]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - include/linux/netdevice.h
xdp: Move devmap bulk queue into struct net_device
[mirror_ubuntu-hirsute-kernel.git] / include / linux / netdevice.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the Interfaces handler.
8 *
9 * Version: @(#)dev.h 1.0.10 08/12/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
16 * Bjorn Ekwall. <bj0rn@blox.se>
17 * Pekka Riikonen <priikone@poseidon.pspt.fi>
18 *
19 * Moved to /usr/include/linux for NET3
20 */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36
37 #include <linux/ethtool.h>
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51
52 struct netpoll_info;
53 struct device;
54 struct phy_device;
55 struct dsa_port;
56
57 struct sfp_bus;
58 /* 802.11 specific */
59 struct wireless_dev;
60 /* 802.15.4 specific */
61 struct wpan_dev;
62 struct mpls_dev;
63 /* UDP Tunnel offloads */
64 struct udp_tunnel_info;
65 struct bpf_prog;
66 struct xdp_buff;
67
68 void netdev_set_default_ethtool_ops(struct net_device *dev,
69 const struct ethtool_ops *ops);
70
71 /* Backlog congestion levels */
72 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
73 #define NET_RX_DROP 1 /* packet dropped */
74
75 /*
76 * Transmit return codes: transmit return codes originate from three different
77 * namespaces:
78 *
79 * - qdisc return codes
80 * - driver transmit return codes
81 * - errno values
82 *
83 * Drivers are allowed to return any one of those in their hard_start_xmit()
84 * function. Real network devices commonly used with qdiscs should only return
85 * the driver transmit return codes though - when qdiscs are used, the actual
86 * transmission happens asynchronously, so the value is not propagated to
87 * higher layers. Virtual network devices transmit synchronously; in this case
88 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
89 * others are propagated to higher layers.
90 */
91
92 /* qdisc ->enqueue() return codes. */
93 #define NET_XMIT_SUCCESS 0x00
94 #define NET_XMIT_DROP 0x01 /* skb dropped */
95 #define NET_XMIT_CN 0x02 /* congestion notification */
96 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
97
98 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
99 * indicates that the device will soon be dropping packets, or already drops
100 * some packets of the same priority; prompting us to send less aggressively. */
101 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
102 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
103
104 /* Driver transmit return codes */
105 #define NETDEV_TX_MASK 0xf0
106
107 enum netdev_tx {
108 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
109 NETDEV_TX_OK = 0x00, /* driver took care of packet */
110 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
111 };
112 typedef enum netdev_tx netdev_tx_t;
113
114 /*
115 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
116 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
117 */
118 static inline bool dev_xmit_complete(int rc)
119 {
120 /*
121 * Positive cases with an skb consumed by a driver:
122 * - successful transmission (rc == NETDEV_TX_OK)
123 * - error while transmitting (rc < 0)
124 * - error while queueing to a different device (rc & NET_XMIT_MASK)
125 */
126 if (likely(rc < NET_XMIT_MASK))
127 return true;
128
129 return false;
130 }
131
132 /*
133 * Compute the worst-case header length according to the protocols
134 * used.
135 */
136
137 #if defined(CONFIG_HYPERV_NET)
138 # define LL_MAX_HEADER 128
139 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
140 # if defined(CONFIG_MAC80211_MESH)
141 # define LL_MAX_HEADER 128
142 # else
143 # define LL_MAX_HEADER 96
144 # endif
145 #else
146 # define LL_MAX_HEADER 32
147 #endif
148
149 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
150 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
151 #define MAX_HEADER LL_MAX_HEADER
152 #else
153 #define MAX_HEADER (LL_MAX_HEADER + 48)
154 #endif
155
156 /*
157 * Old network device statistics. Fields are native words
158 * (unsigned long) so they can be read and written atomically.
159 */
160
161 struct net_device_stats {
162 unsigned long rx_packets;
163 unsigned long tx_packets;
164 unsigned long rx_bytes;
165 unsigned long tx_bytes;
166 unsigned long rx_errors;
167 unsigned long tx_errors;
168 unsigned long rx_dropped;
169 unsigned long tx_dropped;
170 unsigned long multicast;
171 unsigned long collisions;
172 unsigned long rx_length_errors;
173 unsigned long rx_over_errors;
174 unsigned long rx_crc_errors;
175 unsigned long rx_frame_errors;
176 unsigned long rx_fifo_errors;
177 unsigned long rx_missed_errors;
178 unsigned long tx_aborted_errors;
179 unsigned long tx_carrier_errors;
180 unsigned long tx_fifo_errors;
181 unsigned long tx_heartbeat_errors;
182 unsigned long tx_window_errors;
183 unsigned long rx_compressed;
184 unsigned long tx_compressed;
185 };
186
187
188 #include <linux/cache.h>
189 #include <linux/skbuff.h>
190
191 #ifdef CONFIG_RPS
192 #include <linux/static_key.h>
193 extern struct static_key_false rps_needed;
194 extern struct static_key_false rfs_needed;
195 #endif
196
197 struct neighbour;
198 struct neigh_parms;
199 struct sk_buff;
200
201 struct netdev_hw_addr {
202 struct list_head list;
203 unsigned char addr[MAX_ADDR_LEN];
204 unsigned char type;
205 #define NETDEV_HW_ADDR_T_LAN 1
206 #define NETDEV_HW_ADDR_T_SAN 2
207 #define NETDEV_HW_ADDR_T_SLAVE 3
208 #define NETDEV_HW_ADDR_T_UNICAST 4
209 #define NETDEV_HW_ADDR_T_MULTICAST 5
210 bool global_use;
211 int sync_cnt;
212 int refcount;
213 int synced;
214 struct rcu_head rcu_head;
215 };
216
217 struct netdev_hw_addr_list {
218 struct list_head list;
219 int count;
220 };
221
222 #define netdev_hw_addr_list_count(l) ((l)->count)
223 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
224 #define netdev_hw_addr_list_for_each(ha, l) \
225 list_for_each_entry(ha, &(l)->list, list)
226
227 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
228 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
229 #define netdev_for_each_uc_addr(ha, dev) \
230 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
231
232 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
233 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
234 #define netdev_for_each_mc_addr(ha, dev) \
235 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
236
237 struct hh_cache {
238 unsigned int hh_len;
239 seqlock_t hh_lock;
240
241 /* cached hardware header; allow for machine alignment needs. */
242 #define HH_DATA_MOD 16
243 #define HH_DATA_OFF(__len) \
244 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
245 #define HH_DATA_ALIGN(__len) \
246 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
247 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
248 };
249
250 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
251 * Alternative is:
252 * dev->hard_header_len ? (dev->hard_header_len +
253 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
254 *
255 * We could use other alignment values, but we must maintain the
256 * relationship HH alignment <= LL alignment.
257 */
258 #define LL_RESERVED_SPACE(dev) \
259 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
260 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
261 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262
263 struct header_ops {
264 int (*create) (struct sk_buff *skb, struct net_device *dev,
265 unsigned short type, const void *daddr,
266 const void *saddr, unsigned int len);
267 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
268 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
269 void (*cache_update)(struct hh_cache *hh,
270 const struct net_device *dev,
271 const unsigned char *haddr);
272 bool (*validate)(const char *ll_header, unsigned int len);
273 __be16 (*parse_protocol)(const struct sk_buff *skb);
274 };
275
276 /* These flag bits are private to the generic network queueing
277 * layer; they may not be explicitly referenced by any other
278 * code.
279 */
280
281 enum netdev_state_t {
282 __LINK_STATE_START,
283 __LINK_STATE_PRESENT,
284 __LINK_STATE_NOCARRIER,
285 __LINK_STATE_LINKWATCH_PENDING,
286 __LINK_STATE_DORMANT,
287 };
288
289
290 /*
291 * This structure holds boot-time configured netdevice settings. They
292 * are then used in the device probing.
293 */
294 struct netdev_boot_setup {
295 char name[IFNAMSIZ];
296 struct ifmap map;
297 };
298 #define NETDEV_BOOT_SETUP_MAX 8
299
300 int __init netdev_boot_setup(char *str);
301
302 struct gro_list {
303 struct list_head list;
304 int count;
305 };
306
307 /*
308 * size of gro hash buckets, must less than bit number of
309 * napi_struct::gro_bitmask
310 */
311 #define GRO_HASH_BUCKETS 8
312
313 /*
314 * Structure for NAPI scheduling similar to tasklet but with weighting
315 */
316 struct napi_struct {
317 /* The poll_list must only be managed by the entity which
318 * changes the state of the NAPI_STATE_SCHED bit. This means
319 * whoever atomically sets that bit can add this napi_struct
320 * to the per-CPU poll_list, and whoever clears that bit
321 * can remove from the list right before clearing the bit.
322 */
323 struct list_head poll_list;
324
325 unsigned long state;
326 int weight;
327 unsigned long gro_bitmask;
328 int (*poll)(struct napi_struct *, int);
329 #ifdef CONFIG_NETPOLL
330 int poll_owner;
331 #endif
332 struct net_device *dev;
333 struct gro_list gro_hash[GRO_HASH_BUCKETS];
334 struct sk_buff *skb;
335 struct list_head rx_list; /* Pending GRO_NORMAL skbs */
336 int rx_count; /* length of rx_list */
337 struct hrtimer timer;
338 struct list_head dev_list;
339 struct hlist_node napi_hash_node;
340 unsigned int napi_id;
341 };
342
343 enum {
344 NAPI_STATE_SCHED, /* Poll is scheduled */
345 NAPI_STATE_MISSED, /* reschedule a napi */
346 NAPI_STATE_DISABLE, /* Disable pending */
347 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
348 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */
349 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
350 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
351 };
352
353 enum {
354 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED),
355 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED),
356 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE),
357 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC),
358 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED),
359 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
360 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
361 };
362
363 enum gro_result {
364 GRO_MERGED,
365 GRO_MERGED_FREE,
366 GRO_HELD,
367 GRO_NORMAL,
368 GRO_DROP,
369 GRO_CONSUMED,
370 };
371 typedef enum gro_result gro_result_t;
372
373 /*
374 * enum rx_handler_result - Possible return values for rx_handlers.
375 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
376 * further.
377 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
378 * case skb->dev was changed by rx_handler.
379 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
380 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
381 *
382 * rx_handlers are functions called from inside __netif_receive_skb(), to do
383 * special processing of the skb, prior to delivery to protocol handlers.
384 *
385 * Currently, a net_device can only have a single rx_handler registered. Trying
386 * to register a second rx_handler will return -EBUSY.
387 *
388 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
389 * To unregister a rx_handler on a net_device, use
390 * netdev_rx_handler_unregister().
391 *
392 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
393 * do with the skb.
394 *
395 * If the rx_handler consumed the skb in some way, it should return
396 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
397 * the skb to be delivered in some other way.
398 *
399 * If the rx_handler changed skb->dev, to divert the skb to another
400 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
401 * new device will be called if it exists.
402 *
403 * If the rx_handler decides the skb should be ignored, it should return
404 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
405 * are registered on exact device (ptype->dev == skb->dev).
406 *
407 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
408 * delivered, it should return RX_HANDLER_PASS.
409 *
410 * A device without a registered rx_handler will behave as if rx_handler
411 * returned RX_HANDLER_PASS.
412 */
413
414 enum rx_handler_result {
415 RX_HANDLER_CONSUMED,
416 RX_HANDLER_ANOTHER,
417 RX_HANDLER_EXACT,
418 RX_HANDLER_PASS,
419 };
420 typedef enum rx_handler_result rx_handler_result_t;
421 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
422
423 void __napi_schedule(struct napi_struct *n);
424 void __napi_schedule_irqoff(struct napi_struct *n);
425
426 static inline bool napi_disable_pending(struct napi_struct *n)
427 {
428 return test_bit(NAPI_STATE_DISABLE, &n->state);
429 }
430
431 bool napi_schedule_prep(struct napi_struct *n);
432
433 /**
434 * napi_schedule - schedule NAPI poll
435 * @n: NAPI context
436 *
437 * Schedule NAPI poll routine to be called if it is not already
438 * running.
439 */
440 static inline void napi_schedule(struct napi_struct *n)
441 {
442 if (napi_schedule_prep(n))
443 __napi_schedule(n);
444 }
445
446 /**
447 * napi_schedule_irqoff - schedule NAPI poll
448 * @n: NAPI context
449 *
450 * Variant of napi_schedule(), assuming hard irqs are masked.
451 */
452 static inline void napi_schedule_irqoff(struct napi_struct *n)
453 {
454 if (napi_schedule_prep(n))
455 __napi_schedule_irqoff(n);
456 }
457
458 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
459 static inline bool napi_reschedule(struct napi_struct *napi)
460 {
461 if (napi_schedule_prep(napi)) {
462 __napi_schedule(napi);
463 return true;
464 }
465 return false;
466 }
467
468 bool napi_complete_done(struct napi_struct *n, int work_done);
469 /**
470 * napi_complete - NAPI processing complete
471 * @n: NAPI context
472 *
473 * Mark NAPI processing as complete.
474 * Consider using napi_complete_done() instead.
475 * Return false if device should avoid rearming interrupts.
476 */
477 static inline bool napi_complete(struct napi_struct *n)
478 {
479 return napi_complete_done(n, 0);
480 }
481
482 /**
483 * napi_hash_del - remove a NAPI from global table
484 * @napi: NAPI context
485 *
486 * Warning: caller must observe RCU grace period
487 * before freeing memory containing @napi, if
488 * this function returns true.
489 * Note: core networking stack automatically calls it
490 * from netif_napi_del().
491 * Drivers might want to call this helper to combine all
492 * the needed RCU grace periods into a single one.
493 */
494 bool napi_hash_del(struct napi_struct *napi);
495
496 /**
497 * napi_disable - prevent NAPI from scheduling
498 * @n: NAPI context
499 *
500 * Stop NAPI from being scheduled on this context.
501 * Waits till any outstanding processing completes.
502 */
503 void napi_disable(struct napi_struct *n);
504
505 /**
506 * napi_enable - enable NAPI scheduling
507 * @n: NAPI context
508 *
509 * Resume NAPI from being scheduled on this context.
510 * Must be paired with napi_disable.
511 */
512 static inline void napi_enable(struct napi_struct *n)
513 {
514 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
515 smp_mb__before_atomic();
516 clear_bit(NAPI_STATE_SCHED, &n->state);
517 clear_bit(NAPI_STATE_NPSVC, &n->state);
518 }
519
520 /**
521 * napi_synchronize - wait until NAPI is not running
522 * @n: NAPI context
523 *
524 * Wait until NAPI is done being scheduled on this context.
525 * Waits till any outstanding processing completes but
526 * does not disable future activations.
527 */
528 static inline void napi_synchronize(const struct napi_struct *n)
529 {
530 if (IS_ENABLED(CONFIG_SMP))
531 while (test_bit(NAPI_STATE_SCHED, &n->state))
532 msleep(1);
533 else
534 barrier();
535 }
536
537 /**
538 * napi_if_scheduled_mark_missed - if napi is running, set the
539 * NAPIF_STATE_MISSED
540 * @n: NAPI context
541 *
542 * If napi is running, set the NAPIF_STATE_MISSED, and return true if
543 * NAPI is scheduled.
544 **/
545 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
546 {
547 unsigned long val, new;
548
549 do {
550 val = READ_ONCE(n->state);
551 if (val & NAPIF_STATE_DISABLE)
552 return true;
553
554 if (!(val & NAPIF_STATE_SCHED))
555 return false;
556
557 new = val | NAPIF_STATE_MISSED;
558 } while (cmpxchg(&n->state, val, new) != val);
559
560 return true;
561 }
562
563 enum netdev_queue_state_t {
564 __QUEUE_STATE_DRV_XOFF,
565 __QUEUE_STATE_STACK_XOFF,
566 __QUEUE_STATE_FROZEN,
567 };
568
569 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
570 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
571 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
572
573 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
574 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
575 QUEUE_STATE_FROZEN)
576 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
577 QUEUE_STATE_FROZEN)
578
579 /*
580 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
581 * netif_tx_* functions below are used to manipulate this flag. The
582 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
583 * queue independently. The netif_xmit_*stopped functions below are called
584 * to check if the queue has been stopped by the driver or stack (either
585 * of the XOFF bits are set in the state). Drivers should not need to call
586 * netif_xmit*stopped functions, they should only be using netif_tx_*.
587 */
588
589 struct netdev_queue {
590 /*
591 * read-mostly part
592 */
593 struct net_device *dev;
594 struct Qdisc __rcu *qdisc;
595 struct Qdisc *qdisc_sleeping;
596 #ifdef CONFIG_SYSFS
597 struct kobject kobj;
598 #endif
599 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
600 int numa_node;
601 #endif
602 unsigned long tx_maxrate;
603 /*
604 * Number of TX timeouts for this queue
605 * (/sys/class/net/DEV/Q/trans_timeout)
606 */
607 unsigned long trans_timeout;
608
609 /* Subordinate device that the queue has been assigned to */
610 struct net_device *sb_dev;
611 #ifdef CONFIG_XDP_SOCKETS
612 struct xdp_umem *umem;
613 #endif
614 /*
615 * write-mostly part
616 */
617 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
618 int xmit_lock_owner;
619 /*
620 * Time (in jiffies) of last Tx
621 */
622 unsigned long trans_start;
623
624 unsigned long state;
625
626 #ifdef CONFIG_BQL
627 struct dql dql;
628 #endif
629 } ____cacheline_aligned_in_smp;
630
631 extern int sysctl_fb_tunnels_only_for_init_net;
632 extern int sysctl_devconf_inherit_init_net;
633
634 static inline bool net_has_fallback_tunnels(const struct net *net)
635 {
636 return net == &init_net ||
637 !IS_ENABLED(CONFIG_SYSCTL) ||
638 !sysctl_fb_tunnels_only_for_init_net;
639 }
640
641 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
642 {
643 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
644 return q->numa_node;
645 #else
646 return NUMA_NO_NODE;
647 #endif
648 }
649
650 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
651 {
652 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
653 q->numa_node = node;
654 #endif
655 }
656
657 #ifdef CONFIG_RPS
658 /*
659 * This structure holds an RPS map which can be of variable length. The
660 * map is an array of CPUs.
661 */
662 struct rps_map {
663 unsigned int len;
664 struct rcu_head rcu;
665 u16 cpus[0];
666 };
667 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
668
669 /*
670 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
671 * tail pointer for that CPU's input queue at the time of last enqueue, and
672 * a hardware filter index.
673 */
674 struct rps_dev_flow {
675 u16 cpu;
676 u16 filter;
677 unsigned int last_qtail;
678 };
679 #define RPS_NO_FILTER 0xffff
680
681 /*
682 * The rps_dev_flow_table structure contains a table of flow mappings.
683 */
684 struct rps_dev_flow_table {
685 unsigned int mask;
686 struct rcu_head rcu;
687 struct rps_dev_flow flows[0];
688 };
689 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
690 ((_num) * sizeof(struct rps_dev_flow)))
691
692 /*
693 * The rps_sock_flow_table contains mappings of flows to the last CPU
694 * on which they were processed by the application (set in recvmsg).
695 * Each entry is a 32bit value. Upper part is the high-order bits
696 * of flow hash, lower part is CPU number.
697 * rps_cpu_mask is used to partition the space, depending on number of
698 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
699 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
700 * meaning we use 32-6=26 bits for the hash.
701 */
702 struct rps_sock_flow_table {
703 u32 mask;
704
705 u32 ents[0] ____cacheline_aligned_in_smp;
706 };
707 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
708
709 #define RPS_NO_CPU 0xffff
710
711 extern u32 rps_cpu_mask;
712 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
713
714 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
715 u32 hash)
716 {
717 if (table && hash) {
718 unsigned int index = hash & table->mask;
719 u32 val = hash & ~rps_cpu_mask;
720
721 /* We only give a hint, preemption can change CPU under us */
722 val |= raw_smp_processor_id();
723
724 if (table->ents[index] != val)
725 table->ents[index] = val;
726 }
727 }
728
729 #ifdef CONFIG_RFS_ACCEL
730 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
731 u16 filter_id);
732 #endif
733 #endif /* CONFIG_RPS */
734
735 /* This structure contains an instance of an RX queue. */
736 struct netdev_rx_queue {
737 #ifdef CONFIG_RPS
738 struct rps_map __rcu *rps_map;
739 struct rps_dev_flow_table __rcu *rps_flow_table;
740 #endif
741 struct kobject kobj;
742 struct net_device *dev;
743 struct xdp_rxq_info xdp_rxq;
744 #ifdef CONFIG_XDP_SOCKETS
745 struct xdp_umem *umem;
746 #endif
747 } ____cacheline_aligned_in_smp;
748
749 /*
750 * RX queue sysfs structures and functions.
751 */
752 struct rx_queue_attribute {
753 struct attribute attr;
754 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
755 ssize_t (*store)(struct netdev_rx_queue *queue,
756 const char *buf, size_t len);
757 };
758
759 #ifdef CONFIG_XPS
760 /*
761 * This structure holds an XPS map which can be of variable length. The
762 * map is an array of queues.
763 */
764 struct xps_map {
765 unsigned int len;
766 unsigned int alloc_len;
767 struct rcu_head rcu;
768 u16 queues[0];
769 };
770 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
771 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
772 - sizeof(struct xps_map)) / sizeof(u16))
773
774 /*
775 * This structure holds all XPS maps for device. Maps are indexed by CPU.
776 */
777 struct xps_dev_maps {
778 struct rcu_head rcu;
779 struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */
780 };
781
782 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \
783 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
784
785 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
786 (_rxqs * (_tcs) * sizeof(struct xps_map *)))
787
788 #endif /* CONFIG_XPS */
789
790 #define TC_MAX_QUEUE 16
791 #define TC_BITMASK 15
792 /* HW offloaded queuing disciplines txq count and offset maps */
793 struct netdev_tc_txq {
794 u16 count;
795 u16 offset;
796 };
797
798 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
799 /*
800 * This structure is to hold information about the device
801 * configured to run FCoE protocol stack.
802 */
803 struct netdev_fcoe_hbainfo {
804 char manufacturer[64];
805 char serial_number[64];
806 char hardware_version[64];
807 char driver_version[64];
808 char optionrom_version[64];
809 char firmware_version[64];
810 char model[256];
811 char model_description[256];
812 };
813 #endif
814
815 #define MAX_PHYS_ITEM_ID_LEN 32
816
817 /* This structure holds a unique identifier to identify some
818 * physical item (port for example) used by a netdevice.
819 */
820 struct netdev_phys_item_id {
821 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
822 unsigned char id_len;
823 };
824
825 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
826 struct netdev_phys_item_id *b)
827 {
828 return a->id_len == b->id_len &&
829 memcmp(a->id, b->id, a->id_len) == 0;
830 }
831
832 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
833 struct sk_buff *skb,
834 struct net_device *sb_dev);
835
836 enum tc_setup_type {
837 TC_SETUP_QDISC_MQPRIO,
838 TC_SETUP_CLSU32,
839 TC_SETUP_CLSFLOWER,
840 TC_SETUP_CLSMATCHALL,
841 TC_SETUP_CLSBPF,
842 TC_SETUP_BLOCK,
843 TC_SETUP_QDISC_CBS,
844 TC_SETUP_QDISC_RED,
845 TC_SETUP_QDISC_PRIO,
846 TC_SETUP_QDISC_MQ,
847 TC_SETUP_QDISC_ETF,
848 TC_SETUP_ROOT_QDISC,
849 TC_SETUP_QDISC_GRED,
850 TC_SETUP_QDISC_TAPRIO,
851 TC_SETUP_FT,
852 TC_SETUP_QDISC_ETS,
853 };
854
855 /* These structures hold the attributes of bpf state that are being passed
856 * to the netdevice through the bpf op.
857 */
858 enum bpf_netdev_command {
859 /* Set or clear a bpf program used in the earliest stages of packet
860 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
861 * is responsible for calling bpf_prog_put on any old progs that are
862 * stored. In case of error, the callee need not release the new prog
863 * reference, but on success it takes ownership and must bpf_prog_put
864 * when it is no longer used.
865 */
866 XDP_SETUP_PROG,
867 XDP_SETUP_PROG_HW,
868 XDP_QUERY_PROG,
869 XDP_QUERY_PROG_HW,
870 /* BPF program for offload callbacks, invoked at program load time. */
871 BPF_OFFLOAD_MAP_ALLOC,
872 BPF_OFFLOAD_MAP_FREE,
873 XDP_SETUP_XSK_UMEM,
874 };
875
876 struct bpf_prog_offload_ops;
877 struct netlink_ext_ack;
878 struct xdp_umem;
879 struct xdp_dev_bulk_queue;
880
881 struct netdev_bpf {
882 enum bpf_netdev_command command;
883 union {
884 /* XDP_SETUP_PROG */
885 struct {
886 u32 flags;
887 struct bpf_prog *prog;
888 struct netlink_ext_ack *extack;
889 };
890 /* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */
891 struct {
892 u32 prog_id;
893 /* flags with which program was installed */
894 u32 prog_flags;
895 };
896 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
897 struct {
898 struct bpf_offloaded_map *offmap;
899 };
900 /* XDP_SETUP_XSK_UMEM */
901 struct {
902 struct xdp_umem *umem;
903 u16 queue_id;
904 } xsk;
905 };
906 };
907
908 /* Flags for ndo_xsk_wakeup. */
909 #define XDP_WAKEUP_RX (1 << 0)
910 #define XDP_WAKEUP_TX (1 << 1)
911
912 #ifdef CONFIG_XFRM_OFFLOAD
913 struct xfrmdev_ops {
914 int (*xdo_dev_state_add) (struct xfrm_state *x);
915 void (*xdo_dev_state_delete) (struct xfrm_state *x);
916 void (*xdo_dev_state_free) (struct xfrm_state *x);
917 bool (*xdo_dev_offload_ok) (struct sk_buff *skb,
918 struct xfrm_state *x);
919 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x);
920 };
921 #endif
922
923 struct dev_ifalias {
924 struct rcu_head rcuhead;
925 char ifalias[];
926 };
927
928 struct devlink;
929 struct tlsdev_ops;
930
931 struct netdev_name_node {
932 struct hlist_node hlist;
933 struct list_head list;
934 struct net_device *dev;
935 const char *name;
936 };
937
938 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
939 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
940
941 /*
942 * This structure defines the management hooks for network devices.
943 * The following hooks can be defined; unless noted otherwise, they are
944 * optional and can be filled with a null pointer.
945 *
946 * int (*ndo_init)(struct net_device *dev);
947 * This function is called once when a network device is registered.
948 * The network device can use this for any late stage initialization
949 * or semantic validation. It can fail with an error code which will
950 * be propagated back to register_netdev.
951 *
952 * void (*ndo_uninit)(struct net_device *dev);
953 * This function is called when device is unregistered or when registration
954 * fails. It is not called if init fails.
955 *
956 * int (*ndo_open)(struct net_device *dev);
957 * This function is called when a network device transitions to the up
958 * state.
959 *
960 * int (*ndo_stop)(struct net_device *dev);
961 * This function is called when a network device transitions to the down
962 * state.
963 *
964 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
965 * struct net_device *dev);
966 * Called when a packet needs to be transmitted.
967 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
968 * the queue before that can happen; it's for obsolete devices and weird
969 * corner cases, but the stack really does a non-trivial amount
970 * of useless work if you return NETDEV_TX_BUSY.
971 * Required; cannot be NULL.
972 *
973 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
974 * struct net_device *dev
975 * netdev_features_t features);
976 * Called by core transmit path to determine if device is capable of
977 * performing offload operations on a given packet. This is to give
978 * the device an opportunity to implement any restrictions that cannot
979 * be otherwise expressed by feature flags. The check is called with
980 * the set of features that the stack has calculated and it returns
981 * those the driver believes to be appropriate.
982 *
983 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
984 * struct net_device *sb_dev);
985 * Called to decide which queue to use when device supports multiple
986 * transmit queues.
987 *
988 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
989 * This function is called to allow device receiver to make
990 * changes to configuration when multicast or promiscuous is enabled.
991 *
992 * void (*ndo_set_rx_mode)(struct net_device *dev);
993 * This function is called device changes address list filtering.
994 * If driver handles unicast address filtering, it should set
995 * IFF_UNICAST_FLT in its priv_flags.
996 *
997 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
998 * This function is called when the Media Access Control address
999 * needs to be changed. If this interface is not defined, the
1000 * MAC address can not be changed.
1001 *
1002 * int (*ndo_validate_addr)(struct net_device *dev);
1003 * Test if Media Access Control address is valid for the device.
1004 *
1005 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1006 * Called when a user requests an ioctl which can't be handled by
1007 * the generic interface code. If not defined ioctls return
1008 * not supported error code.
1009 *
1010 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1011 * Used to set network devices bus interface parameters. This interface
1012 * is retained for legacy reasons; new devices should use the bus
1013 * interface (PCI) for low level management.
1014 *
1015 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1016 * Called when a user wants to change the Maximum Transfer Unit
1017 * of a device.
1018 *
1019 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1020 * Callback used when the transmitter has not made any progress
1021 * for dev->watchdog ticks.
1022 *
1023 * void (*ndo_get_stats64)(struct net_device *dev,
1024 * struct rtnl_link_stats64 *storage);
1025 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1026 * Called when a user wants to get the network device usage
1027 * statistics. Drivers must do one of the following:
1028 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
1029 * rtnl_link_stats64 structure passed by the caller.
1030 * 2. Define @ndo_get_stats to update a net_device_stats structure
1031 * (which should normally be dev->stats) and return a pointer to
1032 * it. The structure may be changed asynchronously only if each
1033 * field is written atomically.
1034 * 3. Update dev->stats asynchronously and atomically, and define
1035 * neither operation.
1036 *
1037 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1038 * Return true if this device supports offload stats of this attr_id.
1039 *
1040 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1041 * void *attr_data)
1042 * Get statistics for offload operations by attr_id. Write it into the
1043 * attr_data pointer.
1044 *
1045 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1046 * If device supports VLAN filtering this function is called when a
1047 * VLAN id is registered.
1048 *
1049 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1050 * If device supports VLAN filtering this function is called when a
1051 * VLAN id is unregistered.
1052 *
1053 * void (*ndo_poll_controller)(struct net_device *dev);
1054 *
1055 * SR-IOV management functions.
1056 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1057 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1058 * u8 qos, __be16 proto);
1059 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1060 * int max_tx_rate);
1061 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1062 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1063 * int (*ndo_get_vf_config)(struct net_device *dev,
1064 * int vf, struct ifla_vf_info *ivf);
1065 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1066 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1067 * struct nlattr *port[]);
1068 *
1069 * Enable or disable the VF ability to query its RSS Redirection Table and
1070 * Hash Key. This is needed since on some devices VF share this information
1071 * with PF and querying it may introduce a theoretical security risk.
1072 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1073 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1074 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1075 * void *type_data);
1076 * Called to setup any 'tc' scheduler, classifier or action on @dev.
1077 * This is always called from the stack with the rtnl lock held and netif
1078 * tx queues stopped. This allows the netdevice to perform queue
1079 * management safely.
1080 *
1081 * Fiber Channel over Ethernet (FCoE) offload functions.
1082 * int (*ndo_fcoe_enable)(struct net_device *dev);
1083 * Called when the FCoE protocol stack wants to start using LLD for FCoE
1084 * so the underlying device can perform whatever needed configuration or
1085 * initialization to support acceleration of FCoE traffic.
1086 *
1087 * int (*ndo_fcoe_disable)(struct net_device *dev);
1088 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
1089 * so the underlying device can perform whatever needed clean-ups to
1090 * stop supporting acceleration of FCoE traffic.
1091 *
1092 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1093 * struct scatterlist *sgl, unsigned int sgc);
1094 * Called when the FCoE Initiator wants to initialize an I/O that
1095 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1096 * perform necessary setup and returns 1 to indicate the device is set up
1097 * successfully to perform DDP on this I/O, otherwise this returns 0.
1098 *
1099 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
1100 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
1101 * indicated by the FC exchange id 'xid', so the underlying device can
1102 * clean up and reuse resources for later DDP requests.
1103 *
1104 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1105 * struct scatterlist *sgl, unsigned int sgc);
1106 * Called when the FCoE Target wants to initialize an I/O that
1107 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1108 * perform necessary setup and returns 1 to indicate the device is set up
1109 * successfully to perform DDP on this I/O, otherwise this returns 0.
1110 *
1111 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1112 * struct netdev_fcoe_hbainfo *hbainfo);
1113 * Called when the FCoE Protocol stack wants information on the underlying
1114 * device. This information is utilized by the FCoE protocol stack to
1115 * register attributes with Fiber Channel management service as per the
1116 * FC-GS Fabric Device Management Information(FDMI) specification.
1117 *
1118 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1119 * Called when the underlying device wants to override default World Wide
1120 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1121 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1122 * protocol stack to use.
1123 *
1124 * RFS acceleration.
1125 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1126 * u16 rxq_index, u32 flow_id);
1127 * Set hardware filter for RFS. rxq_index is the target queue index;
1128 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1129 * Return the filter ID on success, or a negative error code.
1130 *
1131 * Slave management functions (for bridge, bonding, etc).
1132 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1133 * Called to make another netdev an underling.
1134 *
1135 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1136 * Called to release previously enslaved netdev.
1137 *
1138 * Feature/offload setting functions.
1139 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1140 * netdev_features_t features);
1141 * Adjusts the requested feature flags according to device-specific
1142 * constraints, and returns the resulting flags. Must not modify
1143 * the device state.
1144 *
1145 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1146 * Called to update device configuration to new features. Passed
1147 * feature set might be less than what was returned by ndo_fix_features()).
1148 * Must return >0 or -errno if it changed dev->features itself.
1149 *
1150 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1151 * struct net_device *dev,
1152 * const unsigned char *addr, u16 vid, u16 flags,
1153 * struct netlink_ext_ack *extack);
1154 * Adds an FDB entry to dev for addr.
1155 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1156 * struct net_device *dev,
1157 * const unsigned char *addr, u16 vid)
1158 * Deletes the FDB entry from dev coresponding to addr.
1159 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1160 * struct net_device *dev, struct net_device *filter_dev,
1161 * int *idx)
1162 * Used to add FDB entries to dump requests. Implementers should add
1163 * entries to skb and update idx with the number of entries.
1164 *
1165 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1166 * u16 flags, struct netlink_ext_ack *extack)
1167 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1168 * struct net_device *dev, u32 filter_mask,
1169 * int nlflags)
1170 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1171 * u16 flags);
1172 *
1173 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1174 * Called to change device carrier. Soft-devices (like dummy, team, etc)
1175 * which do not represent real hardware may define this to allow their
1176 * userspace components to manage their virtual carrier state. Devices
1177 * that determine carrier state from physical hardware properties (eg
1178 * network cables) or protocol-dependent mechanisms (eg
1179 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1180 *
1181 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1182 * struct netdev_phys_item_id *ppid);
1183 * Called to get ID of physical port of this device. If driver does
1184 * not implement this, it is assumed that the hw is not able to have
1185 * multiple net devices on single physical port.
1186 *
1187 * int (*ndo_get_port_parent_id)(struct net_device *dev,
1188 * struct netdev_phys_item_id *ppid)
1189 * Called to get the parent ID of the physical port of this device.
1190 *
1191 * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1192 * struct udp_tunnel_info *ti);
1193 * Called by UDP tunnel to notify a driver about the UDP port and socket
1194 * address family that a UDP tunnel is listnening to. It is called only
1195 * when a new port starts listening. The operation is protected by the
1196 * RTNL.
1197 *
1198 * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1199 * struct udp_tunnel_info *ti);
1200 * Called by UDP tunnel to notify the driver about a UDP port and socket
1201 * address family that the UDP tunnel is not listening to anymore. The
1202 * operation is protected by the RTNL.
1203 *
1204 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1205 * struct net_device *dev)
1206 * Called by upper layer devices to accelerate switching or other
1207 * station functionality into hardware. 'pdev is the lowerdev
1208 * to use for the offload and 'dev' is the net device that will
1209 * back the offload. Returns a pointer to the private structure
1210 * the upper layer will maintain.
1211 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1212 * Called by upper layer device to delete the station created
1213 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1214 * the station and priv is the structure returned by the add
1215 * operation.
1216 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1217 * int queue_index, u32 maxrate);
1218 * Called when a user wants to set a max-rate limitation of specific
1219 * TX queue.
1220 * int (*ndo_get_iflink)(const struct net_device *dev);
1221 * Called to get the iflink value of this device.
1222 * void (*ndo_change_proto_down)(struct net_device *dev,
1223 * bool proto_down);
1224 * This function is used to pass protocol port error state information
1225 * to the switch driver. The switch driver can react to the proto_down
1226 * by doing a phys down on the associated switch port.
1227 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1228 * This function is used to get egress tunnel information for given skb.
1229 * This is useful for retrieving outer tunnel header parameters while
1230 * sampling packet.
1231 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1232 * This function is used to specify the headroom that the skb must
1233 * consider when allocation skb during packet reception. Setting
1234 * appropriate rx headroom value allows avoiding skb head copy on
1235 * forward. Setting a negative value resets the rx headroom to the
1236 * default value.
1237 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1238 * This function is used to set or query state related to XDP on the
1239 * netdevice and manage BPF offload. See definition of
1240 * enum bpf_netdev_command for details.
1241 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1242 * u32 flags);
1243 * This function is used to submit @n XDP packets for transmit on a
1244 * netdevice. Returns number of frames successfully transmitted, frames
1245 * that got dropped are freed/returned via xdp_return_frame().
1246 * Returns negative number, means general error invoking ndo, meaning
1247 * no frames were xmit'ed and core-caller will free all frames.
1248 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1249 * This function is used to wake up the softirq, ksoftirqd or kthread
1250 * responsible for sending and/or receiving packets on a specific
1251 * queue id bound to an AF_XDP socket. The flags field specifies if
1252 * only RX, only Tx, or both should be woken up using the flags
1253 * XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1254 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1255 * Get devlink port instance associated with a given netdev.
1256 * Called with a reference on the netdevice and devlink locks only,
1257 * rtnl_lock is not held.
1258 */
1259 struct net_device_ops {
1260 int (*ndo_init)(struct net_device *dev);
1261 void (*ndo_uninit)(struct net_device *dev);
1262 int (*ndo_open)(struct net_device *dev);
1263 int (*ndo_stop)(struct net_device *dev);
1264 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1265 struct net_device *dev);
1266 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1267 struct net_device *dev,
1268 netdev_features_t features);
1269 u16 (*ndo_select_queue)(struct net_device *dev,
1270 struct sk_buff *skb,
1271 struct net_device *sb_dev);
1272 void (*ndo_change_rx_flags)(struct net_device *dev,
1273 int flags);
1274 void (*ndo_set_rx_mode)(struct net_device *dev);
1275 int (*ndo_set_mac_address)(struct net_device *dev,
1276 void *addr);
1277 int (*ndo_validate_addr)(struct net_device *dev);
1278 int (*ndo_do_ioctl)(struct net_device *dev,
1279 struct ifreq *ifr, int cmd);
1280 int (*ndo_set_config)(struct net_device *dev,
1281 struct ifmap *map);
1282 int (*ndo_change_mtu)(struct net_device *dev,
1283 int new_mtu);
1284 int (*ndo_neigh_setup)(struct net_device *dev,
1285 struct neigh_parms *);
1286 void (*ndo_tx_timeout) (struct net_device *dev,
1287 unsigned int txqueue);
1288
1289 void (*ndo_get_stats64)(struct net_device *dev,
1290 struct rtnl_link_stats64 *storage);
1291 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1292 int (*ndo_get_offload_stats)(int attr_id,
1293 const struct net_device *dev,
1294 void *attr_data);
1295 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1296
1297 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1298 __be16 proto, u16 vid);
1299 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1300 __be16 proto, u16 vid);
1301 #ifdef CONFIG_NET_POLL_CONTROLLER
1302 void (*ndo_poll_controller)(struct net_device *dev);
1303 int (*ndo_netpoll_setup)(struct net_device *dev,
1304 struct netpoll_info *info);
1305 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1306 #endif
1307 int (*ndo_set_vf_mac)(struct net_device *dev,
1308 int queue, u8 *mac);
1309 int (*ndo_set_vf_vlan)(struct net_device *dev,
1310 int queue, u16 vlan,
1311 u8 qos, __be16 proto);
1312 int (*ndo_set_vf_rate)(struct net_device *dev,
1313 int vf, int min_tx_rate,
1314 int max_tx_rate);
1315 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1316 int vf, bool setting);
1317 int (*ndo_set_vf_trust)(struct net_device *dev,
1318 int vf, bool setting);
1319 int (*ndo_get_vf_config)(struct net_device *dev,
1320 int vf,
1321 struct ifla_vf_info *ivf);
1322 int (*ndo_set_vf_link_state)(struct net_device *dev,
1323 int vf, int link_state);
1324 int (*ndo_get_vf_stats)(struct net_device *dev,
1325 int vf,
1326 struct ifla_vf_stats
1327 *vf_stats);
1328 int (*ndo_set_vf_port)(struct net_device *dev,
1329 int vf,
1330 struct nlattr *port[]);
1331 int (*ndo_get_vf_port)(struct net_device *dev,
1332 int vf, struct sk_buff *skb);
1333 int (*ndo_get_vf_guid)(struct net_device *dev,
1334 int vf,
1335 struct ifla_vf_guid *node_guid,
1336 struct ifla_vf_guid *port_guid);
1337 int (*ndo_set_vf_guid)(struct net_device *dev,
1338 int vf, u64 guid,
1339 int guid_type);
1340 int (*ndo_set_vf_rss_query_en)(
1341 struct net_device *dev,
1342 int vf, bool setting);
1343 int (*ndo_setup_tc)(struct net_device *dev,
1344 enum tc_setup_type type,
1345 void *type_data);
1346 #if IS_ENABLED(CONFIG_FCOE)
1347 int (*ndo_fcoe_enable)(struct net_device *dev);
1348 int (*ndo_fcoe_disable)(struct net_device *dev);
1349 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1350 u16 xid,
1351 struct scatterlist *sgl,
1352 unsigned int sgc);
1353 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1354 u16 xid);
1355 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1356 u16 xid,
1357 struct scatterlist *sgl,
1358 unsigned int sgc);
1359 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1360 struct netdev_fcoe_hbainfo *hbainfo);
1361 #endif
1362
1363 #if IS_ENABLED(CONFIG_LIBFCOE)
1364 #define NETDEV_FCOE_WWNN 0
1365 #define NETDEV_FCOE_WWPN 1
1366 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1367 u64 *wwn, int type);
1368 #endif
1369
1370 #ifdef CONFIG_RFS_ACCEL
1371 int (*ndo_rx_flow_steer)(struct net_device *dev,
1372 const struct sk_buff *skb,
1373 u16 rxq_index,
1374 u32 flow_id);
1375 #endif
1376 int (*ndo_add_slave)(struct net_device *dev,
1377 struct net_device *slave_dev,
1378 struct netlink_ext_ack *extack);
1379 int (*ndo_del_slave)(struct net_device *dev,
1380 struct net_device *slave_dev);
1381 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1382 netdev_features_t features);
1383 int (*ndo_set_features)(struct net_device *dev,
1384 netdev_features_t features);
1385 int (*ndo_neigh_construct)(struct net_device *dev,
1386 struct neighbour *n);
1387 void (*ndo_neigh_destroy)(struct net_device *dev,
1388 struct neighbour *n);
1389
1390 int (*ndo_fdb_add)(struct ndmsg *ndm,
1391 struct nlattr *tb[],
1392 struct net_device *dev,
1393 const unsigned char *addr,
1394 u16 vid,
1395 u16 flags,
1396 struct netlink_ext_ack *extack);
1397 int (*ndo_fdb_del)(struct ndmsg *ndm,
1398 struct nlattr *tb[],
1399 struct net_device *dev,
1400 const unsigned char *addr,
1401 u16 vid);
1402 int (*ndo_fdb_dump)(struct sk_buff *skb,
1403 struct netlink_callback *cb,
1404 struct net_device *dev,
1405 struct net_device *filter_dev,
1406 int *idx);
1407 int (*ndo_fdb_get)(struct sk_buff *skb,
1408 struct nlattr *tb[],
1409 struct net_device *dev,
1410 const unsigned char *addr,
1411 u16 vid, u32 portid, u32 seq,
1412 struct netlink_ext_ack *extack);
1413 int (*ndo_bridge_setlink)(struct net_device *dev,
1414 struct nlmsghdr *nlh,
1415 u16 flags,
1416 struct netlink_ext_ack *extack);
1417 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1418 u32 pid, u32 seq,
1419 struct net_device *dev,
1420 u32 filter_mask,
1421 int nlflags);
1422 int (*ndo_bridge_dellink)(struct net_device *dev,
1423 struct nlmsghdr *nlh,
1424 u16 flags);
1425 int (*ndo_change_carrier)(struct net_device *dev,
1426 bool new_carrier);
1427 int (*ndo_get_phys_port_id)(struct net_device *dev,
1428 struct netdev_phys_item_id *ppid);
1429 int (*ndo_get_port_parent_id)(struct net_device *dev,
1430 struct netdev_phys_item_id *ppid);
1431 int (*ndo_get_phys_port_name)(struct net_device *dev,
1432 char *name, size_t len);
1433 void (*ndo_udp_tunnel_add)(struct net_device *dev,
1434 struct udp_tunnel_info *ti);
1435 void (*ndo_udp_tunnel_del)(struct net_device *dev,
1436 struct udp_tunnel_info *ti);
1437 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1438 struct net_device *dev);
1439 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1440 void *priv);
1441
1442 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1443 int queue_index,
1444 u32 maxrate);
1445 int (*ndo_get_iflink)(const struct net_device *dev);
1446 int (*ndo_change_proto_down)(struct net_device *dev,
1447 bool proto_down);
1448 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1449 struct sk_buff *skb);
1450 void (*ndo_set_rx_headroom)(struct net_device *dev,
1451 int needed_headroom);
1452 int (*ndo_bpf)(struct net_device *dev,
1453 struct netdev_bpf *bpf);
1454 int (*ndo_xdp_xmit)(struct net_device *dev, int n,
1455 struct xdp_frame **xdp,
1456 u32 flags);
1457 int (*ndo_xsk_wakeup)(struct net_device *dev,
1458 u32 queue_id, u32 flags);
1459 struct devlink_port * (*ndo_get_devlink_port)(struct net_device *dev);
1460 };
1461
1462 /**
1463 * enum net_device_priv_flags - &struct net_device priv_flags
1464 *
1465 * These are the &struct net_device, they are only set internally
1466 * by drivers and used in the kernel. These flags are invisible to
1467 * userspace; this means that the order of these flags can change
1468 * during any kernel release.
1469 *
1470 * You should have a pretty good reason to be extending these flags.
1471 *
1472 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1473 * @IFF_EBRIDGE: Ethernet bridging device
1474 * @IFF_BONDING: bonding master or slave
1475 * @IFF_ISATAP: ISATAP interface (RFC4214)
1476 * @IFF_WAN_HDLC: WAN HDLC device
1477 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1478 * release skb->dst
1479 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1480 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1481 * @IFF_MACVLAN_PORT: device used as macvlan port
1482 * @IFF_BRIDGE_PORT: device used as bridge port
1483 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1484 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1485 * @IFF_UNICAST_FLT: Supports unicast filtering
1486 * @IFF_TEAM_PORT: device used as team port
1487 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1488 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1489 * change when it's running
1490 * @IFF_MACVLAN: Macvlan device
1491 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1492 * underlying stacked devices
1493 * @IFF_L3MDEV_MASTER: device is an L3 master device
1494 * @IFF_NO_QUEUE: device can run without qdisc attached
1495 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1496 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1497 * @IFF_TEAM: device is a team device
1498 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1499 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1500 * entity (i.e. the master device for bridged veth)
1501 * @IFF_MACSEC: device is a MACsec device
1502 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1503 * @IFF_FAILOVER: device is a failover master device
1504 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1505 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1506 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1507 */
1508 enum netdev_priv_flags {
1509 IFF_802_1Q_VLAN = 1<<0,
1510 IFF_EBRIDGE = 1<<1,
1511 IFF_BONDING = 1<<2,
1512 IFF_ISATAP = 1<<3,
1513 IFF_WAN_HDLC = 1<<4,
1514 IFF_XMIT_DST_RELEASE = 1<<5,
1515 IFF_DONT_BRIDGE = 1<<6,
1516 IFF_DISABLE_NETPOLL = 1<<7,
1517 IFF_MACVLAN_PORT = 1<<8,
1518 IFF_BRIDGE_PORT = 1<<9,
1519 IFF_OVS_DATAPATH = 1<<10,
1520 IFF_TX_SKB_SHARING = 1<<11,
1521 IFF_UNICAST_FLT = 1<<12,
1522 IFF_TEAM_PORT = 1<<13,
1523 IFF_SUPP_NOFCS = 1<<14,
1524 IFF_LIVE_ADDR_CHANGE = 1<<15,
1525 IFF_MACVLAN = 1<<16,
1526 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1527 IFF_L3MDEV_MASTER = 1<<18,
1528 IFF_NO_QUEUE = 1<<19,
1529 IFF_OPENVSWITCH = 1<<20,
1530 IFF_L3MDEV_SLAVE = 1<<21,
1531 IFF_TEAM = 1<<22,
1532 IFF_RXFH_CONFIGURED = 1<<23,
1533 IFF_PHONY_HEADROOM = 1<<24,
1534 IFF_MACSEC = 1<<25,
1535 IFF_NO_RX_HANDLER = 1<<26,
1536 IFF_FAILOVER = 1<<27,
1537 IFF_FAILOVER_SLAVE = 1<<28,
1538 IFF_L3MDEV_RX_HANDLER = 1<<29,
1539 IFF_LIVE_RENAME_OK = 1<<30,
1540 };
1541
1542 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1543 #define IFF_EBRIDGE IFF_EBRIDGE
1544 #define IFF_BONDING IFF_BONDING
1545 #define IFF_ISATAP IFF_ISATAP
1546 #define IFF_WAN_HDLC IFF_WAN_HDLC
1547 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1548 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1549 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1550 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1551 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1552 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1553 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1554 #define IFF_UNICAST_FLT IFF_UNICAST_FLT
1555 #define IFF_TEAM_PORT IFF_TEAM_PORT
1556 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1557 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1558 #define IFF_MACVLAN IFF_MACVLAN
1559 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1560 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1561 #define IFF_NO_QUEUE IFF_NO_QUEUE
1562 #define IFF_OPENVSWITCH IFF_OPENVSWITCH
1563 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1564 #define IFF_TEAM IFF_TEAM
1565 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED
1566 #define IFF_MACSEC IFF_MACSEC
1567 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER
1568 #define IFF_FAILOVER IFF_FAILOVER
1569 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE
1570 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER
1571 #define IFF_LIVE_RENAME_OK IFF_LIVE_RENAME_OK
1572
1573 /**
1574 * struct net_device - The DEVICE structure.
1575 *
1576 * Actually, this whole structure is a big mistake. It mixes I/O
1577 * data with strictly "high-level" data, and it has to know about
1578 * almost every data structure used in the INET module.
1579 *
1580 * @name: This is the first field of the "visible" part of this structure
1581 * (i.e. as seen by users in the "Space.c" file). It is the name
1582 * of the interface.
1583 *
1584 * @name_node: Name hashlist node
1585 * @ifalias: SNMP alias
1586 * @mem_end: Shared memory end
1587 * @mem_start: Shared memory start
1588 * @base_addr: Device I/O address
1589 * @irq: Device IRQ number
1590 *
1591 * @state: Generic network queuing layer state, see netdev_state_t
1592 * @dev_list: The global list of network devices
1593 * @napi_list: List entry used for polling NAPI devices
1594 * @unreg_list: List entry when we are unregistering the
1595 * device; see the function unregister_netdev
1596 * @close_list: List entry used when we are closing the device
1597 * @ptype_all: Device-specific packet handlers for all protocols
1598 * @ptype_specific: Device-specific, protocol-specific packet handlers
1599 *
1600 * @adj_list: Directly linked devices, like slaves for bonding
1601 * @features: Currently active device features
1602 * @hw_features: User-changeable features
1603 *
1604 * @wanted_features: User-requested features
1605 * @vlan_features: Mask of features inheritable by VLAN devices
1606 *
1607 * @hw_enc_features: Mask of features inherited by encapsulating devices
1608 * This field indicates what encapsulation
1609 * offloads the hardware is capable of doing,
1610 * and drivers will need to set them appropriately.
1611 *
1612 * @mpls_features: Mask of features inheritable by MPLS
1613 *
1614 * @ifindex: interface index
1615 * @group: The group the device belongs to
1616 *
1617 * @stats: Statistics struct, which was left as a legacy, use
1618 * rtnl_link_stats64 instead
1619 *
1620 * @rx_dropped: Dropped packets by core network,
1621 * do not use this in drivers
1622 * @tx_dropped: Dropped packets by core network,
1623 * do not use this in drivers
1624 * @rx_nohandler: nohandler dropped packets by core network on
1625 * inactive devices, do not use this in drivers
1626 * @carrier_up_count: Number of times the carrier has been up
1627 * @carrier_down_count: Number of times the carrier has been down
1628 *
1629 * @wireless_handlers: List of functions to handle Wireless Extensions,
1630 * instead of ioctl,
1631 * see <net/iw_handler.h> for details.
1632 * @wireless_data: Instance data managed by the core of wireless extensions
1633 *
1634 * @netdev_ops: Includes several pointers to callbacks,
1635 * if one wants to override the ndo_*() functions
1636 * @ethtool_ops: Management operations
1637 * @ndisc_ops: Includes callbacks for different IPv6 neighbour
1638 * discovery handling. Necessary for e.g. 6LoWPAN.
1639 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1640 * of Layer 2 headers.
1641 *
1642 * @flags: Interface flags (a la BSD)
1643 * @priv_flags: Like 'flags' but invisible to userspace,
1644 * see if.h for the definitions
1645 * @gflags: Global flags ( kept as legacy )
1646 * @padded: How much padding added by alloc_netdev()
1647 * @operstate: RFC2863 operstate
1648 * @link_mode: Mapping policy to operstate
1649 * @if_port: Selectable AUI, TP, ...
1650 * @dma: DMA channel
1651 * @mtu: Interface MTU value
1652 * @min_mtu: Interface Minimum MTU value
1653 * @max_mtu: Interface Maximum MTU value
1654 * @type: Interface hardware type
1655 * @hard_header_len: Maximum hardware header length.
1656 * @min_header_len: Minimum hardware header length
1657 *
1658 * @needed_headroom: Extra headroom the hardware may need, but not in all
1659 * cases can this be guaranteed
1660 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1661 * cases can this be guaranteed. Some cases also use
1662 * LL_MAX_HEADER instead to allocate the skb
1663 *
1664 * interface address info:
1665 *
1666 * @perm_addr: Permanent hw address
1667 * @addr_assign_type: Hw address assignment type
1668 * @addr_len: Hardware address length
1669 * @upper_level: Maximum depth level of upper devices.
1670 * @lower_level: Maximum depth level of lower devices.
1671 * @neigh_priv_len: Used in neigh_alloc()
1672 * @dev_id: Used to differentiate devices that share
1673 * the same link layer address
1674 * @dev_port: Used to differentiate devices that share
1675 * the same function
1676 * @addr_list_lock: XXX: need comments on this one
1677 * @uc_promisc: Counter that indicates promiscuous mode
1678 * has been enabled due to the need to listen to
1679 * additional unicast addresses in a device that
1680 * does not implement ndo_set_rx_mode()
1681 * @uc: unicast mac addresses
1682 * @mc: multicast mac addresses
1683 * @dev_addrs: list of device hw addresses
1684 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1685 * @promiscuity: Number of times the NIC is told to work in
1686 * promiscuous mode; if it becomes 0 the NIC will
1687 * exit promiscuous mode
1688 * @allmulti: Counter, enables or disables allmulticast mode
1689 *
1690 * @vlan_info: VLAN info
1691 * @dsa_ptr: dsa specific data
1692 * @tipc_ptr: TIPC specific data
1693 * @atalk_ptr: AppleTalk link
1694 * @ip_ptr: IPv4 specific data
1695 * @dn_ptr: DECnet specific data
1696 * @ip6_ptr: IPv6 specific data
1697 * @ax25_ptr: AX.25 specific data
1698 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1699 *
1700 * @dev_addr: Hw address (before bcast,
1701 * because most packets are unicast)
1702 *
1703 * @_rx: Array of RX queues
1704 * @num_rx_queues: Number of RX queues
1705 * allocated at register_netdev() time
1706 * @real_num_rx_queues: Number of RX queues currently active in device
1707 *
1708 * @rx_handler: handler for received packets
1709 * @rx_handler_data: XXX: need comments on this one
1710 * @miniq_ingress: ingress/clsact qdisc specific data for
1711 * ingress processing
1712 * @ingress_queue: XXX: need comments on this one
1713 * @nf_hooks_ingress: netfilter hooks executed for ingress packets
1714 * @broadcast: hw bcast address
1715 *
1716 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1717 * indexed by RX queue number. Assigned by driver.
1718 * This must only be set if the ndo_rx_flow_steer
1719 * operation is defined
1720 * @index_hlist: Device index hash chain
1721 *
1722 * @_tx: Array of TX queues
1723 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1724 * @real_num_tx_queues: Number of TX queues currently active in device
1725 * @qdisc: Root qdisc from userspace point of view
1726 * @tx_queue_len: Max frames per queue allowed
1727 * @tx_global_lock: XXX: need comments on this one
1728 *
1729 * @xps_maps: XXX: need comments on this one
1730 * @miniq_egress: clsact qdisc specific data for
1731 * egress processing
1732 * @watchdog_timeo: Represents the timeout that is used by
1733 * the watchdog (see dev_watchdog())
1734 * @watchdog_timer: List of timers
1735 *
1736 * @pcpu_refcnt: Number of references to this device
1737 * @todo_list: Delayed register/unregister
1738 * @link_watch_list: XXX: need comments on this one
1739 *
1740 * @reg_state: Register/unregister state machine
1741 * @dismantle: Device is going to be freed
1742 * @rtnl_link_state: This enum represents the phases of creating
1743 * a new link
1744 *
1745 * @needs_free_netdev: Should unregister perform free_netdev?
1746 * @priv_destructor: Called from unregister
1747 * @npinfo: XXX: need comments on this one
1748 * @nd_net: Network namespace this network device is inside
1749 *
1750 * @ml_priv: Mid-layer private
1751 * @lstats: Loopback statistics
1752 * @tstats: Tunnel statistics
1753 * @dstats: Dummy statistics
1754 * @vstats: Virtual ethernet statistics
1755 *
1756 * @garp_port: GARP
1757 * @mrp_port: MRP
1758 *
1759 * @dev: Class/net/name entry
1760 * @sysfs_groups: Space for optional device, statistics and wireless
1761 * sysfs groups
1762 *
1763 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1764 * @rtnl_link_ops: Rtnl_link_ops
1765 *
1766 * @gso_max_size: Maximum size of generic segmentation offload
1767 * @gso_max_segs: Maximum number of segments that can be passed to the
1768 * NIC for GSO
1769 *
1770 * @dcbnl_ops: Data Center Bridging netlink ops
1771 * @num_tc: Number of traffic classes in the net device
1772 * @tc_to_txq: XXX: need comments on this one
1773 * @prio_tc_map: XXX: need comments on this one
1774 *
1775 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1776 *
1777 * @priomap: XXX: need comments on this one
1778 * @phydev: Physical device may attach itself
1779 * for hardware timestamping
1780 * @sfp_bus: attached &struct sfp_bus structure.
1781 * @qdisc_tx_busylock_key: lockdep class annotating Qdisc->busylock
1782 * spinlock
1783 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1784 * @qdisc_xmit_lock_key: lockdep class annotating
1785 * netdev_queue->_xmit_lock spinlock
1786 * @addr_list_lock_key: lockdep class annotating
1787 * net_device->addr_list_lock spinlock
1788 *
1789 * @proto_down: protocol port state information can be sent to the
1790 * switch driver and used to set the phys state of the
1791 * switch port.
1792 *
1793 * @wol_enabled: Wake-on-LAN is enabled
1794 *
1795 * FIXME: cleanup struct net_device such that network protocol info
1796 * moves out.
1797 */
1798
1799 struct net_device {
1800 char name[IFNAMSIZ];
1801 struct netdev_name_node *name_node;
1802 struct dev_ifalias __rcu *ifalias;
1803 /*
1804 * I/O specific fields
1805 * FIXME: Merge these and struct ifmap into one
1806 */
1807 unsigned long mem_end;
1808 unsigned long mem_start;
1809 unsigned long base_addr;
1810 int irq;
1811
1812 /*
1813 * Some hardware also needs these fields (state,dev_list,
1814 * napi_list,unreg_list,close_list) but they are not
1815 * part of the usual set specified in Space.c.
1816 */
1817
1818 unsigned long state;
1819
1820 struct list_head dev_list;
1821 struct list_head napi_list;
1822 struct list_head unreg_list;
1823 struct list_head close_list;
1824 struct list_head ptype_all;
1825 struct list_head ptype_specific;
1826
1827 struct {
1828 struct list_head upper;
1829 struct list_head lower;
1830 } adj_list;
1831
1832 netdev_features_t features;
1833 netdev_features_t hw_features;
1834 netdev_features_t wanted_features;
1835 netdev_features_t vlan_features;
1836 netdev_features_t hw_enc_features;
1837 netdev_features_t mpls_features;
1838 netdev_features_t gso_partial_features;
1839
1840 int ifindex;
1841 int group;
1842
1843 struct net_device_stats stats;
1844
1845 atomic_long_t rx_dropped;
1846 atomic_long_t tx_dropped;
1847 atomic_long_t rx_nohandler;
1848
1849 /* Stats to monitor link on/off, flapping */
1850 atomic_t carrier_up_count;
1851 atomic_t carrier_down_count;
1852
1853 #ifdef CONFIG_WIRELESS_EXT
1854 const struct iw_handler_def *wireless_handlers;
1855 struct iw_public_data *wireless_data;
1856 #endif
1857 const struct net_device_ops *netdev_ops;
1858 const struct ethtool_ops *ethtool_ops;
1859 #ifdef CONFIG_NET_L3_MASTER_DEV
1860 const struct l3mdev_ops *l3mdev_ops;
1861 #endif
1862 #if IS_ENABLED(CONFIG_IPV6)
1863 const struct ndisc_ops *ndisc_ops;
1864 #endif
1865
1866 #ifdef CONFIG_XFRM_OFFLOAD
1867 const struct xfrmdev_ops *xfrmdev_ops;
1868 #endif
1869
1870 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1871 const struct tlsdev_ops *tlsdev_ops;
1872 #endif
1873
1874 const struct header_ops *header_ops;
1875
1876 unsigned int flags;
1877 unsigned int priv_flags;
1878
1879 unsigned short gflags;
1880 unsigned short padded;
1881
1882 unsigned char operstate;
1883 unsigned char link_mode;
1884
1885 unsigned char if_port;
1886 unsigned char dma;
1887
1888 /* Note : dev->mtu is often read without holding a lock.
1889 * Writers usually hold RTNL.
1890 * It is recommended to use READ_ONCE() to annotate the reads,
1891 * and to use WRITE_ONCE() to annotate the writes.
1892 */
1893 unsigned int mtu;
1894 unsigned int min_mtu;
1895 unsigned int max_mtu;
1896 unsigned short type;
1897 unsigned short hard_header_len;
1898 unsigned char min_header_len;
1899
1900 unsigned short needed_headroom;
1901 unsigned short needed_tailroom;
1902
1903 /* Interface address info. */
1904 unsigned char perm_addr[MAX_ADDR_LEN];
1905 unsigned char addr_assign_type;
1906 unsigned char addr_len;
1907 unsigned char upper_level;
1908 unsigned char lower_level;
1909 unsigned short neigh_priv_len;
1910 unsigned short dev_id;
1911 unsigned short dev_port;
1912 spinlock_t addr_list_lock;
1913 unsigned char name_assign_type;
1914 bool uc_promisc;
1915 struct netdev_hw_addr_list uc;
1916 struct netdev_hw_addr_list mc;
1917 struct netdev_hw_addr_list dev_addrs;
1918
1919 #ifdef CONFIG_SYSFS
1920 struct kset *queues_kset;
1921 #endif
1922 unsigned int promiscuity;
1923 unsigned int allmulti;
1924
1925
1926 /* Protocol-specific pointers */
1927
1928 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1929 struct vlan_info __rcu *vlan_info;
1930 #endif
1931 #if IS_ENABLED(CONFIG_NET_DSA)
1932 struct dsa_port *dsa_ptr;
1933 #endif
1934 #if IS_ENABLED(CONFIG_TIPC)
1935 struct tipc_bearer __rcu *tipc_ptr;
1936 #endif
1937 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1938 void *atalk_ptr;
1939 #endif
1940 struct in_device __rcu *ip_ptr;
1941 #if IS_ENABLED(CONFIG_DECNET)
1942 struct dn_dev __rcu *dn_ptr;
1943 #endif
1944 struct inet6_dev __rcu *ip6_ptr;
1945 #if IS_ENABLED(CONFIG_AX25)
1946 void *ax25_ptr;
1947 #endif
1948 struct wireless_dev *ieee80211_ptr;
1949 struct wpan_dev *ieee802154_ptr;
1950 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1951 struct mpls_dev __rcu *mpls_ptr;
1952 #endif
1953
1954 /*
1955 * Cache lines mostly used on receive path (including eth_type_trans())
1956 */
1957 /* Interface address info used in eth_type_trans() */
1958 unsigned char *dev_addr;
1959
1960 struct netdev_rx_queue *_rx;
1961 unsigned int num_rx_queues;
1962 unsigned int real_num_rx_queues;
1963
1964 struct bpf_prog __rcu *xdp_prog;
1965 unsigned long gro_flush_timeout;
1966 rx_handler_func_t __rcu *rx_handler;
1967 void __rcu *rx_handler_data;
1968
1969 #ifdef CONFIG_NET_CLS_ACT
1970 struct mini_Qdisc __rcu *miniq_ingress;
1971 #endif
1972 struct netdev_queue __rcu *ingress_queue;
1973 #ifdef CONFIG_NETFILTER_INGRESS
1974 struct nf_hook_entries __rcu *nf_hooks_ingress;
1975 #endif
1976
1977 unsigned char broadcast[MAX_ADDR_LEN];
1978 #ifdef CONFIG_RFS_ACCEL
1979 struct cpu_rmap *rx_cpu_rmap;
1980 #endif
1981 struct hlist_node index_hlist;
1982
1983 /*
1984 * Cache lines mostly used on transmit path
1985 */
1986 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1987 unsigned int num_tx_queues;
1988 unsigned int real_num_tx_queues;
1989 struct Qdisc *qdisc;
1990 unsigned int tx_queue_len;
1991 spinlock_t tx_global_lock;
1992
1993 struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
1994
1995 #ifdef CONFIG_XPS
1996 struct xps_dev_maps __rcu *xps_cpus_map;
1997 struct xps_dev_maps __rcu *xps_rxqs_map;
1998 #endif
1999 #ifdef CONFIG_NET_CLS_ACT
2000 struct mini_Qdisc __rcu *miniq_egress;
2001 #endif
2002
2003 #ifdef CONFIG_NET_SCHED
2004 DECLARE_HASHTABLE (qdisc_hash, 4);
2005 #endif
2006 /* These may be needed for future network-power-down code. */
2007 struct timer_list watchdog_timer;
2008 int watchdog_timeo;
2009
2010 struct list_head todo_list;
2011 int __percpu *pcpu_refcnt;
2012
2013 struct list_head link_watch_list;
2014
2015 enum { NETREG_UNINITIALIZED=0,
2016 NETREG_REGISTERED, /* completed register_netdevice */
2017 NETREG_UNREGISTERING, /* called unregister_netdevice */
2018 NETREG_UNREGISTERED, /* completed unregister todo */
2019 NETREG_RELEASED, /* called free_netdev */
2020 NETREG_DUMMY, /* dummy device for NAPI poll */
2021 } reg_state:8;
2022
2023 bool dismantle;
2024
2025 enum {
2026 RTNL_LINK_INITIALIZED,
2027 RTNL_LINK_INITIALIZING,
2028 } rtnl_link_state:16;
2029
2030 bool needs_free_netdev;
2031 void (*priv_destructor)(struct net_device *dev);
2032
2033 #ifdef CONFIG_NETPOLL
2034 struct netpoll_info __rcu *npinfo;
2035 #endif
2036
2037 possible_net_t nd_net;
2038
2039 /* mid-layer private */
2040 union {
2041 void *ml_priv;
2042 struct pcpu_lstats __percpu *lstats;
2043 struct pcpu_sw_netstats __percpu *tstats;
2044 struct pcpu_dstats __percpu *dstats;
2045 };
2046
2047 #if IS_ENABLED(CONFIG_GARP)
2048 struct garp_port __rcu *garp_port;
2049 #endif
2050 #if IS_ENABLED(CONFIG_MRP)
2051 struct mrp_port __rcu *mrp_port;
2052 #endif
2053
2054 struct device dev;
2055 const struct attribute_group *sysfs_groups[4];
2056 const struct attribute_group *sysfs_rx_queue_group;
2057
2058 const struct rtnl_link_ops *rtnl_link_ops;
2059
2060 /* for setting kernel sock attribute on TCP connection setup */
2061 #define GSO_MAX_SIZE 65536
2062 unsigned int gso_max_size;
2063 #define GSO_MAX_SEGS 65535
2064 u16 gso_max_segs;
2065
2066 #ifdef CONFIG_DCB
2067 const struct dcbnl_rtnl_ops *dcbnl_ops;
2068 #endif
2069 s16 num_tc;
2070 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
2071 u8 prio_tc_map[TC_BITMASK + 1];
2072
2073 #if IS_ENABLED(CONFIG_FCOE)
2074 unsigned int fcoe_ddp_xid;
2075 #endif
2076 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2077 struct netprio_map __rcu *priomap;
2078 #endif
2079 struct phy_device *phydev;
2080 struct sfp_bus *sfp_bus;
2081 struct lock_class_key qdisc_tx_busylock_key;
2082 struct lock_class_key qdisc_running_key;
2083 struct lock_class_key qdisc_xmit_lock_key;
2084 struct lock_class_key addr_list_lock_key;
2085 bool proto_down;
2086 unsigned wol_enabled:1;
2087 };
2088 #define to_net_dev(d) container_of(d, struct net_device, dev)
2089
2090 static inline bool netif_elide_gro(const struct net_device *dev)
2091 {
2092 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2093 return true;
2094 return false;
2095 }
2096
2097 #define NETDEV_ALIGN 32
2098
2099 static inline
2100 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2101 {
2102 return dev->prio_tc_map[prio & TC_BITMASK];
2103 }
2104
2105 static inline
2106 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2107 {
2108 if (tc >= dev->num_tc)
2109 return -EINVAL;
2110
2111 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2112 return 0;
2113 }
2114
2115 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2116 void netdev_reset_tc(struct net_device *dev);
2117 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2118 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2119
2120 static inline
2121 int netdev_get_num_tc(struct net_device *dev)
2122 {
2123 return dev->num_tc;
2124 }
2125
2126 void netdev_unbind_sb_channel(struct net_device *dev,
2127 struct net_device *sb_dev);
2128 int netdev_bind_sb_channel_queue(struct net_device *dev,
2129 struct net_device *sb_dev,
2130 u8 tc, u16 count, u16 offset);
2131 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2132 static inline int netdev_get_sb_channel(struct net_device *dev)
2133 {
2134 return max_t(int, -dev->num_tc, 0);
2135 }
2136
2137 static inline
2138 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2139 unsigned int index)
2140 {
2141 return &dev->_tx[index];
2142 }
2143
2144 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2145 const struct sk_buff *skb)
2146 {
2147 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2148 }
2149
2150 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2151 void (*f)(struct net_device *,
2152 struct netdev_queue *,
2153 void *),
2154 void *arg)
2155 {
2156 unsigned int i;
2157
2158 for (i = 0; i < dev->num_tx_queues; i++)
2159 f(dev, &dev->_tx[i], arg);
2160 }
2161
2162 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2163 struct net_device *sb_dev);
2164 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2165 struct sk_buff *skb,
2166 struct net_device *sb_dev);
2167
2168 /* returns the headroom that the master device needs to take in account
2169 * when forwarding to this dev
2170 */
2171 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2172 {
2173 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2174 }
2175
2176 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2177 {
2178 if (dev->netdev_ops->ndo_set_rx_headroom)
2179 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2180 }
2181
2182 /* set the device rx headroom to the dev's default */
2183 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2184 {
2185 netdev_set_rx_headroom(dev, -1);
2186 }
2187
2188 /*
2189 * Net namespace inlines
2190 */
2191 static inline
2192 struct net *dev_net(const struct net_device *dev)
2193 {
2194 return read_pnet(&dev->nd_net);
2195 }
2196
2197 static inline
2198 void dev_net_set(struct net_device *dev, struct net *net)
2199 {
2200 write_pnet(&dev->nd_net, net);
2201 }
2202
2203 /**
2204 * netdev_priv - access network device private data
2205 * @dev: network device
2206 *
2207 * Get network device private data
2208 */
2209 static inline void *netdev_priv(const struct net_device *dev)
2210 {
2211 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2212 }
2213
2214 /* Set the sysfs physical device reference for the network logical device
2215 * if set prior to registration will cause a symlink during initialization.
2216 */
2217 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
2218
2219 /* Set the sysfs device type for the network logical device to allow
2220 * fine-grained identification of different network device types. For
2221 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2222 */
2223 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
2224
2225 /* Default NAPI poll() weight
2226 * Device drivers are strongly advised to not use bigger value
2227 */
2228 #define NAPI_POLL_WEIGHT 64
2229
2230 /**
2231 * netif_napi_add - initialize a NAPI context
2232 * @dev: network device
2233 * @napi: NAPI context
2234 * @poll: polling function
2235 * @weight: default weight
2236 *
2237 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2238 * *any* of the other NAPI-related functions.
2239 */
2240 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2241 int (*poll)(struct napi_struct *, int), int weight);
2242
2243 /**
2244 * netif_tx_napi_add - initialize a NAPI context
2245 * @dev: network device
2246 * @napi: NAPI context
2247 * @poll: polling function
2248 * @weight: default weight
2249 *
2250 * This variant of netif_napi_add() should be used from drivers using NAPI
2251 * to exclusively poll a TX queue.
2252 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2253 */
2254 static inline void netif_tx_napi_add(struct net_device *dev,
2255 struct napi_struct *napi,
2256 int (*poll)(struct napi_struct *, int),
2257 int weight)
2258 {
2259 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2260 netif_napi_add(dev, napi, poll, weight);
2261 }
2262
2263 /**
2264 * netif_napi_del - remove a NAPI context
2265 * @napi: NAPI context
2266 *
2267 * netif_napi_del() removes a NAPI context from the network device NAPI list
2268 */
2269 void netif_napi_del(struct napi_struct *napi);
2270
2271 struct napi_gro_cb {
2272 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2273 void *frag0;
2274
2275 /* Length of frag0. */
2276 unsigned int frag0_len;
2277
2278 /* This indicates where we are processing relative to skb->data. */
2279 int data_offset;
2280
2281 /* This is non-zero if the packet cannot be merged with the new skb. */
2282 u16 flush;
2283
2284 /* Save the IP ID here and check when we get to the transport layer */
2285 u16 flush_id;
2286
2287 /* Number of segments aggregated. */
2288 u16 count;
2289
2290 /* Start offset for remote checksum offload */
2291 u16 gro_remcsum_start;
2292
2293 /* jiffies when first packet was created/queued */
2294 unsigned long age;
2295
2296 /* Used in ipv6_gro_receive() and foo-over-udp */
2297 u16 proto;
2298
2299 /* This is non-zero if the packet may be of the same flow. */
2300 u8 same_flow:1;
2301
2302 /* Used in tunnel GRO receive */
2303 u8 encap_mark:1;
2304
2305 /* GRO checksum is valid */
2306 u8 csum_valid:1;
2307
2308 /* Number of checksums via CHECKSUM_UNNECESSARY */
2309 u8 csum_cnt:3;
2310
2311 /* Free the skb? */
2312 u8 free:2;
2313 #define NAPI_GRO_FREE 1
2314 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2315
2316 /* Used in foo-over-udp, set in udp[46]_gro_receive */
2317 u8 is_ipv6:1;
2318
2319 /* Used in GRE, set in fou/gue_gro_receive */
2320 u8 is_fou:1;
2321
2322 /* Used to determine if flush_id can be ignored */
2323 u8 is_atomic:1;
2324
2325 /* Number of gro_receive callbacks this packet already went through */
2326 u8 recursion_counter:4;
2327
2328 /* 1 bit hole */
2329
2330 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2331 __wsum csum;
2332
2333 /* used in skb_gro_receive() slow path */
2334 struct sk_buff *last;
2335 };
2336
2337 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2338
2339 #define GRO_RECURSION_LIMIT 15
2340 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2341 {
2342 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2343 }
2344
2345 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2346 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2347 struct list_head *head,
2348 struct sk_buff *skb)
2349 {
2350 if (unlikely(gro_recursion_inc_test(skb))) {
2351 NAPI_GRO_CB(skb)->flush |= 1;
2352 return NULL;
2353 }
2354
2355 return cb(head, skb);
2356 }
2357
2358 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2359 struct sk_buff *);
2360 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2361 struct sock *sk,
2362 struct list_head *head,
2363 struct sk_buff *skb)
2364 {
2365 if (unlikely(gro_recursion_inc_test(skb))) {
2366 NAPI_GRO_CB(skb)->flush |= 1;
2367 return NULL;
2368 }
2369
2370 return cb(sk, head, skb);
2371 }
2372
2373 struct packet_type {
2374 __be16 type; /* This is really htons(ether_type). */
2375 bool ignore_outgoing;
2376 struct net_device *dev; /* NULL is wildcarded here */
2377 int (*func) (struct sk_buff *,
2378 struct net_device *,
2379 struct packet_type *,
2380 struct net_device *);
2381 void (*list_func) (struct list_head *,
2382 struct packet_type *,
2383 struct net_device *);
2384 bool (*id_match)(struct packet_type *ptype,
2385 struct sock *sk);
2386 void *af_packet_priv;
2387 struct list_head list;
2388 };
2389
2390 struct offload_callbacks {
2391 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2392 netdev_features_t features);
2393 struct sk_buff *(*gro_receive)(struct list_head *head,
2394 struct sk_buff *skb);
2395 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2396 };
2397
2398 struct packet_offload {
2399 __be16 type; /* This is really htons(ether_type). */
2400 u16 priority;
2401 struct offload_callbacks callbacks;
2402 struct list_head list;
2403 };
2404
2405 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2406 struct pcpu_sw_netstats {
2407 u64 rx_packets;
2408 u64 rx_bytes;
2409 u64 tx_packets;
2410 u64 tx_bytes;
2411 struct u64_stats_sync syncp;
2412 } __aligned(4 * sizeof(u64));
2413
2414 struct pcpu_lstats {
2415 u64_stats_t packets;
2416 u64_stats_t bytes;
2417 struct u64_stats_sync syncp;
2418 } __aligned(2 * sizeof(u64));
2419
2420 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2421
2422 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2423 {
2424 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2425
2426 u64_stats_update_begin(&lstats->syncp);
2427 u64_stats_add(&lstats->bytes, len);
2428 u64_stats_inc(&lstats->packets);
2429 u64_stats_update_end(&lstats->syncp);
2430 }
2431
2432 #define __netdev_alloc_pcpu_stats(type, gfp) \
2433 ({ \
2434 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2435 if (pcpu_stats) { \
2436 int __cpu; \
2437 for_each_possible_cpu(__cpu) { \
2438 typeof(type) *stat; \
2439 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2440 u64_stats_init(&stat->syncp); \
2441 } \
2442 } \
2443 pcpu_stats; \
2444 })
2445
2446 #define netdev_alloc_pcpu_stats(type) \
2447 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2448
2449 enum netdev_lag_tx_type {
2450 NETDEV_LAG_TX_TYPE_UNKNOWN,
2451 NETDEV_LAG_TX_TYPE_RANDOM,
2452 NETDEV_LAG_TX_TYPE_BROADCAST,
2453 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2454 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2455 NETDEV_LAG_TX_TYPE_HASH,
2456 };
2457
2458 enum netdev_lag_hash {
2459 NETDEV_LAG_HASH_NONE,
2460 NETDEV_LAG_HASH_L2,
2461 NETDEV_LAG_HASH_L34,
2462 NETDEV_LAG_HASH_L23,
2463 NETDEV_LAG_HASH_E23,
2464 NETDEV_LAG_HASH_E34,
2465 NETDEV_LAG_HASH_UNKNOWN,
2466 };
2467
2468 struct netdev_lag_upper_info {
2469 enum netdev_lag_tx_type tx_type;
2470 enum netdev_lag_hash hash_type;
2471 };
2472
2473 struct netdev_lag_lower_state_info {
2474 u8 link_up : 1,
2475 tx_enabled : 1;
2476 };
2477
2478 #include <linux/notifier.h>
2479
2480 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2481 * and the rtnetlink notification exclusion list in rtnetlink_event() when
2482 * adding new types.
2483 */
2484 enum netdev_cmd {
2485 NETDEV_UP = 1, /* For now you can't veto a device up/down */
2486 NETDEV_DOWN,
2487 NETDEV_REBOOT, /* Tell a protocol stack a network interface
2488 detected a hardware crash and restarted
2489 - we can use this eg to kick tcp sessions
2490 once done */
2491 NETDEV_CHANGE, /* Notify device state change */
2492 NETDEV_REGISTER,
2493 NETDEV_UNREGISTER,
2494 NETDEV_CHANGEMTU, /* notify after mtu change happened */
2495 NETDEV_CHANGEADDR, /* notify after the address change */
2496 NETDEV_PRE_CHANGEADDR, /* notify before the address change */
2497 NETDEV_GOING_DOWN,
2498 NETDEV_CHANGENAME,
2499 NETDEV_FEAT_CHANGE,
2500 NETDEV_BONDING_FAILOVER,
2501 NETDEV_PRE_UP,
2502 NETDEV_PRE_TYPE_CHANGE,
2503 NETDEV_POST_TYPE_CHANGE,
2504 NETDEV_POST_INIT,
2505 NETDEV_RELEASE,
2506 NETDEV_NOTIFY_PEERS,
2507 NETDEV_JOIN,
2508 NETDEV_CHANGEUPPER,
2509 NETDEV_RESEND_IGMP,
2510 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */
2511 NETDEV_CHANGEINFODATA,
2512 NETDEV_BONDING_INFO,
2513 NETDEV_PRECHANGEUPPER,
2514 NETDEV_CHANGELOWERSTATE,
2515 NETDEV_UDP_TUNNEL_PUSH_INFO,
2516 NETDEV_UDP_TUNNEL_DROP_INFO,
2517 NETDEV_CHANGE_TX_QUEUE_LEN,
2518 NETDEV_CVLAN_FILTER_PUSH_INFO,
2519 NETDEV_CVLAN_FILTER_DROP_INFO,
2520 NETDEV_SVLAN_FILTER_PUSH_INFO,
2521 NETDEV_SVLAN_FILTER_DROP_INFO,
2522 };
2523 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2524
2525 int register_netdevice_notifier(struct notifier_block *nb);
2526 int unregister_netdevice_notifier(struct notifier_block *nb);
2527 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2528 int unregister_netdevice_notifier_net(struct net *net,
2529 struct notifier_block *nb);
2530
2531 struct netdev_notifier_info {
2532 struct net_device *dev;
2533 struct netlink_ext_ack *extack;
2534 };
2535
2536 struct netdev_notifier_info_ext {
2537 struct netdev_notifier_info info; /* must be first */
2538 union {
2539 u32 mtu;
2540 } ext;
2541 };
2542
2543 struct netdev_notifier_change_info {
2544 struct netdev_notifier_info info; /* must be first */
2545 unsigned int flags_changed;
2546 };
2547
2548 struct netdev_notifier_changeupper_info {
2549 struct netdev_notifier_info info; /* must be first */
2550 struct net_device *upper_dev; /* new upper dev */
2551 bool master; /* is upper dev master */
2552 bool linking; /* is the notification for link or unlink */
2553 void *upper_info; /* upper dev info */
2554 };
2555
2556 struct netdev_notifier_changelowerstate_info {
2557 struct netdev_notifier_info info; /* must be first */
2558 void *lower_state_info; /* is lower dev state */
2559 };
2560
2561 struct netdev_notifier_pre_changeaddr_info {
2562 struct netdev_notifier_info info; /* must be first */
2563 const unsigned char *dev_addr;
2564 };
2565
2566 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2567 struct net_device *dev)
2568 {
2569 info->dev = dev;
2570 info->extack = NULL;
2571 }
2572
2573 static inline struct net_device *
2574 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2575 {
2576 return info->dev;
2577 }
2578
2579 static inline struct netlink_ext_ack *
2580 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2581 {
2582 return info->extack;
2583 }
2584
2585 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2586
2587
2588 extern rwlock_t dev_base_lock; /* Device list lock */
2589
2590 #define for_each_netdev(net, d) \
2591 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2592 #define for_each_netdev_reverse(net, d) \
2593 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2594 #define for_each_netdev_rcu(net, d) \
2595 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2596 #define for_each_netdev_safe(net, d, n) \
2597 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2598 #define for_each_netdev_continue(net, d) \
2599 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2600 #define for_each_netdev_continue_reverse(net, d) \
2601 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2602 dev_list)
2603 #define for_each_netdev_continue_rcu(net, d) \
2604 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2605 #define for_each_netdev_in_bond_rcu(bond, slave) \
2606 for_each_netdev_rcu(&init_net, slave) \
2607 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2608 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2609
2610 static inline struct net_device *next_net_device(struct net_device *dev)
2611 {
2612 struct list_head *lh;
2613 struct net *net;
2614
2615 net = dev_net(dev);
2616 lh = dev->dev_list.next;
2617 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2618 }
2619
2620 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2621 {
2622 struct list_head *lh;
2623 struct net *net;
2624
2625 net = dev_net(dev);
2626 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2627 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2628 }
2629
2630 static inline struct net_device *first_net_device(struct net *net)
2631 {
2632 return list_empty(&net->dev_base_head) ? NULL :
2633 net_device_entry(net->dev_base_head.next);
2634 }
2635
2636 static inline struct net_device *first_net_device_rcu(struct net *net)
2637 {
2638 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2639
2640 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2641 }
2642
2643 int netdev_boot_setup_check(struct net_device *dev);
2644 unsigned long netdev_boot_base(const char *prefix, int unit);
2645 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2646 const char *hwaddr);
2647 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2648 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2649 void dev_add_pack(struct packet_type *pt);
2650 void dev_remove_pack(struct packet_type *pt);
2651 void __dev_remove_pack(struct packet_type *pt);
2652 void dev_add_offload(struct packet_offload *po);
2653 void dev_remove_offload(struct packet_offload *po);
2654
2655 int dev_get_iflink(const struct net_device *dev);
2656 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2657 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2658 unsigned short mask);
2659 struct net_device *dev_get_by_name(struct net *net, const char *name);
2660 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2661 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2662 int dev_alloc_name(struct net_device *dev, const char *name);
2663 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2664 void dev_close(struct net_device *dev);
2665 void dev_close_many(struct list_head *head, bool unlink);
2666 void dev_disable_lro(struct net_device *dev);
2667 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2668 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2669 struct net_device *sb_dev);
2670 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2671 struct net_device *sb_dev);
2672 int dev_queue_xmit(struct sk_buff *skb);
2673 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2674 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2675 int register_netdevice(struct net_device *dev);
2676 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2677 void unregister_netdevice_many(struct list_head *head);
2678 static inline void unregister_netdevice(struct net_device *dev)
2679 {
2680 unregister_netdevice_queue(dev, NULL);
2681 }
2682
2683 int netdev_refcnt_read(const struct net_device *dev);
2684 void free_netdev(struct net_device *dev);
2685 void netdev_freemem(struct net_device *dev);
2686 void synchronize_net(void);
2687 int init_dummy_netdev(struct net_device *dev);
2688
2689 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2690 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2691 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2692 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2693 int netdev_get_name(struct net *net, char *name, int ifindex);
2694 int dev_restart(struct net_device *dev);
2695 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2696
2697 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2698 {
2699 return NAPI_GRO_CB(skb)->data_offset;
2700 }
2701
2702 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2703 {
2704 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2705 }
2706
2707 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2708 {
2709 NAPI_GRO_CB(skb)->data_offset += len;
2710 }
2711
2712 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2713 unsigned int offset)
2714 {
2715 return NAPI_GRO_CB(skb)->frag0 + offset;
2716 }
2717
2718 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2719 {
2720 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2721 }
2722
2723 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2724 {
2725 NAPI_GRO_CB(skb)->frag0 = NULL;
2726 NAPI_GRO_CB(skb)->frag0_len = 0;
2727 }
2728
2729 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2730 unsigned int offset)
2731 {
2732 if (!pskb_may_pull(skb, hlen))
2733 return NULL;
2734
2735 skb_gro_frag0_invalidate(skb);
2736 return skb->data + offset;
2737 }
2738
2739 static inline void *skb_gro_network_header(struct sk_buff *skb)
2740 {
2741 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2742 skb_network_offset(skb);
2743 }
2744
2745 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2746 const void *start, unsigned int len)
2747 {
2748 if (NAPI_GRO_CB(skb)->csum_valid)
2749 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2750 csum_partial(start, len, 0));
2751 }
2752
2753 /* GRO checksum functions. These are logical equivalents of the normal
2754 * checksum functions (in skbuff.h) except that they operate on the GRO
2755 * offsets and fields in sk_buff.
2756 */
2757
2758 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2759
2760 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2761 {
2762 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2763 }
2764
2765 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2766 bool zero_okay,
2767 __sum16 check)
2768 {
2769 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2770 skb_checksum_start_offset(skb) <
2771 skb_gro_offset(skb)) &&
2772 !skb_at_gro_remcsum_start(skb) &&
2773 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2774 (!zero_okay || check));
2775 }
2776
2777 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2778 __wsum psum)
2779 {
2780 if (NAPI_GRO_CB(skb)->csum_valid &&
2781 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2782 return 0;
2783
2784 NAPI_GRO_CB(skb)->csum = psum;
2785
2786 return __skb_gro_checksum_complete(skb);
2787 }
2788
2789 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2790 {
2791 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2792 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2793 NAPI_GRO_CB(skb)->csum_cnt--;
2794 } else {
2795 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2796 * verified a new top level checksum or an encapsulated one
2797 * during GRO. This saves work if we fallback to normal path.
2798 */
2799 __skb_incr_checksum_unnecessary(skb);
2800 }
2801 }
2802
2803 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2804 compute_pseudo) \
2805 ({ \
2806 __sum16 __ret = 0; \
2807 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2808 __ret = __skb_gro_checksum_validate_complete(skb, \
2809 compute_pseudo(skb, proto)); \
2810 if (!__ret) \
2811 skb_gro_incr_csum_unnecessary(skb); \
2812 __ret; \
2813 })
2814
2815 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2816 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2817
2818 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2819 compute_pseudo) \
2820 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2821
2822 #define skb_gro_checksum_simple_validate(skb) \
2823 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2824
2825 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2826 {
2827 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2828 !NAPI_GRO_CB(skb)->csum_valid);
2829 }
2830
2831 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2832 __wsum pseudo)
2833 {
2834 NAPI_GRO_CB(skb)->csum = ~pseudo;
2835 NAPI_GRO_CB(skb)->csum_valid = 1;
2836 }
2837
2838 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo) \
2839 do { \
2840 if (__skb_gro_checksum_convert_check(skb)) \
2841 __skb_gro_checksum_convert(skb, \
2842 compute_pseudo(skb, proto)); \
2843 } while (0)
2844
2845 struct gro_remcsum {
2846 int offset;
2847 __wsum delta;
2848 };
2849
2850 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2851 {
2852 grc->offset = 0;
2853 grc->delta = 0;
2854 }
2855
2856 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2857 unsigned int off, size_t hdrlen,
2858 int start, int offset,
2859 struct gro_remcsum *grc,
2860 bool nopartial)
2861 {
2862 __wsum delta;
2863 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2864
2865 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2866
2867 if (!nopartial) {
2868 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2869 return ptr;
2870 }
2871
2872 ptr = skb_gro_header_fast(skb, off);
2873 if (skb_gro_header_hard(skb, off + plen)) {
2874 ptr = skb_gro_header_slow(skb, off + plen, off);
2875 if (!ptr)
2876 return NULL;
2877 }
2878
2879 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2880 start, offset);
2881
2882 /* Adjust skb->csum since we changed the packet */
2883 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2884
2885 grc->offset = off + hdrlen + offset;
2886 grc->delta = delta;
2887
2888 return ptr;
2889 }
2890
2891 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2892 struct gro_remcsum *grc)
2893 {
2894 void *ptr;
2895 size_t plen = grc->offset + sizeof(u16);
2896
2897 if (!grc->delta)
2898 return;
2899
2900 ptr = skb_gro_header_fast(skb, grc->offset);
2901 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2902 ptr = skb_gro_header_slow(skb, plen, grc->offset);
2903 if (!ptr)
2904 return;
2905 }
2906
2907 remcsum_unadjust((__sum16 *)ptr, grc->delta);
2908 }
2909
2910 #ifdef CONFIG_XFRM_OFFLOAD
2911 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2912 {
2913 if (PTR_ERR(pp) != -EINPROGRESS)
2914 NAPI_GRO_CB(skb)->flush |= flush;
2915 }
2916 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2917 struct sk_buff *pp,
2918 int flush,
2919 struct gro_remcsum *grc)
2920 {
2921 if (PTR_ERR(pp) != -EINPROGRESS) {
2922 NAPI_GRO_CB(skb)->flush |= flush;
2923 skb_gro_remcsum_cleanup(skb, grc);
2924 skb->remcsum_offload = 0;
2925 }
2926 }
2927 #else
2928 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2929 {
2930 NAPI_GRO_CB(skb)->flush |= flush;
2931 }
2932 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2933 struct sk_buff *pp,
2934 int flush,
2935 struct gro_remcsum *grc)
2936 {
2937 NAPI_GRO_CB(skb)->flush |= flush;
2938 skb_gro_remcsum_cleanup(skb, grc);
2939 skb->remcsum_offload = 0;
2940 }
2941 #endif
2942
2943 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2944 unsigned short type,
2945 const void *daddr, const void *saddr,
2946 unsigned int len)
2947 {
2948 if (!dev->header_ops || !dev->header_ops->create)
2949 return 0;
2950
2951 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2952 }
2953
2954 static inline int dev_parse_header(const struct sk_buff *skb,
2955 unsigned char *haddr)
2956 {
2957 const struct net_device *dev = skb->dev;
2958
2959 if (!dev->header_ops || !dev->header_ops->parse)
2960 return 0;
2961 return dev->header_ops->parse(skb, haddr);
2962 }
2963
2964 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
2965 {
2966 const struct net_device *dev = skb->dev;
2967
2968 if (!dev->header_ops || !dev->header_ops->parse_protocol)
2969 return 0;
2970 return dev->header_ops->parse_protocol(skb);
2971 }
2972
2973 /* ll_header must have at least hard_header_len allocated */
2974 static inline bool dev_validate_header(const struct net_device *dev,
2975 char *ll_header, int len)
2976 {
2977 if (likely(len >= dev->hard_header_len))
2978 return true;
2979 if (len < dev->min_header_len)
2980 return false;
2981
2982 if (capable(CAP_SYS_RAWIO)) {
2983 memset(ll_header + len, 0, dev->hard_header_len - len);
2984 return true;
2985 }
2986
2987 if (dev->header_ops && dev->header_ops->validate)
2988 return dev->header_ops->validate(ll_header, len);
2989
2990 return false;
2991 }
2992
2993 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
2994 int len, int size);
2995 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2996 static inline int unregister_gifconf(unsigned int family)
2997 {
2998 return register_gifconf(family, NULL);
2999 }
3000
3001 #ifdef CONFIG_NET_FLOW_LIMIT
3002 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
3003 struct sd_flow_limit {
3004 u64 count;
3005 unsigned int num_buckets;
3006 unsigned int history_head;
3007 u16 history[FLOW_LIMIT_HISTORY];
3008 u8 buckets[];
3009 };
3010
3011 extern int netdev_flow_limit_table_len;
3012 #endif /* CONFIG_NET_FLOW_LIMIT */
3013
3014 /*
3015 * Incoming packets are placed on per-CPU queues
3016 */
3017 struct softnet_data {
3018 struct list_head poll_list;
3019 struct sk_buff_head process_queue;
3020
3021 /* stats */
3022 unsigned int processed;
3023 unsigned int time_squeeze;
3024 unsigned int received_rps;
3025 #ifdef CONFIG_RPS
3026 struct softnet_data *rps_ipi_list;
3027 #endif
3028 #ifdef CONFIG_NET_FLOW_LIMIT
3029 struct sd_flow_limit __rcu *flow_limit;
3030 #endif
3031 struct Qdisc *output_queue;
3032 struct Qdisc **output_queue_tailp;
3033 struct sk_buff *completion_queue;
3034 #ifdef CONFIG_XFRM_OFFLOAD
3035 struct sk_buff_head xfrm_backlog;
3036 #endif
3037 /* written and read only by owning cpu: */
3038 struct {
3039 u16 recursion;
3040 u8 more;
3041 } xmit;
3042 #ifdef CONFIG_RPS
3043 /* input_queue_head should be written by cpu owning this struct,
3044 * and only read by other cpus. Worth using a cache line.
3045 */
3046 unsigned int input_queue_head ____cacheline_aligned_in_smp;
3047
3048 /* Elements below can be accessed between CPUs for RPS/RFS */
3049 call_single_data_t csd ____cacheline_aligned_in_smp;
3050 struct softnet_data *rps_ipi_next;
3051 unsigned int cpu;
3052 unsigned int input_queue_tail;
3053 #endif
3054 unsigned int dropped;
3055 struct sk_buff_head input_pkt_queue;
3056 struct napi_struct backlog;
3057
3058 };
3059
3060 static inline void input_queue_head_incr(struct softnet_data *sd)
3061 {
3062 #ifdef CONFIG_RPS
3063 sd->input_queue_head++;
3064 #endif
3065 }
3066
3067 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3068 unsigned int *qtail)
3069 {
3070 #ifdef CONFIG_RPS
3071 *qtail = ++sd->input_queue_tail;
3072 #endif
3073 }
3074
3075 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3076
3077 static inline int dev_recursion_level(void)
3078 {
3079 return this_cpu_read(softnet_data.xmit.recursion);
3080 }
3081
3082 #define XMIT_RECURSION_LIMIT 10
3083 static inline bool dev_xmit_recursion(void)
3084 {
3085 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3086 XMIT_RECURSION_LIMIT);
3087 }
3088
3089 static inline void dev_xmit_recursion_inc(void)
3090 {
3091 __this_cpu_inc(softnet_data.xmit.recursion);
3092 }
3093
3094 static inline void dev_xmit_recursion_dec(void)
3095 {
3096 __this_cpu_dec(softnet_data.xmit.recursion);
3097 }
3098
3099 void __netif_schedule(struct Qdisc *q);
3100 void netif_schedule_queue(struct netdev_queue *txq);
3101
3102 static inline void netif_tx_schedule_all(struct net_device *dev)
3103 {
3104 unsigned int i;
3105
3106 for (i = 0; i < dev->num_tx_queues; i++)
3107 netif_schedule_queue(netdev_get_tx_queue(dev, i));
3108 }
3109
3110 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3111 {
3112 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3113 }
3114
3115 /**
3116 * netif_start_queue - allow transmit
3117 * @dev: network device
3118 *
3119 * Allow upper layers to call the device hard_start_xmit routine.
3120 */
3121 static inline void netif_start_queue(struct net_device *dev)
3122 {
3123 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3124 }
3125
3126 static inline void netif_tx_start_all_queues(struct net_device *dev)
3127 {
3128 unsigned int i;
3129
3130 for (i = 0; i < dev->num_tx_queues; i++) {
3131 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3132 netif_tx_start_queue(txq);
3133 }
3134 }
3135
3136 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3137
3138 /**
3139 * netif_wake_queue - restart transmit
3140 * @dev: network device
3141 *
3142 * Allow upper layers to call the device hard_start_xmit routine.
3143 * Used for flow control when transmit resources are available.
3144 */
3145 static inline void netif_wake_queue(struct net_device *dev)
3146 {
3147 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3148 }
3149
3150 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3151 {
3152 unsigned int i;
3153
3154 for (i = 0; i < dev->num_tx_queues; i++) {
3155 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3156 netif_tx_wake_queue(txq);
3157 }
3158 }
3159
3160 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3161 {
3162 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3163 }
3164
3165 /**
3166 * netif_stop_queue - stop transmitted packets
3167 * @dev: network device
3168 *
3169 * Stop upper layers calling the device hard_start_xmit routine.
3170 * Used for flow control when transmit resources are unavailable.
3171 */
3172 static inline void netif_stop_queue(struct net_device *dev)
3173 {
3174 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3175 }
3176
3177 void netif_tx_stop_all_queues(struct net_device *dev);
3178 void netdev_update_lockdep_key(struct net_device *dev);
3179
3180 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3181 {
3182 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3183 }
3184
3185 /**
3186 * netif_queue_stopped - test if transmit queue is flowblocked
3187 * @dev: network device
3188 *
3189 * Test if transmit queue on device is currently unable to send.
3190 */
3191 static inline bool netif_queue_stopped(const struct net_device *dev)
3192 {
3193 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3194 }
3195
3196 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3197 {
3198 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3199 }
3200
3201 static inline bool
3202 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3203 {
3204 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3205 }
3206
3207 static inline bool
3208 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3209 {
3210 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3211 }
3212
3213 /**
3214 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3215 * @dev_queue: pointer to transmit queue
3216 *
3217 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3218 * to give appropriate hint to the CPU.
3219 */
3220 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3221 {
3222 #ifdef CONFIG_BQL
3223 prefetchw(&dev_queue->dql.num_queued);
3224 #endif
3225 }
3226
3227 /**
3228 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3229 * @dev_queue: pointer to transmit queue
3230 *
3231 * BQL enabled drivers might use this helper in their TX completion path,
3232 * to give appropriate hint to the CPU.
3233 */
3234 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3235 {
3236 #ifdef CONFIG_BQL
3237 prefetchw(&dev_queue->dql.limit);
3238 #endif
3239 }
3240
3241 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3242 unsigned int bytes)
3243 {
3244 #ifdef CONFIG_BQL
3245 dql_queued(&dev_queue->dql, bytes);
3246
3247 if (likely(dql_avail(&dev_queue->dql) >= 0))
3248 return;
3249
3250 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3251
3252 /*
3253 * The XOFF flag must be set before checking the dql_avail below,
3254 * because in netdev_tx_completed_queue we update the dql_completed
3255 * before checking the XOFF flag.
3256 */
3257 smp_mb();
3258
3259 /* check again in case another CPU has just made room avail */
3260 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3261 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3262 #endif
3263 }
3264
3265 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3266 * that they should not test BQL status themselves.
3267 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3268 * skb of a batch.
3269 * Returns true if the doorbell must be used to kick the NIC.
3270 */
3271 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3272 unsigned int bytes,
3273 bool xmit_more)
3274 {
3275 if (xmit_more) {
3276 #ifdef CONFIG_BQL
3277 dql_queued(&dev_queue->dql, bytes);
3278 #endif
3279 return netif_tx_queue_stopped(dev_queue);
3280 }
3281 netdev_tx_sent_queue(dev_queue, bytes);
3282 return true;
3283 }
3284
3285 /**
3286 * netdev_sent_queue - report the number of bytes queued to hardware
3287 * @dev: network device
3288 * @bytes: number of bytes queued to the hardware device queue
3289 *
3290 * Report the number of bytes queued for sending/completion to the network
3291 * device hardware queue. @bytes should be a good approximation and should
3292 * exactly match netdev_completed_queue() @bytes
3293 */
3294 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3295 {
3296 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3297 }
3298
3299 static inline bool __netdev_sent_queue(struct net_device *dev,
3300 unsigned int bytes,
3301 bool xmit_more)
3302 {
3303 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3304 xmit_more);
3305 }
3306
3307 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3308 unsigned int pkts, unsigned int bytes)
3309 {
3310 #ifdef CONFIG_BQL
3311 if (unlikely(!bytes))
3312 return;
3313
3314 dql_completed(&dev_queue->dql, bytes);
3315
3316 /*
3317 * Without the memory barrier there is a small possiblity that
3318 * netdev_tx_sent_queue will miss the update and cause the queue to
3319 * be stopped forever
3320 */
3321 smp_mb();
3322
3323 if (unlikely(dql_avail(&dev_queue->dql) < 0))
3324 return;
3325
3326 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3327 netif_schedule_queue(dev_queue);
3328 #endif
3329 }
3330
3331 /**
3332 * netdev_completed_queue - report bytes and packets completed by device
3333 * @dev: network device
3334 * @pkts: actual number of packets sent over the medium
3335 * @bytes: actual number of bytes sent over the medium
3336 *
3337 * Report the number of bytes and packets transmitted by the network device
3338 * hardware queue over the physical medium, @bytes must exactly match the
3339 * @bytes amount passed to netdev_sent_queue()
3340 */
3341 static inline void netdev_completed_queue(struct net_device *dev,
3342 unsigned int pkts, unsigned int bytes)
3343 {
3344 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3345 }
3346
3347 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3348 {
3349 #ifdef CONFIG_BQL
3350 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3351 dql_reset(&q->dql);
3352 #endif
3353 }
3354
3355 /**
3356 * netdev_reset_queue - reset the packets and bytes count of a network device
3357 * @dev_queue: network device
3358 *
3359 * Reset the bytes and packet count of a network device and clear the
3360 * software flow control OFF bit for this network device
3361 */
3362 static inline void netdev_reset_queue(struct net_device *dev_queue)
3363 {
3364 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3365 }
3366
3367 /**
3368 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
3369 * @dev: network device
3370 * @queue_index: given tx queue index
3371 *
3372 * Returns 0 if given tx queue index >= number of device tx queues,
3373 * otherwise returns the originally passed tx queue index.
3374 */
3375 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3376 {
3377 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3378 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3379 dev->name, queue_index,
3380 dev->real_num_tx_queues);
3381 return 0;
3382 }
3383
3384 return queue_index;
3385 }
3386
3387 /**
3388 * netif_running - test if up
3389 * @dev: network device
3390 *
3391 * Test if the device has been brought up.
3392 */
3393 static inline bool netif_running(const struct net_device *dev)
3394 {
3395 return test_bit(__LINK_STATE_START, &dev->state);
3396 }
3397
3398 /*
3399 * Routines to manage the subqueues on a device. We only need start,
3400 * stop, and a check if it's stopped. All other device management is
3401 * done at the overall netdevice level.
3402 * Also test the device if we're multiqueue.
3403 */
3404
3405 /**
3406 * netif_start_subqueue - allow sending packets on subqueue
3407 * @dev: network device
3408 * @queue_index: sub queue index
3409 *
3410 * Start individual transmit queue of a device with multiple transmit queues.
3411 */
3412 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3413 {
3414 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3415
3416 netif_tx_start_queue(txq);
3417 }
3418
3419 /**
3420 * netif_stop_subqueue - stop sending packets on subqueue
3421 * @dev: network device
3422 * @queue_index: sub queue index
3423 *
3424 * Stop individual transmit queue of a device with multiple transmit queues.
3425 */
3426 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3427 {
3428 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3429 netif_tx_stop_queue(txq);
3430 }
3431
3432 /**
3433 * netif_subqueue_stopped - test status of subqueue
3434 * @dev: network device
3435 * @queue_index: sub queue index
3436 *
3437 * Check individual transmit queue of a device with multiple transmit queues.
3438 */
3439 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3440 u16 queue_index)
3441 {
3442 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3443
3444 return netif_tx_queue_stopped(txq);
3445 }
3446
3447 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3448 struct sk_buff *skb)
3449 {
3450 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3451 }
3452
3453 /**
3454 * netif_wake_subqueue - allow sending packets on subqueue
3455 * @dev: network device
3456 * @queue_index: sub queue index
3457 *
3458 * Resume individual transmit queue of a device with multiple transmit queues.
3459 */
3460 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3461 {
3462 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3463
3464 netif_tx_wake_queue(txq);
3465 }
3466
3467 #ifdef CONFIG_XPS
3468 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3469 u16 index);
3470 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3471 u16 index, bool is_rxqs_map);
3472
3473 /**
3474 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3475 * @j: CPU/Rx queue index
3476 * @mask: bitmask of all cpus/rx queues
3477 * @nr_bits: number of bits in the bitmask
3478 *
3479 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3480 */
3481 static inline bool netif_attr_test_mask(unsigned long j,
3482 const unsigned long *mask,
3483 unsigned int nr_bits)
3484 {
3485 cpu_max_bits_warn(j, nr_bits);
3486 return test_bit(j, mask);
3487 }
3488
3489 /**
3490 * netif_attr_test_online - Test for online CPU/Rx queue
3491 * @j: CPU/Rx queue index
3492 * @online_mask: bitmask for CPUs/Rx queues that are online
3493 * @nr_bits: number of bits in the bitmask
3494 *
3495 * Returns true if a CPU/Rx queue is online.
3496 */
3497 static inline bool netif_attr_test_online(unsigned long j,
3498 const unsigned long *online_mask,
3499 unsigned int nr_bits)
3500 {
3501 cpu_max_bits_warn(j, nr_bits);
3502
3503 if (online_mask)
3504 return test_bit(j, online_mask);
3505
3506 return (j < nr_bits);
3507 }
3508
3509 /**
3510 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3511 * @n: CPU/Rx queue index
3512 * @srcp: the cpumask/Rx queue mask pointer
3513 * @nr_bits: number of bits in the bitmask
3514 *
3515 * Returns >= nr_bits if no further CPUs/Rx queues set.
3516 */
3517 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3518 unsigned int nr_bits)
3519 {
3520 /* -1 is a legal arg here. */
3521 if (n != -1)
3522 cpu_max_bits_warn(n, nr_bits);
3523
3524 if (srcp)
3525 return find_next_bit(srcp, nr_bits, n + 1);
3526
3527 return n + 1;
3528 }
3529
3530 /**
3531 * netif_attrmask_next_and - get the next CPU/Rx queue in *src1p & *src2p
3532 * @n: CPU/Rx queue index
3533 * @src1p: the first CPUs/Rx queues mask pointer
3534 * @src2p: the second CPUs/Rx queues mask pointer
3535 * @nr_bits: number of bits in the bitmask
3536 *
3537 * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3538 */
3539 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3540 const unsigned long *src2p,
3541 unsigned int nr_bits)
3542 {
3543 /* -1 is a legal arg here. */
3544 if (n != -1)
3545 cpu_max_bits_warn(n, nr_bits);
3546
3547 if (src1p && src2p)
3548 return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3549 else if (src1p)
3550 return find_next_bit(src1p, nr_bits, n + 1);
3551 else if (src2p)
3552 return find_next_bit(src2p, nr_bits, n + 1);
3553
3554 return n + 1;
3555 }
3556 #else
3557 static inline int netif_set_xps_queue(struct net_device *dev,
3558 const struct cpumask *mask,
3559 u16 index)
3560 {
3561 return 0;
3562 }
3563
3564 static inline int __netif_set_xps_queue(struct net_device *dev,
3565 const unsigned long *mask,
3566 u16 index, bool is_rxqs_map)
3567 {
3568 return 0;
3569 }
3570 #endif
3571
3572 /**
3573 * netif_is_multiqueue - test if device has multiple transmit queues
3574 * @dev: network device
3575 *
3576 * Check if device has multiple transmit queues
3577 */
3578 static inline bool netif_is_multiqueue(const struct net_device *dev)
3579 {
3580 return dev->num_tx_queues > 1;
3581 }
3582
3583 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3584
3585 #ifdef CONFIG_SYSFS
3586 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3587 #else
3588 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3589 unsigned int rxqs)
3590 {
3591 dev->real_num_rx_queues = rxqs;
3592 return 0;
3593 }
3594 #endif
3595
3596 static inline struct netdev_rx_queue *
3597 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3598 {
3599 return dev->_rx + rxq;
3600 }
3601
3602 #ifdef CONFIG_SYSFS
3603 static inline unsigned int get_netdev_rx_queue_index(
3604 struct netdev_rx_queue *queue)
3605 {
3606 struct net_device *dev = queue->dev;
3607 int index = queue - dev->_rx;
3608
3609 BUG_ON(index >= dev->num_rx_queues);
3610 return index;
3611 }
3612 #endif
3613
3614 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
3615 int netif_get_num_default_rss_queues(void);
3616
3617 enum skb_free_reason {
3618 SKB_REASON_CONSUMED,
3619 SKB_REASON_DROPPED,
3620 };
3621
3622 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3623 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3624
3625 /*
3626 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3627 * interrupt context or with hardware interrupts being disabled.
3628 * (in_irq() || irqs_disabled())
3629 *
3630 * We provide four helpers that can be used in following contexts :
3631 *
3632 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3633 * replacing kfree_skb(skb)
3634 *
3635 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3636 * Typically used in place of consume_skb(skb) in TX completion path
3637 *
3638 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3639 * replacing kfree_skb(skb)
3640 *
3641 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3642 * and consumed a packet. Used in place of consume_skb(skb)
3643 */
3644 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3645 {
3646 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3647 }
3648
3649 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3650 {
3651 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3652 }
3653
3654 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3655 {
3656 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3657 }
3658
3659 static inline void dev_consume_skb_any(struct sk_buff *skb)
3660 {
3661 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3662 }
3663
3664 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3665 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3666 int netif_rx(struct sk_buff *skb);
3667 int netif_rx_ni(struct sk_buff *skb);
3668 int netif_receive_skb(struct sk_buff *skb);
3669 int netif_receive_skb_core(struct sk_buff *skb);
3670 void netif_receive_skb_list(struct list_head *head);
3671 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3672 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3673 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3674 gro_result_t napi_gro_frags(struct napi_struct *napi);
3675 struct packet_offload *gro_find_receive_by_type(__be16 type);
3676 struct packet_offload *gro_find_complete_by_type(__be16 type);
3677
3678 static inline void napi_free_frags(struct napi_struct *napi)
3679 {
3680 kfree_skb(napi->skb);
3681 napi->skb = NULL;
3682 }
3683
3684 bool netdev_is_rx_handler_busy(struct net_device *dev);
3685 int netdev_rx_handler_register(struct net_device *dev,
3686 rx_handler_func_t *rx_handler,
3687 void *rx_handler_data);
3688 void netdev_rx_handler_unregister(struct net_device *dev);
3689
3690 bool dev_valid_name(const char *name);
3691 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3692 bool *need_copyout);
3693 int dev_ifconf(struct net *net, struct ifconf *, int);
3694 int dev_ethtool(struct net *net, struct ifreq *);
3695 unsigned int dev_get_flags(const struct net_device *);
3696 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3697 struct netlink_ext_ack *extack);
3698 int dev_change_flags(struct net_device *dev, unsigned int flags,
3699 struct netlink_ext_ack *extack);
3700 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3701 unsigned int gchanges);
3702 int dev_change_name(struct net_device *, const char *);
3703 int dev_set_alias(struct net_device *, const char *, size_t);
3704 int dev_get_alias(const struct net_device *, char *, size_t);
3705 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3706 int __dev_set_mtu(struct net_device *, int);
3707 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3708 struct netlink_ext_ack *extack);
3709 int dev_set_mtu(struct net_device *, int);
3710 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3711 void dev_set_group(struct net_device *, int);
3712 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3713 struct netlink_ext_ack *extack);
3714 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3715 struct netlink_ext_ack *extack);
3716 int dev_change_carrier(struct net_device *, bool new_carrier);
3717 int dev_get_phys_port_id(struct net_device *dev,
3718 struct netdev_phys_item_id *ppid);
3719 int dev_get_phys_port_name(struct net_device *dev,
3720 char *name, size_t len);
3721 int dev_get_port_parent_id(struct net_device *dev,
3722 struct netdev_phys_item_id *ppid, bool recurse);
3723 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3724 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3725 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3726 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3727 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3728 struct netdev_queue *txq, int *ret);
3729
3730 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3731 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3732 int fd, u32 flags);
3733 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3734 enum bpf_netdev_command cmd);
3735 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3736
3737 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3738 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3739 bool is_skb_forwardable(const struct net_device *dev,
3740 const struct sk_buff *skb);
3741
3742 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3743 struct sk_buff *skb)
3744 {
3745 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3746 unlikely(!is_skb_forwardable(dev, skb))) {
3747 atomic_long_inc(&dev->rx_dropped);
3748 kfree_skb(skb);
3749 return NET_RX_DROP;
3750 }
3751
3752 skb_scrub_packet(skb, true);
3753 skb->priority = 0;
3754 return 0;
3755 }
3756
3757 bool dev_nit_active(struct net_device *dev);
3758 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3759
3760 extern int netdev_budget;
3761 extern unsigned int netdev_budget_usecs;
3762
3763 /* Called by rtnetlink.c:rtnl_unlock() */
3764 void netdev_run_todo(void);
3765
3766 /**
3767 * dev_put - release reference to device
3768 * @dev: network device
3769 *
3770 * Release reference to device to allow it to be freed.
3771 */
3772 static inline void dev_put(struct net_device *dev)
3773 {
3774 this_cpu_dec(*dev->pcpu_refcnt);
3775 }
3776
3777 /**
3778 * dev_hold - get reference to device
3779 * @dev: network device
3780 *
3781 * Hold reference to device to keep it from being freed.
3782 */
3783 static inline void dev_hold(struct net_device *dev)
3784 {
3785 this_cpu_inc(*dev->pcpu_refcnt);
3786 }
3787
3788 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3789 * and _off may be called from IRQ context, but it is caller
3790 * who is responsible for serialization of these calls.
3791 *
3792 * The name carrier is inappropriate, these functions should really be
3793 * called netif_lowerlayer_*() because they represent the state of any
3794 * kind of lower layer not just hardware media.
3795 */
3796
3797 void linkwatch_init_dev(struct net_device *dev);
3798 void linkwatch_fire_event(struct net_device *dev);
3799 void linkwatch_forget_dev(struct net_device *dev);
3800
3801 /**
3802 * netif_carrier_ok - test if carrier present
3803 * @dev: network device
3804 *
3805 * Check if carrier is present on device
3806 */
3807 static inline bool netif_carrier_ok(const struct net_device *dev)
3808 {
3809 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3810 }
3811
3812 unsigned long dev_trans_start(struct net_device *dev);
3813
3814 void __netdev_watchdog_up(struct net_device *dev);
3815
3816 void netif_carrier_on(struct net_device *dev);
3817
3818 void netif_carrier_off(struct net_device *dev);
3819
3820 /**
3821 * netif_dormant_on - mark device as dormant.
3822 * @dev: network device
3823 *
3824 * Mark device as dormant (as per RFC2863).
3825 *
3826 * The dormant state indicates that the relevant interface is not
3827 * actually in a condition to pass packets (i.e., it is not 'up') but is
3828 * in a "pending" state, waiting for some external event. For "on-
3829 * demand" interfaces, this new state identifies the situation where the
3830 * interface is waiting for events to place it in the up state.
3831 */
3832 static inline void netif_dormant_on(struct net_device *dev)
3833 {
3834 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3835 linkwatch_fire_event(dev);
3836 }
3837
3838 /**
3839 * netif_dormant_off - set device as not dormant.
3840 * @dev: network device
3841 *
3842 * Device is not in dormant state.
3843 */
3844 static inline void netif_dormant_off(struct net_device *dev)
3845 {
3846 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3847 linkwatch_fire_event(dev);
3848 }
3849
3850 /**
3851 * netif_dormant - test if device is dormant
3852 * @dev: network device
3853 *
3854 * Check if device is dormant.
3855 */
3856 static inline bool netif_dormant(const struct net_device *dev)
3857 {
3858 return test_bit(__LINK_STATE_DORMANT, &dev->state);
3859 }
3860
3861
3862 /**
3863 * netif_oper_up - test if device is operational
3864 * @dev: network device
3865 *
3866 * Check if carrier is operational
3867 */
3868 static inline bool netif_oper_up(const struct net_device *dev)
3869 {
3870 return (dev->operstate == IF_OPER_UP ||
3871 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3872 }
3873
3874 /**
3875 * netif_device_present - is device available or removed
3876 * @dev: network device
3877 *
3878 * Check if device has not been removed from system.
3879 */
3880 static inline bool netif_device_present(struct net_device *dev)
3881 {
3882 return test_bit(__LINK_STATE_PRESENT, &dev->state);
3883 }
3884
3885 void netif_device_detach(struct net_device *dev);
3886
3887 void netif_device_attach(struct net_device *dev);
3888
3889 /*
3890 * Network interface message level settings
3891 */
3892
3893 enum {
3894 NETIF_MSG_DRV = 0x0001,
3895 NETIF_MSG_PROBE = 0x0002,
3896 NETIF_MSG_LINK = 0x0004,
3897 NETIF_MSG_TIMER = 0x0008,
3898 NETIF_MSG_IFDOWN = 0x0010,
3899 NETIF_MSG_IFUP = 0x0020,
3900 NETIF_MSG_RX_ERR = 0x0040,
3901 NETIF_MSG_TX_ERR = 0x0080,
3902 NETIF_MSG_TX_QUEUED = 0x0100,
3903 NETIF_MSG_INTR = 0x0200,
3904 NETIF_MSG_TX_DONE = 0x0400,
3905 NETIF_MSG_RX_STATUS = 0x0800,
3906 NETIF_MSG_PKTDATA = 0x1000,
3907 NETIF_MSG_HW = 0x2000,
3908 NETIF_MSG_WOL = 0x4000,
3909 };
3910
3911 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
3912 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
3913 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
3914 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
3915 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
3916 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
3917 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
3918 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
3919 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3920 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
3921 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
3922 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3923 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
3924 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
3925 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
3926
3927 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3928 {
3929 /* use default */
3930 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3931 return default_msg_enable_bits;
3932 if (debug_value == 0) /* no output */
3933 return 0;
3934 /* set low N bits */
3935 return (1U << debug_value) - 1;
3936 }
3937
3938 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3939 {
3940 spin_lock(&txq->_xmit_lock);
3941 txq->xmit_lock_owner = cpu;
3942 }
3943
3944 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3945 {
3946 __acquire(&txq->_xmit_lock);
3947 return true;
3948 }
3949
3950 static inline void __netif_tx_release(struct netdev_queue *txq)
3951 {
3952 __release(&txq->_xmit_lock);
3953 }
3954
3955 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3956 {
3957 spin_lock_bh(&txq->_xmit_lock);
3958 txq->xmit_lock_owner = smp_processor_id();
3959 }
3960
3961 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3962 {
3963 bool ok = spin_trylock(&txq->_xmit_lock);
3964 if (likely(ok))
3965 txq->xmit_lock_owner = smp_processor_id();
3966 return ok;
3967 }
3968
3969 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3970 {
3971 txq->xmit_lock_owner = -1;
3972 spin_unlock(&txq->_xmit_lock);
3973 }
3974
3975 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3976 {
3977 txq->xmit_lock_owner = -1;
3978 spin_unlock_bh(&txq->_xmit_lock);
3979 }
3980
3981 static inline void txq_trans_update(struct netdev_queue *txq)
3982 {
3983 if (txq->xmit_lock_owner != -1)
3984 txq->trans_start = jiffies;
3985 }
3986
3987 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3988 static inline void netif_trans_update(struct net_device *dev)
3989 {
3990 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3991
3992 if (txq->trans_start != jiffies)
3993 txq->trans_start = jiffies;
3994 }
3995
3996 /**
3997 * netif_tx_lock - grab network device transmit lock
3998 * @dev: network device
3999 *
4000 * Get network device transmit lock
4001 */
4002 static inline void netif_tx_lock(struct net_device *dev)
4003 {
4004 unsigned int i;
4005 int cpu;
4006
4007 spin_lock(&dev->tx_global_lock);
4008 cpu = smp_processor_id();
4009 for (i = 0; i < dev->num_tx_queues; i++) {
4010 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4011
4012 /* We are the only thread of execution doing a
4013 * freeze, but we have to grab the _xmit_lock in
4014 * order to synchronize with threads which are in
4015 * the ->hard_start_xmit() handler and already
4016 * checked the frozen bit.
4017 */
4018 __netif_tx_lock(txq, cpu);
4019 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4020 __netif_tx_unlock(txq);
4021 }
4022 }
4023
4024 static inline void netif_tx_lock_bh(struct net_device *dev)
4025 {
4026 local_bh_disable();
4027 netif_tx_lock(dev);
4028 }
4029
4030 static inline void netif_tx_unlock(struct net_device *dev)
4031 {
4032 unsigned int i;
4033
4034 for (i = 0; i < dev->num_tx_queues; i++) {
4035 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4036
4037 /* No need to grab the _xmit_lock here. If the
4038 * queue is not stopped for another reason, we
4039 * force a schedule.
4040 */
4041 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4042 netif_schedule_queue(txq);
4043 }
4044 spin_unlock(&dev->tx_global_lock);
4045 }
4046
4047 static inline void netif_tx_unlock_bh(struct net_device *dev)
4048 {
4049 netif_tx_unlock(dev);
4050 local_bh_enable();
4051 }
4052
4053 #define HARD_TX_LOCK(dev, txq, cpu) { \
4054 if ((dev->features & NETIF_F_LLTX) == 0) { \
4055 __netif_tx_lock(txq, cpu); \
4056 } else { \
4057 __netif_tx_acquire(txq); \
4058 } \
4059 }
4060
4061 #define HARD_TX_TRYLOCK(dev, txq) \
4062 (((dev->features & NETIF_F_LLTX) == 0) ? \
4063 __netif_tx_trylock(txq) : \
4064 __netif_tx_acquire(txq))
4065
4066 #define HARD_TX_UNLOCK(dev, txq) { \
4067 if ((dev->features & NETIF_F_LLTX) == 0) { \
4068 __netif_tx_unlock(txq); \
4069 } else { \
4070 __netif_tx_release(txq); \
4071 } \
4072 }
4073
4074 static inline void netif_tx_disable(struct net_device *dev)
4075 {
4076 unsigned int i;
4077 int cpu;
4078
4079 local_bh_disable();
4080 cpu = smp_processor_id();
4081 for (i = 0; i < dev->num_tx_queues; i++) {
4082 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4083
4084 __netif_tx_lock(txq, cpu);
4085 netif_tx_stop_queue(txq);
4086 __netif_tx_unlock(txq);
4087 }
4088 local_bh_enable();
4089 }
4090
4091 static inline void netif_addr_lock(struct net_device *dev)
4092 {
4093 spin_lock(&dev->addr_list_lock);
4094 }
4095
4096 static inline void netif_addr_lock_bh(struct net_device *dev)
4097 {
4098 spin_lock_bh(&dev->addr_list_lock);
4099 }
4100
4101 static inline void netif_addr_unlock(struct net_device *dev)
4102 {
4103 spin_unlock(&dev->addr_list_lock);
4104 }
4105
4106 static inline void netif_addr_unlock_bh(struct net_device *dev)
4107 {
4108 spin_unlock_bh(&dev->addr_list_lock);
4109 }
4110
4111 /*
4112 * dev_addrs walker. Should be used only for read access. Call with
4113 * rcu_read_lock held.
4114 */
4115 #define for_each_dev_addr(dev, ha) \
4116 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4117
4118 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4119
4120 void ether_setup(struct net_device *dev);
4121
4122 /* Support for loadable net-drivers */
4123 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4124 unsigned char name_assign_type,
4125 void (*setup)(struct net_device *),
4126 unsigned int txqs, unsigned int rxqs);
4127 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4128 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4129
4130 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4131 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4132 count)
4133
4134 int register_netdev(struct net_device *dev);
4135 void unregister_netdev(struct net_device *dev);
4136
4137 /* General hardware address lists handling functions */
4138 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4139 struct netdev_hw_addr_list *from_list, int addr_len);
4140 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4141 struct netdev_hw_addr_list *from_list, int addr_len);
4142 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4143 struct net_device *dev,
4144 int (*sync)(struct net_device *, const unsigned char *),
4145 int (*unsync)(struct net_device *,
4146 const unsigned char *));
4147 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4148 struct net_device *dev,
4149 int (*sync)(struct net_device *,
4150 const unsigned char *, int),
4151 int (*unsync)(struct net_device *,
4152 const unsigned char *, int));
4153 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4154 struct net_device *dev,
4155 int (*unsync)(struct net_device *,
4156 const unsigned char *, int));
4157 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4158 struct net_device *dev,
4159 int (*unsync)(struct net_device *,
4160 const unsigned char *));
4161 void __hw_addr_init(struct netdev_hw_addr_list *list);
4162
4163 /* Functions used for device addresses handling */
4164 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4165 unsigned char addr_type);
4166 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4167 unsigned char addr_type);
4168 void dev_addr_flush(struct net_device *dev);
4169 int dev_addr_init(struct net_device *dev);
4170
4171 /* Functions used for unicast addresses handling */
4172 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4173 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4174 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4175 int dev_uc_sync(struct net_device *to, struct net_device *from);
4176 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4177 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4178 void dev_uc_flush(struct net_device *dev);
4179 void dev_uc_init(struct net_device *dev);
4180
4181 /**
4182 * __dev_uc_sync - Synchonize device's unicast list
4183 * @dev: device to sync
4184 * @sync: function to call if address should be added
4185 * @unsync: function to call if address should be removed
4186 *
4187 * Add newly added addresses to the interface, and release
4188 * addresses that have been deleted.
4189 */
4190 static inline int __dev_uc_sync(struct net_device *dev,
4191 int (*sync)(struct net_device *,
4192 const unsigned char *),
4193 int (*unsync)(struct net_device *,
4194 const unsigned char *))
4195 {
4196 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4197 }
4198
4199 /**
4200 * __dev_uc_unsync - Remove synchronized addresses from device
4201 * @dev: device to sync
4202 * @unsync: function to call if address should be removed
4203 *
4204 * Remove all addresses that were added to the device by dev_uc_sync().
4205 */
4206 static inline void __dev_uc_unsync(struct net_device *dev,
4207 int (*unsync)(struct net_device *,
4208 const unsigned char *))
4209 {
4210 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
4211 }
4212
4213 /* Functions used for multicast addresses handling */
4214 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4215 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4216 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4217 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4218 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4219 int dev_mc_sync(struct net_device *to, struct net_device *from);
4220 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4221 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4222 void dev_mc_flush(struct net_device *dev);
4223 void dev_mc_init(struct net_device *dev);
4224
4225 /**
4226 * __dev_mc_sync - Synchonize device's multicast list
4227 * @dev: device to sync
4228 * @sync: function to call if address should be added
4229 * @unsync: function to call if address should be removed
4230 *
4231 * Add newly added addresses to the interface, and release
4232 * addresses that have been deleted.
4233 */
4234 static inline int __dev_mc_sync(struct net_device *dev,
4235 int (*sync)(struct net_device *,
4236 const unsigned char *),
4237 int (*unsync)(struct net_device *,
4238 const unsigned char *))
4239 {
4240 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4241 }
4242
4243 /**
4244 * __dev_mc_unsync - Remove synchronized addresses from device
4245 * @dev: device to sync
4246 * @unsync: function to call if address should be removed
4247 *
4248 * Remove all addresses that were added to the device by dev_mc_sync().
4249 */
4250 static inline void __dev_mc_unsync(struct net_device *dev,
4251 int (*unsync)(struct net_device *,
4252 const unsigned char *))
4253 {
4254 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
4255 }
4256
4257 /* Functions used for secondary unicast and multicast support */
4258 void dev_set_rx_mode(struct net_device *dev);
4259 void __dev_set_rx_mode(struct net_device *dev);
4260 int dev_set_promiscuity(struct net_device *dev, int inc);
4261 int dev_set_allmulti(struct net_device *dev, int inc);
4262 void netdev_state_change(struct net_device *dev);
4263 void netdev_notify_peers(struct net_device *dev);
4264 void netdev_features_change(struct net_device *dev);
4265 /* Load a device via the kmod */
4266 void dev_load(struct net *net, const char *name);
4267 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4268 struct rtnl_link_stats64 *storage);
4269 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4270 const struct net_device_stats *netdev_stats);
4271
4272 extern int netdev_max_backlog;
4273 extern int netdev_tstamp_prequeue;
4274 extern int weight_p;
4275 extern int dev_weight_rx_bias;
4276 extern int dev_weight_tx_bias;
4277 extern int dev_rx_weight;
4278 extern int dev_tx_weight;
4279 extern int gro_normal_batch;
4280
4281 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4282 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4283 struct list_head **iter);
4284 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4285 struct list_head **iter);
4286
4287 /* iterate through upper list, must be called under RCU read lock */
4288 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4289 for (iter = &(dev)->adj_list.upper, \
4290 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4291 updev; \
4292 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4293
4294 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4295 int (*fn)(struct net_device *upper_dev,
4296 void *data),
4297 void *data);
4298
4299 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4300 struct net_device *upper_dev);
4301
4302 bool netdev_has_any_upper_dev(struct net_device *dev);
4303
4304 void *netdev_lower_get_next_private(struct net_device *dev,
4305 struct list_head **iter);
4306 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4307 struct list_head **iter);
4308
4309 #define netdev_for_each_lower_private(dev, priv, iter) \
4310 for (iter = (dev)->adj_list.lower.next, \
4311 priv = netdev_lower_get_next_private(dev, &(iter)); \
4312 priv; \
4313 priv = netdev_lower_get_next_private(dev, &(iter)))
4314
4315 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4316 for (iter = &(dev)->adj_list.lower, \
4317 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4318 priv; \
4319 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4320
4321 void *netdev_lower_get_next(struct net_device *dev,
4322 struct list_head **iter);
4323
4324 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4325 for (iter = (dev)->adj_list.lower.next, \
4326 ldev = netdev_lower_get_next(dev, &(iter)); \
4327 ldev; \
4328 ldev = netdev_lower_get_next(dev, &(iter)))
4329
4330 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
4331 struct list_head **iter);
4332 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
4333 struct list_head **iter);
4334
4335 int netdev_walk_all_lower_dev(struct net_device *dev,
4336 int (*fn)(struct net_device *lower_dev,
4337 void *data),
4338 void *data);
4339 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4340 int (*fn)(struct net_device *lower_dev,
4341 void *data),
4342 void *data);
4343
4344 void *netdev_adjacent_get_private(struct list_head *adj_list);
4345 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4346 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4347 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4348 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4349 struct netlink_ext_ack *extack);
4350 int netdev_master_upper_dev_link(struct net_device *dev,
4351 struct net_device *upper_dev,
4352 void *upper_priv, void *upper_info,
4353 struct netlink_ext_ack *extack);
4354 void netdev_upper_dev_unlink(struct net_device *dev,
4355 struct net_device *upper_dev);
4356 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4357 struct net_device *new_dev,
4358 struct net_device *dev,
4359 struct netlink_ext_ack *extack);
4360 void netdev_adjacent_change_commit(struct net_device *old_dev,
4361 struct net_device *new_dev,
4362 struct net_device *dev);
4363 void netdev_adjacent_change_abort(struct net_device *old_dev,
4364 struct net_device *new_dev,
4365 struct net_device *dev);
4366 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4367 void *netdev_lower_dev_get_private(struct net_device *dev,
4368 struct net_device *lower_dev);
4369 void netdev_lower_state_changed(struct net_device *lower_dev,
4370 void *lower_state_info);
4371
4372 /* RSS keys are 40 or 52 bytes long */
4373 #define NETDEV_RSS_KEY_LEN 52
4374 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4375 void netdev_rss_key_fill(void *buffer, size_t len);
4376
4377 int skb_checksum_help(struct sk_buff *skb);
4378 int skb_crc32c_csum_help(struct sk_buff *skb);
4379 int skb_csum_hwoffload_help(struct sk_buff *skb,
4380 const netdev_features_t features);
4381
4382 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4383 netdev_features_t features, bool tx_path);
4384 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4385 netdev_features_t features);
4386
4387 struct netdev_bonding_info {
4388 ifslave slave;
4389 ifbond master;
4390 };
4391
4392 struct netdev_notifier_bonding_info {
4393 struct netdev_notifier_info info; /* must be first */
4394 struct netdev_bonding_info bonding_info;
4395 };
4396
4397 void netdev_bonding_info_change(struct net_device *dev,
4398 struct netdev_bonding_info *bonding_info);
4399
4400 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4401 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4402 #else
4403 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4404 const void *data)
4405 {
4406 }
4407 #endif
4408
4409 static inline
4410 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4411 {
4412 return __skb_gso_segment(skb, features, true);
4413 }
4414 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4415
4416 static inline bool can_checksum_protocol(netdev_features_t features,
4417 __be16 protocol)
4418 {
4419 if (protocol == htons(ETH_P_FCOE))
4420 return !!(features & NETIF_F_FCOE_CRC);
4421
4422 /* Assume this is an IP checksum (not SCTP CRC) */
4423
4424 if (features & NETIF_F_HW_CSUM) {
4425 /* Can checksum everything */
4426 return true;
4427 }
4428
4429 switch (protocol) {
4430 case htons(ETH_P_IP):
4431 return !!(features & NETIF_F_IP_CSUM);
4432 case htons(ETH_P_IPV6):
4433 return !!(features & NETIF_F_IPV6_CSUM);
4434 default:
4435 return false;
4436 }
4437 }
4438
4439 #ifdef CONFIG_BUG
4440 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4441 #else
4442 static inline void netdev_rx_csum_fault(struct net_device *dev,
4443 struct sk_buff *skb)
4444 {
4445 }
4446 #endif
4447 /* rx skb timestamps */
4448 void net_enable_timestamp(void);
4449 void net_disable_timestamp(void);
4450
4451 #ifdef CONFIG_PROC_FS
4452 int __init dev_proc_init(void);
4453 #else
4454 #define dev_proc_init() 0
4455 #endif
4456
4457 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4458 struct sk_buff *skb, struct net_device *dev,
4459 bool more)
4460 {
4461 __this_cpu_write(softnet_data.xmit.more, more);
4462 return ops->ndo_start_xmit(skb, dev);
4463 }
4464
4465 static inline bool netdev_xmit_more(void)
4466 {
4467 return __this_cpu_read(softnet_data.xmit.more);
4468 }
4469
4470 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4471 struct netdev_queue *txq, bool more)
4472 {
4473 const struct net_device_ops *ops = dev->netdev_ops;
4474 netdev_tx_t rc;
4475
4476 rc = __netdev_start_xmit(ops, skb, dev, more);
4477 if (rc == NETDEV_TX_OK)
4478 txq_trans_update(txq);
4479
4480 return rc;
4481 }
4482
4483 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4484 const void *ns);
4485 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4486 const void *ns);
4487
4488 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4489 {
4490 return netdev_class_create_file_ns(class_attr, NULL);
4491 }
4492
4493 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4494 {
4495 netdev_class_remove_file_ns(class_attr, NULL);
4496 }
4497
4498 extern const struct kobj_ns_type_operations net_ns_type_operations;
4499
4500 const char *netdev_drivername(const struct net_device *dev);
4501
4502 void linkwatch_run_queue(void);
4503
4504 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4505 netdev_features_t f2)
4506 {
4507 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4508 if (f1 & NETIF_F_HW_CSUM)
4509 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4510 else
4511 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4512 }
4513
4514 return f1 & f2;
4515 }
4516
4517 static inline netdev_features_t netdev_get_wanted_features(
4518 struct net_device *dev)
4519 {
4520 return (dev->features & ~dev->hw_features) | dev->wanted_features;
4521 }
4522 netdev_features_t netdev_increment_features(netdev_features_t all,
4523 netdev_features_t one, netdev_features_t mask);
4524
4525 /* Allow TSO being used on stacked device :
4526 * Performing the GSO segmentation before last device
4527 * is a performance improvement.
4528 */
4529 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4530 netdev_features_t mask)
4531 {
4532 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4533 }
4534
4535 int __netdev_update_features(struct net_device *dev);
4536 void netdev_update_features(struct net_device *dev);
4537 void netdev_change_features(struct net_device *dev);
4538
4539 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4540 struct net_device *dev);
4541
4542 netdev_features_t passthru_features_check(struct sk_buff *skb,
4543 struct net_device *dev,
4544 netdev_features_t features);
4545 netdev_features_t netif_skb_features(struct sk_buff *skb);
4546
4547 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4548 {
4549 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4550
4551 /* check flags correspondence */
4552 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4553 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4554 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4555 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4556 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4557 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4558 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4559 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4560 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4561 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4562 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4563 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4564 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4565 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4566 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4567 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4568 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4569 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4570
4571 return (features & feature) == feature;
4572 }
4573
4574 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4575 {
4576 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4577 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4578 }
4579
4580 static inline bool netif_needs_gso(struct sk_buff *skb,
4581 netdev_features_t features)
4582 {
4583 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4584 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4585 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4586 }
4587
4588 static inline void netif_set_gso_max_size(struct net_device *dev,
4589 unsigned int size)
4590 {
4591 dev->gso_max_size = size;
4592 }
4593
4594 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4595 int pulled_hlen, u16 mac_offset,
4596 int mac_len)
4597 {
4598 skb->protocol = protocol;
4599 skb->encapsulation = 1;
4600 skb_push(skb, pulled_hlen);
4601 skb_reset_transport_header(skb);
4602 skb->mac_header = mac_offset;
4603 skb->network_header = skb->mac_header + mac_len;
4604 skb->mac_len = mac_len;
4605 }
4606
4607 static inline bool netif_is_macsec(const struct net_device *dev)
4608 {
4609 return dev->priv_flags & IFF_MACSEC;
4610 }
4611
4612 static inline bool netif_is_macvlan(const struct net_device *dev)
4613 {
4614 return dev->priv_flags & IFF_MACVLAN;
4615 }
4616
4617 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4618 {
4619 return dev->priv_flags & IFF_MACVLAN_PORT;
4620 }
4621
4622 static inline bool netif_is_bond_master(const struct net_device *dev)
4623 {
4624 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4625 }
4626
4627 static inline bool netif_is_bond_slave(const struct net_device *dev)
4628 {
4629 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4630 }
4631
4632 static inline bool netif_supports_nofcs(struct net_device *dev)
4633 {
4634 return dev->priv_flags & IFF_SUPP_NOFCS;
4635 }
4636
4637 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4638 {
4639 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4640 }
4641
4642 static inline bool netif_is_l3_master(const struct net_device *dev)
4643 {
4644 return dev->priv_flags & IFF_L3MDEV_MASTER;
4645 }
4646
4647 static inline bool netif_is_l3_slave(const struct net_device *dev)
4648 {
4649 return dev->priv_flags & IFF_L3MDEV_SLAVE;
4650 }
4651
4652 static inline bool netif_is_bridge_master(const struct net_device *dev)
4653 {
4654 return dev->priv_flags & IFF_EBRIDGE;
4655 }
4656
4657 static inline bool netif_is_bridge_port(const struct net_device *dev)
4658 {
4659 return dev->priv_flags & IFF_BRIDGE_PORT;
4660 }
4661
4662 static inline bool netif_is_ovs_master(const struct net_device *dev)
4663 {
4664 return dev->priv_flags & IFF_OPENVSWITCH;
4665 }
4666
4667 static inline bool netif_is_ovs_port(const struct net_device *dev)
4668 {
4669 return dev->priv_flags & IFF_OVS_DATAPATH;
4670 }
4671
4672 static inline bool netif_is_team_master(const struct net_device *dev)
4673 {
4674 return dev->priv_flags & IFF_TEAM;
4675 }
4676
4677 static inline bool netif_is_team_port(const struct net_device *dev)
4678 {
4679 return dev->priv_flags & IFF_TEAM_PORT;
4680 }
4681
4682 static inline bool netif_is_lag_master(const struct net_device *dev)
4683 {
4684 return netif_is_bond_master(dev) || netif_is_team_master(dev);
4685 }
4686
4687 static inline bool netif_is_lag_port(const struct net_device *dev)
4688 {
4689 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4690 }
4691
4692 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4693 {
4694 return dev->priv_flags & IFF_RXFH_CONFIGURED;
4695 }
4696
4697 static inline bool netif_is_failover(const struct net_device *dev)
4698 {
4699 return dev->priv_flags & IFF_FAILOVER;
4700 }
4701
4702 static inline bool netif_is_failover_slave(const struct net_device *dev)
4703 {
4704 return dev->priv_flags & IFF_FAILOVER_SLAVE;
4705 }
4706
4707 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4708 static inline void netif_keep_dst(struct net_device *dev)
4709 {
4710 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4711 }
4712
4713 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4714 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4715 {
4716 /* TODO: reserve and use an additional IFF bit, if we get more users */
4717 return dev->priv_flags & IFF_MACSEC;
4718 }
4719
4720 extern struct pernet_operations __net_initdata loopback_net_ops;
4721
4722 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4723
4724 /* netdev_printk helpers, similar to dev_printk */
4725
4726 static inline const char *netdev_name(const struct net_device *dev)
4727 {
4728 if (!dev->name[0] || strchr(dev->name, '%'))
4729 return "(unnamed net_device)";
4730 return dev->name;
4731 }
4732
4733 static inline bool netdev_unregistering(const struct net_device *dev)
4734 {
4735 return dev->reg_state == NETREG_UNREGISTERING;
4736 }
4737
4738 static inline const char *netdev_reg_state(const struct net_device *dev)
4739 {
4740 switch (dev->reg_state) {
4741 case NETREG_UNINITIALIZED: return " (uninitialized)";
4742 case NETREG_REGISTERED: return "";
4743 case NETREG_UNREGISTERING: return " (unregistering)";
4744 case NETREG_UNREGISTERED: return " (unregistered)";
4745 case NETREG_RELEASED: return " (released)";
4746 case NETREG_DUMMY: return " (dummy)";
4747 }
4748
4749 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4750 return " (unknown)";
4751 }
4752
4753 __printf(3, 4) __cold
4754 void netdev_printk(const char *level, const struct net_device *dev,
4755 const char *format, ...);
4756 __printf(2, 3) __cold
4757 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4758 __printf(2, 3) __cold
4759 void netdev_alert(const struct net_device *dev, const char *format, ...);
4760 __printf(2, 3) __cold
4761 void netdev_crit(const struct net_device *dev, const char *format, ...);
4762 __printf(2, 3) __cold
4763 void netdev_err(const struct net_device *dev, const char *format, ...);
4764 __printf(2, 3) __cold
4765 void netdev_warn(const struct net_device *dev, const char *format, ...);
4766 __printf(2, 3) __cold
4767 void netdev_notice(const struct net_device *dev, const char *format, ...);
4768 __printf(2, 3) __cold
4769 void netdev_info(const struct net_device *dev, const char *format, ...);
4770
4771 #define netdev_level_once(level, dev, fmt, ...) \
4772 do { \
4773 static bool __print_once __read_mostly; \
4774 \
4775 if (!__print_once) { \
4776 __print_once = true; \
4777 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \
4778 } \
4779 } while (0)
4780
4781 #define netdev_emerg_once(dev, fmt, ...) \
4782 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4783 #define netdev_alert_once(dev, fmt, ...) \
4784 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4785 #define netdev_crit_once(dev, fmt, ...) \
4786 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4787 #define netdev_err_once(dev, fmt, ...) \
4788 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4789 #define netdev_warn_once(dev, fmt, ...) \
4790 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4791 #define netdev_notice_once(dev, fmt, ...) \
4792 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4793 #define netdev_info_once(dev, fmt, ...) \
4794 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4795
4796 #define MODULE_ALIAS_NETDEV(device) \
4797 MODULE_ALIAS("netdev-" device)
4798
4799 #if defined(CONFIG_DYNAMIC_DEBUG)
4800 #define netdev_dbg(__dev, format, args...) \
4801 do { \
4802 dynamic_netdev_dbg(__dev, format, ##args); \
4803 } while (0)
4804 #elif defined(DEBUG)
4805 #define netdev_dbg(__dev, format, args...) \
4806 netdev_printk(KERN_DEBUG, __dev, format, ##args)
4807 #else
4808 #define netdev_dbg(__dev, format, args...) \
4809 ({ \
4810 if (0) \
4811 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4812 })
4813 #endif
4814
4815 #if defined(VERBOSE_DEBUG)
4816 #define netdev_vdbg netdev_dbg
4817 #else
4818
4819 #define netdev_vdbg(dev, format, args...) \
4820 ({ \
4821 if (0) \
4822 netdev_printk(KERN_DEBUG, dev, format, ##args); \
4823 0; \
4824 })
4825 #endif
4826
4827 /*
4828 * netdev_WARN() acts like dev_printk(), but with the key difference
4829 * of using a WARN/WARN_ON to get the message out, including the
4830 * file/line information and a backtrace.
4831 */
4832 #define netdev_WARN(dev, format, args...) \
4833 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \
4834 netdev_reg_state(dev), ##args)
4835
4836 #define netdev_WARN_ONCE(dev, format, args...) \
4837 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \
4838 netdev_reg_state(dev), ##args)
4839
4840 /* netif printk helpers, similar to netdev_printk */
4841
4842 #define netif_printk(priv, type, level, dev, fmt, args...) \
4843 do { \
4844 if (netif_msg_##type(priv)) \
4845 netdev_printk(level, (dev), fmt, ##args); \
4846 } while (0)
4847
4848 #define netif_level(level, priv, type, dev, fmt, args...) \
4849 do { \
4850 if (netif_msg_##type(priv)) \
4851 netdev_##level(dev, fmt, ##args); \
4852 } while (0)
4853
4854 #define netif_emerg(priv, type, dev, fmt, args...) \
4855 netif_level(emerg, priv, type, dev, fmt, ##args)
4856 #define netif_alert(priv, type, dev, fmt, args...) \
4857 netif_level(alert, priv, type, dev, fmt, ##args)
4858 #define netif_crit(priv, type, dev, fmt, args...) \
4859 netif_level(crit, priv, type, dev, fmt, ##args)
4860 #define netif_err(priv, type, dev, fmt, args...) \
4861 netif_level(err, priv, type, dev, fmt, ##args)
4862 #define netif_warn(priv, type, dev, fmt, args...) \
4863 netif_level(warn, priv, type, dev, fmt, ##args)
4864 #define netif_notice(priv, type, dev, fmt, args...) \
4865 netif_level(notice, priv, type, dev, fmt, ##args)
4866 #define netif_info(priv, type, dev, fmt, args...) \
4867 netif_level(info, priv, type, dev, fmt, ##args)
4868
4869 #if defined(CONFIG_DYNAMIC_DEBUG)
4870 #define netif_dbg(priv, type, netdev, format, args...) \
4871 do { \
4872 if (netif_msg_##type(priv)) \
4873 dynamic_netdev_dbg(netdev, format, ##args); \
4874 } while (0)
4875 #elif defined(DEBUG)
4876 #define netif_dbg(priv, type, dev, format, args...) \
4877 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4878 #else
4879 #define netif_dbg(priv, type, dev, format, args...) \
4880 ({ \
4881 if (0) \
4882 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4883 0; \
4884 })
4885 #endif
4886
4887 /* if @cond then downgrade to debug, else print at @level */
4888 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \
4889 do { \
4890 if (cond) \
4891 netif_dbg(priv, type, netdev, fmt, ##args); \
4892 else \
4893 netif_ ## level(priv, type, netdev, fmt, ##args); \
4894 } while (0)
4895
4896 #if defined(VERBOSE_DEBUG)
4897 #define netif_vdbg netif_dbg
4898 #else
4899 #define netif_vdbg(priv, type, dev, format, args...) \
4900 ({ \
4901 if (0) \
4902 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4903 0; \
4904 })
4905 #endif
4906
4907 /*
4908 * The list of packet types we will receive (as opposed to discard)
4909 * and the routines to invoke.
4910 *
4911 * Why 16. Because with 16 the only overlap we get on a hash of the
4912 * low nibble of the protocol value is RARP/SNAP/X.25.
4913 *
4914 * 0800 IP
4915 * 0001 802.3
4916 * 0002 AX.25
4917 * 0004 802.2
4918 * 8035 RARP
4919 * 0005 SNAP
4920 * 0805 X.25
4921 * 0806 ARP
4922 * 8137 IPX
4923 * 0009 Localtalk
4924 * 86DD IPv6
4925 */
4926 #define PTYPE_HASH_SIZE (16)
4927 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4928
4929 extern struct net_device *blackhole_netdev;
4930
4931 #endif /* _LINUX_NETDEVICE_H */