pcpu_sw_netstats __percpu *tstats;
1791 struct pcpu_dstats __percpu *dstats;
1792 struct pcpu_vstats __percpu *vstats;
1793 };
1794
1795 struct garp_port __rcu *garp_port;
1796 struct mrp_port __rcu *mrp_port;
1797
1798 struct device dev;
1799 const struct attribute_group *sysfs_groups[4];
1800 const struct attribute_group *sysfs_rx_queue_group;
1801
1802 const struct rtnl_link_ops *rtnl_link_ops;
1803
1804 /* for setting kernel sock attribute on TCP connection setup */
1805 #define GSO_MAX_SIZE 65536
1806 unsigned int gso_max_size;
1807 #define GSO_MAX_SEGS 65535
1808 u16 gso_max_segs;
1809 u16 gso_min_segs;
1810 #ifdef CONFIG_DCB
1811 const struct dcbnl_rtnl_ops *dcbnl_ops;
1812 #endif
1813 u8 num_tc;
1814 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1815 u8 prio_tc_map[TC_BITMASK + 1];
1816
1817 #if IS_ENABLED(CONFIG_FCOE)
1818 unsigned int fcoe_ddp_xid;
1819 #endif
1820 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1821 struct netprio_map __rcu *priomap;
1822 #endif
1823 struct phy_device *phydev;
1824 struct lock_class_key *qdisc_tx_busylock;
1825 bool proto_down;
1826 };
1827 #define to_net_dev(d) container_of(d, struct net_device, dev)
1828
1829 #define NETDEV_ALIGN 32
1830
1831 static inline
1832 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1833 {
1834 return dev->prio_tc_map[prio & TC_BITMASK];
1835 }
1836
1837 static inline
1838 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1839 {
1840 if (tc >= dev->num_tc)
1841 return -EINVAL;
1842
1843 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1844 return 0;
1845 }
1846
1847 static inline
1848 void netdev_reset_tc(struct net_device *dev)
1849 {
1850 dev->num_tc = 0;
1851 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1852 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1853 }
1854
1855 static inline
1856 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1857 {
1858 if (tc >= dev->num_tc)
1859 return -EINVAL;
1860
1861 dev->tc_to_txq[tc].count = count;
1862 dev->tc_to_txq[tc].offset = offset;
1863 return 0;
1864 }
1865
1866 static inline
1867 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1868 {
1869 if (num_tc > TC_MAX_QUEUE)
1870 return -EINVAL;
1871
1872 dev->num_tc = num_tc;
1873 return 0;
1874 }
1875
1876 static inline
1877 int netdev_get_num_tc(struct net_device *dev)
1878 {
1879 return dev->num_tc;
1880 }
1881
1882 static inline
1883 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1884 unsigned int index)
1885 {
1886 return &dev->_tx[index];
1887 }
1888
1889 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1890 const struct sk_buff *skb)
1891 {
1892 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1893 }
1894
1895 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1896 void (*f)(struct net_device *,
1897 struct netdev_queue *,
1898 void *),
1899 void *arg)
1900 {
1901 unsigned int i;
1902
1903 for (i = 0; i < dev->num_tx_queues; i++)
1904 f(dev, &dev->_tx[i], arg);
1905 }
1906
1907 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1908 struct sk_buff *skb,
1909 void *accel_priv);
1910
1911 /*
1912 * Net namespace inlines
1913 */
1914 static inline
1915 struct net *dev_net(const struct net_device *dev)
1916 {
1917 return read_pnet(&dev->nd_net);
1918 }
1919
1920 static inline
1921 void dev_net_set(struct net_device *dev, struct net *net)
1922 {
1923 write_pnet(&dev->nd_net, net);
1924 }
1925
1926 static inline bool netdev_uses_dsa(struct net_device *dev)
1927 {
1928 #if IS_ENABLED(CONFIG_NET_DSA)
1929 if (dev->dsa_ptr != NULL)
1930 return dsa_uses_tagged_protocol(dev->dsa_ptr);
1931 #endif
1932 return false;
1933 }
1934
1935 /**
1936 * netdev_priv - access network device private data
1937 * @dev: network device
1938 *
1939 * Get network device private data
1940 */
1941 static inline void *netdev_priv(const struct net_device *dev)
1942 {
1943 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1944 }
1945
1946 /* Set the sysfs physical device reference for the network logical device
1947 * if set prior to registration will cause a symlink during initialization.
1948 */
1949 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1950
1951 /* Set the sysfs device type for the network logical device to allow
1952 * fine-grained identification of different network device types. For
1953 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1954 */
1955 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1956
1957 /* Default NAPI poll() weight
1958 * Device drivers are strongly advised to not use bigger value
1959 */
1960 #define NAPI_POLL_WEIGHT 64
1961
1962 /**
1963 * netif_napi_add - initialize a napi context
1964 * @dev: network device
1965 * @napi: napi context
1966 * @poll: polling function
1967 * @weight: default weight
1968 *
1969 * netif_napi_add() must be used to initialize a napi context prior to calling
1970 * *any* of the other napi related functions.
1971 */
1972 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1973 int (*poll)(struct napi_struct *, int), int weight);
1974
1975 /**
1976 * netif_tx_napi_add - initialize a napi context
1977 * @dev: network device
1978 * @napi: napi context
1979 * @poll: polling function
1980 * @weight: default weight
1981 *
1982 * This variant of netif_napi_add() should be used from drivers using NAPI
1983 * to exclusively poll a TX queue.
1984 * This will avoid we add it into napi_hash[], thus polluting this hash table.
1985 */
1986 static inline void netif_tx_napi_add(struct net_device *dev,
1987 struct napi_struct *napi,
1988 int (*poll)(struct napi_struct *, int),
1989 int weight)
1990 {
1991 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
1992 netif_napi_add(dev, napi, poll, weight);
1993 }
1994
1995 /**
1996 * netif_napi_del - remove a napi context
1997 * @napi: napi context
1998 *
1999 * netif_napi_del() removes a napi context from the network device napi list
2000 */
2001 void netif_napi_del(struct napi_struct *napi);
2002
2003 struct napi_gro_cb {
2004 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2005 void *frag0;
2006
2007 /* Length of frag0. */
2008 unsigned int frag0_len;
2009
2010 /* This indicates where we are processing relative to skb->data. */
2011 int data_offset;
2012
2013 /* This is non-zero if the packet cannot be merged with the new skb. */
2014 u16 flush;
2015
2016 /* Save the IP ID here and check when we get to the transport layer */
2017 u16 flush_id;
2018
2019 /* Number of segments aggregated. */
2020 u16 count;
2021
2022 /* Start offset for remote checksum offload */
2023 u16 gro_remcsum_start;
2024
2025 /* jiffies when first packet was created/queued */
2026 unsigned long age;
2027
2028 /* Used in ipv6_gro_receive() and foo-over-udp */
2029 u16 proto;
2030
2031 /* This is non-zero if the packet may be of the same flow. */
2032 u8 same_flow:1;
2033
2034 /* Used in udp_gro_receive */
2035 u8 udp_mark:1;
2036
2037 /* GRO checksum is valid */
2038 u8 csum_valid:1;
2039
2040 /* Number of checksums via CHECKSUM_UNNECESSARY */
2041 u8 csum_cnt:3;
2042
2043 /* Free the skb? */
2044 u8 free:2;
2045 #define NAPI_GRO_FREE 1
2046 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2047
2048 /* Used in foo-over-udp, set in udp[46]_gro_receive */
2049 u8 is_ipv6:1;
2050
2051 /* 7 bit hole */
2052
2053 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2054 __wsum csum;
2055
2056 /* used in skb_gro_receive() slow path */
2057 struct sk_buff *last;
2058 };
2059
2060 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2061
2062 struct packet_type {
2063 __be16 type; /* This is really htons(ether_type). */
2064 struct net_device *dev; /* NULL is wildcarded here */
2065 int (*func) (struct sk_buff *,
2066 struct net_device *,
2067 struct packet_type *,
2068 struct net_device *);
2069 bool (*id_match)(struct packet_type *ptype,
2070 struct sock *sk);
2071 void *af_packet_priv;
2072 struct list_head list;
2073 };
2074
2075 struct offload_callbacks {
2076 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2077 netdev_features_t features);
2078 struct sk_buff **(*gro_receive)(struct sk_buff **head,
2079 struct sk_buff *skb);
2080 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2081 };
2082
2083 struct packet_offload {
2084 __be16 type; /* This is really htons(ether_type). */
2085 u16 priority;
2086 struct offload_callbacks callbacks;
2087 struct list_head list;
2088 };
2089
2090 struct udp_offload;
2091
2092 struct udp_offload_callbacks {
2093 struct sk_buff **(*gro_receive)(struct sk_buff **head,
2094 struct sk_buff *skb,
2095 struct udp_offload *uoff);
2096 int (*gro_complete)(struct sk_buff *skb,
2097 int nhoff,
2098 struct udp_offload *uoff);
2099 };
2100
2101 struct udp_offload {
2102 __be16 port;
2103 u8 ipproto;
2104 struct udp_offload_callbacks callbacks;
2105 };
2106
2107 /* often modified stats are per cpu, other are shared (netdev->stats) */
2108 struct pcpu_sw_netstats {
2109 u64 rx_packets;
2110 u64 rx_bytes;
2111 u64 tx_packets;
2112 u64 tx_bytes;
2113 struct u64_stats_sync syncp;
2114 };
2115
2116 #define __netdev_alloc_pcpu_stats(type, gfp) \
2117 ({ \
2118 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2119 if (pcpu_stats) { \
2120 int __cpu; \
2121 for_each_possible_cpu(__cpu) { \
2122 typeof(type) *stat; \
2123 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2124 u64_stats_init(&stat->syncp); \
2125 } \
2126 } \
2127 pcpu_stats; \
2128 })
2129
2130 #define netdev_alloc_pcpu_stats(type) \
2131 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2132
2133 enum netdev_lag_tx_type {
2134 NETDEV_LAG_TX_TYPE_UNKNOWN,
2135 NETDEV_LAG_TX_TYPE_RANDOM,
2136 NETDEV_LAG_TX_TYPE_BROADCAST,
2137 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2138 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2139 NETDEV_LAG_TX_TYPE_HASH,
2140 };
2141
2142 struct netdev_lag_upper_info {
2143 enum netdev_lag_tx_type tx_type;
2144 };
2145
2146 struct netdev_lag_lower_state_info {
2147 u8 link_up : 1,
2148 tx_enabled : 1;
2149 };
2150
2151 #include <linux/notifier.h>
2152
2153 /* netdevice notifier chain. Please remember to update the rtnetlink
2154 * notification exclusion list in rtnetlink_event() when adding new
2155 * types.
2156 */
2157 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
2158 #define NETDEV_DOWN 0x0002
2159 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
2160 detected a hardware crash and restarted
2161 - we can use this eg to kick tcp sessions
2162 once done */
2163 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
2164 #define NETDEV_REGISTER 0x0005
2165 #define NETDEV_UNREGISTER 0x0006
2166 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */
2167 #define NETDEV_CHANGEADDR 0x0008
2168 #define NETDEV_GOING_DOWN 0x0009
2169 #define NETDEV_CHANGENAME 0x000A
2170 #define NETDEV_FEAT_CHANGE 0x000B
2171 #define NETDEV_BONDING_FAILOVER 0x000C
2172 #define NETDEV_PRE_UP 0x000D
2173 #define NETDEV_PRE_TYPE_CHANGE 0x000E
2174 #define NETDEV_POST_TYPE_CHANGE 0x000F
2175 #define NETDEV_POST_INIT 0x0010
2176 #define NETDEV_UNREGISTER_FINAL 0x0011
2177 #define NETDEV_RELEASE 0x0012
2178 #define NETDEV_NOTIFY_PEERS 0x0013
2179 #define NETDEV_JOIN 0x0014
2180 #define NETDEV_CHANGEUPPER 0x0015
2181 #define NETDEV_RESEND_IGMP 0x0016
2182 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */
2183 #define NETDEV_CHANGEINFODATA 0x0018
2184 #define NETDEV_BONDING_INFO 0x0019
2185 #define NETDEV_PRECHANGEUPPER 0x001A
2186 #define NETDEV_CHANGELOWERSTATE 0x001B
2187
2188 int register_netdevice_notifier(struct notifier_block *nb);
2189 int unregister_netdevice_notifier(struct notifier_block *nb);
2190
2191 struct netdev_notifier_info {
2192 struct net_device *dev;
2193 };
2194
2195 struct netdev_notifier_change_info {
2196 struct netdev_notifier_info info; /* must be first */
2197 unsigned int flags_changed;
2198 };
2199
2200 struct netdev_notifier_changeupper_info {
2201 struct netdev_notifier_info info; /* must be first */
2202 struct net_device *upper_dev; /* new upper dev */
2203 bool master; /* is upper dev master */
2204 bool linking; /* is the nofication for link or unlink */
2205 void *upper_info; /* upper dev info */
2206 };
2207
2208 struct netdev_notifier_changelowerstate_info {
2209 struct netdev_notifier_info info; /* must be first */
2210 void *lower_state_info; /* is lower dev state */
2211 };
2212
2213 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2214 struct net_device *dev)
2215 {
2216 info->dev = dev;
2217 }
2218
2219 static inline struct net_device *
2220 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2221 {
2222 return info->dev;
2223 }
2224
2225 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2226
2227
2228 extern rwlock_t dev_base_lock; /* Device list lock */
2229
2230 #define for_each_netdev(net, d) \
2231 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2232 #define for_each_netdev_reverse(net, d) \
2233 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2234 #define for_each_netdev_rcu(net, d) \
2235 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2236 #define for_each_netdev_safe(net, d, n) \
2237 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2238 #define for_each_netdev_continue(net, d) \
2239 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2240 #define for_each_netdev_continue_rcu(net, d) \
2241 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2242 #define for_each_netdev_in_bond_rcu(bond, slave) \
2243 for_each_netdev_rcu(&init_net, slave) \
2244 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2245 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2246
2247 static inline struct net_device *next_net_device(struct net_device *dev)
2248 {
2249 struct list_head *lh;
2250 struct net *net;
2251
2252 net = dev_net(dev);
2253 lh = dev->dev_list.next;
2254 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2255 }
2256
2257 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2258 {
2259 struct list_head *lh;
2260 struct net *net;
2261
2262 net = dev_net(dev);
2263 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2264 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2265 }
2266
2267 static inline struct net_device *first_net_device(struct net *net)
2268 {
2269 return list_empty(&net->dev_base_head) ? NULL :
2270 net_device_entry(net->dev_base_head.next);
2271 }
2272
2273 static inline struct net_device *first_net_device_rcu(struct net *net)
2274 {
2275 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2276
2277 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2278 }
2279
2280 int netdev_boot_setup_check(struct net_device *dev);
2281 unsigned long netdev_boot_base(const char *prefix, int unit);
2282 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2283 const char *hwaddr);
2284 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2285 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2286 void dev_add_pack(struct packet_type *pt);
2287 void dev_remove_pack(struct packet_type *pt);
2288 void __dev_remove_pack(struct packet_type *pt);
2289 void dev_add_offload(struct packet_offload *po);
2290 void dev_remove_offload(struct packet_offload *po);
2291
2292 int dev_get_iflink(const struct net_device *dev);
2293 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2294 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2295 unsigned short mask);
2296 struct net_device *dev_get_by_name(struct net *net, const char *name);
2297 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2298 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2299 int dev_alloc_name(struct net_device *dev, const char *name);
2300 int dev_open(struct net_device *dev);
2301 int dev_close(struct net_device *dev);
2302 int dev_close_many(struct list_head *head, bool unlink);
2303 void dev_disable_lro(struct net_device *dev);
2304 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2305 int dev_queue_xmit(struct sk_buff *skb);
2306 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2307 int register_netdevice(struct net_device *dev);
2308 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2309 void unregister_netdevice_many(struct list_head *head);
2310 static inline void unregister_netdevice(struct net_device *dev)
2311 {
2312 unregister_netdevice_queue(dev, NULL);
2313 }
2314
2315 int netdev_refcnt_read(const struct net_device *dev);
2316 void free_netdev(struct net_device *dev);
2317 void netdev_freemem(struct net_device *dev);
2318 void synchronize_net(void);
2319 int init_dummy_netdev(struct net_device *dev);
2320
2321 DECLARE_PER_CPU(int, xmit_recursion);
2322 static inline int dev_recursion_level(void)
2323 {
2324 return this_cpu_read(xmit_recursion);
2325 }
2326
2327 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2328 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2329 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2330 int netdev_get_name(struct net *net, char *name, int ifindex);
2331 int dev_restart(struct net_device *dev);
2332 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2333
2334 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2335 {
2336 return NAPI_GRO_CB(skb)->data_offset;
2337 }
2338
2339 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2340 {
2341 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2342 }
2343
2344 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2345 {
2346 NAPI_GRO_CB(skb)->data_offset += len;
2347 }
2348
2349 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2350 unsigned int offset)
2351 {
2352 return NAPI_GRO_CB(skb)->frag0 + offset;
2353 }
2354
2355 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2356 {
2357 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2358 }
2359
2360 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2361 unsigned int offset)
2362 {
2363 if (!pskb_may_pull(skb, hlen))
2364 return NULL;
2365
2366 NAPI_GRO_CB(skb)->frag0 = NULL;
2367 NAPI_GRO_CB(skb)->frag0_len = 0;
2368 return skb->data + offset;
2369 }
2370
2371 static inline void *skb_gro_network_header(struct sk_buff *skb)
2372 {
2373 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2374 skb_network_offset(skb);
2375 }
2376
2377 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2378 const void *start, unsigned int len)
2379 {
2380 if (NAPI_GRO_CB(skb)->csum_valid)
2381 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2382 csum_partial(start, len, 0));
2383 }
2384
2385 /* GRO checksum functions. These are logical equivalents of the normal
2386 * checksum functions (in skbuff.h) except that they operate on the GRO
2387 * offsets and fields in sk_buff.
2388 */
2389
2390 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2391
2392 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2393 {
2394 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2395 }
2396
2397 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2398 bool zero_okay,
2399 __sum16 check)
2400 {
2401 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2402 skb_checksum_start_offset(skb) <
2403 skb_gro_offset(skb)) &&
2404 !skb_at_gro_remcsum_start(skb) &&
2405 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2406 (!zero_okay || check));
2407 }
2408
2409 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2410 __wsum psum)
2411 {
2412 if (NAPI_GRO_CB(skb)->csum_valid &&
2413 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2414 return 0;
2415
2416 NAPI_GRO_CB(skb)->csum = psum;
2417
2418 return __skb_gro_checksum_complete(skb);
2419 }
2420
2421 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2422 {
2423 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2424 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2425 NAPI_GRO_CB(skb)->csum_cnt--;
2426 } else {
2427 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2428 * verified a new top level checksum or an encapsulated one
2429 * during GRO. This saves work if we fallback to normal path.
2430 */
2431 __skb_incr_checksum_unnecessary(skb);
2432 }
2433 }
2434
2435 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2436 compute_pseudo) \
2437 ({ \
2438 __sum16 __ret = 0; \
2439 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2440 __ret = __skb_gro_checksum_validate_complete(skb, \
2441 compute_pseudo(skb, proto)); \
2442 if (__ret) \
2443 __skb_mark_checksum_bad(skb); \
2444 else \
2445 skb_gro_incr_csum_unnecessary(skb); \
2446 __ret; \
2447 })
2448
2449 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2450 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2451
2452 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2453 compute_pseudo) \
2454 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2455
2456 #define skb_gro_checksum_simple_validate(skb) \
2457 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2458
2459 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2460 {
2461 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2462 !NAPI_GRO_CB(skb)->csum_valid);
2463 }
2464
2465 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2466 __sum16 check, __wsum pseudo)
2467 {
2468 NAPI_GRO_CB(skb)->csum = ~pseudo;
2469 NAPI_GRO_CB(skb)->csum_valid = 1;
2470 }
2471
2472 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2473 do { \
2474 if (__skb_gro_checksum_convert_check(skb)) \
2475 __skb_gro_checksum_convert(skb, check, \
2476 compute_pseudo(skb, proto)); \
2477 } while (0)
2478
2479 struct gro_remcsum {
2480 int offset;
2481 __wsum delta;
2482 };
2483
2484 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2485 {
2486 grc->offset = 0;
2487 grc->delta = 0;
2488 }
2489
2490 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2491 unsigned int off, size_t hdrlen,
2492 int start, int offset,
2493 struct gro_remcsum *grc,
2494 bool nopartial)
2495 {
2496 __wsum delta;
2497 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2498
2499 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2500
2501 if (!nopartial) {
2502 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2503 return ptr;
2504 }
2505
2506 ptr = skb_gro_header_fast(skb, off);
2507 if (skb_gro_header_hard(skb, off + plen)) {
2508 ptr = skb_gro_header_slow(skb, off + plen, off);
2509 if (!ptr)
2510 return NULL;
2511 }
2512
2513 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2514 start, offset);
2515
2516 /* Adjust skb->csum since we changed the packet */
2517 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2518
2519 grc->offset = off + hdrlen + offset;
2520 grc->delta = delta;
2521
2522 return ptr;
2523 }
2524
2525 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2526 struct gro_remcsum *grc)
2527 {
2528 void *ptr;
2529 size_t plen = grc->offset + sizeof(u16);
2530
2531 if (!grc->delta)
2532 return;
2533
2534 ptr = skb_gro_header_fast(skb, grc->offset);
2535 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2536 ptr = skb_gro_header_slow(skb, plen, grc->offset);
2537 if (!ptr)
2538 return;
2539 }
2540
2541 remcsum_unadjust((__sum16 *)ptr, grc->delta);
2542 }
2543
2544 struct skb_csum_offl_spec {
2545 __u16 ipv4_okay:1,
2546 ipv6_okay:1,
2547 encap_okay:1,
2548 ip_options_okay:1,
2549 ext_hdrs_okay:1,
2550 tcp_okay:1,
2551 udp_okay:1,
2552 sctp_okay:1,
2553 vlan_okay:1,
2554 no_encapped_ipv6:1,
2555 no_not_encapped:1;
2556 };
2557
2558 bool __skb_csum_offload_chk(struct sk_buff *skb,
2559 const struct skb_csum_offl_spec *spec,
2560 bool *csum_encapped,
2561 bool csum_help);
2562
2563 static inline bool skb_csum_offload_chk(struct sk_buff *skb,
2564 const struct skb_csum_offl_spec *spec,
2565 bool *csum_encapped,
2566 bool csum_help)
2567 {
2568 if (skb->ip_summed != CHECKSUM_PARTIAL)
2569 return false;
2570
2571 return __skb_csum_offload_chk(skb, spec, csum_encapped, csum_help);
2572 }
2573
2574 static inline bool skb_csum_offload_chk_help(struct sk_buff *skb,
2575 const struct skb_csum_offl_spec *spec)
2576 {
2577 bool csum_encapped;
2578
2579 return skb_csum_offload_chk(skb, spec, &csum_encapped, true);
2580 }
2581
2582 static inline bool skb_csum_off_chk_help_cmn(struct sk_buff *skb)
2583 {
2584 static const struct skb_csum_offl_spec csum_offl_spec = {
2585 .ipv4_okay = 1,
2586 .ip_options_okay = 1,
2587 .ipv6_okay = 1,
2588 .vlan_okay = 1,
2589 .tcp_okay = 1,
2590 .udp_okay = 1,
2591 };
2592
2593 return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2594 }
2595
2596 static inline bool skb_csum_off_chk_help_cmn_v4_only(struct sk_buff *skb)
2597 {
2598 static const struct skb_csum_offl_spec csum_offl_spec = {
2599 .ipv4_okay = 1,
2600 .ip_options_okay = 1,
2601 .tcp_okay = 1,
2602 .udp_okay = 1,
2603 .vlan_okay = 1,
2604 };
2605
2606 return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2607 }
2608
2609 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2610 unsigned short type,
2611 const void *daddr, const void *saddr,
2612 unsigned int len)
2613 {
2614 if (!dev->header_ops || !dev->header_ops->create)
2615 return 0;
2616
2617 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2618 }
2619
2620 static inline int dev_parse_header(const struct sk_buff *skb,
2621 unsigned char *haddr)
2622 {
2623 const struct net_device *dev = skb->dev;
2624
2625 if (!dev->header_ops || !dev->header_ops->parse)
2626 return 0;
2627 return dev->header_ops->parse(skb, haddr);
2628 }
2629
2630 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2631 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2632 static inline int unregister_gifconf(unsigned int family)
2633 {
2634 return register_gifconf(family, NULL);
2635 }
2636
2637 #ifdef CONFIG_NET_FLOW_LIMIT
2638 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
2639 struct sd_flow_limit {
2640 u64 count;
2641 unsigned int num_buckets;
2642 unsigned int history_head;
2643 u16 history[FLOW_LIMIT_HISTORY];
2644 u8 buckets[];
2645 };
2646
2647 extern int netdev_flow_limit_table_len;
2648 #endif /* CONFIG_NET_FLOW_LIMIT */
2649
2650 /*
2651 * Incoming packets are placed on per-cpu queues
2652 */
2653 struct softnet_data {
2654 struct list_head poll_list;
2655 struct sk_buff_head process_queue;
2656
2657 /* stats */
2658 unsigned int processed;
2659 unsigned int time_squeeze;
2660 unsigned int cpu_collision;
2661 unsigned int received_rps;
2662 #ifdef CONFIG_RPS
2663 struct softnet_data *rps_ipi_list;
2664 #endif
2665 #ifdef CONFIG_NET_FLOW_LIMIT
2666 struct sd_flow_limit __rcu *flow_limit;
2667 #endif
2668 struct Qdisc *output_queue;
2669 struct Qdisc **output_queue_tailp;
2670 struct sk_buff *completion_queue;
2671
2672 #ifdef CONFIG_RPS
2673 /* Elements below can be accessed between CPUs for RPS */
2674 struct call_single_data csd ____cacheline_aligned_in_smp;
2675 struct softnet_data *rps_ipi_next;
2676 unsigned int cpu;
2677 unsigned int input_queue_head;
2678 unsigned int input_queue_tail;
2679 #endif
2680 unsigned int dropped;
2681 struct sk_buff_head input_pkt_queue;
2682 struct napi_struct backlog;
2683
2684 };
2685
2686 static inline void input_queue_head_incr(struct softnet_data *sd)
2687 {
2688 #ifdef CONFIG_RPS
2689 sd->input_queue_head++;
2690 #endif
2691 }
2692
2693 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2694 unsigned int *qtail)
2695 {
2696 #ifdef CONFIG_RPS
2697 *qtail = ++sd->input_queue_tail;
2698 #endif
2699 }
2700
2701 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2702
2703 void __netif_schedule(struct Qdisc *q);
2704 void netif_schedule_queue(struct netdev_queue *txq);
2705
2706 static inline void netif_tx_schedule_all(struct net_device *dev)
2707 {
2708 unsigned int i;
2709
2710 for (i = 0; i < dev->num_tx_queues; i++)
2711 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2712 }
2713
2714 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2715 {
2716 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2717 }
2718
2719 /**
2720 * netif_start_queue - allow transmit
2721 * @dev: network device
2722 *
2723 * Allow upper layers to call the device hard_start_xmit routine.
2724 */
2725 static inline void netif_start_queue(struct net_device *dev)
2726 {
2727 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2728 }
2729
2730 static inline void netif_tx_start_all_queues(struct net_device *dev)
2731 {
2732 unsigned int i;
2733
2734 for (i = 0; i < dev->num_tx_queues; i++) {
2735 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2736 netif_tx_start_queue(txq);
2737 }
2738 }
2739
2740 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2741
2742 /**
2743 * netif_wake_queue - restart transmit
2744 * @dev: network device
2745 *
2746 * Allow upper layers to call the device hard_start_xmit routine.
2747 * Used for flow control when transmit resources are available.
2748 */
2749 static inline void netif_wake_queue(struct net_device *dev)
2750 {
2751 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2752 }
2753
2754 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2755 {
2756 unsigned int i;
2757
2758 for (i = 0; i < dev->num_tx_queues; i++) {
2759 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2760 netif_tx_wake_queue(txq);
2761 }
2762 }
2763
2764 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2765 {
2766 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2767 }
2768
2769 /**
2770 * netif_stop_queue - stop transmitted packets
2771 * @dev: network device
2772 *
2773 * Stop upper layers calling the device hard_start_xmit routine.
2774 * Used for flow control when transmit resources are unavailable.
2775 */
2776 static inline void netif_stop_queue(struct net_device *dev)
2777 {
2778 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2779 }
2780
2781 void netif_tx_stop_all_queues(struct net_device *dev);
2782
2783 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2784 {
2785 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2786 }
2787
2788 /**
2789 * netif_queue_stopped - test if transmit queue is flowblocked
2790 * @dev: network device
2791 *
2792 * Test if transmit queue on device is currently unable to send.
2793 */
2794 static inline bool netif_queue_stopped(const struct net_device *dev)
2795 {
2796 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2797 }
2798
2799 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2800 {
2801 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2802 }
2803
2804 static inline bool
2805 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2806 {
2807 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2808 }
2809
2810 static inline bool
2811 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2812 {
2813 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2814 }
2815
2816 /**
2817 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2818 * @dev_queue: pointer to transmit queue
2819 *
2820 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2821 * to give appropriate hint to the cpu.
2822 */
2823 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2824 {
2825 #ifdef CONFIG_BQL
2826 prefetchw(&dev_queue->dql.num_queued);
2827 #endif
2828 }
2829
2830 /**
2831 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2832 * @dev_queue: pointer to transmit queue
2833 *
2834 * BQL enabled drivers might use this helper in their TX completion path,
2835 * to give appropriate hint to the cpu.
2836 */
2837 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2838 {
2839 #ifdef CONFIG_BQL
2840 prefetchw(&dev_queue->dql.limit);
2841 #endif
2842 }
2843
2844 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2845 unsigned int bytes)
2846 {
2847 #ifdef CONFIG_BQL
2848 dql_queued(&dev_queue->dql, bytes);
2849
2850 if (likely(dql_avail(&dev_queue->dql) >= 0))
2851 return;
2852
2853 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2854
2855 /*
2856 * The XOFF flag must be set before checking the dql_avail below,
2857 * because in netdev_tx_completed_queue we update the dql_completed
2858 * before checking the XOFF flag.
2859 */
2860 smp_mb();
2861
2862 /* check again in case another CPU has just made room avail */
2863 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2864 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2865 #endif
2866 }
2867
2868 /**
2869 * netdev_sent_queue - report the number of bytes queued to hardware
2870 * @dev: network device
2871 * @bytes: number of bytes queued to the hardware device queue
2872 *
2873 * Report the number of bytes queued for sending/completion to the network
2874 * device hardware queue. @bytes should be a good approximation and should
2875 * exactly match netdev_completed_queue() @bytes
2876 */
2877 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2878 {
2879 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2880 }
2881
2882 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2883 unsigned int pkts, unsigned int bytes)
2884 {
2885 #ifdef CONFIG_BQL
2886 if (unlikely(!bytes))
2887 return;
2888
2889 dql_completed(&dev_queue->dql, bytes);
2890
2891 /*
2892 * Without the memory barrier there is a small possiblity that
2893 * netdev_tx_sent_queue will miss the update and cause the queue to
2894 * be stopped forever
2895 */
2896 smp_mb();
2897
2898 if (dql_avail(&dev_queue->dql) < 0)
2899 return;
2900
2901 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2902 netif_schedule_queue(dev_queue);
2903 #endif
2904 }
2905
2906 /**
2907 * netdev_completed_queue - report bytes and packets completed by device
2908 * @dev: network device
2909 * @pkts: actual number of packets sent over the medium
2910 * @bytes: actual number of bytes sent over the medium
2911 *
2912 * Report the number of bytes and packets transmitted by the network device
2913 * hardware queue over the physical medium, @bytes must exactly match the
2914 * @bytes amount passed to netdev_sent_queue()
2915 */
2916 static inline void netdev_completed_queue(struct net_device *dev,
2917 unsigned int pkts, unsigned int bytes)
2918 {
2919 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2920 }
2921
2922 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2923 {
2924 #ifdef CONFIG_BQL
2925 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2926 dql_reset(&q->dql);
2927 #endif
2928 }
2929
2930 /**
2931 * netdev_reset_queue - reset the packets and bytes count of a network device
2932 * @dev_queue: network device
2933 *
2934 * Reset the bytes and packet count of a network device and clear the
2935 * software flow control OFF bit for this network device
2936 */
2937 static inline void netdev_reset_queue(struct net_device *dev_queue)
2938 {
2939 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2940 }
2941
2942 /**
2943 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
2944 * @dev: network device
2945 * @queue_index: given tx queue index
2946 *
2947 * Returns 0 if given tx queue index >= number of device tx queues,
2948 * otherwise returns the originally passed tx queue index.
2949 */
2950 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2951 {
2952 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2953 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2954 dev->name, queue_index,
2955 dev->real_num_tx_queues);
2956 return 0;
2957 }
2958
2959 return queue_index;
2960 }
2961
2962 /**
2963 * netif_running - test if up
2964 * @dev: network device
2965 *
2966 * Test if the device has been brought up.
2967 */
2968 static inline bool netif_running(const struct net_device *dev)
2969 {
2970 return test_bit(__LINK_STATE_START, &dev->state);
2971 }
2972
2973 /*
2974 * Routines to manage the subqueues on a device. We only need start
2975 * stop, and a check if it's stopped. All other device management is
2976 * done at the overall netdevice level.
2977 * Also test the device if we're multiqueue.
2978 */
2979
2980 /**
2981 * netif_start_subqueue - allow sending packets on subqueue
2982 * @dev: network device
2983 * @queue_index: sub queue index
2984 *
2985 * Start individual transmit queue of a device with multiple transmit queues.
2986 */
2987 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2988 {
2989 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2990
2991 netif_tx_start_queue(txq);
2992 }
2993
2994 /**
2995 * netif_stop_subqueue - stop sending packets on subqueue
2996 * @dev: network device
2997 * @queue_index: sub queue index
2998 *
2999 * Stop individual transmit queue of a device with multiple transmit queues.
3000 */
3001 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3002 {
3003 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3004 netif_tx_stop_queue(txq);
3005 }
3006
3007 /**
3008 * netif_subqueue_stopped - test status of subqueue
3009 * @dev: network device
3010 * @queue_index: sub queue index
3011 *
3012 * Check individual transmit queue of a device with multiple transmit queues.
3013 */
3014 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3015 u16 queue_index)
3016 {
3017 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3018
3019 return netif_tx_queue_stopped(txq);
3020 }
3021
3022 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3023 struct sk_buff *skb)
3024 {
3025 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3026 }
3027
3028 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
3029
3030 #ifdef CONFIG_XPS
3031 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3032 u16 index);
3033 #else
3034 static inline int netif_set_xps_queue(struct net_device *dev,
3035 const struct cpumask *mask,
3036 u16 index)
3037 {
3038 return 0;
3039 }
3040 #endif
3041
3042 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3043 unsigned int num_tx_queues);
3044
3045 /*
3046 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3047 * as a distribution range limit for the returned value.
3048 */
3049 static inline u16 skb_tx_hash(const struct net_device *dev,
3050 struct sk_buff *skb)
3051 {
3052 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3053 }
3054
3055 /**
3056 * netif_is_multiqueue - test if device has multiple transmit queues
3057 * @dev: network device
3058 *
3059 * Check if device has multiple transmit queues
3060 */
3061 static inline bool netif_is_multiqueue(const struct net_device *dev)
3062 {
3063 return dev->num_tx_queues > 1;
3064 }
3065
3066 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3067
3068 #ifdef CONFIG_SYSFS
3069 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3070 #else
3071 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3072 unsigned int rxq)
3073 {
3074 return 0;
3075 }
3076 #endif
3077
3078 #ifdef CONFIG_SYSFS
3079 static inline unsigned int get_netdev_rx_queue_index(
3080 struct netdev_rx_queue *queue)
3081 {
3082 struct net_device *dev = queue->dev;
3083 int index = queue - dev->_rx;
3084
3085 BUG_ON(index >= dev->num_rx_queues);
3086 return index;
3087 }
3088 #endif
3089
3090 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
3091 int netif_get_num_default_rss_queues(void);
3092
3093 enum skb_free_reason {
3094 SKB_REASON_CONSUMED,
3095 SKB_REASON_DROPPED,
3096 };
3097
3098 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3099 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3100
3101 /*
3102 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3103 * interrupt context or with hardware interrupts being disabled.
3104 * (in_irq() || irqs_disabled())
3105 *
3106 * We provide four helpers that can be used in following contexts :
3107 *
3108 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3109 * replacing kfree_skb(skb)
3110 *
3111 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3112 * Typically used in place of consume_skb(skb) in TX completion path
3113 *
3114 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3115 * replacing kfree_skb(skb)
3116 *
3117 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3118 * and consumed a packet. Used in place of consume_skb(skb)
3119 */
3120 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3121 {
3122 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3123 }
3124
3125 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3126 {
3127 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3128 }
3129
3130 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3131 {
3132 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3133 }
3134
3135 static inline void dev_consume_skb_any(struct sk_buff *skb)
3136 {
3137 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3138 }
3139
3140 int netif_rx(struct sk_buff *skb);
3141 int netif_rx_ni(struct sk_buff *skb);
3142 int netif_receive_skb(struct sk_buff *skb);
3143 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3144 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3145 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3146 gro_result_t napi_gro_frags(struct napi_struct *napi);
3147 struct packet_offload *gro_find_receive_by_type(__be16 type);
3148 struct packet_offload *gro_find_complete_by_type(__be16 type);
3149
3150 static inline void napi_free_frags(struct napi_struct *napi)
3151 {
3152 kfree_skb(napi->skb);
3153 napi->skb = NULL;
3154 }
3155
3156 int netdev_rx_handler_register(struct net_device *dev,
3157 rx_handler_func_t *rx_handler,
3158 void *rx_handler_data);
3159 void netdev_rx_handler_unregister(struct net_device *dev);
3160
3161 bool dev_valid_name(const char *name);
3162 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3163 int dev_ethtool(struct net *net, struct ifreq *);
3164 unsigned int dev_get_flags(const struct net_device *);
3165 int __dev_change_flags(struct net_device *, unsigned int flags);
3166 int dev_change_flags(struct net_device *, unsigned int);
3167 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3168 unsigned int gchanges);
3169 int dev_change_name(struct net_device *, const char *);
3170 int dev_set_alias(struct net_device *, const char *, size_t);
3171 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3172 int dev_set_mtu(struct net_device *, int);
3173 void dev_set_group(struct net_device *, int);
3174 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3175 int dev_change_carrier(struct net_device *, bool new_carrier);
3176 int dev_get_phys_port_id(struct net_device *dev,
3177 struct netdev_phys_item_id *ppid);
3178 int dev_get_phys_port_name(struct net_device *dev,
3179 char *name, size_t len);
3180 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3181 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3182 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3183 struct netdev_queue *txq, int *ret);
3184 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3185 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3186 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
3187
3188 extern int netdev_budget;
3189
3190 /* Called by rtnetlink.c:rtnl_unlock() */
3191 void netdev_run_todo(void);
3192
3193 /**
3194 * dev_put - release reference to device
3195 * @dev: network device
3196 *
3197 * Release reference to device to allow it to be freed.
3198 */
3199 static inline void dev_put(struct net_device *dev)
3200 {
3201 this_cpu_dec(*dev->pcpu_refcnt);
3202 }
3203
3204 /**
3205 * dev_hold - get reference to device
3206 * @dev: network device
3207 *
3208 * Hold reference to device to keep it from being freed.
3209 */
3210 static inline void dev_hold(struct net_device *dev)
3211 {
3212 this_cpu_inc(*dev->pcpu_refcnt);
3213 }
3214
3215 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3216 * and _off may be called from IRQ context, but it is caller
3217 * who is responsible for serialization of these calls.
3218 *
3219 * The name carrier is inappropriate, these functions should really be
3220 * called netif_lowerlayer_*() because they represent the state of any
3221 * kind of lower layer not just hardware media.
3222 */
3223
3224 void linkwatch_init_dev(struct net_device *dev);
3225 void linkwatch_fire_event(struct net_device *dev);
3226 void linkwatch_forget_dev(struct net_device *dev);
3227
3228 /**
3229 * netif_carrier_ok - test if carrier present
3230 * @dev: network device
3231 *
3232 * Check if carrier is present on device
3233 */
3234 static inline bool netif_carrier_ok(const struct net_device *dev)
3235 {
3236 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3237 }
3238
3239 unsigned long dev_trans_start(struct net_device *dev);
3240
3241 void __netdev_watchdog_up(struct net_device *dev);
3242
3243 void netif_carrier_on(struct net_device *dev);
3244
3245 void netif_carrier_off(struct net_device *dev);
3246
3247 /**
3248 * netif_dormant_on - mark device as dormant.
3249 * @dev: network device
3250 *
3251 * Mark device as dormant (as per RFC2863).
3252 *
3253 * The dormant state indicates that the relevant interface is not
3254 * actually in a condition to pass packets (i.e., it is not 'up') but is
3255 * in a "pending" state, waiting for some external event. For "on-
3256 * demand" interfaces, this new state identifies the situation where the
3257 * interface is waiting for events to place it in the up state.
3258 *
3259 */
3260 static inline void netif_dormant_on(struct net_device *dev)
3261 {
3262 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3263 linkwatch_fire_event(dev);
3264 }
3265
3266 /**
3267 * netif_dormant_off - set device as not dormant.
3268 * @dev: network device
3269 *
3270 * Device is not in dormant state.
3271 */
3272 static inline void netif_dormant_off(struct net_device *dev)
3273 {
3274 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3275 linkwatch_fire_event(dev);
3276 }
3277
3278 /**
3279 * netif_dormant - test if carrier present
3280 * @dev: network device
3281 *
3282 * Check if carrier is present on device
3283 */
3284 static inline bool netif_dormant(const struct net_device *dev)
3285 {
3286 return test_bit(__LINK_STATE_DORMANT, &dev->state);
3287 }
3288
3289
3290 /**
3291 * netif_oper_up - test if device is operational
3292 * @dev: network device
3293 *
3294 * Check if carrier is operational
3295 */
3296 static inline bool netif_oper_up(const struct net_device *dev)
3297 {
3298 return (dev->operstate == IF_OPER_UP ||
3299 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3300 }
3301
3302 /**
3303 * netif_device_present - is device available or removed
3304 * @dev: network device
3305 *
3306 * Check if device has not been removed from system.
3307 */
3308 static inline bool netif_device_present(struct net_device *dev)
3309 {
3310 return test_bit(__LINK_STATE_PRESENT, &dev->state);
3311 }
3312
3313 void netif_device_detach(struct net_device *dev);
3314
3315 void netif_device_attach(struct net_device *dev);
3316
3317 /*
3318 * Network interface message level settings
3319 */
3320
3321 enum {
3322 NETIF_MSG_DRV = 0x0001,
3323 NETIF_MSG_PROBE = 0x0002,
3324 NETIF_MSG_LINK = 0x0004,
3325 NETIF_MSG_TIMER = 0x0008,
3326 NETIF_MSG_IFDOWN = 0x0010,
3327 NETIF_MSG_IFUP = 0x0020,
3328 NETIF_MSG_RX_ERR = 0x0040,
3329 NETIF_MSG_TX_ERR = 0x0080,
3330 NETIF_MSG_TX_QUEUED = 0x0100,
3331 NETIF_MSG_INTR = 0x0200,
3332 NETIF_MSG_TX_DONE = 0x0400,
3333 NETIF_MSG_RX_STATUS = 0x0800,
3334 NETIF_MSG_PKTDATA = 0x1000,
3335 NETIF_MSG_HW = 0x2000,
3336 NETIF_MSG_WOL = 0x4000,
3337 };
3338
3339 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
3340 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
3341 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
3342 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
3343 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
3344 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
3345 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
3346 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
3347 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3348 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
3349 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
3350 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3351 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
3352 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
3353 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
3354
3355 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3356 {
3357 /* use default */
3358 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3359 return default_msg_enable_bits;
3360 if (debug_value == 0) /* no output */
3361 return 0;
3362 /* set low N bits */
3363 return (1 << debug_value) - 1;
3364 }
3365
3366 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3367 {
3368 spin_lock(&txq->_xmit_lock);
3369 txq->xmit_lock_owner = cpu;
3370 }
3371
3372 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3373 {
3374 spin_lock_bh(&txq->_xmit_lock);
3375 txq->xmit_lock_owner = smp_processor_id();
3376 }
3377
3378 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3379 {
3380 bool ok = spin_trylock(&txq->_xmit_lock);
3381 if (likely(ok))
3382 txq->xmit_lock_owner = smp_processor_id();
3383 return ok;
3384 }
3385
3386 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3387 {
3388 txq->xmit_lock_owner = -1;
3389 spin_unlock(&txq->_xmit_lock);
3390 }
3391
3392 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3393 {
3394 txq->xmit_lock_owner = -1;
3395 spin_unlock_bh(&txq->_xmit_lock);
3396 }
3397
3398 static inline void txq_trans_update(struct netdev_queue *txq)
3399 {
3400 if (txq->xmit_lock_owner != -1)
3401 txq->trans_start = jiffies;
3402 }
3403
3404 /**
3405 * netif_tx_lock - grab network device transmit lock
3406 * @dev: network device
3407 *
3408 * Get network device transmit lock
3409 */
3410 static inline void netif_tx_lock(struct net_device *dev)
3411 {
3412 unsigned int i;
3413 int cpu;
3414
3415 spin_lock(&dev->tx_global_lock);
3416 cpu = smp_processor_id();
3417 for (i = 0; i < dev->num_tx_queues; i++) {
3418 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3419
3420 /* We are the only thread of execution doing a
3421 * freeze, but we have to grab the _xmit_lock in
3422 * order to synchronize with threads which are in
3423 * the ->hard_start_xmit() handler and already
3424 * checked the frozen bit.
3425 */
3426 __netif_tx_lock(txq, cpu);
3427 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3428 __netif_tx_unlock(txq);
3429 }
3430 }
3431
3432 static inline void netif_tx_lock_bh(struct net_device *dev)
3433 {
3434 local_bh_disable();
3435 netif_tx_lock(dev);
3436 }
3437
3438 static inline void netif_tx_unlock(struct net_device *dev)
3439 {
3440 unsigned int i;
3441
3442 for (i = 0; i < dev->num_tx_queues; i++) {
3443 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3444
3445 /* No need to grab the _xmit_lock here. If the
3446 * queue is not stopped for another reason, we
3447 * force a schedule.
3448 */
3449 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3450 netif_schedule_queue(txq);
3451 }
3452 spin_unlock(&dev->tx_global_lock);
3453 }
3454
3455 static inline void netif_tx_unlock_bh(struct net_device *dev)
3456 {
3457 netif_tx_unlock(dev);
3458 local_bh_enable();
3459 }
3460
3461 #define HARD_TX_LOCK(dev, txq, cpu) { \
3462 if ((dev->features & NETIF_F_LLTX) == 0) { \
3463 __netif_tx_lock(txq, cpu); \
3464 } \
3465 }
3466
3467 #define HARD_TX_TRYLOCK(dev, txq) \
3468 (((dev->features & NETIF_F_LLTX) == 0) ? \
3469 __netif_tx_trylock(txq) : \
3470 true )
3471
3472 #define HARD_TX_UNLOCK(dev, txq) { \
3473 if ((dev->features & NETIF_F_LLTX) == 0) { \
3474 __netif_tx_unlock(txq); \
3475 } \
3476 }
3477
3478 static inline void netif_tx_disable(struct net_device *dev)
3479 {
3480 unsigned int i;
3481 int cpu;
3482
3483 local_bh_disable();
3484 cpu = smp_processor_id();
3485 for (i = 0; i < dev->num_tx_queues; i++) {
3486 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3487
3488 __netif_tx_lock(txq, cpu);
3489 netif_tx_stop_queue(txq);
3490 __netif_tx_unlock(txq);
3491 }
3492 local_bh_enable();
3493 }
3494
3495 static inline void netif_addr_lock(struct net_device *dev)
3496 {
3497 spin_lock(&dev->addr_list_lock);
3498 }
3499
3500 static inline void netif_addr_lock_nested(struct net_device *dev)
3501 {
3502 int subclass = SINGLE_DEPTH_NESTING;
3503
3504 if (dev->netdev_ops->ndo_get_lock_subclass)
3505 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3506
3507 spin_lock_nested(&dev->addr_list_lock, subclass);
3508 }
3509
3510 static inline void netif_addr_lock_bh(struct net_device *dev)
3511 {
3512 spin_lock_bh(&dev->addr_list_lock);
3513 }
3514
3515 static inline void netif_addr_unlock(struct net_device *dev)
3516 {
3517 spin_unlock(&dev->addr_list_lock);
3518 }
3519
3520 static inline void netif_addr_unlock_bh(struct net_device *dev)
3521 {
3522 spin_unlock_bh(&dev->addr_list_lock);
3523 }
3524
3525 /*
3526 * dev_addrs walker. Should be used only for read access. Call with
3527 * rcu_read_lock held.
3528 */
3529 #define for_each_dev_addr(dev, ha) \
3530 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3531
3532 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3533
3534 void ether_setup(struct net_device *dev);
3535
3536 /* Support for loadable net-drivers */
3537 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3538 unsigned char name_assign_type,
3539 void (*setup)(struct net_device *),
3540 unsigned int txqs, unsigned int rxqs);
3541 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3542 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3543
3544 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3545 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3546 count)
3547
3548 int register_netdev(struct net_device *dev);
3549 void unregister_netdev(struct net_device *dev);
3550
3551 /* General hardware address lists handling functions */
3552 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3553 struct netdev_hw_addr_list *from_list, int addr_len);
3554 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3555 struct netdev_hw_addr_list *from_list, int addr_len);
3556 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3557 struct net_device *dev,
3558 int (*sync)(struct net_device *, const unsigned char *),
3559 int (*unsync)(struct net_device *,
3560 const unsigned char *));
3561 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3562 struct net_device *dev,
3563 int (*unsync)(struct net_device *,
3564 const unsigned char *));
3565 void __hw_addr_init(struct netdev_hw_addr_list *list);
3566
3567 /* Functions used for device addresses handling */
3568 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3569 unsigned char addr_type);
3570 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3571 unsigned char addr_type);
3572 void dev_addr_flush(struct net_device *dev);
3573 int dev_addr_init(struct net_device *dev);
3574
3575 /* Functions used for unicast addresses handling */
3576 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3577 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3578 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3579 int dev_uc_sync(struct net_device *to, struct net_device *from);
3580 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3581 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3582 void dev_uc_flush(struct net_device *dev);
3583 void dev_uc_init(struct net_device *dev);
3584
3585 /**
3586 * __dev_uc_sync - Synchonize device's unicast list
3587 * @dev: device to sync
3588 * @sync: function to call if address should be added
3589 * @unsync: function to call if address should be removed
3590 *
3591 * Add newly added addresses to the interface, and release
3592 * addresses that have been deleted.
3593 **/
3594 static inline int __dev_uc_sync(struct net_device *dev,
3595 int (*sync)(struct net_device *,
3596 const unsigned char *),
3597 int (*unsync)(struct net_device *,
3598 const unsigned char *))
3599 {
3600 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3601 }
3602
3603 /**
3604 * __dev_uc_unsync - Remove synchronized addresses from device
3605 * @dev: device to sync
3606 * @unsync: function to call if address should be removed
3607 *
3608 * Remove all addresses that were added to the device by dev_uc_sync().
3609 **/
3610 static inline void __dev_uc_unsync(struct net_device *dev,
3611 int (*unsync)(struct net_device *,
3612 const unsigned char *))
3613 {
3614 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3615 }
3616
3617 /* Functions used for multicast addresses handling */
3618 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3619 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3620 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3621 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3622 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3623 int dev_mc_sync(struct net_device *to, struct net_device *from);
3624 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3625 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3626 void dev_mc_flush(struct net_device *dev);
3627 void dev_mc_init(struct net_device *dev);
3628
3629 /**
3630 * __dev_mc_sync - Synchonize device's multicast list
3631 * @dev: device to sync
3632 * @sync: function to call if address should be added
3633 * @unsync: function to call if address should be removed
3634 *
3635 * Add newly added addresses to the interface, and release
3636 * addresses that have been deleted.
3637 **/
3638 static inline int __dev_mc_sync(struct net_device *dev,
3639 int (*sync)(struct net_device *,
3640 const unsigned char *),
3641 int (*unsync)(struct net_device *,
3642 const unsigned char *))
3643 {
3644 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3645 }
3646
3647 /**
3648 * __dev_mc_unsync - Remove synchronized addresses from device
3649 * @dev: device to sync
3650 * @unsync: function to call if address should be removed
3651 *
3652 * Remove all addresses that were added to the device by dev_mc_sync().
3653 **/
3654 static inline void __dev_mc_unsync(struct net_device *dev,
3655 int (*unsync)(struct net_device *,
3656 const unsigned char *))
3657 {
3658 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3659 }
3660
3661 /* Functions used for secondary unicast and multicast support */
3662 void dev_set_rx_mode(struct net_device *dev);
3663 void __dev_set_rx_mode(struct net_device *dev);
3664 int dev_set_promiscuity(struct net_device *dev, int inc);
3665 int dev_set_allmulti(struct net_device *dev, int inc);
3666 void netdev_state_change(struct net_device *dev);
3667 void netdev_notify_peers(struct net_device *dev);
3668 void netdev_features_change(struct net_device *dev);
3669 /* Load a device via the kmod */
3670 void dev_load(struct net *net, const char *name);
3671 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3672 struct rtnl_link_stats64 *storage);
3673 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3674 const struct net_device_stats *netdev_stats);
3675
3676 extern int netdev_max_backlog;
3677 extern int netdev_tstamp_prequeue;
3678 extern int weight_p;
3679 extern int bpf_jit_enable;
3680
3681 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3682 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3683 struct list_head **iter);
3684 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3685 struct list_head **iter);
3686
3687 /* iterate through upper list, must be called under RCU read lock */
3688 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3689 for (iter = &(dev)->adj_list.upper, \
3690 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3691 updev; \
3692 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3693
3694 /* iterate through upper list, must be called under RCU read lock */
3695 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3696 for (iter = &(dev)->all_adj_list.upper, \
3697 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3698 updev; \
3699 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3700
3701 void *netdev_lower_get_next_private(struct net_device *dev,
3702 struct list_head **iter);
3703 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3704 struct list_head **iter);
3705
3706 #define netdev_for_each_lower_private(dev, priv, iter) \
3707 for (iter = (dev)->adj_list.lower.next, \
3708 priv = netdev_lower_get_next_private(dev, &(iter)); \
3709 priv; \
3710 priv = netdev_lower_get_next_private(dev, &(iter)))
3711
3712 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3713 for (iter = &(dev)->adj_list.lower, \
3714 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3715 priv; \
3716 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3717
3718 void *netdev_lower_get_next(struct net_device *dev,
3719 struct list_head **iter);
3720 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3721 for (iter = (dev)->adj_list.lower.next, \
3722 ldev = netdev_lower_get_next(dev, &(iter)); \
3723 ldev; \
3724 ldev = netdev_lower_get_next(dev, &(iter)))
3725
3726 void *netdev_adjacent_get_private(struct list_head *adj_list);
3727 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3728 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3729 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3730 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3731 int netdev_master_upper_dev_link(struct net_device *dev,
3732 struct net_device *upper_dev,
3733 void *upper_priv, void *upper_info);
3734 void netdev_upper_dev_unlink(struct net_device *dev,
3735 struct net_device *upper_dev);
3736 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3737 void *netdev_lower_dev_get_private(struct net_device *dev,
3738 struct net_device *lower_dev);
3739 void netdev_lower_state_changed(struct net_device *lower_dev,
3740 void *lower_state_info);
3741
3742 /* RSS keys are 40 or 52 bytes long */
3743 #define NETDEV_RSS_KEY_LEN 52
3744 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN];
3745 void netdev_rss_key_fill(void *buffer, size_t len);
3746
3747 int dev_get_nest_level(struct net_device *dev,
3748 bool (*type_check)(const struct net_device *dev));
3749 int skb_checksum_help(struct sk_buff *skb);
3750 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3751 netdev_features_t features, bool tx_path);
3752 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3753 netdev_features_t features);
3754
3755 struct netdev_bonding_info {
3756 ifslave slave;
3757 ifbond master;
3758 };
3759
3760 struct netdev_notifier_bonding_info {
3761 struct netdev_notifier_info info; /* must be first */
3762 struct netdev_bonding_info bonding_info;
3763 };
3764
3765 void netdev_bonding_info_change(struct net_device *dev,
3766 struct netdev_bonding_info *bonding_info);
3767
3768 static inline
3769 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3770 {
3771 return __skb_gso_segment(skb, features, true);
3772 }
3773 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3774
3775 static inline bool can_checksum_protocol(netdev_features_t features,
3776 __be16 protocol)
3777 {
3778 if (protocol == htons(ETH_P_FCOE))
3779 return !!(features & NETIF_F_FCOE_CRC);
3780
3781 /* Assume this is an IP checksum (not SCTP CRC) */
3782
3783 if (features & NETIF_F_HW_CSUM) {
3784 /* Can checksum everything */
3785 return true;
3786 }
3787
3788 switch (protocol) {
3789 case htons(ETH_P_IP):
3790 return !!(features & NETIF_F_IP_CSUM);
3791 case htons(ETH_P_IPV6):
3792 return !!(features & NETIF_F_IPV6_CSUM);
3793 default:
3794 return false;
3795 }
3796 }
3797
3798 /* Map an ethertype into IP protocol if possible */
3799 static inline int eproto_to_ipproto(int eproto)
3800 {
3801 switch (eproto) {
3802 case htons(ETH_P_IP):
3803 return IPPROTO_IP;
3804 case htons(ETH_P_IPV6):
3805 return IPPROTO_IPV6;
3806 default:
3807 return -1;
3808 }
3809 }
3810
3811 #ifdef CONFIG_BUG
3812 void netdev_rx_csum_fault(struct net_device *dev);
3813 #else
3814 static inline void netdev_rx_csum_fault(struct net_device *dev)
3815 {
3816 }
3817 #endif
3818 /* rx skb timestamps */
3819 void net_enable_timestamp(void);
3820 void net_disable_timestamp(void);
3821
3822 #ifdef CONFIG_PROC_FS
3823 int __init dev_proc_init(void);
3824 #else
3825 #define dev_proc_init() 0
3826 #endif
3827
3828 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3829 struct sk_buff *skb, struct net_device *dev,
3830 bool more)
3831 {
3832 skb->xmit_more = more ? 1 : 0;
3833 return ops->ndo_start_xmit(skb, dev);
3834 }
3835
3836 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3837 struct netdev_queue *txq, bool more)
3838 {
3839 const struct net_device_ops *ops = dev->netdev_ops;
3840 int rc;
3841
3842 rc = __netdev_start_xmit(ops, skb, dev, more);
3843 if (rc == NETDEV_TX_OK)
3844 txq_trans_update(txq);
3845
3846 return rc;
3847 }
3848
3849 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3850 const void *ns);
3851 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3852 const void *ns);
3853
3854 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3855 {
3856 return netdev_class_create_file_ns(class_attr, NULL);
3857 }
3858
3859 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3860 {
3861 netdev_class_remove_file_ns(class_attr, NULL);
3862 }
3863
3864 extern struct kobj_ns_type_operations net_ns_type_operations;
3865
3866 const char *netdev_drivername(const struct net_device *dev);
3867
3868 void linkwatch_run_queue(void);
3869
3870 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3871 netdev_features_t f2)
3872 {
3873 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
3874 if (f1 & NETIF_F_HW_CSUM)
3875 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3876 else
3877 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3878 }
3879
3880 return f1 & f2;
3881 }
3882
3883 static inline netdev_features_t netdev_get_wanted_features(
3884 struct net_device *dev)
3885 {
3886 return (dev->features & ~dev->hw_features) | dev->wanted_features;
3887 }
3888 netdev_features_t netdev_increment_features(netdev_features_t all,
3889 netdev_features_t one, netdev_features_t mask);
3890
3891 /* Allow TSO being used on stacked device :
3892 * Performing the GSO segmentation before last device
3893 * is a performance improvement.
3894 */
3895 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3896 netdev_features_t mask)
3897 {
3898 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3899 }
3900
3901 int __netdev_update_features(struct net_device *dev);
3902 void netdev_update_features(struct net_device *dev);
3903 void netdev_change_features(struct net_device *dev);
3904
3905 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3906 struct net_device *dev);
3907
3908 netdev_features_t passthru_features_check(struct sk_buff *skb,
3909 struct net_device *dev,
3910 netdev_features_t features);
3911 netdev_features_t netif_skb_features(struct sk_buff *skb);
3912
3913 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3914 {
3915 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3916
3917 /* check flags correspondence */
3918 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3919 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3920 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3921 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3922 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3923 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3924 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3925 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3926 BUILD_BUG_ON(SKB_GSO_IPIP != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3927 BUILD_BUG_ON(SKB_GSO_SIT != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3928 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3929 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3930 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
3931
3932 return (features & feature) == feature;
3933 }
3934
3935 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3936 {
3937 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3938 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3939 }
3940
3941 static inline bool netif_needs_gso(struct sk_buff *skb,
3942 netdev_features_t features)
3943 {
3944 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3945 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3946 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3947 }
3948
3949 static inline void netif_set_gso_max_size(struct net_device *dev,
3950 unsigned int size)
3951 {
3952 dev->gso_max_size = size;
3953 }
3954
3955 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3956 int pulled_hlen, u16 mac_offset,
3957 int mac_len)
3958 {
3959 skb->protocol = protocol;
3960 skb->encapsulation = 1;
3961 skb_push(skb, pulled_hlen);
3962 skb_reset_transport_header(skb);
3963 skb->mac_header = mac_offset;
3964 skb->network_header = skb->mac_header + mac_len;
3965 skb->mac_len = mac_len;
3966 }
3967
3968 static inline bool netif_is_macvlan(const struct net_device *dev)
3969 {
3970 return dev->priv_flags & IFF_MACVLAN;
3971 }
3972
3973 static inline bool netif_is_macvlan_port(const struct net_device *dev)
3974 {
3975 return dev->priv_flags & IFF_MACVLAN_PORT;
3976 }
3977
3978 static inline bool netif_is_ipvlan(const struct net_device *dev)
3979 {
3980 return dev->priv_flags & IFF_IPVLAN_SLAVE;
3981 }
3982
3983 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
3984 {
3985 return dev->priv_flags & IFF_IPVLAN_MASTER;
3986 }
3987
3988 static inline bool netif_is_bond_master(const struct net_device *dev)
3989 {
3990 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3991 }
3992
3993 static inline bool netif_is_bond_slave(const struct net_device *dev)
3994 {
3995 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3996 }
3997
3998 static inline bool netif_supports_nofcs(struct net_device *dev)
3999 {
4000 return dev->priv_flags & IFF_SUPP_NOFCS;
4001 }
4002
4003 static inline bool netif_is_l3_master(const struct net_device *dev)
4004 {
4005 return dev->priv_flags & IFF_L3MDEV_MASTER;
4006 }
4007
4008 static inline bool netif_is_l3_slave(const struct net_device *dev)
4009 {
4010 return dev->priv_flags & IFF_L3MDEV_SLAVE;
4011 }
4012
4013 static inline bool netif_is_bridge_master(const struct net_device *dev)
4014 {
4015 return dev->priv_flags & IFF_EBRIDGE;
4016 }
4017
4018 static inline bool netif_is_bridge_port(const struct net_device *dev)
4019 {
4020 return dev->priv_flags & IFF_BRIDGE_PORT;
4021 }
4022
4023 static inline bool netif_is_ovs_master(const struct net_device *dev)
4024 {
4025 return dev->priv_flags & IFF_OPENVSWITCH;
4026 }
4027
4028 static inline bool netif_is_team_master(const struct net_device *dev)
4029 {
4030 return dev->priv_flags & IFF_TEAM;
4031 }
4032
4033 static inline bool netif_is_team_port(const struct net_device *dev)
4034 {
4035 return dev->priv_flags & IFF_TEAM_PORT;
4036 }
4037
4038 static inline bool netif_is_lag_master(const struct net_device *dev)
4039 {
4040 return netif_is_bond_master(dev) || netif_is_team_master(dev);
4041 }
4042
4043 static inline bool netif_is_lag_port(const struct net_device *dev)
4044 {
4045 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4046 }
4047
4048 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4049 static inline void netif_keep_dst(struct net_device *dev)
4050 {
4051 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4052 }
4053
4054 extern struct pernet_operations __net_initdata loopback_net_ops;
4055
4056 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4057
4058 /* netdev_printk helpers, similar to dev_printk */
4059
4060 static inline const char *netdev_name(const struct net_device *dev)
4061 {
4062 if (!dev->name[0] || strchr(dev->name, '%'))
4063 return "(unnamed net_device)";
4064 return dev->name;
4065 }
4066
4067 static inline const char *netdev_reg_state(const struct net_device *dev)
4068 {
4069 switch (dev->reg_state) {
4070 case NETREG_UNINITIALIZED: return " (uninitialized)";
4071 case NETREG_REGISTERED: return "";
4072 case NETREG_UNREGISTERING: return " (unregistering)";
4073 case NETREG_UNREGISTERED: return " (unregistered)";
4074 case NETREG_RELEASED: return " (released)";
4075 case NETREG_DUMMY: return " (dummy)";
4076 }
4077
4078 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4079 return " (unknown)";
4080 }
4081
4082 __printf(3, 4)
4083 void netdev_printk(const char *level, const struct net_device *dev,
4084 const char *format, ...);
4085 __printf(2, 3)
4086 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4087 __printf(2, 3)
4088 void netdev_alert(const struct net_device *dev, const char *format, ...);
4089 __printf(2, 3)
4090 void netdev_crit(const struct net_device *dev, const char *format, ...);
4091 __printf(2, 3)
4092 void netdev_err(const struct net_device *dev, const char *format, ...);
4093 __printf(2, 3)
4094 void netdev_warn(const struct net_device *dev, const char *format, ...);
4095 __printf(2, 3)
4096 void netdev_notice(const struct net_device *dev, const char *format, ...);
4097 __printf(2, 3)
4098 void netdev_info(const struct net_device *dev, const char *format, ...);
4099
4100 #define MODULE_ALIAS_NETDEV(device) \
4101 MODULE_ALIAS("netdev-" device)
4102
4103 #if defined(CONFIG_DYNAMIC_DEBUG)
4104 #define netdev_dbg(__dev, format, args...) \
4105 do { \
4106 dynamic_netdev_dbg(__dev, format, ##args); \
4107 } while (0)
4108 #elif defined(DEBUG)
4109 #define netdev_dbg(__dev, format, args...) \
4110 netdev_printk(KERN_DEBUG, __dev, format, ##args)
4111 #else
4112 #define netdev_dbg(__dev, format, args...) \
4113 ({ \
4114 if (0) \
4115 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4116 })
4117 #endif
4118
4119 #if defined(VERBOSE_DEBUG)
4120 #define netdev_vdbg netdev_dbg
4121 #else
4122
4123 #define netdev_vdbg(dev, format, args...) \
4124 ({ \
4125 if (0) \
4126 netdev_printk(KERN_DEBUG, dev, format, ##args); \
4127 0; \
4128 })
4129 #endif
4130
4131 /*
4132 * netdev_WARN() acts like dev_printk(), but with the key difference
4133 * of using a WARN/WARN_ON to get the message out, including the
4134 * file/line information and a backtrace.
4135 */
4136 #define netdev_WARN(dev, format, args...) \
4137 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \
4138 netdev_reg_state(dev), ##args)
4139
4140 /* netif printk helpers, similar to netdev_printk */
4141
4142 #define netif_printk(priv, type, level, dev, fmt, args...) \
4143 do { \
4144 if (netif_msg_##type(priv)) \
4145 netdev_printk(level, (dev), fmt, ##args); \
4146 } while (0)
4147
4148 #define netif_level(level, priv, type, dev, fmt, args...) \
4149 do { \
4150 if (netif_msg_##type(priv)) \
4151 netdev_##level(dev, fmt, ##args); \
4152 } while (0)
4153
4154 #define netif_emerg(priv, type, dev, fmt, args...) \
4155 netif_level(emerg, priv, type, dev, fmt, ##args)
4156 #define netif_alert(priv, type, dev, fmt, args...) \
4157 netif_level(alert, priv, type, dev, fmt, ##args)
4158 #define netif_crit(priv, type, dev, fmt, args...) \
4159 netif_level(crit, priv, type, dev, fmt, ##args)
4160 #define netif_err(priv, type, dev, fmt, args...) \
4161 netif_level(err, priv, type, dev, fmt, ##args)
4162 #define netif_warn(priv, type, dev, fmt, args...) \
4163 netif_level(warn, priv, type, dev, fmt, ##args)
4164 #define netif_notice(priv, type, dev, fmt, args...) \
4165 netif_level(notice, priv, type, dev, fmt, ##args)
4166 #define netif_info(priv, type, dev, fmt, args...) \
4167 netif_level(info, priv, type, dev, fmt, ##args)
4168
4169 #if defined(CONFIG_DYNAMIC_DEBUG)
4170 #define netif_dbg(priv, type, netdev, format, args...) \
4171 do { \
4172 if (netif_msg_##type(priv)) \
4173 dynamic_netdev_dbg(netdev, format, ##args); \
4174 } while (0)
4175 #elif defined(DEBUG)
4176 #define netif_dbg(priv, type, dev, format, args...) \
4177 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4178 #else
4179 #define netif_dbg(priv, type, dev, format, args...) \
4180 ({ \
4181 if (0) \
4182 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4183 0; \
4184 })
4185 #endif
4186
4187 #if defined(VERBOSE_DEBUG)
4188 #define netif_vdbg netif_dbg
4189 #else
4190 #define netif_vdbg(priv, type, dev, format, args...) \
4191 ({ \
4192 if (0) \
4193 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4194 0; \
4195 })
4196 #endif
4197
4198 /*
4199 * The list of packet types we will receive (as opposed to discard)
4200 * and the routines to invoke.
4201 *
4202 * Why 16. Because with 16 the only overlap we get on a hash of the
4203 * low nibble of the protocol value is RARP/SNAP/X.25.
4204 *
4205 * NOTE: That is no longer true with the addition of VLAN tags. Not
4206 * sure which should go first, but I bet it won't make much
4207 * difference if we are running VLANs. The good news is that
4208 * this protocol won't be in the list unless compiled in, so
4209 * the average user (w/out VLANs) will not be adversely affected.
4210 * --BLG
4211 *
4212 * 0800 IP
4213 * 8100 802.1Q VLAN
4214 * 0001 802.3
4215 * 0002 AX.25
4216 * 0004 802.2
4217 * 8035 RARP
4218 * 0005 SNAP
4219 * 0805 X.25
4220 * 0806 ARP
4221 * 8137 IPX
4222 * 0009 Localtalk
4223 * 86DD IPv6
4224 */
4225 #define PTYPE_HASH_SIZE (16)
4226 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4227
4228 #endif /* _LINUX_NETDEVICE_H */