]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/netdevice.h
static keys: Introduce 'struct static_key', static_key_true()/false() and static_key_...
[mirror_ubuntu-bionic-kernel.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/if.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_link.h>
32
33 #ifdef __KERNEL__
34 #include <linux/pm_qos.h>
35 #include <linux/timer.h>
36 #include <linux/delay.h>
37 #include <linux/atomic.h>
38 #include <asm/cache.h>
39 #include <asm/byteorder.h>
40
41 #include <linux/device.h>
42 #include <linux/percpu.h>
43 #include <linux/rculist.h>
44 #include <linux/dmaengine.h>
45 #include <linux/workqueue.h>
46 #include <linux/dynamic_queue_limits.h>
47
48 #include <linux/ethtool.h>
49 #include <net/net_namespace.h>
50 #include <net/dsa.h>
51 #ifdef CONFIG_DCB
52 #include <net/dcbnl.h>
53 #endif
54 #include <net/netprio_cgroup.h>
55
56 #include <linux/netdev_features.h>
57
58 struct netpoll_info;
59 struct phy_device;
60 /* 802.11 specific */
61 struct wireless_dev;
62 /* source back-compat hooks */
63 #define SET_ETHTOOL_OPS(netdev,ops) \
64 ( (netdev)->ethtool_ops = (ops) )
65
66 /* hardware address assignment types */
67 #define NET_ADDR_PERM 0 /* address is permanent (default) */
68 #define NET_ADDR_RANDOM 1 /* address is generated randomly */
69 #define NET_ADDR_STOLEN 2 /* address is stolen from other device */
70
71 /* Backlog congestion levels */
72 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
73 #define NET_RX_DROP 1 /* packet dropped */
74
75 /*
76 * Transmit return codes: transmit return codes originate from three different
77 * namespaces:
78 *
79 * - qdisc return codes
80 * - driver transmit return codes
81 * - errno values
82 *
83 * Drivers are allowed to return any one of those in their hard_start_xmit()
84 * function. Real network devices commonly used with qdiscs should only return
85 * the driver transmit return codes though - when qdiscs are used, the actual
86 * transmission happens asynchronously, so the value is not propagated to
87 * higher layers. Virtual network devices transmit synchronously, in this case
88 * the driver transmit return codes are consumed by dev_queue_xmit(), all
89 * others are propagated to higher layers.
90 */
91
92 /* qdisc ->enqueue() return codes. */
93 #define NET_XMIT_SUCCESS 0x00
94 #define NET_XMIT_DROP 0x01 /* skb dropped */
95 #define NET_XMIT_CN 0x02 /* congestion notification */
96 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
97 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
98
99 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
100 * indicates that the device will soon be dropping packets, or already drops
101 * some packets of the same priority; prompting us to send less aggressively. */
102 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
103 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
104
105 /* Driver transmit return codes */
106 #define NETDEV_TX_MASK 0xf0
107
108 enum netdev_tx {
109 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
110 NETDEV_TX_OK = 0x00, /* driver took care of packet */
111 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
112 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
113 };
114 typedef enum netdev_tx netdev_tx_t;
115
116 /*
117 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
118 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
119 */
120 static inline bool dev_xmit_complete(int rc)
121 {
122 /*
123 * Positive cases with an skb consumed by a driver:
124 * - successful transmission (rc == NETDEV_TX_OK)
125 * - error while transmitting (rc < 0)
126 * - error while queueing to a different device (rc & NET_XMIT_MASK)
127 */
128 if (likely(rc < NET_XMIT_MASK))
129 return true;
130
131 return false;
132 }
133
134 #endif
135
136 #define MAX_ADDR_LEN 32 /* Largest hardware address length */
137
138 /* Initial net device group. All devices belong to group 0 by default. */
139 #define INIT_NETDEV_GROUP 0
140
141 #ifdef __KERNEL__
142 /*
143 * Compute the worst case header length according to the protocols
144 * used.
145 */
146
147 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
148 # if defined(CONFIG_MAC80211_MESH)
149 # define LL_MAX_HEADER 128
150 # else
151 # define LL_MAX_HEADER 96
152 # endif
153 #elif IS_ENABLED(CONFIG_TR)
154 # define LL_MAX_HEADER 48
155 #else
156 # define LL_MAX_HEADER 32
157 #endif
158
159 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
160 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
161 #define MAX_HEADER LL_MAX_HEADER
162 #else
163 #define MAX_HEADER (LL_MAX_HEADER + 48)
164 #endif
165
166 /*
167 * Old network device statistics. Fields are native words
168 * (unsigned long) so they can be read and written atomically.
169 */
170
171 struct net_device_stats {
172 unsigned long rx_packets;
173 unsigned long tx_packets;
174 unsigned long rx_bytes;
175 unsigned long tx_bytes;
176 unsigned long rx_errors;
177 unsigned long tx_errors;
178 unsigned long rx_dropped;
179 unsigned long tx_dropped;
180 unsigned long multicast;
181 unsigned long collisions;
182 unsigned long rx_length_errors;
183 unsigned long rx_over_errors;
184 unsigned long rx_crc_errors;
185 unsigned long rx_frame_errors;
186 unsigned long rx_fifo_errors;
187 unsigned long rx_missed_errors;
188 unsigned long tx_aborted_errors;
189 unsigned long tx_carrier_errors;
190 unsigned long tx_fifo_errors;
191 unsigned long tx_heartbeat_errors;
192 unsigned long tx_window_errors;
193 unsigned long rx_compressed;
194 unsigned long tx_compressed;
195 };
196
197 #endif /* __KERNEL__ */
198
199
200 /* Media selection options. */
201 enum {
202 IF_PORT_UNKNOWN = 0,
203 IF_PORT_10BASE2,
204 IF_PORT_10BASET,
205 IF_PORT_AUI,
206 IF_PORT_100BASET,
207 IF_PORT_100BASETX,
208 IF_PORT_100BASEFX
209 };
210
211 #ifdef __KERNEL__
212
213 #include <linux/cache.h>
214 #include <linux/skbuff.h>
215
216 #ifdef CONFIG_RPS
217 #include <linux/static_key.h>
218 extern struct static_key rps_needed;
219 #endif
220
221 struct neighbour;
222 struct neigh_parms;
223 struct sk_buff;
224
225 struct netdev_hw_addr {
226 struct list_head list;
227 unsigned char addr[MAX_ADDR_LEN];
228 unsigned char type;
229 #define NETDEV_HW_ADDR_T_LAN 1
230 #define NETDEV_HW_ADDR_T_SAN 2
231 #define NETDEV_HW_ADDR_T_SLAVE 3
232 #define NETDEV_HW_ADDR_T_UNICAST 4
233 #define NETDEV_HW_ADDR_T_MULTICAST 5
234 bool synced;
235 bool global_use;
236 int refcount;
237 struct rcu_head rcu_head;
238 };
239
240 struct netdev_hw_addr_list {
241 struct list_head list;
242 int count;
243 };
244
245 #define netdev_hw_addr_list_count(l) ((l)->count)
246 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
247 #define netdev_hw_addr_list_for_each(ha, l) \
248 list_for_each_entry(ha, &(l)->list, list)
249
250 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
251 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
252 #define netdev_for_each_uc_addr(ha, dev) \
253 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
254
255 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
256 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
257 #define netdev_for_each_mc_addr(ha, dev) \
258 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
259
260 struct hh_cache {
261 u16 hh_len;
262 u16 __pad;
263 seqlock_t hh_lock;
264
265 /* cached hardware header; allow for machine alignment needs. */
266 #define HH_DATA_MOD 16
267 #define HH_DATA_OFF(__len) \
268 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
269 #define HH_DATA_ALIGN(__len) \
270 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
271 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
272 };
273
274 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
275 * Alternative is:
276 * dev->hard_header_len ? (dev->hard_header_len +
277 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
278 *
279 * We could use other alignment values, but we must maintain the
280 * relationship HH alignment <= LL alignment.
281 */
282 #define LL_RESERVED_SPACE(dev) \
283 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
284 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
285 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
286
287 struct header_ops {
288 int (*create) (struct sk_buff *skb, struct net_device *dev,
289 unsigned short type, const void *daddr,
290 const void *saddr, unsigned len);
291 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
292 int (*rebuild)(struct sk_buff *skb);
293 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
294 void (*cache_update)(struct hh_cache *hh,
295 const struct net_device *dev,
296 const unsigned char *haddr);
297 };
298
299 /* These flag bits are private to the generic network queueing
300 * layer, they may not be explicitly referenced by any other
301 * code.
302 */
303
304 enum netdev_state_t {
305 __LINK_STATE_START,
306 __LINK_STATE_PRESENT,
307 __LINK_STATE_NOCARRIER,
308 __LINK_STATE_LINKWATCH_PENDING,
309 __LINK_STATE_DORMANT,
310 };
311
312
313 /*
314 * This structure holds at boot time configured netdevice settings. They
315 * are then used in the device probing.
316 */
317 struct netdev_boot_setup {
318 char name[IFNAMSIZ];
319 struct ifmap map;
320 };
321 #define NETDEV_BOOT_SETUP_MAX 8
322
323 extern int __init netdev_boot_setup(char *str);
324
325 /*
326 * Structure for NAPI scheduling similar to tasklet but with weighting
327 */
328 struct napi_struct {
329 /* The poll_list must only be managed by the entity which
330 * changes the state of the NAPI_STATE_SCHED bit. This means
331 * whoever atomically sets that bit can add this napi_struct
332 * to the per-cpu poll_list, and whoever clears that bit
333 * can remove from the list right before clearing the bit.
334 */
335 struct list_head poll_list;
336
337 unsigned long state;
338 int weight;
339 int (*poll)(struct napi_struct *, int);
340 #ifdef CONFIG_NETPOLL
341 spinlock_t poll_lock;
342 int poll_owner;
343 #endif
344
345 unsigned int gro_count;
346
347 struct net_device *dev;
348 struct list_head dev_list;
349 struct sk_buff *gro_list;
350 struct sk_buff *skb;
351 };
352
353 enum {
354 NAPI_STATE_SCHED, /* Poll is scheduled */
355 NAPI_STATE_DISABLE, /* Disable pending */
356 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
357 };
358
359 enum gro_result {
360 GRO_MERGED,
361 GRO_MERGED_FREE,
362 GRO_HELD,
363 GRO_NORMAL,
364 GRO_DROP,
365 };
366 typedef enum gro_result gro_result_t;
367
368 /*
369 * enum rx_handler_result - Possible return values for rx_handlers.
370 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
371 * further.
372 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
373 * case skb->dev was changed by rx_handler.
374 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
375 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
376 *
377 * rx_handlers are functions called from inside __netif_receive_skb(), to do
378 * special processing of the skb, prior to delivery to protocol handlers.
379 *
380 * Currently, a net_device can only have a single rx_handler registered. Trying
381 * to register a second rx_handler will return -EBUSY.
382 *
383 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
384 * To unregister a rx_handler on a net_device, use
385 * netdev_rx_handler_unregister().
386 *
387 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
388 * do with the skb.
389 *
390 * If the rx_handler consumed to skb in some way, it should return
391 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
392 * the skb to be delivered in some other ways.
393 *
394 * If the rx_handler changed skb->dev, to divert the skb to another
395 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
396 * new device will be called if it exists.
397 *
398 * If the rx_handler consider the skb should be ignored, it should return
399 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
400 * are registred on exact device (ptype->dev == skb->dev).
401 *
402 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
403 * delivered, it should return RX_HANDLER_PASS.
404 *
405 * A device without a registered rx_handler will behave as if rx_handler
406 * returned RX_HANDLER_PASS.
407 */
408
409 enum rx_handler_result {
410 RX_HANDLER_CONSUMED,
411 RX_HANDLER_ANOTHER,
412 RX_HANDLER_EXACT,
413 RX_HANDLER_PASS,
414 };
415 typedef enum rx_handler_result rx_handler_result_t;
416 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
417
418 extern void __napi_schedule(struct napi_struct *n);
419
420 static inline int napi_disable_pending(struct napi_struct *n)
421 {
422 return test_bit(NAPI_STATE_DISABLE, &n->state);
423 }
424
425 /**
426 * napi_schedule_prep - check if napi can be scheduled
427 * @n: napi context
428 *
429 * Test if NAPI routine is already running, and if not mark
430 * it as running. This is used as a condition variable
431 * insure only one NAPI poll instance runs. We also make
432 * sure there is no pending NAPI disable.
433 */
434 static inline int napi_schedule_prep(struct napi_struct *n)
435 {
436 return !napi_disable_pending(n) &&
437 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
438 }
439
440 /**
441 * napi_schedule - schedule NAPI poll
442 * @n: napi context
443 *
444 * Schedule NAPI poll routine to be called if it is not already
445 * running.
446 */
447 static inline void napi_schedule(struct napi_struct *n)
448 {
449 if (napi_schedule_prep(n))
450 __napi_schedule(n);
451 }
452
453 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
454 static inline int napi_reschedule(struct napi_struct *napi)
455 {
456 if (napi_schedule_prep(napi)) {
457 __napi_schedule(napi);
458 return 1;
459 }
460 return 0;
461 }
462
463 /**
464 * napi_complete - NAPI processing complete
465 * @n: napi context
466 *
467 * Mark NAPI processing as complete.
468 */
469 extern void __napi_complete(struct napi_struct *n);
470 extern void napi_complete(struct napi_struct *n);
471
472 /**
473 * napi_disable - prevent NAPI from scheduling
474 * @n: napi context
475 *
476 * Stop NAPI from being scheduled on this context.
477 * Waits till any outstanding processing completes.
478 */
479 static inline void napi_disable(struct napi_struct *n)
480 {
481 set_bit(NAPI_STATE_DISABLE, &n->state);
482 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
483 msleep(1);
484 clear_bit(NAPI_STATE_DISABLE, &n->state);
485 }
486
487 /**
488 * napi_enable - enable NAPI scheduling
489 * @n: napi context
490 *
491 * Resume NAPI from being scheduled on this context.
492 * Must be paired with napi_disable.
493 */
494 static inline void napi_enable(struct napi_struct *n)
495 {
496 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
497 smp_mb__before_clear_bit();
498 clear_bit(NAPI_STATE_SCHED, &n->state);
499 }
500
501 #ifdef CONFIG_SMP
502 /**
503 * napi_synchronize - wait until NAPI is not running
504 * @n: napi context
505 *
506 * Wait until NAPI is done being scheduled on this context.
507 * Waits till any outstanding processing completes but
508 * does not disable future activations.
509 */
510 static inline void napi_synchronize(const struct napi_struct *n)
511 {
512 while (test_bit(NAPI_STATE_SCHED, &n->state))
513 msleep(1);
514 }
515 #else
516 # define napi_synchronize(n) barrier()
517 #endif
518
519 enum netdev_queue_state_t {
520 __QUEUE_STATE_DRV_XOFF,
521 __QUEUE_STATE_STACK_XOFF,
522 __QUEUE_STATE_FROZEN,
523 #define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF) | \
524 (1 << __QUEUE_STATE_STACK_XOFF))
525 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
526 (1 << __QUEUE_STATE_FROZEN))
527 };
528 /*
529 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
530 * netif_tx_* functions below are used to manipulate this flag. The
531 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
532 * queue independently. The netif_xmit_*stopped functions below are called
533 * to check if the queue has been stopped by the driver or stack (either
534 * of the XOFF bits are set in the state). Drivers should not need to call
535 * netif_xmit*stopped functions, they should only be using netif_tx_*.
536 */
537
538 struct netdev_queue {
539 /*
540 * read mostly part
541 */
542 struct net_device *dev;
543 struct Qdisc *qdisc;
544 struct Qdisc *qdisc_sleeping;
545 #ifdef CONFIG_SYSFS
546 struct kobject kobj;
547 #endif
548 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
549 int numa_node;
550 #endif
551 /*
552 * write mostly part
553 */
554 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
555 int xmit_lock_owner;
556 /*
557 * please use this field instead of dev->trans_start
558 */
559 unsigned long trans_start;
560
561 /*
562 * Number of TX timeouts for this queue
563 * (/sys/class/net/DEV/Q/trans_timeout)
564 */
565 unsigned long trans_timeout;
566
567 unsigned long state;
568
569 #ifdef CONFIG_BQL
570 struct dql dql;
571 #endif
572 } ____cacheline_aligned_in_smp;
573
574 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
575 {
576 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
577 return q->numa_node;
578 #else
579 return NUMA_NO_NODE;
580 #endif
581 }
582
583 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
584 {
585 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
586 q->numa_node = node;
587 #endif
588 }
589
590 #ifdef CONFIG_RPS
591 /*
592 * This structure holds an RPS map which can be of variable length. The
593 * map is an array of CPUs.
594 */
595 struct rps_map {
596 unsigned int len;
597 struct rcu_head rcu;
598 u16 cpus[0];
599 };
600 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
601
602 /*
603 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
604 * tail pointer for that CPU's input queue at the time of last enqueue, and
605 * a hardware filter index.
606 */
607 struct rps_dev_flow {
608 u16 cpu;
609 u16 filter;
610 unsigned int last_qtail;
611 };
612 #define RPS_NO_FILTER 0xffff
613
614 /*
615 * The rps_dev_flow_table structure contains a table of flow mappings.
616 */
617 struct rps_dev_flow_table {
618 unsigned int mask;
619 struct rcu_head rcu;
620 struct work_struct free_work;
621 struct rps_dev_flow flows[0];
622 };
623 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
624 ((_num) * sizeof(struct rps_dev_flow)))
625
626 /*
627 * The rps_sock_flow_table contains mappings of flows to the last CPU
628 * on which they were processed by the application (set in recvmsg).
629 */
630 struct rps_sock_flow_table {
631 unsigned int mask;
632 u16 ents[0];
633 };
634 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
635 ((_num) * sizeof(u16)))
636
637 #define RPS_NO_CPU 0xffff
638
639 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
640 u32 hash)
641 {
642 if (table && hash) {
643 unsigned int cpu, index = hash & table->mask;
644
645 /* We only give a hint, preemption can change cpu under us */
646 cpu = raw_smp_processor_id();
647
648 if (table->ents[index] != cpu)
649 table->ents[index] = cpu;
650 }
651 }
652
653 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
654 u32 hash)
655 {
656 if (table && hash)
657 table->ents[hash & table->mask] = RPS_NO_CPU;
658 }
659
660 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
661
662 #ifdef CONFIG_RFS_ACCEL
663 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
664 u32 flow_id, u16 filter_id);
665 #endif
666
667 /* This structure contains an instance of an RX queue. */
668 struct netdev_rx_queue {
669 struct rps_map __rcu *rps_map;
670 struct rps_dev_flow_table __rcu *rps_flow_table;
671 struct kobject kobj;
672 struct net_device *dev;
673 } ____cacheline_aligned_in_smp;
674 #endif /* CONFIG_RPS */
675
676 #ifdef CONFIG_XPS
677 /*
678 * This structure holds an XPS map which can be of variable length. The
679 * map is an array of queues.
680 */
681 struct xps_map {
682 unsigned int len;
683 unsigned int alloc_len;
684 struct rcu_head rcu;
685 u16 queues[0];
686 };
687 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
688 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
689 / sizeof(u16))
690
691 /*
692 * This structure holds all XPS maps for device. Maps are indexed by CPU.
693 */
694 struct xps_dev_maps {
695 struct rcu_head rcu;
696 struct xps_map __rcu *cpu_map[0];
697 };
698 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
699 (nr_cpu_ids * sizeof(struct xps_map *)))
700 #endif /* CONFIG_XPS */
701
702 #define TC_MAX_QUEUE 16
703 #define TC_BITMASK 15
704 /* HW offloaded queuing disciplines txq count and offset maps */
705 struct netdev_tc_txq {
706 u16 count;
707 u16 offset;
708 };
709
710 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
711 /*
712 * This structure is to hold information about the device
713 * configured to run FCoE protocol stack.
714 */
715 struct netdev_fcoe_hbainfo {
716 char manufacturer[64];
717 char serial_number[64];
718 char hardware_version[64];
719 char driver_version[64];
720 char optionrom_version[64];
721 char firmware_version[64];
722 char model[256];
723 char model_description[256];
724 };
725 #endif
726
727 /*
728 * This structure defines the management hooks for network devices.
729 * The following hooks can be defined; unless noted otherwise, they are
730 * optional and can be filled with a null pointer.
731 *
732 * int (*ndo_init)(struct net_device *dev);
733 * This function is called once when network device is registered.
734 * The network device can use this to any late stage initializaton
735 * or semantic validattion. It can fail with an error code which will
736 * be propogated back to register_netdev
737 *
738 * void (*ndo_uninit)(struct net_device *dev);
739 * This function is called when device is unregistered or when registration
740 * fails. It is not called if init fails.
741 *
742 * int (*ndo_open)(struct net_device *dev);
743 * This function is called when network device transistions to the up
744 * state.
745 *
746 * int (*ndo_stop)(struct net_device *dev);
747 * This function is called when network device transistions to the down
748 * state.
749 *
750 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
751 * struct net_device *dev);
752 * Called when a packet needs to be transmitted.
753 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
754 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
755 * Required can not be NULL.
756 *
757 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
758 * Called to decide which queue to when device supports multiple
759 * transmit queues.
760 *
761 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
762 * This function is called to allow device receiver to make
763 * changes to configuration when multicast or promiscious is enabled.
764 *
765 * void (*ndo_set_rx_mode)(struct net_device *dev);
766 * This function is called device changes address list filtering.
767 * If driver handles unicast address filtering, it should set
768 * IFF_UNICAST_FLT to its priv_flags.
769 *
770 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
771 * This function is called when the Media Access Control address
772 * needs to be changed. If this interface is not defined, the
773 * mac address can not be changed.
774 *
775 * int (*ndo_validate_addr)(struct net_device *dev);
776 * Test if Media Access Control address is valid for the device.
777 *
778 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
779 * Called when a user request an ioctl which can't be handled by
780 * the generic interface code. If not defined ioctl's return
781 * not supported error code.
782 *
783 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
784 * Used to set network devices bus interface parameters. This interface
785 * is retained for legacy reason, new devices should use the bus
786 * interface (PCI) for low level management.
787 *
788 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
789 * Called when a user wants to change the Maximum Transfer Unit
790 * of a device. If not defined, any request to change MTU will
791 * will return an error.
792 *
793 * void (*ndo_tx_timeout)(struct net_device *dev);
794 * Callback uses when the transmitter has not made any progress
795 * for dev->watchdog ticks.
796 *
797 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
798 * struct rtnl_link_stats64 *storage);
799 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
800 * Called when a user wants to get the network device usage
801 * statistics. Drivers must do one of the following:
802 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
803 * rtnl_link_stats64 structure passed by the caller.
804 * 2. Define @ndo_get_stats to update a net_device_stats structure
805 * (which should normally be dev->stats) and return a pointer to
806 * it. The structure may be changed asynchronously only if each
807 * field is written atomically.
808 * 3. Update dev->stats asynchronously and atomically, and define
809 * neither operation.
810 *
811 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
812 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
813 * this function is called when a VLAN id is registered.
814 *
815 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
816 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
817 * this function is called when a VLAN id is unregistered.
818 *
819 * void (*ndo_poll_controller)(struct net_device *dev);
820 *
821 * SR-IOV management functions.
822 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
823 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
824 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
825 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
826 * int (*ndo_get_vf_config)(struct net_device *dev,
827 * int vf, struct ifla_vf_info *ivf);
828 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
829 * struct nlattr *port[]);
830 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
831 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
832 * Called to setup 'tc' number of traffic classes in the net device. This
833 * is always called from the stack with the rtnl lock held and netif tx
834 * queues stopped. This allows the netdevice to perform queue management
835 * safely.
836 *
837 * Fiber Channel over Ethernet (FCoE) offload functions.
838 * int (*ndo_fcoe_enable)(struct net_device *dev);
839 * Called when the FCoE protocol stack wants to start using LLD for FCoE
840 * so the underlying device can perform whatever needed configuration or
841 * initialization to support acceleration of FCoE traffic.
842 *
843 * int (*ndo_fcoe_disable)(struct net_device *dev);
844 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
845 * so the underlying device can perform whatever needed clean-ups to
846 * stop supporting acceleration of FCoE traffic.
847 *
848 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
849 * struct scatterlist *sgl, unsigned int sgc);
850 * Called when the FCoE Initiator wants to initialize an I/O that
851 * is a possible candidate for Direct Data Placement (DDP). The LLD can
852 * perform necessary setup and returns 1 to indicate the device is set up
853 * successfully to perform DDP on this I/O, otherwise this returns 0.
854 *
855 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
856 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
857 * indicated by the FC exchange id 'xid', so the underlying device can
858 * clean up and reuse resources for later DDP requests.
859 *
860 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
861 * struct scatterlist *sgl, unsigned int sgc);
862 * Called when the FCoE Target wants to initialize an I/O that
863 * is a possible candidate for Direct Data Placement (DDP). The LLD can
864 * perform necessary setup and returns 1 to indicate the device is set up
865 * successfully to perform DDP on this I/O, otherwise this returns 0.
866 *
867 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
868 * struct netdev_fcoe_hbainfo *hbainfo);
869 * Called when the FCoE Protocol stack wants information on the underlying
870 * device. This information is utilized by the FCoE protocol stack to
871 * register attributes with Fiber Channel management service as per the
872 * FC-GS Fabric Device Management Information(FDMI) specification.
873 *
874 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
875 * Called when the underlying device wants to override default World Wide
876 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
877 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
878 * protocol stack to use.
879 *
880 * RFS acceleration.
881 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
882 * u16 rxq_index, u32 flow_id);
883 * Set hardware filter for RFS. rxq_index is the target queue index;
884 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
885 * Return the filter ID on success, or a negative error code.
886 *
887 * Slave management functions (for bridge, bonding, etc). User should
888 * call netdev_set_master() to set dev->master properly.
889 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
890 * Called to make another netdev an underling.
891 *
892 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
893 * Called to release previously enslaved netdev.
894 *
895 * Feature/offload setting functions.
896 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
897 * netdev_features_t features);
898 * Adjusts the requested feature flags according to device-specific
899 * constraints, and returns the resulting flags. Must not modify
900 * the device state.
901 *
902 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
903 * Called to update device configuration to new features. Passed
904 * feature set might be less than what was returned by ndo_fix_features()).
905 * Must return >0 or -errno if it changed dev->features itself.
906 *
907 */
908 struct net_device_ops {
909 int (*ndo_init)(struct net_device *dev);
910 void (*ndo_uninit)(struct net_device *dev);
911 int (*ndo_open)(struct net_device *dev);
912 int (*ndo_stop)(struct net_device *dev);
913 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
914 struct net_device *dev);
915 u16 (*ndo_select_queue)(struct net_device *dev,
916 struct sk_buff *skb);
917 void (*ndo_change_rx_flags)(struct net_device *dev,
918 int flags);
919 void (*ndo_set_rx_mode)(struct net_device *dev);
920 int (*ndo_set_mac_address)(struct net_device *dev,
921 void *addr);
922 int (*ndo_validate_addr)(struct net_device *dev);
923 int (*ndo_do_ioctl)(struct net_device *dev,
924 struct ifreq *ifr, int cmd);
925 int (*ndo_set_config)(struct net_device *dev,
926 struct ifmap *map);
927 int (*ndo_change_mtu)(struct net_device *dev,
928 int new_mtu);
929 int (*ndo_neigh_setup)(struct net_device *dev,
930 struct neigh_parms *);
931 void (*ndo_tx_timeout) (struct net_device *dev);
932
933 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
934 struct rtnl_link_stats64 *storage);
935 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
936
937 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
938 unsigned short vid);
939 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
940 unsigned short vid);
941 #ifdef CONFIG_NET_POLL_CONTROLLER
942 void (*ndo_poll_controller)(struct net_device *dev);
943 int (*ndo_netpoll_setup)(struct net_device *dev,
944 struct netpoll_info *info);
945 void (*ndo_netpoll_cleanup)(struct net_device *dev);
946 #endif
947 int (*ndo_set_vf_mac)(struct net_device *dev,
948 int queue, u8 *mac);
949 int (*ndo_set_vf_vlan)(struct net_device *dev,
950 int queue, u16 vlan, u8 qos);
951 int (*ndo_set_vf_tx_rate)(struct net_device *dev,
952 int vf, int rate);
953 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
954 int vf, bool setting);
955 int (*ndo_get_vf_config)(struct net_device *dev,
956 int vf,
957 struct ifla_vf_info *ivf);
958 int (*ndo_set_vf_port)(struct net_device *dev,
959 int vf,
960 struct nlattr *port[]);
961 int (*ndo_get_vf_port)(struct net_device *dev,
962 int vf, struct sk_buff *skb);
963 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
964 #if IS_ENABLED(CONFIG_FCOE)
965 int (*ndo_fcoe_enable)(struct net_device *dev);
966 int (*ndo_fcoe_disable)(struct net_device *dev);
967 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
968 u16 xid,
969 struct scatterlist *sgl,
970 unsigned int sgc);
971 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
972 u16 xid);
973 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
974 u16 xid,
975 struct scatterlist *sgl,
976 unsigned int sgc);
977 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
978 struct netdev_fcoe_hbainfo *hbainfo);
979 #endif
980
981 #if IS_ENABLED(CONFIG_LIBFCOE)
982 #define NETDEV_FCOE_WWNN 0
983 #define NETDEV_FCOE_WWPN 1
984 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
985 u64 *wwn, int type);
986 #endif
987
988 #ifdef CONFIG_RFS_ACCEL
989 int (*ndo_rx_flow_steer)(struct net_device *dev,
990 const struct sk_buff *skb,
991 u16 rxq_index,
992 u32 flow_id);
993 #endif
994 int (*ndo_add_slave)(struct net_device *dev,
995 struct net_device *slave_dev);
996 int (*ndo_del_slave)(struct net_device *dev,
997 struct net_device *slave_dev);
998 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
999 netdev_features_t features);
1000 int (*ndo_set_features)(struct net_device *dev,
1001 netdev_features_t features);
1002 int (*ndo_neigh_construct)(struct neighbour *n);
1003 void (*ndo_neigh_destroy)(struct neighbour *n);
1004 };
1005
1006 /*
1007 * The DEVICE structure.
1008 * Actually, this whole structure is a big mistake. It mixes I/O
1009 * data with strictly "high-level" data, and it has to know about
1010 * almost every data structure used in the INET module.
1011 *
1012 * FIXME: cleanup struct net_device such that network protocol info
1013 * moves out.
1014 */
1015
1016 struct net_device {
1017
1018 /*
1019 * This is the first field of the "visible" part of this structure
1020 * (i.e. as seen by users in the "Space.c" file). It is the name
1021 * of the interface.
1022 */
1023 char name[IFNAMSIZ];
1024
1025 struct pm_qos_request pm_qos_req;
1026
1027 /* device name hash chain */
1028 struct hlist_node name_hlist;
1029 /* snmp alias */
1030 char *ifalias;
1031
1032 /*
1033 * I/O specific fields
1034 * FIXME: Merge these and struct ifmap into one
1035 */
1036 unsigned long mem_end; /* shared mem end */
1037 unsigned long mem_start; /* shared mem start */
1038 unsigned long base_addr; /* device I/O address */
1039 unsigned int irq; /* device IRQ number */
1040
1041 /*
1042 * Some hardware also needs these fields, but they are not
1043 * part of the usual set specified in Space.c.
1044 */
1045
1046 unsigned long state;
1047
1048 struct list_head dev_list;
1049 struct list_head napi_list;
1050 struct list_head unreg_list;
1051
1052 /* currently active device features */
1053 netdev_features_t features;
1054 /* user-changeable features */
1055 netdev_features_t hw_features;
1056 /* user-requested features */
1057 netdev_features_t wanted_features;
1058 /* mask of features inheritable by VLAN devices */
1059 netdev_features_t vlan_features;
1060
1061 /* Interface index. Unique device identifier */
1062 int ifindex;
1063 int iflink;
1064
1065 struct net_device_stats stats;
1066 atomic_long_t rx_dropped; /* dropped packets by core network
1067 * Do not use this in drivers.
1068 */
1069
1070 #ifdef CONFIG_WIRELESS_EXT
1071 /* List of functions to handle Wireless Extensions (instead of ioctl).
1072 * See <net/iw_handler.h> for details. Jean II */
1073 const struct iw_handler_def * wireless_handlers;
1074 /* Instance data managed by the core of Wireless Extensions. */
1075 struct iw_public_data * wireless_data;
1076 #endif
1077 /* Management operations */
1078 const struct net_device_ops *netdev_ops;
1079 const struct ethtool_ops *ethtool_ops;
1080
1081 /* Hardware header description */
1082 const struct header_ops *header_ops;
1083
1084 unsigned int flags; /* interface flags (a la BSD) */
1085 unsigned int priv_flags; /* Like 'flags' but invisible to userspace. */
1086 unsigned short gflags;
1087 unsigned short padded; /* How much padding added by alloc_netdev() */
1088
1089 unsigned char operstate; /* RFC2863 operstate */
1090 unsigned char link_mode; /* mapping policy to operstate */
1091
1092 unsigned char if_port; /* Selectable AUI, TP,..*/
1093 unsigned char dma; /* DMA channel */
1094
1095 unsigned int mtu; /* interface MTU value */
1096 unsigned short type; /* interface hardware type */
1097 unsigned short hard_header_len; /* hardware hdr length */
1098
1099 /* extra head- and tailroom the hardware may need, but not in all cases
1100 * can this be guaranteed, especially tailroom. Some cases also use
1101 * LL_MAX_HEADER instead to allocate the skb.
1102 */
1103 unsigned short needed_headroom;
1104 unsigned short needed_tailroom;
1105
1106 /* Interface address info. */
1107 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1108 unsigned char addr_assign_type; /* hw address assignment type */
1109 unsigned char addr_len; /* hardware address length */
1110 unsigned char neigh_priv_len;
1111 unsigned short dev_id; /* for shared network cards */
1112
1113 spinlock_t addr_list_lock;
1114 struct netdev_hw_addr_list uc; /* Unicast mac addresses */
1115 struct netdev_hw_addr_list mc; /* Multicast mac addresses */
1116 bool uc_promisc;
1117 unsigned int promiscuity;
1118 unsigned int allmulti;
1119
1120
1121 /* Protocol specific pointers */
1122
1123 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1124 struct vlan_info __rcu *vlan_info; /* VLAN info */
1125 #endif
1126 #if IS_ENABLED(CONFIG_NET_DSA)
1127 struct dsa_switch_tree *dsa_ptr; /* dsa specific data */
1128 #endif
1129 void *atalk_ptr; /* AppleTalk link */
1130 struct in_device __rcu *ip_ptr; /* IPv4 specific data */
1131 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */
1132 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */
1133 void *ec_ptr; /* Econet specific data */
1134 void *ax25_ptr; /* AX.25 specific data */
1135 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data,
1136 assign before registering */
1137
1138 /*
1139 * Cache lines mostly used on receive path (including eth_type_trans())
1140 */
1141 unsigned long last_rx; /* Time of last Rx
1142 * This should not be set in
1143 * drivers, unless really needed,
1144 * because network stack (bonding)
1145 * use it if/when necessary, to
1146 * avoid dirtying this cache line.
1147 */
1148
1149 struct net_device *master; /* Pointer to master device of a group,
1150 * which this device is member of.
1151 */
1152
1153 /* Interface address info used in eth_type_trans() */
1154 unsigned char *dev_addr; /* hw address, (before bcast
1155 because most packets are
1156 unicast) */
1157
1158 struct netdev_hw_addr_list dev_addrs; /* list of device
1159 hw addresses */
1160
1161 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */
1162
1163 #ifdef CONFIG_SYSFS
1164 struct kset *queues_kset;
1165 #endif
1166
1167 #ifdef CONFIG_RPS
1168 struct netdev_rx_queue *_rx;
1169
1170 /* Number of RX queues allocated at register_netdev() time */
1171 unsigned int num_rx_queues;
1172
1173 /* Number of RX queues currently active in device */
1174 unsigned int real_num_rx_queues;
1175
1176 #ifdef CONFIG_RFS_ACCEL
1177 /* CPU reverse-mapping for RX completion interrupts, indexed
1178 * by RX queue number. Assigned by driver. This must only be
1179 * set if the ndo_rx_flow_steer operation is defined. */
1180 struct cpu_rmap *rx_cpu_rmap;
1181 #endif
1182 #endif
1183
1184 rx_handler_func_t __rcu *rx_handler;
1185 void __rcu *rx_handler_data;
1186
1187 struct netdev_queue __rcu *ingress_queue;
1188
1189 /*
1190 * Cache lines mostly used on transmit path
1191 */
1192 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1193
1194 /* Number of TX queues allocated at alloc_netdev_mq() time */
1195 unsigned int num_tx_queues;
1196
1197 /* Number of TX queues currently active in device */
1198 unsigned int real_num_tx_queues;
1199
1200 /* root qdisc from userspace point of view */
1201 struct Qdisc *qdisc;
1202
1203 unsigned long tx_queue_len; /* Max frames per queue allowed */
1204 spinlock_t tx_global_lock;
1205
1206 #ifdef CONFIG_XPS
1207 struct xps_dev_maps __rcu *xps_maps;
1208 #endif
1209
1210 /* These may be needed for future network-power-down code. */
1211
1212 /*
1213 * trans_start here is expensive for high speed devices on SMP,
1214 * please use netdev_queue->trans_start instead.
1215 */
1216 unsigned long trans_start; /* Time (in jiffies) of last Tx */
1217
1218 int watchdog_timeo; /* used by dev_watchdog() */
1219 struct timer_list watchdog_timer;
1220
1221 /* Number of references to this device */
1222 int __percpu *pcpu_refcnt;
1223
1224 /* delayed register/unregister */
1225 struct list_head todo_list;
1226 /* device index hash chain */
1227 struct hlist_node index_hlist;
1228
1229 struct list_head link_watch_list;
1230
1231 /* register/unregister state machine */
1232 enum { NETREG_UNINITIALIZED=0,
1233 NETREG_REGISTERED, /* completed register_netdevice */
1234 NETREG_UNREGISTERING, /* called unregister_netdevice */
1235 NETREG_UNREGISTERED, /* completed unregister todo */
1236 NETREG_RELEASED, /* called free_netdev */
1237 NETREG_DUMMY, /* dummy device for NAPI poll */
1238 } reg_state:8;
1239
1240 bool dismantle; /* device is going do be freed */
1241
1242 enum {
1243 RTNL_LINK_INITIALIZED,
1244 RTNL_LINK_INITIALIZING,
1245 } rtnl_link_state:16;
1246
1247 /* Called from unregister, can be used to call free_netdev */
1248 void (*destructor)(struct net_device *dev);
1249
1250 #ifdef CONFIG_NETPOLL
1251 struct netpoll_info *npinfo;
1252 #endif
1253
1254 #ifdef CONFIG_NET_NS
1255 /* Network namespace this network device is inside */
1256 struct net *nd_net;
1257 #endif
1258
1259 /* mid-layer private */
1260 union {
1261 void *ml_priv;
1262 struct pcpu_lstats __percpu *lstats; /* loopback stats */
1263 struct pcpu_tstats __percpu *tstats; /* tunnel stats */
1264 struct pcpu_dstats __percpu *dstats; /* dummy stats */
1265 };
1266 /* GARP */
1267 struct garp_port __rcu *garp_port;
1268
1269 /* class/net/name entry */
1270 struct device dev;
1271 /* space for optional device, statistics, and wireless sysfs groups */
1272 const struct attribute_group *sysfs_groups[4];
1273
1274 /* rtnetlink link ops */
1275 const struct rtnl_link_ops *rtnl_link_ops;
1276
1277 /* for setting kernel sock attribute on TCP connection setup */
1278 #define GSO_MAX_SIZE 65536
1279 unsigned int gso_max_size;
1280
1281 #ifdef CONFIG_DCB
1282 /* Data Center Bridging netlink ops */
1283 const struct dcbnl_rtnl_ops *dcbnl_ops;
1284 #endif
1285 u8 num_tc;
1286 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1287 u8 prio_tc_map[TC_BITMASK + 1];
1288
1289 #if IS_ENABLED(CONFIG_FCOE)
1290 /* max exchange id for FCoE LRO by ddp */
1291 unsigned int fcoe_ddp_xid;
1292 #endif
1293 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1294 struct netprio_map __rcu *priomap;
1295 #endif
1296 /* phy device may attach itself for hardware timestamping */
1297 struct phy_device *phydev;
1298
1299 /* group the device belongs to */
1300 int group;
1301 };
1302 #define to_net_dev(d) container_of(d, struct net_device, dev)
1303
1304 #define NETDEV_ALIGN 32
1305
1306 static inline
1307 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1308 {
1309 return dev->prio_tc_map[prio & TC_BITMASK];
1310 }
1311
1312 static inline
1313 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1314 {
1315 if (tc >= dev->num_tc)
1316 return -EINVAL;
1317
1318 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1319 return 0;
1320 }
1321
1322 static inline
1323 void netdev_reset_tc(struct net_device *dev)
1324 {
1325 dev->num_tc = 0;
1326 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1327 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1328 }
1329
1330 static inline
1331 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1332 {
1333 if (tc >= dev->num_tc)
1334 return -EINVAL;
1335
1336 dev->tc_to_txq[tc].count = count;
1337 dev->tc_to_txq[tc].offset = offset;
1338 return 0;
1339 }
1340
1341 static inline
1342 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1343 {
1344 if (num_tc > TC_MAX_QUEUE)
1345 return -EINVAL;
1346
1347 dev->num_tc = num_tc;
1348 return 0;
1349 }
1350
1351 static inline
1352 int netdev_get_num_tc(struct net_device *dev)
1353 {
1354 return dev->num_tc;
1355 }
1356
1357 static inline
1358 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1359 unsigned int index)
1360 {
1361 return &dev->_tx[index];
1362 }
1363
1364 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1365 void (*f)(struct net_device *,
1366 struct netdev_queue *,
1367 void *),
1368 void *arg)
1369 {
1370 unsigned int i;
1371
1372 for (i = 0; i < dev->num_tx_queues; i++)
1373 f(dev, &dev->_tx[i], arg);
1374 }
1375
1376 /*
1377 * Net namespace inlines
1378 */
1379 static inline
1380 struct net *dev_net(const struct net_device *dev)
1381 {
1382 return read_pnet(&dev->nd_net);
1383 }
1384
1385 static inline
1386 void dev_net_set(struct net_device *dev, struct net *net)
1387 {
1388 #ifdef CONFIG_NET_NS
1389 release_net(dev->nd_net);
1390 dev->nd_net = hold_net(net);
1391 #endif
1392 }
1393
1394 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1395 {
1396 #ifdef CONFIG_NET_DSA_TAG_DSA
1397 if (dev->dsa_ptr != NULL)
1398 return dsa_uses_dsa_tags(dev->dsa_ptr);
1399 #endif
1400
1401 return 0;
1402 }
1403
1404 #ifndef CONFIG_NET_NS
1405 static inline void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1406 {
1407 skb->dev = dev;
1408 }
1409 #else /* CONFIG_NET_NS */
1410 void skb_set_dev(struct sk_buff *skb, struct net_device *dev);
1411 #endif
1412
1413 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1414 {
1415 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1416 if (dev->dsa_ptr != NULL)
1417 return dsa_uses_trailer_tags(dev->dsa_ptr);
1418 #endif
1419
1420 return 0;
1421 }
1422
1423 /**
1424 * netdev_priv - access network device private data
1425 * @dev: network device
1426 *
1427 * Get network device private data
1428 */
1429 static inline void *netdev_priv(const struct net_device *dev)
1430 {
1431 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1432 }
1433
1434 /* Set the sysfs physical device reference for the network logical device
1435 * if set prior to registration will cause a symlink during initialization.
1436 */
1437 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1438
1439 /* Set the sysfs device type for the network logical device to allow
1440 * fin grained indentification of different network device types. For
1441 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1442 */
1443 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1444
1445 /**
1446 * netif_napi_add - initialize a napi context
1447 * @dev: network device
1448 * @napi: napi context
1449 * @poll: polling function
1450 * @weight: default weight
1451 *
1452 * netif_napi_add() must be used to initialize a napi context prior to calling
1453 * *any* of the other napi related functions.
1454 */
1455 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1456 int (*poll)(struct napi_struct *, int), int weight);
1457
1458 /**
1459 * netif_napi_del - remove a napi context
1460 * @napi: napi context
1461 *
1462 * netif_napi_del() removes a napi context from the network device napi list
1463 */
1464 void netif_napi_del(struct napi_struct *napi);
1465
1466 struct napi_gro_cb {
1467 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1468 void *frag0;
1469
1470 /* Length of frag0. */
1471 unsigned int frag0_len;
1472
1473 /* This indicates where we are processing relative to skb->data. */
1474 int data_offset;
1475
1476 /* This is non-zero if the packet may be of the same flow. */
1477 int same_flow;
1478
1479 /* This is non-zero if the packet cannot be merged with the new skb. */
1480 int flush;
1481
1482 /* Number of segments aggregated. */
1483 int count;
1484
1485 /* Free the skb? */
1486 int free;
1487 };
1488
1489 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1490
1491 struct packet_type {
1492 __be16 type; /* This is really htons(ether_type). */
1493 struct net_device *dev; /* NULL is wildcarded here */
1494 int (*func) (struct sk_buff *,
1495 struct net_device *,
1496 struct packet_type *,
1497 struct net_device *);
1498 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1499 netdev_features_t features);
1500 int (*gso_send_check)(struct sk_buff *skb);
1501 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1502 struct sk_buff *skb);
1503 int (*gro_complete)(struct sk_buff *skb);
1504 void *af_packet_priv;
1505 struct list_head list;
1506 };
1507
1508 #include <linux/notifier.h>
1509
1510 /* netdevice notifier chain. Please remember to update the rtnetlink
1511 * notification exclusion list in rtnetlink_event() when adding new
1512 * types.
1513 */
1514 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
1515 #define NETDEV_DOWN 0x0002
1516 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
1517 detected a hardware crash and restarted
1518 - we can use this eg to kick tcp sessions
1519 once done */
1520 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
1521 #define NETDEV_REGISTER 0x0005
1522 #define NETDEV_UNREGISTER 0x0006
1523 #define NETDEV_CHANGEMTU 0x0007
1524 #define NETDEV_CHANGEADDR 0x0008
1525 #define NETDEV_GOING_DOWN 0x0009
1526 #define NETDEV_CHANGENAME 0x000A
1527 #define NETDEV_FEAT_CHANGE 0x000B
1528 #define NETDEV_BONDING_FAILOVER 0x000C
1529 #define NETDEV_PRE_UP 0x000D
1530 #define NETDEV_PRE_TYPE_CHANGE 0x000E
1531 #define NETDEV_POST_TYPE_CHANGE 0x000F
1532 #define NETDEV_POST_INIT 0x0010
1533 #define NETDEV_UNREGISTER_BATCH 0x0011
1534 #define NETDEV_RELEASE 0x0012
1535 #define NETDEV_NOTIFY_PEERS 0x0013
1536 #define NETDEV_JOIN 0x0014
1537
1538 extern int register_netdevice_notifier(struct notifier_block *nb);
1539 extern int unregister_netdevice_notifier(struct notifier_block *nb);
1540 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1541
1542
1543 extern rwlock_t dev_base_lock; /* Device list lock */
1544
1545
1546 #define for_each_netdev(net, d) \
1547 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1548 #define for_each_netdev_reverse(net, d) \
1549 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1550 #define for_each_netdev_rcu(net, d) \
1551 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1552 #define for_each_netdev_safe(net, d, n) \
1553 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1554 #define for_each_netdev_continue(net, d) \
1555 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1556 #define for_each_netdev_continue_rcu(net, d) \
1557 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1558 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
1559
1560 static inline struct net_device *next_net_device(struct net_device *dev)
1561 {
1562 struct list_head *lh;
1563 struct net *net;
1564
1565 net = dev_net(dev);
1566 lh = dev->dev_list.next;
1567 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1568 }
1569
1570 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1571 {
1572 struct list_head *lh;
1573 struct net *net;
1574
1575 net = dev_net(dev);
1576 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1577 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1578 }
1579
1580 static inline struct net_device *first_net_device(struct net *net)
1581 {
1582 return list_empty(&net->dev_base_head) ? NULL :
1583 net_device_entry(net->dev_base_head.next);
1584 }
1585
1586 static inline struct net_device *first_net_device_rcu(struct net *net)
1587 {
1588 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1589
1590 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1591 }
1592
1593 extern int netdev_boot_setup_check(struct net_device *dev);
1594 extern unsigned long netdev_boot_base(const char *prefix, int unit);
1595 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1596 const char *hwaddr);
1597 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1598 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1599 extern void dev_add_pack(struct packet_type *pt);
1600 extern void dev_remove_pack(struct packet_type *pt);
1601 extern void __dev_remove_pack(struct packet_type *pt);
1602
1603 extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1604 unsigned short mask);
1605 extern struct net_device *dev_get_by_name(struct net *net, const char *name);
1606 extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1607 extern struct net_device *__dev_get_by_name(struct net *net, const char *name);
1608 extern int dev_alloc_name(struct net_device *dev, const char *name);
1609 extern int dev_open(struct net_device *dev);
1610 extern int dev_close(struct net_device *dev);
1611 extern void dev_disable_lro(struct net_device *dev);
1612 extern int dev_queue_xmit(struct sk_buff *skb);
1613 extern int register_netdevice(struct net_device *dev);
1614 extern void unregister_netdevice_queue(struct net_device *dev,
1615 struct list_head *head);
1616 extern void unregister_netdevice_many(struct list_head *head);
1617 static inline void unregister_netdevice(struct net_device *dev)
1618 {
1619 unregister_netdevice_queue(dev, NULL);
1620 }
1621
1622 extern int netdev_refcnt_read(const struct net_device *dev);
1623 extern void free_netdev(struct net_device *dev);
1624 extern void synchronize_net(void);
1625 extern int init_dummy_netdev(struct net_device *dev);
1626 extern void netdev_resync_ops(struct net_device *dev);
1627
1628 extern struct net_device *dev_get_by_index(struct net *net, int ifindex);
1629 extern struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1630 extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1631 extern int dev_restart(struct net_device *dev);
1632 #ifdef CONFIG_NETPOLL_TRAP
1633 extern int netpoll_trap(void);
1634 #endif
1635 extern int skb_gro_receive(struct sk_buff **head,
1636 struct sk_buff *skb);
1637 extern void skb_gro_reset_offset(struct sk_buff *skb);
1638
1639 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1640 {
1641 return NAPI_GRO_CB(skb)->data_offset;
1642 }
1643
1644 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1645 {
1646 return skb->len - NAPI_GRO_CB(skb)->data_offset;
1647 }
1648
1649 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1650 {
1651 NAPI_GRO_CB(skb)->data_offset += len;
1652 }
1653
1654 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1655 unsigned int offset)
1656 {
1657 return NAPI_GRO_CB(skb)->frag0 + offset;
1658 }
1659
1660 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1661 {
1662 return NAPI_GRO_CB(skb)->frag0_len < hlen;
1663 }
1664
1665 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1666 unsigned int offset)
1667 {
1668 if (!pskb_may_pull(skb, hlen))
1669 return NULL;
1670
1671 NAPI_GRO_CB(skb)->frag0 = NULL;
1672 NAPI_GRO_CB(skb)->frag0_len = 0;
1673 return skb->data + offset;
1674 }
1675
1676 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1677 {
1678 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1679 }
1680
1681 static inline void *skb_gro_network_header(struct sk_buff *skb)
1682 {
1683 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1684 skb_network_offset(skb);
1685 }
1686
1687 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1688 unsigned short type,
1689 const void *daddr, const void *saddr,
1690 unsigned len)
1691 {
1692 if (!dev->header_ops || !dev->header_ops->create)
1693 return 0;
1694
1695 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1696 }
1697
1698 static inline int dev_parse_header(const struct sk_buff *skb,
1699 unsigned char *haddr)
1700 {
1701 const struct net_device *dev = skb->dev;
1702
1703 if (!dev->header_ops || !dev->header_ops->parse)
1704 return 0;
1705 return dev->header_ops->parse(skb, haddr);
1706 }
1707
1708 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1709 extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1710 static inline int unregister_gifconf(unsigned int family)
1711 {
1712 return register_gifconf(family, NULL);
1713 }
1714
1715 /*
1716 * Incoming packets are placed on per-cpu queues
1717 */
1718 struct softnet_data {
1719 struct Qdisc *output_queue;
1720 struct Qdisc **output_queue_tailp;
1721 struct list_head poll_list;
1722 struct sk_buff *completion_queue;
1723 struct sk_buff_head process_queue;
1724
1725 /* stats */
1726 unsigned int processed;
1727 unsigned int time_squeeze;
1728 unsigned int cpu_collision;
1729 unsigned int received_rps;
1730
1731 #ifdef CONFIG_RPS
1732 struct softnet_data *rps_ipi_list;
1733
1734 /* Elements below can be accessed between CPUs for RPS */
1735 struct call_single_data csd ____cacheline_aligned_in_smp;
1736 struct softnet_data *rps_ipi_next;
1737 unsigned int cpu;
1738 unsigned int input_queue_head;
1739 unsigned int input_queue_tail;
1740 #endif
1741 unsigned dropped;
1742 struct sk_buff_head input_pkt_queue;
1743 struct napi_struct backlog;
1744 };
1745
1746 static inline void input_queue_head_incr(struct softnet_data *sd)
1747 {
1748 #ifdef CONFIG_RPS
1749 sd->input_queue_head++;
1750 #endif
1751 }
1752
1753 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1754 unsigned int *qtail)
1755 {
1756 #ifdef CONFIG_RPS
1757 *qtail = ++sd->input_queue_tail;
1758 #endif
1759 }
1760
1761 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1762
1763 extern void __netif_schedule(struct Qdisc *q);
1764
1765 static inline void netif_schedule_queue(struct netdev_queue *txq)
1766 {
1767 if (!(txq->state & QUEUE_STATE_ANY_XOFF))
1768 __netif_schedule(txq->qdisc);
1769 }
1770
1771 static inline void netif_tx_schedule_all(struct net_device *dev)
1772 {
1773 unsigned int i;
1774
1775 for (i = 0; i < dev->num_tx_queues; i++)
1776 netif_schedule_queue(netdev_get_tx_queue(dev, i));
1777 }
1778
1779 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1780 {
1781 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1782 }
1783
1784 /**
1785 * netif_start_queue - allow transmit
1786 * @dev: network device
1787 *
1788 * Allow upper layers to call the device hard_start_xmit routine.
1789 */
1790 static inline void netif_start_queue(struct net_device *dev)
1791 {
1792 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1793 }
1794
1795 static inline void netif_tx_start_all_queues(struct net_device *dev)
1796 {
1797 unsigned int i;
1798
1799 for (i = 0; i < dev->num_tx_queues; i++) {
1800 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1801 netif_tx_start_queue(txq);
1802 }
1803 }
1804
1805 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1806 {
1807 #ifdef CONFIG_NETPOLL_TRAP
1808 if (netpoll_trap()) {
1809 netif_tx_start_queue(dev_queue);
1810 return;
1811 }
1812 #endif
1813 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
1814 __netif_schedule(dev_queue->qdisc);
1815 }
1816
1817 /**
1818 * netif_wake_queue - restart transmit
1819 * @dev: network device
1820 *
1821 * Allow upper layers to call the device hard_start_xmit routine.
1822 * Used for flow control when transmit resources are available.
1823 */
1824 static inline void netif_wake_queue(struct net_device *dev)
1825 {
1826 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1827 }
1828
1829 static inline void netif_tx_wake_all_queues(struct net_device *dev)
1830 {
1831 unsigned int i;
1832
1833 for (i = 0; i < dev->num_tx_queues; i++) {
1834 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1835 netif_tx_wake_queue(txq);
1836 }
1837 }
1838
1839 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1840 {
1841 if (WARN_ON(!dev_queue)) {
1842 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
1843 return;
1844 }
1845 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1846 }
1847
1848 /**
1849 * netif_stop_queue - stop transmitted packets
1850 * @dev: network device
1851 *
1852 * Stop upper layers calling the device hard_start_xmit routine.
1853 * Used for flow control when transmit resources are unavailable.
1854 */
1855 static inline void netif_stop_queue(struct net_device *dev)
1856 {
1857 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1858 }
1859
1860 static inline void netif_tx_stop_all_queues(struct net_device *dev)
1861 {
1862 unsigned int i;
1863
1864 for (i = 0; i < dev->num_tx_queues; i++) {
1865 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1866 netif_tx_stop_queue(txq);
1867 }
1868 }
1869
1870 static inline int netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1871 {
1872 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1873 }
1874
1875 /**
1876 * netif_queue_stopped - test if transmit queue is flowblocked
1877 * @dev: network device
1878 *
1879 * Test if transmit queue on device is currently unable to send.
1880 */
1881 static inline int netif_queue_stopped(const struct net_device *dev)
1882 {
1883 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1884 }
1885
1886 static inline int netif_xmit_stopped(const struct netdev_queue *dev_queue)
1887 {
1888 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
1889 }
1890
1891 static inline int netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
1892 {
1893 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
1894 }
1895
1896 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
1897 unsigned int bytes)
1898 {
1899 #ifdef CONFIG_BQL
1900 dql_queued(&dev_queue->dql, bytes);
1901 if (unlikely(dql_avail(&dev_queue->dql) < 0)) {
1902 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1903 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
1904 clear_bit(__QUEUE_STATE_STACK_XOFF,
1905 &dev_queue->state);
1906 }
1907 #endif
1908 }
1909
1910 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
1911 {
1912 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
1913 }
1914
1915 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
1916 unsigned pkts, unsigned bytes)
1917 {
1918 #ifdef CONFIG_BQL
1919 if (likely(bytes)) {
1920 dql_completed(&dev_queue->dql, bytes);
1921 if (unlikely(test_bit(__QUEUE_STATE_STACK_XOFF,
1922 &dev_queue->state) &&
1923 dql_avail(&dev_queue->dql) >= 0)) {
1924 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF,
1925 &dev_queue->state))
1926 netif_schedule_queue(dev_queue);
1927 }
1928 }
1929 #endif
1930 }
1931
1932 static inline void netdev_completed_queue(struct net_device *dev,
1933 unsigned pkts, unsigned bytes)
1934 {
1935 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
1936 }
1937
1938 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
1939 {
1940 #ifdef CONFIG_BQL
1941 dql_reset(&q->dql);
1942 #endif
1943 }
1944
1945 static inline void netdev_reset_queue(struct net_device *dev_queue)
1946 {
1947 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
1948 }
1949
1950 /**
1951 * netif_running - test if up
1952 * @dev: network device
1953 *
1954 * Test if the device has been brought up.
1955 */
1956 static inline int netif_running(const struct net_device *dev)
1957 {
1958 return test_bit(__LINK_STATE_START, &dev->state);
1959 }
1960
1961 /*
1962 * Routines to manage the subqueues on a device. We only need start
1963 * stop, and a check if it's stopped. All other device management is
1964 * done at the overall netdevice level.
1965 * Also test the device if we're multiqueue.
1966 */
1967
1968 /**
1969 * netif_start_subqueue - allow sending packets on subqueue
1970 * @dev: network device
1971 * @queue_index: sub queue index
1972 *
1973 * Start individual transmit queue of a device with multiple transmit queues.
1974 */
1975 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
1976 {
1977 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1978
1979 netif_tx_start_queue(txq);
1980 }
1981
1982 /**
1983 * netif_stop_subqueue - stop sending packets on subqueue
1984 * @dev: network device
1985 * @queue_index: sub queue index
1986 *
1987 * Stop individual transmit queue of a device with multiple transmit queues.
1988 */
1989 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
1990 {
1991 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1992 #ifdef CONFIG_NETPOLL_TRAP
1993 if (netpoll_trap())
1994 return;
1995 #endif
1996 netif_tx_stop_queue(txq);
1997 }
1998
1999 /**
2000 * netif_subqueue_stopped - test status of subqueue
2001 * @dev: network device
2002 * @queue_index: sub queue index
2003 *
2004 * Check individual transmit queue of a device with multiple transmit queues.
2005 */
2006 static inline int __netif_subqueue_stopped(const struct net_device *dev,
2007 u16 queue_index)
2008 {
2009 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2010
2011 return netif_tx_queue_stopped(txq);
2012 }
2013
2014 static inline int netif_subqueue_stopped(const struct net_device *dev,
2015 struct sk_buff *skb)
2016 {
2017 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2018 }
2019
2020 /**
2021 * netif_wake_subqueue - allow sending packets on subqueue
2022 * @dev: network device
2023 * @queue_index: sub queue index
2024 *
2025 * Resume individual transmit queue of a device with multiple transmit queues.
2026 */
2027 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2028 {
2029 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2030 #ifdef CONFIG_NETPOLL_TRAP
2031 if (netpoll_trap())
2032 return;
2033 #endif
2034 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2035 __netif_schedule(txq->qdisc);
2036 }
2037
2038 /*
2039 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2040 * as a distribution range limit for the returned value.
2041 */
2042 static inline u16 skb_tx_hash(const struct net_device *dev,
2043 const struct sk_buff *skb)
2044 {
2045 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2046 }
2047
2048 /**
2049 * netif_is_multiqueue - test if device has multiple transmit queues
2050 * @dev: network device
2051 *
2052 * Check if device has multiple transmit queues
2053 */
2054 static inline int netif_is_multiqueue(const struct net_device *dev)
2055 {
2056 return dev->num_tx_queues > 1;
2057 }
2058
2059 extern int netif_set_real_num_tx_queues(struct net_device *dev,
2060 unsigned int txq);
2061
2062 #ifdef CONFIG_RPS
2063 extern int netif_set_real_num_rx_queues(struct net_device *dev,
2064 unsigned int rxq);
2065 #else
2066 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2067 unsigned int rxq)
2068 {
2069 return 0;
2070 }
2071 #endif
2072
2073 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2074 const struct net_device *from_dev)
2075 {
2076 netif_set_real_num_tx_queues(to_dev, from_dev->real_num_tx_queues);
2077 #ifdef CONFIG_RPS
2078 return netif_set_real_num_rx_queues(to_dev,
2079 from_dev->real_num_rx_queues);
2080 #else
2081 return 0;
2082 #endif
2083 }
2084
2085 /* Use this variant when it is known for sure that it
2086 * is executing from hardware interrupt context or with hardware interrupts
2087 * disabled.
2088 */
2089 extern void dev_kfree_skb_irq(struct sk_buff *skb);
2090
2091 /* Use this variant in places where it could be invoked
2092 * from either hardware interrupt or other context, with hardware interrupts
2093 * either disabled or enabled.
2094 */
2095 extern void dev_kfree_skb_any(struct sk_buff *skb);
2096
2097 extern int netif_rx(struct sk_buff *skb);
2098 extern int netif_rx_ni(struct sk_buff *skb);
2099 extern int netif_receive_skb(struct sk_buff *skb);
2100 extern gro_result_t dev_gro_receive(struct napi_struct *napi,
2101 struct sk_buff *skb);
2102 extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb);
2103 extern gro_result_t napi_gro_receive(struct napi_struct *napi,
2104 struct sk_buff *skb);
2105 extern void napi_gro_flush(struct napi_struct *napi);
2106 extern struct sk_buff * napi_get_frags(struct napi_struct *napi);
2107 extern gro_result_t napi_frags_finish(struct napi_struct *napi,
2108 struct sk_buff *skb,
2109 gro_result_t ret);
2110 extern struct sk_buff * napi_frags_skb(struct napi_struct *napi);
2111 extern gro_result_t napi_gro_frags(struct napi_struct *napi);
2112
2113 static inline void napi_free_frags(struct napi_struct *napi)
2114 {
2115 kfree_skb(napi->skb);
2116 napi->skb = NULL;
2117 }
2118
2119 extern int netdev_rx_handler_register(struct net_device *dev,
2120 rx_handler_func_t *rx_handler,
2121 void *rx_handler_data);
2122 extern void netdev_rx_handler_unregister(struct net_device *dev);
2123
2124 extern int dev_valid_name(const char *name);
2125 extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2126 extern int dev_ethtool(struct net *net, struct ifreq *);
2127 extern unsigned dev_get_flags(const struct net_device *);
2128 extern int __dev_change_flags(struct net_device *, unsigned int flags);
2129 extern int dev_change_flags(struct net_device *, unsigned);
2130 extern void __dev_notify_flags(struct net_device *, unsigned int old_flags);
2131 extern int dev_change_name(struct net_device *, const char *);
2132 extern int dev_set_alias(struct net_device *, const char *, size_t);
2133 extern int dev_change_net_namespace(struct net_device *,
2134 struct net *, const char *);
2135 extern int dev_set_mtu(struct net_device *, int);
2136 extern void dev_set_group(struct net_device *, int);
2137 extern int dev_set_mac_address(struct net_device *,
2138 struct sockaddr *);
2139 extern int dev_hard_start_xmit(struct sk_buff *skb,
2140 struct net_device *dev,
2141 struct netdev_queue *txq);
2142 extern int dev_forward_skb(struct net_device *dev,
2143 struct sk_buff *skb);
2144
2145 extern int netdev_budget;
2146
2147 /* Called by rtnetlink.c:rtnl_unlock() */
2148 extern void netdev_run_todo(void);
2149
2150 /**
2151 * dev_put - release reference to device
2152 * @dev: network device
2153 *
2154 * Release reference to device to allow it to be freed.
2155 */
2156 static inline void dev_put(struct net_device *dev)
2157 {
2158 this_cpu_dec(*dev->pcpu_refcnt);
2159 }
2160
2161 /**
2162 * dev_hold - get reference to device
2163 * @dev: network device
2164 *
2165 * Hold reference to device to keep it from being freed.
2166 */
2167 static inline void dev_hold(struct net_device *dev)
2168 {
2169 this_cpu_inc(*dev->pcpu_refcnt);
2170 }
2171
2172 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2173 * and _off may be called from IRQ context, but it is caller
2174 * who is responsible for serialization of these calls.
2175 *
2176 * The name carrier is inappropriate, these functions should really be
2177 * called netif_lowerlayer_*() because they represent the state of any
2178 * kind of lower layer not just hardware media.
2179 */
2180
2181 extern void linkwatch_fire_event(struct net_device *dev);
2182 extern void linkwatch_forget_dev(struct net_device *dev);
2183
2184 /**
2185 * netif_carrier_ok - test if carrier present
2186 * @dev: network device
2187 *
2188 * Check if carrier is present on device
2189 */
2190 static inline int netif_carrier_ok(const struct net_device *dev)
2191 {
2192 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2193 }
2194
2195 extern unsigned long dev_trans_start(struct net_device *dev);
2196
2197 extern void __netdev_watchdog_up(struct net_device *dev);
2198
2199 extern void netif_carrier_on(struct net_device *dev);
2200
2201 extern void netif_carrier_off(struct net_device *dev);
2202
2203 extern void netif_notify_peers(struct net_device *dev);
2204
2205 /**
2206 * netif_dormant_on - mark device as dormant.
2207 * @dev: network device
2208 *
2209 * Mark device as dormant (as per RFC2863).
2210 *
2211 * The dormant state indicates that the relevant interface is not
2212 * actually in a condition to pass packets (i.e., it is not 'up') but is
2213 * in a "pending" state, waiting for some external event. For "on-
2214 * demand" interfaces, this new state identifies the situation where the
2215 * interface is waiting for events to place it in the up state.
2216 *
2217 */
2218 static inline void netif_dormant_on(struct net_device *dev)
2219 {
2220 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2221 linkwatch_fire_event(dev);
2222 }
2223
2224 /**
2225 * netif_dormant_off - set device as not dormant.
2226 * @dev: network device
2227 *
2228 * Device is not in dormant state.
2229 */
2230 static inline void netif_dormant_off(struct net_device *dev)
2231 {
2232 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2233 linkwatch_fire_event(dev);
2234 }
2235
2236 /**
2237 * netif_dormant - test if carrier present
2238 * @dev: network device
2239 *
2240 * Check if carrier is present on device
2241 */
2242 static inline int netif_dormant(const struct net_device *dev)
2243 {
2244 return test_bit(__LINK_STATE_DORMANT, &dev->state);
2245 }
2246
2247
2248 /**
2249 * netif_oper_up - test if device is operational
2250 * @dev: network device
2251 *
2252 * Check if carrier is operational
2253 */
2254 static inline int netif_oper_up(const struct net_device *dev)
2255 {
2256 return (dev->operstate == IF_OPER_UP ||
2257 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2258 }
2259
2260 /**
2261 * netif_device_present - is device available or removed
2262 * @dev: network device
2263 *
2264 * Check if device has not been removed from system.
2265 */
2266 static inline int netif_device_present(struct net_device *dev)
2267 {
2268 return test_bit(__LINK_STATE_PRESENT, &dev->state);
2269 }
2270
2271 extern void netif_device_detach(struct net_device *dev);
2272
2273 extern void netif_device_attach(struct net_device *dev);
2274
2275 /*
2276 * Network interface message level settings
2277 */
2278
2279 enum {
2280 NETIF_MSG_DRV = 0x0001,
2281 NETIF_MSG_PROBE = 0x0002,
2282 NETIF_MSG_LINK = 0x0004,
2283 NETIF_MSG_TIMER = 0x0008,
2284 NETIF_MSG_IFDOWN = 0x0010,
2285 NETIF_MSG_IFUP = 0x0020,
2286 NETIF_MSG_RX_ERR = 0x0040,
2287 NETIF_MSG_TX_ERR = 0x0080,
2288 NETIF_MSG_TX_QUEUED = 0x0100,
2289 NETIF_MSG_INTR = 0x0200,
2290 NETIF_MSG_TX_DONE = 0x0400,
2291 NETIF_MSG_RX_STATUS = 0x0800,
2292 NETIF_MSG_PKTDATA = 0x1000,
2293 NETIF_MSG_HW = 0x2000,
2294 NETIF_MSG_WOL = 0x4000,
2295 };
2296
2297 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
2298 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
2299 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
2300 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
2301 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
2302 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
2303 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
2304 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
2305 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2306 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
2307 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
2308 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
2309 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
2310 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
2311 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
2312
2313 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2314 {
2315 /* use default */
2316 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2317 return default_msg_enable_bits;
2318 if (debug_value == 0) /* no output */
2319 return 0;
2320 /* set low N bits */
2321 return (1 << debug_value) - 1;
2322 }
2323
2324 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2325 {
2326 spin_lock(&txq->_xmit_lock);
2327 txq->xmit_lock_owner = cpu;
2328 }
2329
2330 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2331 {
2332 spin_lock_bh(&txq->_xmit_lock);
2333 txq->xmit_lock_owner = smp_processor_id();
2334 }
2335
2336 static inline int __netif_tx_trylock(struct netdev_queue *txq)
2337 {
2338 int ok = spin_trylock(&txq->_xmit_lock);
2339 if (likely(ok))
2340 txq->xmit_lock_owner = smp_processor_id();
2341 return ok;
2342 }
2343
2344 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2345 {
2346 txq->xmit_lock_owner = -1;
2347 spin_unlock(&txq->_xmit_lock);
2348 }
2349
2350 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2351 {
2352 txq->xmit_lock_owner = -1;
2353 spin_unlock_bh(&txq->_xmit_lock);
2354 }
2355
2356 static inline void txq_trans_update(struct netdev_queue *txq)
2357 {
2358 if (txq->xmit_lock_owner != -1)
2359 txq->trans_start = jiffies;
2360 }
2361
2362 /**
2363 * netif_tx_lock - grab network device transmit lock
2364 * @dev: network device
2365 *
2366 * Get network device transmit lock
2367 */
2368 static inline void netif_tx_lock(struct net_device *dev)
2369 {
2370 unsigned int i;
2371 int cpu;
2372
2373 spin_lock(&dev->tx_global_lock);
2374 cpu = smp_processor_id();
2375 for (i = 0; i < dev->num_tx_queues; i++) {
2376 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2377
2378 /* We are the only thread of execution doing a
2379 * freeze, but we have to grab the _xmit_lock in
2380 * order to synchronize with threads which are in
2381 * the ->hard_start_xmit() handler and already
2382 * checked the frozen bit.
2383 */
2384 __netif_tx_lock(txq, cpu);
2385 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2386 __netif_tx_unlock(txq);
2387 }
2388 }
2389
2390 static inline void netif_tx_lock_bh(struct net_device *dev)
2391 {
2392 local_bh_disable();
2393 netif_tx_lock(dev);
2394 }
2395
2396 static inline void netif_tx_unlock(struct net_device *dev)
2397 {
2398 unsigned int i;
2399
2400 for (i = 0; i < dev->num_tx_queues; i++) {
2401 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2402
2403 /* No need to grab the _xmit_lock here. If the
2404 * queue is not stopped for another reason, we
2405 * force a schedule.
2406 */
2407 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2408 netif_schedule_queue(txq);
2409 }
2410 spin_unlock(&dev->tx_global_lock);
2411 }
2412
2413 static inline void netif_tx_unlock_bh(struct net_device *dev)
2414 {
2415 netif_tx_unlock(dev);
2416 local_bh_enable();
2417 }
2418
2419 #define HARD_TX_LOCK(dev, txq, cpu) { \
2420 if ((dev->features & NETIF_F_LLTX) == 0) { \
2421 __netif_tx_lock(txq, cpu); \
2422 } \
2423 }
2424
2425 #define HARD_TX_UNLOCK(dev, txq) { \
2426 if ((dev->features & NETIF_F_LLTX) == 0) { \
2427 __netif_tx_unlock(txq); \
2428 } \
2429 }
2430
2431 static inline void netif_tx_disable(struct net_device *dev)
2432 {
2433 unsigned int i;
2434 int cpu;
2435
2436 local_bh_disable();
2437 cpu = smp_processor_id();
2438 for (i = 0; i < dev->num_tx_queues; i++) {
2439 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2440
2441 __netif_tx_lock(txq, cpu);
2442 netif_tx_stop_queue(txq);
2443 __netif_tx_unlock(txq);
2444 }
2445 local_bh_enable();
2446 }
2447
2448 static inline void netif_addr_lock(struct net_device *dev)
2449 {
2450 spin_lock(&dev->addr_list_lock);
2451 }
2452
2453 static inline void netif_addr_lock_nested(struct net_device *dev)
2454 {
2455 spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING);
2456 }
2457
2458 static inline void netif_addr_lock_bh(struct net_device *dev)
2459 {
2460 spin_lock_bh(&dev->addr_list_lock);
2461 }
2462
2463 static inline void netif_addr_unlock(struct net_device *dev)
2464 {
2465 spin_unlock(&dev->addr_list_lock);
2466 }
2467
2468 static inline void netif_addr_unlock_bh(struct net_device *dev)
2469 {
2470 spin_unlock_bh(&dev->addr_list_lock);
2471 }
2472
2473 /*
2474 * dev_addrs walker. Should be used only for read access. Call with
2475 * rcu_read_lock held.
2476 */
2477 #define for_each_dev_addr(dev, ha) \
2478 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2479
2480 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2481
2482 extern void ether_setup(struct net_device *dev);
2483
2484 /* Support for loadable net-drivers */
2485 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2486 void (*setup)(struct net_device *),
2487 unsigned int txqs, unsigned int rxqs);
2488 #define alloc_netdev(sizeof_priv, name, setup) \
2489 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2490
2491 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2492 alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2493
2494 extern int register_netdev(struct net_device *dev);
2495 extern void unregister_netdev(struct net_device *dev);
2496
2497 /* General hardware address lists handling functions */
2498 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2499 struct netdev_hw_addr_list *from_list,
2500 int addr_len, unsigned char addr_type);
2501 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2502 struct netdev_hw_addr_list *from_list,
2503 int addr_len, unsigned char addr_type);
2504 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2505 struct netdev_hw_addr_list *from_list,
2506 int addr_len);
2507 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2508 struct netdev_hw_addr_list *from_list,
2509 int addr_len);
2510 extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2511 extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2512
2513 /* Functions used for device addresses handling */
2514 extern int dev_addr_add(struct net_device *dev, unsigned char *addr,
2515 unsigned char addr_type);
2516 extern int dev_addr_del(struct net_device *dev, unsigned char *addr,
2517 unsigned char addr_type);
2518 extern int dev_addr_add_multiple(struct net_device *to_dev,
2519 struct net_device *from_dev,
2520 unsigned char addr_type);
2521 extern int dev_addr_del_multiple(struct net_device *to_dev,
2522 struct net_device *from_dev,
2523 unsigned char addr_type);
2524 extern void dev_addr_flush(struct net_device *dev);
2525 extern int dev_addr_init(struct net_device *dev);
2526
2527 /* Functions used for unicast addresses handling */
2528 extern int dev_uc_add(struct net_device *dev, unsigned char *addr);
2529 extern int dev_uc_del(struct net_device *dev, unsigned char *addr);
2530 extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2531 extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2532 extern void dev_uc_flush(struct net_device *dev);
2533 extern void dev_uc_init(struct net_device *dev);
2534
2535 /* Functions used for multicast addresses handling */
2536 extern int dev_mc_add(struct net_device *dev, unsigned char *addr);
2537 extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr);
2538 extern int dev_mc_del(struct net_device *dev, unsigned char *addr);
2539 extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr);
2540 extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2541 extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2542 extern void dev_mc_flush(struct net_device *dev);
2543 extern void dev_mc_init(struct net_device *dev);
2544
2545 /* Functions used for secondary unicast and multicast support */
2546 extern void dev_set_rx_mode(struct net_device *dev);
2547 extern void __dev_set_rx_mode(struct net_device *dev);
2548 extern int dev_set_promiscuity(struct net_device *dev, int inc);
2549 extern int dev_set_allmulti(struct net_device *dev, int inc);
2550 extern void netdev_state_change(struct net_device *dev);
2551 extern int netdev_bonding_change(struct net_device *dev,
2552 unsigned long event);
2553 extern void netdev_features_change(struct net_device *dev);
2554 /* Load a device via the kmod */
2555 extern void dev_load(struct net *net, const char *name);
2556 extern void dev_mcast_init(void);
2557 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2558 struct rtnl_link_stats64 *storage);
2559
2560 extern int netdev_max_backlog;
2561 extern int netdev_tstamp_prequeue;
2562 extern int weight_p;
2563 extern int bpf_jit_enable;
2564 extern int netdev_set_master(struct net_device *dev, struct net_device *master);
2565 extern int netdev_set_bond_master(struct net_device *dev,
2566 struct net_device *master);
2567 extern int skb_checksum_help(struct sk_buff *skb);
2568 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb,
2569 netdev_features_t features);
2570 #ifdef CONFIG_BUG
2571 extern void netdev_rx_csum_fault(struct net_device *dev);
2572 #else
2573 static inline void netdev_rx_csum_fault(struct net_device *dev)
2574 {
2575 }
2576 #endif
2577 /* rx skb timestamps */
2578 extern void net_enable_timestamp(void);
2579 extern void net_disable_timestamp(void);
2580
2581 #ifdef CONFIG_PROC_FS
2582 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
2583 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2584 extern void dev_seq_stop(struct seq_file *seq, void *v);
2585 extern int dev_seq_open_ops(struct inode *inode, struct file *file,
2586 const struct seq_operations *ops);
2587 #endif
2588
2589 extern int netdev_class_create_file(struct class_attribute *class_attr);
2590 extern void netdev_class_remove_file(struct class_attribute *class_attr);
2591
2592 extern struct kobj_ns_type_operations net_ns_type_operations;
2593
2594 extern const char *netdev_drivername(const struct net_device *dev);
2595
2596 extern void linkwatch_run_queue(void);
2597
2598 static inline netdev_features_t netdev_get_wanted_features(
2599 struct net_device *dev)
2600 {
2601 return (dev->features & ~dev->hw_features) | dev->wanted_features;
2602 }
2603 netdev_features_t netdev_increment_features(netdev_features_t all,
2604 netdev_features_t one, netdev_features_t mask);
2605 int __netdev_update_features(struct net_device *dev);
2606 void netdev_update_features(struct net_device *dev);
2607 void netdev_change_features(struct net_device *dev);
2608
2609 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2610 struct net_device *dev);
2611
2612 netdev_features_t netif_skb_features(struct sk_buff *skb);
2613
2614 static inline int net_gso_ok(netdev_features_t features, int gso_type)
2615 {
2616 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
2617
2618 /* check flags correspondence */
2619 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
2620 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
2621 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
2622 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
2623 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
2624 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
2625
2626 return (features & feature) == feature;
2627 }
2628
2629 static inline int skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
2630 {
2631 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2632 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2633 }
2634
2635 static inline int netif_needs_gso(struct sk_buff *skb,
2636 netdev_features_t features)
2637 {
2638 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2639 unlikely(skb->ip_summed != CHECKSUM_PARTIAL));
2640 }
2641
2642 static inline void netif_set_gso_max_size(struct net_device *dev,
2643 unsigned int size)
2644 {
2645 dev->gso_max_size = size;
2646 }
2647
2648 static inline int netif_is_bond_slave(struct net_device *dev)
2649 {
2650 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2651 }
2652
2653 extern struct pernet_operations __net_initdata loopback_net_ops;
2654
2655 /* Logging, debugging and troubleshooting/diagnostic helpers. */
2656
2657 /* netdev_printk helpers, similar to dev_printk */
2658
2659 static inline const char *netdev_name(const struct net_device *dev)
2660 {
2661 if (dev->reg_state != NETREG_REGISTERED)
2662 return "(unregistered net_device)";
2663 return dev->name;
2664 }
2665
2666 extern int __netdev_printk(const char *level, const struct net_device *dev,
2667 struct va_format *vaf);
2668
2669 extern __printf(3, 4)
2670 int netdev_printk(const char *level, const struct net_device *dev,
2671 const char *format, ...);
2672 extern __printf(2, 3)
2673 int netdev_emerg(const struct net_device *dev, const char *format, ...);
2674 extern __printf(2, 3)
2675 int netdev_alert(const struct net_device *dev, const char *format, ...);
2676 extern __printf(2, 3)
2677 int netdev_crit(const struct net_device *dev, const char *format, ...);
2678 extern __printf(2, 3)
2679 int netdev_err(const struct net_device *dev, const char *format, ...);
2680 extern __printf(2, 3)
2681 int netdev_warn(const struct net_device *dev, const char *format, ...);
2682 extern __printf(2, 3)
2683 int netdev_notice(const struct net_device *dev, const char *format, ...);
2684 extern __printf(2, 3)
2685 int netdev_info(const struct net_device *dev, const char *format, ...);
2686
2687 #define MODULE_ALIAS_NETDEV(device) \
2688 MODULE_ALIAS("netdev-" device)
2689
2690 #if defined(DEBUG)
2691 #define netdev_dbg(__dev, format, args...) \
2692 netdev_printk(KERN_DEBUG, __dev, format, ##args)
2693 #elif defined(CONFIG_DYNAMIC_DEBUG)
2694 #define netdev_dbg(__dev, format, args...) \
2695 do { \
2696 dynamic_netdev_dbg(__dev, format, ##args); \
2697 } while (0)
2698 #else
2699 #define netdev_dbg(__dev, format, args...) \
2700 ({ \
2701 if (0) \
2702 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2703 0; \
2704 })
2705 #endif
2706
2707 #if defined(VERBOSE_DEBUG)
2708 #define netdev_vdbg netdev_dbg
2709 #else
2710
2711 #define netdev_vdbg(dev, format, args...) \
2712 ({ \
2713 if (0) \
2714 netdev_printk(KERN_DEBUG, dev, format, ##args); \
2715 0; \
2716 })
2717 #endif
2718
2719 /*
2720 * netdev_WARN() acts like dev_printk(), but with the key difference
2721 * of using a WARN/WARN_ON to get the message out, including the
2722 * file/line information and a backtrace.
2723 */
2724 #define netdev_WARN(dev, format, args...) \
2725 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2726
2727 /* netif printk helpers, similar to netdev_printk */
2728
2729 #define netif_printk(priv, type, level, dev, fmt, args...) \
2730 do { \
2731 if (netif_msg_##type(priv)) \
2732 netdev_printk(level, (dev), fmt, ##args); \
2733 } while (0)
2734
2735 #define netif_level(level, priv, type, dev, fmt, args...) \
2736 do { \
2737 if (netif_msg_##type(priv)) \
2738 netdev_##level(dev, fmt, ##args); \
2739 } while (0)
2740
2741 #define netif_emerg(priv, type, dev, fmt, args...) \
2742 netif_level(emerg, priv, type, dev, fmt, ##args)
2743 #define netif_alert(priv, type, dev, fmt, args...) \
2744 netif_level(alert, priv, type, dev, fmt, ##args)
2745 #define netif_crit(priv, type, dev, fmt, args...) \
2746 netif_level(crit, priv, type, dev, fmt, ##args)
2747 #define netif_err(priv, type, dev, fmt, args...) \
2748 netif_level(err, priv, type, dev, fmt, ##args)
2749 #define netif_warn(priv, type, dev, fmt, args...) \
2750 netif_level(warn, priv, type, dev, fmt, ##args)
2751 #define netif_notice(priv, type, dev, fmt, args...) \
2752 netif_level(notice, priv, type, dev, fmt, ##args)
2753 #define netif_info(priv, type, dev, fmt, args...) \
2754 netif_level(info, priv, type, dev, fmt, ##args)
2755
2756 #if defined(DEBUG)
2757 #define netif_dbg(priv, type, dev, format, args...) \
2758 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2759 #elif defined(CONFIG_DYNAMIC_DEBUG)
2760 #define netif_dbg(priv, type, netdev, format, args...) \
2761 do { \
2762 if (netif_msg_##type(priv)) \
2763 dynamic_netdev_dbg(netdev, format, ##args); \
2764 } while (0)
2765 #else
2766 #define netif_dbg(priv, type, dev, format, args...) \
2767 ({ \
2768 if (0) \
2769 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2770 0; \
2771 })
2772 #endif
2773
2774 #if defined(VERBOSE_DEBUG)
2775 #define netif_vdbg netif_dbg
2776 #else
2777 #define netif_vdbg(priv, type, dev, format, args...) \
2778 ({ \
2779 if (0) \
2780 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2781 0; \
2782 })
2783 #endif
2784
2785 #endif /* __KERNEL__ */
2786
2787 #endif /* _LINUX_NETDEVICE_H */