]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/linux/netdevice.h
ipvlan, l3mdev: fix broken l3s mode wrt local routes
[mirror_ubuntu-jammy-kernel.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/workqueue.h>
39 #include <linux/dynamic_queue_limits.h>
40
41 #include <linux/ethtool.h>
42 #include <net/net_namespace.h>
43 #ifdef CONFIG_DCB
44 #include <net/dcbnl.h>
45 #endif
46 #include <net/netprio_cgroup.h>
47 #include <net/xdp.h>
48
49 #include <linux/netdev_features.h>
50 #include <linux/neighbour.h>
51 #include <uapi/linux/netdevice.h>
52 #include <uapi/linux/if_bonding.h>
53 #include <uapi/linux/pkt_cls.h>
54 #include <linux/hashtable.h>
55
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 struct dsa_port;
60
61 struct sfp_bus;
62 /* 802.11 specific */
63 struct wireless_dev;
64 /* 802.15.4 specific */
65 struct wpan_dev;
66 struct mpls_dev;
67 /* UDP Tunnel offloads */
68 struct udp_tunnel_info;
69 struct bpf_prog;
70 struct xdp_buff;
71
72 void netdev_set_default_ethtool_ops(struct net_device *dev,
73 const struct ethtool_ops *ops);
74
75 /* Backlog congestion levels */
76 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
77 #define NET_RX_DROP 1 /* packet dropped */
78
79 /*
80 * Transmit return codes: transmit return codes originate from three different
81 * namespaces:
82 *
83 * - qdisc return codes
84 * - driver transmit return codes
85 * - errno values
86 *
87 * Drivers are allowed to return any one of those in their hard_start_xmit()
88 * function. Real network devices commonly used with qdiscs should only return
89 * the driver transmit return codes though - when qdiscs are used, the actual
90 * transmission happens asynchronously, so the value is not propagated to
91 * higher layers. Virtual network devices transmit synchronously; in this case
92 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
93 * others are propagated to higher layers.
94 */
95
96 /* qdisc ->enqueue() return codes. */
97 #define NET_XMIT_SUCCESS 0x00
98 #define NET_XMIT_DROP 0x01 /* skb dropped */
99 #define NET_XMIT_CN 0x02 /* congestion notification */
100 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
101
102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
103 * indicates that the device will soon be dropping packets, or already drops
104 * some packets of the same priority; prompting us to send less aggressively. */
105 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
106 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
107
108 /* Driver transmit return codes */
109 #define NETDEV_TX_MASK 0xf0
110
111 enum netdev_tx {
112 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
113 NETDEV_TX_OK = 0x00, /* driver took care of packet */
114 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
115 };
116 typedef enum netdev_tx netdev_tx_t;
117
118 /*
119 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121 */
122 static inline bool dev_xmit_complete(int rc)
123 {
124 /*
125 * Positive cases with an skb consumed by a driver:
126 * - successful transmission (rc == NETDEV_TX_OK)
127 * - error while transmitting (rc < 0)
128 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 */
130 if (likely(rc < NET_XMIT_MASK))
131 return true;
132
133 return false;
134 }
135
136 /*
137 * Compute the worst-case header length according to the protocols
138 * used.
139 */
140
141 #if defined(CONFIG_HYPERV_NET)
142 # define LL_MAX_HEADER 128
143 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
144 # if defined(CONFIG_MAC80211_MESH)
145 # define LL_MAX_HEADER 128
146 # else
147 # define LL_MAX_HEADER 96
148 # endif
149 #else
150 # define LL_MAX_HEADER 32
151 #endif
152
153 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
154 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
155 #define MAX_HEADER LL_MAX_HEADER
156 #else
157 #define MAX_HEADER (LL_MAX_HEADER + 48)
158 #endif
159
160 /*
161 * Old network device statistics. Fields are native words
162 * (unsigned long) so they can be read and written atomically.
163 */
164
165 struct net_device_stats {
166 unsigned long rx_packets;
167 unsigned long tx_packets;
168 unsigned long rx_bytes;
169 unsigned long tx_bytes;
170 unsigned long rx_errors;
171 unsigned long tx_errors;
172 unsigned long rx_dropped;
173 unsigned long tx_dropped;
174 unsigned long multicast;
175 unsigned long collisions;
176 unsigned long rx_length_errors;
177 unsigned long rx_over_errors;
178 unsigned long rx_crc_errors;
179 unsigned long rx_frame_errors;
180 unsigned long rx_fifo_errors;
181 unsigned long rx_missed_errors;
182 unsigned long tx_aborted_errors;
183 unsigned long tx_carrier_errors;
184 unsigned long tx_fifo_errors;
185 unsigned long tx_heartbeat_errors;
186 unsigned long tx_window_errors;
187 unsigned long rx_compressed;
188 unsigned long tx_compressed;
189 };
190
191
192 #include <linux/cache.h>
193 #include <linux/skbuff.h>
194
195 #ifdef CONFIG_RPS
196 #include <linux/static_key.h>
197 extern struct static_key rps_needed;
198 extern struct static_key rfs_needed;
199 #endif
200
201 struct neighbour;
202 struct neigh_parms;
203 struct sk_buff;
204
205 struct netdev_hw_addr {
206 struct list_head list;
207 unsigned char addr[MAX_ADDR_LEN];
208 unsigned char type;
209 #define NETDEV_HW_ADDR_T_LAN 1
210 #define NETDEV_HW_ADDR_T_SAN 2
211 #define NETDEV_HW_ADDR_T_SLAVE 3
212 #define NETDEV_HW_ADDR_T_UNICAST 4
213 #define NETDEV_HW_ADDR_T_MULTICAST 5
214 bool global_use;
215 int sync_cnt;
216 int refcount;
217 int synced;
218 struct rcu_head rcu_head;
219 };
220
221 struct netdev_hw_addr_list {
222 struct list_head list;
223 int count;
224 };
225
226 #define netdev_hw_addr_list_count(l) ((l)->count)
227 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
228 #define netdev_hw_addr_list_for_each(ha, l) \
229 list_for_each_entry(ha, &(l)->list, list)
230
231 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
232 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
233 #define netdev_for_each_uc_addr(ha, dev) \
234 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
235
236 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
237 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
238 #define netdev_for_each_mc_addr(ha, dev) \
239 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
240
241 struct hh_cache {
242 unsigned int hh_len;
243 seqlock_t hh_lock;
244
245 /* cached hardware header; allow for machine alignment needs. */
246 #define HH_DATA_MOD 16
247 #define HH_DATA_OFF(__len) \
248 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
249 #define HH_DATA_ALIGN(__len) \
250 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
251 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
252 };
253
254 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
255 * Alternative is:
256 * dev->hard_header_len ? (dev->hard_header_len +
257 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
258 *
259 * We could use other alignment values, but we must maintain the
260 * relationship HH alignment <= LL alignment.
261 */
262 #define LL_RESERVED_SPACE(dev) \
263 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
265 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
266
267 struct header_ops {
268 int (*create) (struct sk_buff *skb, struct net_device *dev,
269 unsigned short type, const void *daddr,
270 const void *saddr, unsigned int len);
271 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
272 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
273 void (*cache_update)(struct hh_cache *hh,
274 const struct net_device *dev,
275 const unsigned char *haddr);
276 bool (*validate)(const char *ll_header, unsigned int len);
277 };
278
279 /* These flag bits are private to the generic network queueing
280 * layer; they may not be explicitly referenced by any other
281 * code.
282 */
283
284 enum netdev_state_t {
285 __LINK_STATE_START,
286 __LINK_STATE_PRESENT,
287 __LINK_STATE_NOCARRIER,
288 __LINK_STATE_LINKWATCH_PENDING,
289 __LINK_STATE_DORMANT,
290 };
291
292
293 /*
294 * This structure holds boot-time configured netdevice settings. They
295 * are then used in the device probing.
296 */
297 struct netdev_boot_setup {
298 char name[IFNAMSIZ];
299 struct ifmap map;
300 };
301 #define NETDEV_BOOT_SETUP_MAX 8
302
303 int __init netdev_boot_setup(char *str);
304
305 struct gro_list {
306 struct list_head list;
307 int count;
308 };
309
310 /*
311 * size of gro hash buckets, must less than bit number of
312 * napi_struct::gro_bitmask
313 */
314 #define GRO_HASH_BUCKETS 8
315
316 /*
317 * Structure for NAPI scheduling similar to tasklet but with weighting
318 */
319 struct napi_struct {
320 /* The poll_list must only be managed by the entity which
321 * changes the state of the NAPI_STATE_SCHED bit. This means
322 * whoever atomically sets that bit can add this napi_struct
323 * to the per-CPU poll_list, and whoever clears that bit
324 * can remove from the list right before clearing the bit.
325 */
326 struct list_head poll_list;
327
328 unsigned long state;
329 int weight;
330 unsigned long gro_bitmask;
331 int (*poll)(struct napi_struct *, int);
332 #ifdef CONFIG_NETPOLL
333 int poll_owner;
334 #endif
335 struct net_device *dev;
336 struct gro_list gro_hash[GRO_HASH_BUCKETS];
337 struct sk_buff *skb;
338 struct hrtimer timer;
339 struct list_head dev_list;
340 struct hlist_node napi_hash_node;
341 unsigned int napi_id;
342 };
343
344 enum {
345 NAPI_STATE_SCHED, /* Poll is scheduled */
346 NAPI_STATE_MISSED, /* reschedule a napi */
347 NAPI_STATE_DISABLE, /* Disable pending */
348 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
349 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */
350 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
351 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
352 };
353
354 enum {
355 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED),
356 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED),
357 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE),
358 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC),
359 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED),
360 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
361 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
362 };
363
364 enum gro_result {
365 GRO_MERGED,
366 GRO_MERGED_FREE,
367 GRO_HELD,
368 GRO_NORMAL,
369 GRO_DROP,
370 GRO_CONSUMED,
371 };
372 typedef enum gro_result gro_result_t;
373
374 /*
375 * enum rx_handler_result - Possible return values for rx_handlers.
376 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
377 * further.
378 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
379 * case skb->dev was changed by rx_handler.
380 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
381 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
382 *
383 * rx_handlers are functions called from inside __netif_receive_skb(), to do
384 * special processing of the skb, prior to delivery to protocol handlers.
385 *
386 * Currently, a net_device can only have a single rx_handler registered. Trying
387 * to register a second rx_handler will return -EBUSY.
388 *
389 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
390 * To unregister a rx_handler on a net_device, use
391 * netdev_rx_handler_unregister().
392 *
393 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
394 * do with the skb.
395 *
396 * If the rx_handler consumed the skb in some way, it should return
397 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
398 * the skb to be delivered in some other way.
399 *
400 * If the rx_handler changed skb->dev, to divert the skb to another
401 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
402 * new device will be called if it exists.
403 *
404 * If the rx_handler decides the skb should be ignored, it should return
405 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
406 * are registered on exact device (ptype->dev == skb->dev).
407 *
408 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
409 * delivered, it should return RX_HANDLER_PASS.
410 *
411 * A device without a registered rx_handler will behave as if rx_handler
412 * returned RX_HANDLER_PASS.
413 */
414
415 enum rx_handler_result {
416 RX_HANDLER_CONSUMED,
417 RX_HANDLER_ANOTHER,
418 RX_HANDLER_EXACT,
419 RX_HANDLER_PASS,
420 };
421 typedef enum rx_handler_result rx_handler_result_t;
422 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
423
424 void __napi_schedule(struct napi_struct *n);
425 void __napi_schedule_irqoff(struct napi_struct *n);
426
427 static inline bool napi_disable_pending(struct napi_struct *n)
428 {
429 return test_bit(NAPI_STATE_DISABLE, &n->state);
430 }
431
432 bool napi_schedule_prep(struct napi_struct *n);
433
434 /**
435 * napi_schedule - schedule NAPI poll
436 * @n: NAPI context
437 *
438 * Schedule NAPI poll routine to be called if it is not already
439 * running.
440 */
441 static inline void napi_schedule(struct napi_struct *n)
442 {
443 if (napi_schedule_prep(n))
444 __napi_schedule(n);
445 }
446
447 /**
448 * napi_schedule_irqoff - schedule NAPI poll
449 * @n: NAPI context
450 *
451 * Variant of napi_schedule(), assuming hard irqs are masked.
452 */
453 static inline void napi_schedule_irqoff(struct napi_struct *n)
454 {
455 if (napi_schedule_prep(n))
456 __napi_schedule_irqoff(n);
457 }
458
459 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
460 static inline bool napi_reschedule(struct napi_struct *napi)
461 {
462 if (napi_schedule_prep(napi)) {
463 __napi_schedule(napi);
464 return true;
465 }
466 return false;
467 }
468
469 bool napi_complete_done(struct napi_struct *n, int work_done);
470 /**
471 * napi_complete - NAPI processing complete
472 * @n: NAPI context
473 *
474 * Mark NAPI processing as complete.
475 * Consider using napi_complete_done() instead.
476 * Return false if device should avoid rearming interrupts.
477 */
478 static inline bool napi_complete(struct napi_struct *n)
479 {
480 return napi_complete_done(n, 0);
481 }
482
483 /**
484 * napi_hash_del - remove a NAPI from global table
485 * @napi: NAPI context
486 *
487 * Warning: caller must observe RCU grace period
488 * before freeing memory containing @napi, if
489 * this function returns true.
490 * Note: core networking stack automatically calls it
491 * from netif_napi_del().
492 * Drivers might want to call this helper to combine all
493 * the needed RCU grace periods into a single one.
494 */
495 bool napi_hash_del(struct napi_struct *napi);
496
497 /**
498 * napi_disable - prevent NAPI from scheduling
499 * @n: NAPI context
500 *
501 * Stop NAPI from being scheduled on this context.
502 * Waits till any outstanding processing completes.
503 */
504 void napi_disable(struct napi_struct *n);
505
506 /**
507 * napi_enable - enable NAPI scheduling
508 * @n: NAPI context
509 *
510 * Resume NAPI from being scheduled on this context.
511 * Must be paired with napi_disable.
512 */
513 static inline void napi_enable(struct napi_struct *n)
514 {
515 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
516 smp_mb__before_atomic();
517 clear_bit(NAPI_STATE_SCHED, &n->state);
518 clear_bit(NAPI_STATE_NPSVC, &n->state);
519 }
520
521 /**
522 * napi_synchronize - wait until NAPI is not running
523 * @n: NAPI context
524 *
525 * Wait until NAPI is done being scheduled on this context.
526 * Waits till any outstanding processing completes but
527 * does not disable future activations.
528 */
529 static inline void napi_synchronize(const struct napi_struct *n)
530 {
531 if (IS_ENABLED(CONFIG_SMP))
532 while (test_bit(NAPI_STATE_SCHED, &n->state))
533 msleep(1);
534 else
535 barrier();
536 }
537
538 /**
539 * napi_if_scheduled_mark_missed - if napi is running, set the
540 * NAPIF_STATE_MISSED
541 * @n: NAPI context
542 *
543 * If napi is running, set the NAPIF_STATE_MISSED, and return true if
544 * NAPI is scheduled.
545 **/
546 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
547 {
548 unsigned long val, new;
549
550 do {
551 val = READ_ONCE(n->state);
552 if (val & NAPIF_STATE_DISABLE)
553 return true;
554
555 if (!(val & NAPIF_STATE_SCHED))
556 return false;
557
558 new = val | NAPIF_STATE_MISSED;
559 } while (cmpxchg(&n->state, val, new) != val);
560
561 return true;
562 }
563
564 enum netdev_queue_state_t {
565 __QUEUE_STATE_DRV_XOFF,
566 __QUEUE_STATE_STACK_XOFF,
567 __QUEUE_STATE_FROZEN,
568 };
569
570 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
571 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
572 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
573
574 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
575 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
576 QUEUE_STATE_FROZEN)
577 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
578 QUEUE_STATE_FROZEN)
579
580 /*
581 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
582 * netif_tx_* functions below are used to manipulate this flag. The
583 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
584 * queue independently. The netif_xmit_*stopped functions below are called
585 * to check if the queue has been stopped by the driver or stack (either
586 * of the XOFF bits are set in the state). Drivers should not need to call
587 * netif_xmit*stopped functions, they should only be using netif_tx_*.
588 */
589
590 struct netdev_queue {
591 /*
592 * read-mostly part
593 */
594 struct net_device *dev;
595 struct Qdisc __rcu *qdisc;
596 struct Qdisc *qdisc_sleeping;
597 #ifdef CONFIG_SYSFS
598 struct kobject kobj;
599 #endif
600 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
601 int numa_node;
602 #endif
603 unsigned long tx_maxrate;
604 /*
605 * Number of TX timeouts for this queue
606 * (/sys/class/net/DEV/Q/trans_timeout)
607 */
608 unsigned long trans_timeout;
609
610 /* Subordinate device that the queue has been assigned to */
611 struct net_device *sb_dev;
612 #ifdef CONFIG_XDP_SOCKETS
613 struct xdp_umem *umem;
614 #endif
615 /*
616 * write-mostly part
617 */
618 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
619 int xmit_lock_owner;
620 /*
621 * Time (in jiffies) of last Tx
622 */
623 unsigned long trans_start;
624
625 unsigned long state;
626
627 #ifdef CONFIG_BQL
628 struct dql dql;
629 #endif
630 } ____cacheline_aligned_in_smp;
631
632 extern int sysctl_fb_tunnels_only_for_init_net;
633
634 static inline bool net_has_fallback_tunnels(const struct net *net)
635 {
636 return net == &init_net ||
637 !IS_ENABLED(CONFIG_SYSCTL) ||
638 !sysctl_fb_tunnels_only_for_init_net;
639 }
640
641 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
642 {
643 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
644 return q->numa_node;
645 #else
646 return NUMA_NO_NODE;
647 #endif
648 }
649
650 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
651 {
652 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
653 q->numa_node = node;
654 #endif
655 }
656
657 #ifdef CONFIG_RPS
658 /*
659 * This structure holds an RPS map which can be of variable length. The
660 * map is an array of CPUs.
661 */
662 struct rps_map {
663 unsigned int len;
664 struct rcu_head rcu;
665 u16 cpus[0];
666 };
667 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
668
669 /*
670 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
671 * tail pointer for that CPU's input queue at the time of last enqueue, and
672 * a hardware filter index.
673 */
674 struct rps_dev_flow {
675 u16 cpu;
676 u16 filter;
677 unsigned int last_qtail;
678 };
679 #define RPS_NO_FILTER 0xffff
680
681 /*
682 * The rps_dev_flow_table structure contains a table of flow mappings.
683 */
684 struct rps_dev_flow_table {
685 unsigned int mask;
686 struct rcu_head rcu;
687 struct rps_dev_flow flows[0];
688 };
689 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
690 ((_num) * sizeof(struct rps_dev_flow)))
691
692 /*
693 * The rps_sock_flow_table contains mappings of flows to the last CPU
694 * on which they were processed by the application (set in recvmsg).
695 * Each entry is a 32bit value. Upper part is the high-order bits
696 * of flow hash, lower part is CPU number.
697 * rps_cpu_mask is used to partition the space, depending on number of
698 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
699 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
700 * meaning we use 32-6=26 bits for the hash.
701 */
702 struct rps_sock_flow_table {
703 u32 mask;
704
705 u32 ents[0] ____cacheline_aligned_in_smp;
706 };
707 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
708
709 #define RPS_NO_CPU 0xffff
710
711 extern u32 rps_cpu_mask;
712 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
713
714 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
715 u32 hash)
716 {
717 if (table && hash) {
718 unsigned int index = hash & table->mask;
719 u32 val = hash & ~rps_cpu_mask;
720
721 /* We only give a hint, preemption can change CPU under us */
722 val |= raw_smp_processor_id();
723
724 if (table->ents[index] != val)
725 table->ents[index] = val;
726 }
727 }
728
729 #ifdef CONFIG_RFS_ACCEL
730 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
731 u16 filter_id);
732 #endif
733 #endif /* CONFIG_RPS */
734
735 /* This structure contains an instance of an RX queue. */
736 struct netdev_rx_queue {
737 #ifdef CONFIG_RPS
738 struct rps_map __rcu *rps_map;
739 struct rps_dev_flow_table __rcu *rps_flow_table;
740 #endif
741 struct kobject kobj;
742 struct net_device *dev;
743 struct xdp_rxq_info xdp_rxq;
744 #ifdef CONFIG_XDP_SOCKETS
745 struct xdp_umem *umem;
746 #endif
747 } ____cacheline_aligned_in_smp;
748
749 /*
750 * RX queue sysfs structures and functions.
751 */
752 struct rx_queue_attribute {
753 struct attribute attr;
754 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
755 ssize_t (*store)(struct netdev_rx_queue *queue,
756 const char *buf, size_t len);
757 };
758
759 #ifdef CONFIG_XPS
760 /*
761 * This structure holds an XPS map which can be of variable length. The
762 * map is an array of queues.
763 */
764 struct xps_map {
765 unsigned int len;
766 unsigned int alloc_len;
767 struct rcu_head rcu;
768 u16 queues[0];
769 };
770 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
771 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
772 - sizeof(struct xps_map)) / sizeof(u16))
773
774 /*
775 * This structure holds all XPS maps for device. Maps are indexed by CPU.
776 */
777 struct xps_dev_maps {
778 struct rcu_head rcu;
779 struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */
780 };
781
782 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \
783 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
784
785 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
786 (_rxqs * (_tcs) * sizeof(struct xps_map *)))
787
788 #endif /* CONFIG_XPS */
789
790 #define TC_MAX_QUEUE 16
791 #define TC_BITMASK 15
792 /* HW offloaded queuing disciplines txq count and offset maps */
793 struct netdev_tc_txq {
794 u16 count;
795 u16 offset;
796 };
797
798 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
799 /*
800 * This structure is to hold information about the device
801 * configured to run FCoE protocol stack.
802 */
803 struct netdev_fcoe_hbainfo {
804 char manufacturer[64];
805 char serial_number[64];
806 char hardware_version[64];
807 char driver_version[64];
808 char optionrom_version[64];
809 char firmware_version[64];
810 char model[256];
811 char model_description[256];
812 };
813 #endif
814
815 #define MAX_PHYS_ITEM_ID_LEN 32
816
817 /* This structure holds a unique identifier to identify some
818 * physical item (port for example) used by a netdevice.
819 */
820 struct netdev_phys_item_id {
821 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
822 unsigned char id_len;
823 };
824
825 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
826 struct netdev_phys_item_id *b)
827 {
828 return a->id_len == b->id_len &&
829 memcmp(a->id, b->id, a->id_len) == 0;
830 }
831
832 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
833 struct sk_buff *skb,
834 struct net_device *sb_dev);
835
836 enum tc_setup_type {
837 TC_SETUP_QDISC_MQPRIO,
838 TC_SETUP_CLSU32,
839 TC_SETUP_CLSFLOWER,
840 TC_SETUP_CLSMATCHALL,
841 TC_SETUP_CLSBPF,
842 TC_SETUP_BLOCK,
843 TC_SETUP_QDISC_CBS,
844 TC_SETUP_QDISC_RED,
845 TC_SETUP_QDISC_PRIO,
846 TC_SETUP_QDISC_MQ,
847 TC_SETUP_QDISC_ETF,
848 TC_SETUP_ROOT_QDISC,
849 TC_SETUP_QDISC_GRED,
850 };
851
852 /* These structures hold the attributes of bpf state that are being passed
853 * to the netdevice through the bpf op.
854 */
855 enum bpf_netdev_command {
856 /* Set or clear a bpf program used in the earliest stages of packet
857 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
858 * is responsible for calling bpf_prog_put on any old progs that are
859 * stored. In case of error, the callee need not release the new prog
860 * reference, but on success it takes ownership and must bpf_prog_put
861 * when it is no longer used.
862 */
863 XDP_SETUP_PROG,
864 XDP_SETUP_PROG_HW,
865 XDP_QUERY_PROG,
866 XDP_QUERY_PROG_HW,
867 /* BPF program for offload callbacks, invoked at program load time. */
868 BPF_OFFLOAD_MAP_ALLOC,
869 BPF_OFFLOAD_MAP_FREE,
870 XDP_QUERY_XSK_UMEM,
871 XDP_SETUP_XSK_UMEM,
872 };
873
874 struct bpf_prog_offload_ops;
875 struct netlink_ext_ack;
876 struct xdp_umem;
877
878 struct netdev_bpf {
879 enum bpf_netdev_command command;
880 union {
881 /* XDP_SETUP_PROG */
882 struct {
883 u32 flags;
884 struct bpf_prog *prog;
885 struct netlink_ext_ack *extack;
886 };
887 /* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */
888 struct {
889 u32 prog_id;
890 /* flags with which program was installed */
891 u32 prog_flags;
892 };
893 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
894 struct {
895 struct bpf_offloaded_map *offmap;
896 };
897 /* XDP_QUERY_XSK_UMEM, XDP_SETUP_XSK_UMEM */
898 struct {
899 struct xdp_umem *umem; /* out for query*/
900 u16 queue_id; /* in for query */
901 } xsk;
902 };
903 };
904
905 #ifdef CONFIG_XFRM_OFFLOAD
906 struct xfrmdev_ops {
907 int (*xdo_dev_state_add) (struct xfrm_state *x);
908 void (*xdo_dev_state_delete) (struct xfrm_state *x);
909 void (*xdo_dev_state_free) (struct xfrm_state *x);
910 bool (*xdo_dev_offload_ok) (struct sk_buff *skb,
911 struct xfrm_state *x);
912 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x);
913 };
914 #endif
915
916 #if IS_ENABLED(CONFIG_TLS_DEVICE)
917 enum tls_offload_ctx_dir {
918 TLS_OFFLOAD_CTX_DIR_RX,
919 TLS_OFFLOAD_CTX_DIR_TX,
920 };
921
922 struct tls_crypto_info;
923 struct tls_context;
924
925 struct tlsdev_ops {
926 int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
927 enum tls_offload_ctx_dir direction,
928 struct tls_crypto_info *crypto_info,
929 u32 start_offload_tcp_sn);
930 void (*tls_dev_del)(struct net_device *netdev,
931 struct tls_context *ctx,
932 enum tls_offload_ctx_dir direction);
933 void (*tls_dev_resync_rx)(struct net_device *netdev,
934 struct sock *sk, u32 seq, u64 rcd_sn);
935 };
936 #endif
937
938 struct dev_ifalias {
939 struct rcu_head rcuhead;
940 char ifalias[];
941 };
942
943 /*
944 * This structure defines the management hooks for network devices.
945 * The following hooks can be defined; unless noted otherwise, they are
946 * optional and can be filled with a null pointer.
947 *
948 * int (*ndo_init)(struct net_device *dev);
949 * This function is called once when a network device is registered.
950 * The network device can use this for any late stage initialization
951 * or semantic validation. It can fail with an error code which will
952 * be propagated back to register_netdev.
953 *
954 * void (*ndo_uninit)(struct net_device *dev);
955 * This function is called when device is unregistered or when registration
956 * fails. It is not called if init fails.
957 *
958 * int (*ndo_open)(struct net_device *dev);
959 * This function is called when a network device transitions to the up
960 * state.
961 *
962 * int (*ndo_stop)(struct net_device *dev);
963 * This function is called when a network device transitions to the down
964 * state.
965 *
966 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
967 * struct net_device *dev);
968 * Called when a packet needs to be transmitted.
969 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
970 * the queue before that can happen; it's for obsolete devices and weird
971 * corner cases, but the stack really does a non-trivial amount
972 * of useless work if you return NETDEV_TX_BUSY.
973 * Required; cannot be NULL.
974 *
975 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
976 * struct net_device *dev
977 * netdev_features_t features);
978 * Called by core transmit path to determine if device is capable of
979 * performing offload operations on a given packet. This is to give
980 * the device an opportunity to implement any restrictions that cannot
981 * be otherwise expressed by feature flags. The check is called with
982 * the set of features that the stack has calculated and it returns
983 * those the driver believes to be appropriate.
984 *
985 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
986 * struct net_device *sb_dev,
987 * select_queue_fallback_t fallback);
988 * Called to decide which queue to use when device supports multiple
989 * transmit queues.
990 *
991 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
992 * This function is called to allow device receiver to make
993 * changes to configuration when multicast or promiscuous is enabled.
994 *
995 * void (*ndo_set_rx_mode)(struct net_device *dev);
996 * This function is called device changes address list filtering.
997 * If driver handles unicast address filtering, it should set
998 * IFF_UNICAST_FLT in its priv_flags.
999 *
1000 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1001 * This function is called when the Media Access Control address
1002 * needs to be changed. If this interface is not defined, the
1003 * MAC address can not be changed.
1004 *
1005 * int (*ndo_validate_addr)(struct net_device *dev);
1006 * Test if Media Access Control address is valid for the device.
1007 *
1008 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1009 * Called when a user requests an ioctl which can't be handled by
1010 * the generic interface code. If not defined ioctls return
1011 * not supported error code.
1012 *
1013 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1014 * Used to set network devices bus interface parameters. This interface
1015 * is retained for legacy reasons; new devices should use the bus
1016 * interface (PCI) for low level management.
1017 *
1018 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1019 * Called when a user wants to change the Maximum Transfer Unit
1020 * of a device.
1021 *
1022 * void (*ndo_tx_timeout)(struct net_device *dev);
1023 * Callback used when the transmitter has not made any progress
1024 * for dev->watchdog ticks.
1025 *
1026 * void (*ndo_get_stats64)(struct net_device *dev,
1027 * struct rtnl_link_stats64 *storage);
1028 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1029 * Called when a user wants to get the network device usage
1030 * statistics. Drivers must do one of the following:
1031 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
1032 * rtnl_link_stats64 structure passed by the caller.
1033 * 2. Define @ndo_get_stats to update a net_device_stats structure
1034 * (which should normally be dev->stats) and return a pointer to
1035 * it. The structure may be changed asynchronously only if each
1036 * field is written atomically.
1037 * 3. Update dev->stats asynchronously and atomically, and define
1038 * neither operation.
1039 *
1040 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1041 * Return true if this device supports offload stats of this attr_id.
1042 *
1043 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1044 * void *attr_data)
1045 * Get statistics for offload operations by attr_id. Write it into the
1046 * attr_data pointer.
1047 *
1048 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1049 * If device supports VLAN filtering this function is called when a
1050 * VLAN id is registered.
1051 *
1052 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1053 * If device supports VLAN filtering this function is called when a
1054 * VLAN id is unregistered.
1055 *
1056 * void (*ndo_poll_controller)(struct net_device *dev);
1057 *
1058 * SR-IOV management functions.
1059 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1060 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1061 * u8 qos, __be16 proto);
1062 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1063 * int max_tx_rate);
1064 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1065 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1066 * int (*ndo_get_vf_config)(struct net_device *dev,
1067 * int vf, struct ifla_vf_info *ivf);
1068 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1069 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1070 * struct nlattr *port[]);
1071 *
1072 * Enable or disable the VF ability to query its RSS Redirection Table and
1073 * Hash Key. This is needed since on some devices VF share this information
1074 * with PF and querying it may introduce a theoretical security risk.
1075 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1076 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1077 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1078 * void *type_data);
1079 * Called to setup any 'tc' scheduler, classifier or action on @dev.
1080 * This is always called from the stack with the rtnl lock held and netif
1081 * tx queues stopped. This allows the netdevice to perform queue
1082 * management safely.
1083 *
1084 * Fiber Channel over Ethernet (FCoE) offload functions.
1085 * int (*ndo_fcoe_enable)(struct net_device *dev);
1086 * Called when the FCoE protocol stack wants to start using LLD for FCoE
1087 * so the underlying device can perform whatever needed configuration or
1088 * initialization to support acceleration of FCoE traffic.
1089 *
1090 * int (*ndo_fcoe_disable)(struct net_device *dev);
1091 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
1092 * so the underlying device can perform whatever needed clean-ups to
1093 * stop supporting acceleration of FCoE traffic.
1094 *
1095 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1096 * struct scatterlist *sgl, unsigned int sgc);
1097 * Called when the FCoE Initiator wants to initialize an I/O that
1098 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1099 * perform necessary setup and returns 1 to indicate the device is set up
1100 * successfully to perform DDP on this I/O, otherwise this returns 0.
1101 *
1102 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
1103 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
1104 * indicated by the FC exchange id 'xid', so the underlying device can
1105 * clean up and reuse resources for later DDP requests.
1106 *
1107 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1108 * struct scatterlist *sgl, unsigned int sgc);
1109 * Called when the FCoE Target wants to initialize an I/O that
1110 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1111 * perform necessary setup and returns 1 to indicate the device is set up
1112 * successfully to perform DDP on this I/O, otherwise this returns 0.
1113 *
1114 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1115 * struct netdev_fcoe_hbainfo *hbainfo);
1116 * Called when the FCoE Protocol stack wants information on the underlying
1117 * device. This information is utilized by the FCoE protocol stack to
1118 * register attributes with Fiber Channel management service as per the
1119 * FC-GS Fabric Device Management Information(FDMI) specification.
1120 *
1121 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1122 * Called when the underlying device wants to override default World Wide
1123 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1124 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1125 * protocol stack to use.
1126 *
1127 * RFS acceleration.
1128 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1129 * u16 rxq_index, u32 flow_id);
1130 * Set hardware filter for RFS. rxq_index is the target queue index;
1131 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1132 * Return the filter ID on success, or a negative error code.
1133 *
1134 * Slave management functions (for bridge, bonding, etc).
1135 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1136 * Called to make another netdev an underling.
1137 *
1138 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1139 * Called to release previously enslaved netdev.
1140 *
1141 * Feature/offload setting functions.
1142 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1143 * netdev_features_t features);
1144 * Adjusts the requested feature flags according to device-specific
1145 * constraints, and returns the resulting flags. Must not modify
1146 * the device state.
1147 *
1148 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1149 * Called to update device configuration to new features. Passed
1150 * feature set might be less than what was returned by ndo_fix_features()).
1151 * Must return >0 or -errno if it changed dev->features itself.
1152 *
1153 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1154 * struct net_device *dev,
1155 * const unsigned char *addr, u16 vid, u16 flags)
1156 * Adds an FDB entry to dev for addr.
1157 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1158 * struct net_device *dev,
1159 * const unsigned char *addr, u16 vid)
1160 * Deletes the FDB entry from dev coresponding to addr.
1161 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1162 * struct net_device *dev, struct net_device *filter_dev,
1163 * int *idx)
1164 * Used to add FDB entries to dump requests. Implementers should add
1165 * entries to skb and update idx with the number of entries.
1166 *
1167 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1168 * u16 flags, struct netlink_ext_ack *extack)
1169 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1170 * struct net_device *dev, u32 filter_mask,
1171 * int nlflags)
1172 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1173 * u16 flags);
1174 *
1175 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1176 * Called to change device carrier. Soft-devices (like dummy, team, etc)
1177 * which do not represent real hardware may define this to allow their
1178 * userspace components to manage their virtual carrier state. Devices
1179 * that determine carrier state from physical hardware properties (eg
1180 * network cables) or protocol-dependent mechanisms (eg
1181 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1182 *
1183 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1184 * struct netdev_phys_item_id *ppid);
1185 * Called to get ID of physical port of this device. If driver does
1186 * not implement this, it is assumed that the hw is not able to have
1187 * multiple net devices on single physical port.
1188 *
1189 * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1190 * struct udp_tunnel_info *ti);
1191 * Called by UDP tunnel to notify a driver about the UDP port and socket
1192 * address family that a UDP tunnel is listnening to. It is called only
1193 * when a new port starts listening. The operation is protected by the
1194 * RTNL.
1195 *
1196 * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1197 * struct udp_tunnel_info *ti);
1198 * Called by UDP tunnel to notify the driver about a UDP port and socket
1199 * address family that the UDP tunnel is not listening to anymore. The
1200 * operation is protected by the RTNL.
1201 *
1202 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1203 * struct net_device *dev)
1204 * Called by upper layer devices to accelerate switching or other
1205 * station functionality into hardware. 'pdev is the lowerdev
1206 * to use for the offload and 'dev' is the net device that will
1207 * back the offload. Returns a pointer to the private structure
1208 * the upper layer will maintain.
1209 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1210 * Called by upper layer device to delete the station created
1211 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1212 * the station and priv is the structure returned by the add
1213 * operation.
1214 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1215 * int queue_index, u32 maxrate);
1216 * Called when a user wants to set a max-rate limitation of specific
1217 * TX queue.
1218 * int (*ndo_get_iflink)(const struct net_device *dev);
1219 * Called to get the iflink value of this device.
1220 * void (*ndo_change_proto_down)(struct net_device *dev,
1221 * bool proto_down);
1222 * This function is used to pass protocol port error state information
1223 * to the switch driver. The switch driver can react to the proto_down
1224 * by doing a phys down on the associated switch port.
1225 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1226 * This function is used to get egress tunnel information for given skb.
1227 * This is useful for retrieving outer tunnel header parameters while
1228 * sampling packet.
1229 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1230 * This function is used to specify the headroom that the skb must
1231 * consider when allocation skb during packet reception. Setting
1232 * appropriate rx headroom value allows avoiding skb head copy on
1233 * forward. Setting a negative value resets the rx headroom to the
1234 * default value.
1235 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1236 * This function is used to set or query state related to XDP on the
1237 * netdevice and manage BPF offload. See definition of
1238 * enum bpf_netdev_command for details.
1239 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1240 * u32 flags);
1241 * This function is used to submit @n XDP packets for transmit on a
1242 * netdevice. Returns number of frames successfully transmitted, frames
1243 * that got dropped are freed/returned via xdp_return_frame().
1244 * Returns negative number, means general error invoking ndo, meaning
1245 * no frames were xmit'ed and core-caller will free all frames.
1246 */
1247 struct net_device_ops {
1248 int (*ndo_init)(struct net_device *dev);
1249 void (*ndo_uninit)(struct net_device *dev);
1250 int (*ndo_open)(struct net_device *dev);
1251 int (*ndo_stop)(struct net_device *dev);
1252 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1253 struct net_device *dev);
1254 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1255 struct net_device *dev,
1256 netdev_features_t features);
1257 u16 (*ndo_select_queue)(struct net_device *dev,
1258 struct sk_buff *skb,
1259 struct net_device *sb_dev,
1260 select_queue_fallback_t fallback);
1261 void (*ndo_change_rx_flags)(struct net_device *dev,
1262 int flags);
1263 void (*ndo_set_rx_mode)(struct net_device *dev);
1264 int (*ndo_set_mac_address)(struct net_device *dev,
1265 void *addr);
1266 int (*ndo_validate_addr)(struct net_device *dev);
1267 int (*ndo_do_ioctl)(struct net_device *dev,
1268 struct ifreq *ifr, int cmd);
1269 int (*ndo_set_config)(struct net_device *dev,
1270 struct ifmap *map);
1271 int (*ndo_change_mtu)(struct net_device *dev,
1272 int new_mtu);
1273 int (*ndo_neigh_setup)(struct net_device *dev,
1274 struct neigh_parms *);
1275 void (*ndo_tx_timeout) (struct net_device *dev);
1276
1277 void (*ndo_get_stats64)(struct net_device *dev,
1278 struct rtnl_link_stats64 *storage);
1279 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1280 int (*ndo_get_offload_stats)(int attr_id,
1281 const struct net_device *dev,
1282 void *attr_data);
1283 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1284
1285 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1286 __be16 proto, u16 vid);
1287 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1288 __be16 proto, u16 vid);
1289 #ifdef CONFIG_NET_POLL_CONTROLLER
1290 void (*ndo_poll_controller)(struct net_device *dev);
1291 int (*ndo_netpoll_setup)(struct net_device *dev,
1292 struct netpoll_info *info);
1293 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1294 #endif
1295 int (*ndo_set_vf_mac)(struct net_device *dev,
1296 int queue, u8 *mac);
1297 int (*ndo_set_vf_vlan)(struct net_device *dev,
1298 int queue, u16 vlan,
1299 u8 qos, __be16 proto);
1300 int (*ndo_set_vf_rate)(struct net_device *dev,
1301 int vf, int min_tx_rate,
1302 int max_tx_rate);
1303 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1304 int vf, bool setting);
1305 int (*ndo_set_vf_trust)(struct net_device *dev,
1306 int vf, bool setting);
1307 int (*ndo_get_vf_config)(struct net_device *dev,
1308 int vf,
1309 struct ifla_vf_info *ivf);
1310 int (*ndo_set_vf_link_state)(struct net_device *dev,
1311 int vf, int link_state);
1312 int (*ndo_get_vf_stats)(struct net_device *dev,
1313 int vf,
1314 struct ifla_vf_stats
1315 *vf_stats);
1316 int (*ndo_set_vf_port)(struct net_device *dev,
1317 int vf,
1318 struct nlattr *port[]);
1319 int (*ndo_get_vf_port)(struct net_device *dev,
1320 int vf, struct sk_buff *skb);
1321 int (*ndo_set_vf_guid)(struct net_device *dev,
1322 int vf, u64 guid,
1323 int guid_type);
1324 int (*ndo_set_vf_rss_query_en)(
1325 struct net_device *dev,
1326 int vf, bool setting);
1327 int (*ndo_setup_tc)(struct net_device *dev,
1328 enum tc_setup_type type,
1329 void *type_data);
1330 #if IS_ENABLED(CONFIG_FCOE)
1331 int (*ndo_fcoe_enable)(struct net_device *dev);
1332 int (*ndo_fcoe_disable)(struct net_device *dev);
1333 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1334 u16 xid,
1335 struct scatterlist *sgl,
1336 unsigned int sgc);
1337 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1338 u16 xid);
1339 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1340 u16 xid,
1341 struct scatterlist *sgl,
1342 unsigned int sgc);
1343 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1344 struct netdev_fcoe_hbainfo *hbainfo);
1345 #endif
1346
1347 #if IS_ENABLED(CONFIG_LIBFCOE)
1348 #define NETDEV_FCOE_WWNN 0
1349 #define NETDEV_FCOE_WWPN 1
1350 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1351 u64 *wwn, int type);
1352 #endif
1353
1354 #ifdef CONFIG_RFS_ACCEL
1355 int (*ndo_rx_flow_steer)(struct net_device *dev,
1356 const struct sk_buff *skb,
1357 u16 rxq_index,
1358 u32 flow_id);
1359 #endif
1360 int (*ndo_add_slave)(struct net_device *dev,
1361 struct net_device *slave_dev,
1362 struct netlink_ext_ack *extack);
1363 int (*ndo_del_slave)(struct net_device *dev,
1364 struct net_device *slave_dev);
1365 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1366 netdev_features_t features);
1367 int (*ndo_set_features)(struct net_device *dev,
1368 netdev_features_t features);
1369 int (*ndo_neigh_construct)(struct net_device *dev,
1370 struct neighbour *n);
1371 void (*ndo_neigh_destroy)(struct net_device *dev,
1372 struct neighbour *n);
1373
1374 int (*ndo_fdb_add)(struct ndmsg *ndm,
1375 struct nlattr *tb[],
1376 struct net_device *dev,
1377 const unsigned char *addr,
1378 u16 vid,
1379 u16 flags);
1380 int (*ndo_fdb_del)(struct ndmsg *ndm,
1381 struct nlattr *tb[],
1382 struct net_device *dev,
1383 const unsigned char *addr,
1384 u16 vid);
1385 int (*ndo_fdb_dump)(struct sk_buff *skb,
1386 struct netlink_callback *cb,
1387 struct net_device *dev,
1388 struct net_device *filter_dev,
1389 int *idx);
1390 int (*ndo_fdb_get)(struct sk_buff *skb,
1391 struct nlattr *tb[],
1392 struct net_device *dev,
1393 const unsigned char *addr,
1394 u16 vid, u32 portid, u32 seq,
1395 struct netlink_ext_ack *extack);
1396 int (*ndo_bridge_setlink)(struct net_device *dev,
1397 struct nlmsghdr *nlh,
1398 u16 flags,
1399 struct netlink_ext_ack *extack);
1400 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1401 u32 pid, u32 seq,
1402 struct net_device *dev,
1403 u32 filter_mask,
1404 int nlflags);
1405 int (*ndo_bridge_dellink)(struct net_device *dev,
1406 struct nlmsghdr *nlh,
1407 u16 flags);
1408 int (*ndo_change_carrier)(struct net_device *dev,
1409 bool new_carrier);
1410 int (*ndo_get_phys_port_id)(struct net_device *dev,
1411 struct netdev_phys_item_id *ppid);
1412 int (*ndo_get_phys_port_name)(struct net_device *dev,
1413 char *name, size_t len);
1414 void (*ndo_udp_tunnel_add)(struct net_device *dev,
1415 struct udp_tunnel_info *ti);
1416 void (*ndo_udp_tunnel_del)(struct net_device *dev,
1417 struct udp_tunnel_info *ti);
1418 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1419 struct net_device *dev);
1420 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1421 void *priv);
1422
1423 int (*ndo_get_lock_subclass)(struct net_device *dev);
1424 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1425 int queue_index,
1426 u32 maxrate);
1427 int (*ndo_get_iflink)(const struct net_device *dev);
1428 int (*ndo_change_proto_down)(struct net_device *dev,
1429 bool proto_down);
1430 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1431 struct sk_buff *skb);
1432 void (*ndo_set_rx_headroom)(struct net_device *dev,
1433 int needed_headroom);
1434 int (*ndo_bpf)(struct net_device *dev,
1435 struct netdev_bpf *bpf);
1436 int (*ndo_xdp_xmit)(struct net_device *dev, int n,
1437 struct xdp_frame **xdp,
1438 u32 flags);
1439 int (*ndo_xsk_async_xmit)(struct net_device *dev,
1440 u32 queue_id);
1441 };
1442
1443 /**
1444 * enum net_device_priv_flags - &struct net_device priv_flags
1445 *
1446 * These are the &struct net_device, they are only set internally
1447 * by drivers and used in the kernel. These flags are invisible to
1448 * userspace; this means that the order of these flags can change
1449 * during any kernel release.
1450 *
1451 * You should have a pretty good reason to be extending these flags.
1452 *
1453 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1454 * @IFF_EBRIDGE: Ethernet bridging device
1455 * @IFF_BONDING: bonding master or slave
1456 * @IFF_ISATAP: ISATAP interface (RFC4214)
1457 * @IFF_WAN_HDLC: WAN HDLC device
1458 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1459 * release skb->dst
1460 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1461 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1462 * @IFF_MACVLAN_PORT: device used as macvlan port
1463 * @IFF_BRIDGE_PORT: device used as bridge port
1464 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1465 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1466 * @IFF_UNICAST_FLT: Supports unicast filtering
1467 * @IFF_TEAM_PORT: device used as team port
1468 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1469 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1470 * change when it's running
1471 * @IFF_MACVLAN: Macvlan device
1472 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1473 * underlying stacked devices
1474 * @IFF_L3MDEV_MASTER: device is an L3 master device
1475 * @IFF_NO_QUEUE: device can run without qdisc attached
1476 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1477 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1478 * @IFF_TEAM: device is a team device
1479 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1480 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1481 * entity (i.e. the master device for bridged veth)
1482 * @IFF_MACSEC: device is a MACsec device
1483 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1484 * @IFF_FAILOVER: device is a failover master device
1485 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1486 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1487 */
1488 enum netdev_priv_flags {
1489 IFF_802_1Q_VLAN = 1<<0,
1490 IFF_EBRIDGE = 1<<1,
1491 IFF_BONDING = 1<<2,
1492 IFF_ISATAP = 1<<3,
1493 IFF_WAN_HDLC = 1<<4,
1494 IFF_XMIT_DST_RELEASE = 1<<5,
1495 IFF_DONT_BRIDGE = 1<<6,
1496 IFF_DISABLE_NETPOLL = 1<<7,
1497 IFF_MACVLAN_PORT = 1<<8,
1498 IFF_BRIDGE_PORT = 1<<9,
1499 IFF_OVS_DATAPATH = 1<<10,
1500 IFF_TX_SKB_SHARING = 1<<11,
1501 IFF_UNICAST_FLT = 1<<12,
1502 IFF_TEAM_PORT = 1<<13,
1503 IFF_SUPP_NOFCS = 1<<14,
1504 IFF_LIVE_ADDR_CHANGE = 1<<15,
1505 IFF_MACVLAN = 1<<16,
1506 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1507 IFF_L3MDEV_MASTER = 1<<18,
1508 IFF_NO_QUEUE = 1<<19,
1509 IFF_OPENVSWITCH = 1<<20,
1510 IFF_L3MDEV_SLAVE = 1<<21,
1511 IFF_TEAM = 1<<22,
1512 IFF_RXFH_CONFIGURED = 1<<23,
1513 IFF_PHONY_HEADROOM = 1<<24,
1514 IFF_MACSEC = 1<<25,
1515 IFF_NO_RX_HANDLER = 1<<26,
1516 IFF_FAILOVER = 1<<27,
1517 IFF_FAILOVER_SLAVE = 1<<28,
1518 IFF_L3MDEV_RX_HANDLER = 1<<29,
1519 };
1520
1521 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1522 #define IFF_EBRIDGE IFF_EBRIDGE
1523 #define IFF_BONDING IFF_BONDING
1524 #define IFF_ISATAP IFF_ISATAP
1525 #define IFF_WAN_HDLC IFF_WAN_HDLC
1526 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1527 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1528 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1529 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1530 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1531 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1532 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1533 #define IFF_UNICAST_FLT IFF_UNICAST_FLT
1534 #define IFF_TEAM_PORT IFF_TEAM_PORT
1535 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1536 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1537 #define IFF_MACVLAN IFF_MACVLAN
1538 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1539 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1540 #define IFF_NO_QUEUE IFF_NO_QUEUE
1541 #define IFF_OPENVSWITCH IFF_OPENVSWITCH
1542 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1543 #define IFF_TEAM IFF_TEAM
1544 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED
1545 #define IFF_MACSEC IFF_MACSEC
1546 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER
1547 #define IFF_FAILOVER IFF_FAILOVER
1548 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE
1549 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER
1550
1551 /**
1552 * struct net_device - The DEVICE structure.
1553 *
1554 * Actually, this whole structure is a big mistake. It mixes I/O
1555 * data with strictly "high-level" data, and it has to know about
1556 * almost every data structure used in the INET module.
1557 *
1558 * @name: This is the first field of the "visible" part of this structure
1559 * (i.e. as seen by users in the "Space.c" file). It is the name
1560 * of the interface.
1561 *
1562 * @name_hlist: Device name hash chain, please keep it close to name[]
1563 * @ifalias: SNMP alias
1564 * @mem_end: Shared memory end
1565 * @mem_start: Shared memory start
1566 * @base_addr: Device I/O address
1567 * @irq: Device IRQ number
1568 *
1569 * @state: Generic network queuing layer state, see netdev_state_t
1570 * @dev_list: The global list of network devices
1571 * @napi_list: List entry used for polling NAPI devices
1572 * @unreg_list: List entry when we are unregistering the
1573 * device; see the function unregister_netdev
1574 * @close_list: List entry used when we are closing the device
1575 * @ptype_all: Device-specific packet handlers for all protocols
1576 * @ptype_specific: Device-specific, protocol-specific packet handlers
1577 *
1578 * @adj_list: Directly linked devices, like slaves for bonding
1579 * @features: Currently active device features
1580 * @hw_features: User-changeable features
1581 *
1582 * @wanted_features: User-requested features
1583 * @vlan_features: Mask of features inheritable by VLAN devices
1584 *
1585 * @hw_enc_features: Mask of features inherited by encapsulating devices
1586 * This field indicates what encapsulation
1587 * offloads the hardware is capable of doing,
1588 * and drivers will need to set them appropriately.
1589 *
1590 * @mpls_features: Mask of features inheritable by MPLS
1591 *
1592 * @ifindex: interface index
1593 * @group: The group the device belongs to
1594 *
1595 * @stats: Statistics struct, which was left as a legacy, use
1596 * rtnl_link_stats64 instead
1597 *
1598 * @rx_dropped: Dropped packets by core network,
1599 * do not use this in drivers
1600 * @tx_dropped: Dropped packets by core network,
1601 * do not use this in drivers
1602 * @rx_nohandler: nohandler dropped packets by core network on
1603 * inactive devices, do not use this in drivers
1604 * @carrier_up_count: Number of times the carrier has been up
1605 * @carrier_down_count: Number of times the carrier has been down
1606 *
1607 * @wireless_handlers: List of functions to handle Wireless Extensions,
1608 * instead of ioctl,
1609 * see <net/iw_handler.h> for details.
1610 * @wireless_data: Instance data managed by the core of wireless extensions
1611 *
1612 * @netdev_ops: Includes several pointers to callbacks,
1613 * if one wants to override the ndo_*() functions
1614 * @ethtool_ops: Management operations
1615 * @ndisc_ops: Includes callbacks for different IPv6 neighbour
1616 * discovery handling. Necessary for e.g. 6LoWPAN.
1617 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1618 * of Layer 2 headers.
1619 *
1620 * @flags: Interface flags (a la BSD)
1621 * @priv_flags: Like 'flags' but invisible to userspace,
1622 * see if.h for the definitions
1623 * @gflags: Global flags ( kept as legacy )
1624 * @padded: How much padding added by alloc_netdev()
1625 * @operstate: RFC2863 operstate
1626 * @link_mode: Mapping policy to operstate
1627 * @if_port: Selectable AUI, TP, ...
1628 * @dma: DMA channel
1629 * @mtu: Interface MTU value
1630 * @min_mtu: Interface Minimum MTU value
1631 * @max_mtu: Interface Maximum MTU value
1632 * @type: Interface hardware type
1633 * @hard_header_len: Maximum hardware header length.
1634 * @min_header_len: Minimum hardware header length
1635 *
1636 * @needed_headroom: Extra headroom the hardware may need, but not in all
1637 * cases can this be guaranteed
1638 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1639 * cases can this be guaranteed. Some cases also use
1640 * LL_MAX_HEADER instead to allocate the skb
1641 *
1642 * interface address info:
1643 *
1644 * @perm_addr: Permanent hw address
1645 * @addr_assign_type: Hw address assignment type
1646 * @addr_len: Hardware address length
1647 * @neigh_priv_len: Used in neigh_alloc()
1648 * @dev_id: Used to differentiate devices that share
1649 * the same link layer address
1650 * @dev_port: Used to differentiate devices that share
1651 * the same function
1652 * @addr_list_lock: XXX: need comments on this one
1653 * @uc_promisc: Counter that indicates promiscuous mode
1654 * has been enabled due to the need to listen to
1655 * additional unicast addresses in a device that
1656 * does not implement ndo_set_rx_mode()
1657 * @uc: unicast mac addresses
1658 * @mc: multicast mac addresses
1659 * @dev_addrs: list of device hw addresses
1660 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1661 * @promiscuity: Number of times the NIC is told to work in
1662 * promiscuous mode; if it becomes 0 the NIC will
1663 * exit promiscuous mode
1664 * @allmulti: Counter, enables or disables allmulticast mode
1665 *
1666 * @vlan_info: VLAN info
1667 * @dsa_ptr: dsa specific data
1668 * @tipc_ptr: TIPC specific data
1669 * @atalk_ptr: AppleTalk link
1670 * @ip_ptr: IPv4 specific data
1671 * @dn_ptr: DECnet specific data
1672 * @ip6_ptr: IPv6 specific data
1673 * @ax25_ptr: AX.25 specific data
1674 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1675 *
1676 * @dev_addr: Hw address (before bcast,
1677 * because most packets are unicast)
1678 *
1679 * @_rx: Array of RX queues
1680 * @num_rx_queues: Number of RX queues
1681 * allocated at register_netdev() time
1682 * @real_num_rx_queues: Number of RX queues currently active in device
1683 *
1684 * @rx_handler: handler for received packets
1685 * @rx_handler_data: XXX: need comments on this one
1686 * @miniq_ingress: ingress/clsact qdisc specific data for
1687 * ingress processing
1688 * @ingress_queue: XXX: need comments on this one
1689 * @broadcast: hw bcast address
1690 *
1691 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1692 * indexed by RX queue number. Assigned by driver.
1693 * This must only be set if the ndo_rx_flow_steer
1694 * operation is defined
1695 * @index_hlist: Device index hash chain
1696 *
1697 * @_tx: Array of TX queues
1698 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1699 * @real_num_tx_queues: Number of TX queues currently active in device
1700 * @qdisc: Root qdisc from userspace point of view
1701 * @tx_queue_len: Max frames per queue allowed
1702 * @tx_global_lock: XXX: need comments on this one
1703 *
1704 * @xps_maps: XXX: need comments on this one
1705 * @miniq_egress: clsact qdisc specific data for
1706 * egress processing
1707 * @watchdog_timeo: Represents the timeout that is used by
1708 * the watchdog (see dev_watchdog())
1709 * @watchdog_timer: List of timers
1710 *
1711 * @pcpu_refcnt: Number of references to this device
1712 * @todo_list: Delayed register/unregister
1713 * @link_watch_list: XXX: need comments on this one
1714 *
1715 * @reg_state: Register/unregister state machine
1716 * @dismantle: Device is going to be freed
1717 * @rtnl_link_state: This enum represents the phases of creating
1718 * a new link
1719 *
1720 * @needs_free_netdev: Should unregister perform free_netdev?
1721 * @priv_destructor: Called from unregister
1722 * @npinfo: XXX: need comments on this one
1723 * @nd_net: Network namespace this network device is inside
1724 *
1725 * @ml_priv: Mid-layer private
1726 * @lstats: Loopback statistics
1727 * @tstats: Tunnel statistics
1728 * @dstats: Dummy statistics
1729 * @vstats: Virtual ethernet statistics
1730 *
1731 * @garp_port: GARP
1732 * @mrp_port: MRP
1733 *
1734 * @dev: Class/net/name entry
1735 * @sysfs_groups: Space for optional device, statistics and wireless
1736 * sysfs groups
1737 *
1738 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1739 * @rtnl_link_ops: Rtnl_link_ops
1740 *
1741 * @gso_max_size: Maximum size of generic segmentation offload
1742 * @gso_max_segs: Maximum number of segments that can be passed to the
1743 * NIC for GSO
1744 *
1745 * @dcbnl_ops: Data Center Bridging netlink ops
1746 * @num_tc: Number of traffic classes in the net device
1747 * @tc_to_txq: XXX: need comments on this one
1748 * @prio_tc_map: XXX: need comments on this one
1749 *
1750 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1751 *
1752 * @priomap: XXX: need comments on this one
1753 * @phydev: Physical device may attach itself
1754 * for hardware timestamping
1755 * @sfp_bus: attached &struct sfp_bus structure.
1756 *
1757 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1758 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1759 *
1760 * @proto_down: protocol port state information can be sent to the
1761 * switch driver and used to set the phys state of the
1762 * switch port.
1763 *
1764 * @wol_enabled: Wake-on-LAN is enabled
1765 *
1766 * FIXME: cleanup struct net_device such that network protocol info
1767 * moves out.
1768 */
1769
1770 struct net_device {
1771 char name[IFNAMSIZ];
1772 struct hlist_node name_hlist;
1773 struct dev_ifalias __rcu *ifalias;
1774 /*
1775 * I/O specific fields
1776 * FIXME: Merge these and struct ifmap into one
1777 */
1778 unsigned long mem_end;
1779 unsigned long mem_start;
1780 unsigned long base_addr;
1781 int irq;
1782
1783 /*
1784 * Some hardware also needs these fields (state,dev_list,
1785 * napi_list,unreg_list,close_list) but they are not
1786 * part of the usual set specified in Space.c.
1787 */
1788
1789 unsigned long state;
1790
1791 struct list_head dev_list;
1792 struct list_head napi_list;
1793 struct list_head unreg_list;
1794 struct list_head close_list;
1795 struct list_head ptype_all;
1796 struct list_head ptype_specific;
1797
1798 struct {
1799 struct list_head upper;
1800 struct list_head lower;
1801 } adj_list;
1802
1803 netdev_features_t features;
1804 netdev_features_t hw_features;
1805 netdev_features_t wanted_features;
1806 netdev_features_t vlan_features;
1807 netdev_features_t hw_enc_features;
1808 netdev_features_t mpls_features;
1809 netdev_features_t gso_partial_features;
1810
1811 int ifindex;
1812 int group;
1813
1814 struct net_device_stats stats;
1815
1816 atomic_long_t rx_dropped;
1817 atomic_long_t tx_dropped;
1818 atomic_long_t rx_nohandler;
1819
1820 /* Stats to monitor link on/off, flapping */
1821 atomic_t carrier_up_count;
1822 atomic_t carrier_down_count;
1823
1824 #ifdef CONFIG_WIRELESS_EXT
1825 const struct iw_handler_def *wireless_handlers;
1826 struct iw_public_data *wireless_data;
1827 #endif
1828 const struct net_device_ops *netdev_ops;
1829 const struct ethtool_ops *ethtool_ops;
1830 #ifdef CONFIG_NET_SWITCHDEV
1831 const struct switchdev_ops *switchdev_ops;
1832 #endif
1833 #ifdef CONFIG_NET_L3_MASTER_DEV
1834 const struct l3mdev_ops *l3mdev_ops;
1835 #endif
1836 #if IS_ENABLED(CONFIG_IPV6)
1837 const struct ndisc_ops *ndisc_ops;
1838 #endif
1839
1840 #ifdef CONFIG_XFRM_OFFLOAD
1841 const struct xfrmdev_ops *xfrmdev_ops;
1842 #endif
1843
1844 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1845 const struct tlsdev_ops *tlsdev_ops;
1846 #endif
1847
1848 const struct header_ops *header_ops;
1849
1850 unsigned int flags;
1851 unsigned int priv_flags;
1852
1853 unsigned short gflags;
1854 unsigned short padded;
1855
1856 unsigned char operstate;
1857 unsigned char link_mode;
1858
1859 unsigned char if_port;
1860 unsigned char dma;
1861
1862 unsigned int mtu;
1863 unsigned int min_mtu;
1864 unsigned int max_mtu;
1865 unsigned short type;
1866 unsigned short hard_header_len;
1867 unsigned char min_header_len;
1868
1869 unsigned short needed_headroom;
1870 unsigned short needed_tailroom;
1871
1872 /* Interface address info. */
1873 unsigned char perm_addr[MAX_ADDR_LEN];
1874 unsigned char addr_assign_type;
1875 unsigned char addr_len;
1876 unsigned short neigh_priv_len;
1877 unsigned short dev_id;
1878 unsigned short dev_port;
1879 spinlock_t addr_list_lock;
1880 unsigned char name_assign_type;
1881 bool uc_promisc;
1882 struct netdev_hw_addr_list uc;
1883 struct netdev_hw_addr_list mc;
1884 struct netdev_hw_addr_list dev_addrs;
1885
1886 #ifdef CONFIG_SYSFS
1887 struct kset *queues_kset;
1888 #endif
1889 unsigned int promiscuity;
1890 unsigned int allmulti;
1891
1892
1893 /* Protocol-specific pointers */
1894
1895 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1896 struct vlan_info __rcu *vlan_info;
1897 #endif
1898 #if IS_ENABLED(CONFIG_NET_DSA)
1899 struct dsa_port *dsa_ptr;
1900 #endif
1901 #if IS_ENABLED(CONFIG_TIPC)
1902 struct tipc_bearer __rcu *tipc_ptr;
1903 #endif
1904 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1905 void *atalk_ptr;
1906 #endif
1907 struct in_device __rcu *ip_ptr;
1908 #if IS_ENABLED(CONFIG_DECNET)
1909 struct dn_dev __rcu *dn_ptr;
1910 #endif
1911 struct inet6_dev __rcu *ip6_ptr;
1912 #if IS_ENABLED(CONFIG_AX25)
1913 void *ax25_ptr;
1914 #endif
1915 struct wireless_dev *ieee80211_ptr;
1916 struct wpan_dev *ieee802154_ptr;
1917 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1918 struct mpls_dev __rcu *mpls_ptr;
1919 #endif
1920
1921 /*
1922 * Cache lines mostly used on receive path (including eth_type_trans())
1923 */
1924 /* Interface address info used in eth_type_trans() */
1925 unsigned char *dev_addr;
1926
1927 struct netdev_rx_queue *_rx;
1928 unsigned int num_rx_queues;
1929 unsigned int real_num_rx_queues;
1930
1931 struct bpf_prog __rcu *xdp_prog;
1932 unsigned long gro_flush_timeout;
1933 rx_handler_func_t __rcu *rx_handler;
1934 void __rcu *rx_handler_data;
1935
1936 #ifdef CONFIG_NET_CLS_ACT
1937 struct mini_Qdisc __rcu *miniq_ingress;
1938 #endif
1939 struct netdev_queue __rcu *ingress_queue;
1940 #ifdef CONFIG_NETFILTER_INGRESS
1941 struct nf_hook_entries __rcu *nf_hooks_ingress;
1942 #endif
1943
1944 unsigned char broadcast[MAX_ADDR_LEN];
1945 #ifdef CONFIG_RFS_ACCEL
1946 struct cpu_rmap *rx_cpu_rmap;
1947 #endif
1948 struct hlist_node index_hlist;
1949
1950 /*
1951 * Cache lines mostly used on transmit path
1952 */
1953 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1954 unsigned int num_tx_queues;
1955 unsigned int real_num_tx_queues;
1956 struct Qdisc *qdisc;
1957 #ifdef CONFIG_NET_SCHED
1958 DECLARE_HASHTABLE (qdisc_hash, 4);
1959 #endif
1960 unsigned int tx_queue_len;
1961 spinlock_t tx_global_lock;
1962 int watchdog_timeo;
1963
1964 #ifdef CONFIG_XPS
1965 struct xps_dev_maps __rcu *xps_cpus_map;
1966 struct xps_dev_maps __rcu *xps_rxqs_map;
1967 #endif
1968 #ifdef CONFIG_NET_CLS_ACT
1969 struct mini_Qdisc __rcu *miniq_egress;
1970 #endif
1971
1972 /* These may be needed for future network-power-down code. */
1973 struct timer_list watchdog_timer;
1974
1975 int __percpu *pcpu_refcnt;
1976 struct list_head todo_list;
1977
1978 struct list_head link_watch_list;
1979
1980 enum { NETREG_UNINITIALIZED=0,
1981 NETREG_REGISTERED, /* completed register_netdevice */
1982 NETREG_UNREGISTERING, /* called unregister_netdevice */
1983 NETREG_UNREGISTERED, /* completed unregister todo */
1984 NETREG_RELEASED, /* called free_netdev */
1985 NETREG_DUMMY, /* dummy device for NAPI poll */
1986 } reg_state:8;
1987
1988 bool dismantle;
1989
1990 enum {
1991 RTNL_LINK_INITIALIZED,
1992 RTNL_LINK_INITIALIZING,
1993 } rtnl_link_state:16;
1994
1995 bool needs_free_netdev;
1996 void (*priv_destructor)(struct net_device *dev);
1997
1998 #ifdef CONFIG_NETPOLL
1999 struct netpoll_info __rcu *npinfo;
2000 #endif
2001
2002 possible_net_t nd_net;
2003
2004 /* mid-layer private */
2005 union {
2006 void *ml_priv;
2007 struct pcpu_lstats __percpu *lstats;
2008 struct pcpu_sw_netstats __percpu *tstats;
2009 struct pcpu_dstats __percpu *dstats;
2010 };
2011
2012 #if IS_ENABLED(CONFIG_GARP)
2013 struct garp_port __rcu *garp_port;
2014 #endif
2015 #if IS_ENABLED(CONFIG_MRP)
2016 struct mrp_port __rcu *mrp_port;
2017 #endif
2018
2019 struct device dev;
2020 const struct attribute_group *sysfs_groups[4];
2021 const struct attribute_group *sysfs_rx_queue_group;
2022
2023 const struct rtnl_link_ops *rtnl_link_ops;
2024
2025 /* for setting kernel sock attribute on TCP connection setup */
2026 #define GSO_MAX_SIZE 65536
2027 unsigned int gso_max_size;
2028 #define GSO_MAX_SEGS 65535
2029 u16 gso_max_segs;
2030
2031 #ifdef CONFIG_DCB
2032 const struct dcbnl_rtnl_ops *dcbnl_ops;
2033 #endif
2034 s16 num_tc;
2035 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
2036 u8 prio_tc_map[TC_BITMASK + 1];
2037
2038 #if IS_ENABLED(CONFIG_FCOE)
2039 unsigned int fcoe_ddp_xid;
2040 #endif
2041 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2042 struct netprio_map __rcu *priomap;
2043 #endif
2044 struct phy_device *phydev;
2045 struct sfp_bus *sfp_bus;
2046 struct lock_class_key *qdisc_tx_busylock;
2047 struct lock_class_key *qdisc_running_key;
2048 bool proto_down;
2049 unsigned wol_enabled:1;
2050 };
2051 #define to_net_dev(d) container_of(d, struct net_device, dev)
2052
2053 static inline bool netif_elide_gro(const struct net_device *dev)
2054 {
2055 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2056 return true;
2057 return false;
2058 }
2059
2060 #define NETDEV_ALIGN 32
2061
2062 static inline
2063 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2064 {
2065 return dev->prio_tc_map[prio & TC_BITMASK];
2066 }
2067
2068 static inline
2069 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2070 {
2071 if (tc >= dev->num_tc)
2072 return -EINVAL;
2073
2074 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2075 return 0;
2076 }
2077
2078 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2079 void netdev_reset_tc(struct net_device *dev);
2080 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2081 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2082
2083 static inline
2084 int netdev_get_num_tc(struct net_device *dev)
2085 {
2086 return dev->num_tc;
2087 }
2088
2089 void netdev_unbind_sb_channel(struct net_device *dev,
2090 struct net_device *sb_dev);
2091 int netdev_bind_sb_channel_queue(struct net_device *dev,
2092 struct net_device *sb_dev,
2093 u8 tc, u16 count, u16 offset);
2094 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2095 static inline int netdev_get_sb_channel(struct net_device *dev)
2096 {
2097 return max_t(int, -dev->num_tc, 0);
2098 }
2099
2100 static inline
2101 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2102 unsigned int index)
2103 {
2104 return &dev->_tx[index];
2105 }
2106
2107 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2108 const struct sk_buff *skb)
2109 {
2110 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2111 }
2112
2113 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2114 void (*f)(struct net_device *,
2115 struct netdev_queue *,
2116 void *),
2117 void *arg)
2118 {
2119 unsigned int i;
2120
2121 for (i = 0; i < dev->num_tx_queues; i++)
2122 f(dev, &dev->_tx[i], arg);
2123 }
2124
2125 #define netdev_lockdep_set_classes(dev) \
2126 { \
2127 static struct lock_class_key qdisc_tx_busylock_key; \
2128 static struct lock_class_key qdisc_running_key; \
2129 static struct lock_class_key qdisc_xmit_lock_key; \
2130 static struct lock_class_key dev_addr_list_lock_key; \
2131 unsigned int i; \
2132 \
2133 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \
2134 (dev)->qdisc_running_key = &qdisc_running_key; \
2135 lockdep_set_class(&(dev)->addr_list_lock, \
2136 &dev_addr_list_lock_key); \
2137 for (i = 0; i < (dev)->num_tx_queues; i++) \
2138 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \
2139 &qdisc_xmit_lock_key); \
2140 }
2141
2142 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2143 struct sk_buff *skb,
2144 struct net_device *sb_dev);
2145
2146 /* returns the headroom that the master device needs to take in account
2147 * when forwarding to this dev
2148 */
2149 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2150 {
2151 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2152 }
2153
2154 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2155 {
2156 if (dev->netdev_ops->ndo_set_rx_headroom)
2157 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2158 }
2159
2160 /* set the device rx headroom to the dev's default */
2161 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2162 {
2163 netdev_set_rx_headroom(dev, -1);
2164 }
2165
2166 /*
2167 * Net namespace inlines
2168 */
2169 static inline
2170 struct net *dev_net(const struct net_device *dev)
2171 {
2172 return read_pnet(&dev->nd_net);
2173 }
2174
2175 static inline
2176 void dev_net_set(struct net_device *dev, struct net *net)
2177 {
2178 write_pnet(&dev->nd_net, net);
2179 }
2180
2181 /**
2182 * netdev_priv - access network device private data
2183 * @dev: network device
2184 *
2185 * Get network device private data
2186 */
2187 static inline void *netdev_priv(const struct net_device *dev)
2188 {
2189 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2190 }
2191
2192 /* Set the sysfs physical device reference for the network logical device
2193 * if set prior to registration will cause a symlink during initialization.
2194 */
2195 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
2196
2197 /* Set the sysfs device type for the network logical device to allow
2198 * fine-grained identification of different network device types. For
2199 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2200 */
2201 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
2202
2203 /* Default NAPI poll() weight
2204 * Device drivers are strongly advised to not use bigger value
2205 */
2206 #define NAPI_POLL_WEIGHT 64
2207
2208 /**
2209 * netif_napi_add - initialize a NAPI context
2210 * @dev: network device
2211 * @napi: NAPI context
2212 * @poll: polling function
2213 * @weight: default weight
2214 *
2215 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2216 * *any* of the other NAPI-related functions.
2217 */
2218 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2219 int (*poll)(struct napi_struct *, int), int weight);
2220
2221 /**
2222 * netif_tx_napi_add - initialize a NAPI context
2223 * @dev: network device
2224 * @napi: NAPI context
2225 * @poll: polling function
2226 * @weight: default weight
2227 *
2228 * This variant of netif_napi_add() should be used from drivers using NAPI
2229 * to exclusively poll a TX queue.
2230 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2231 */
2232 static inline void netif_tx_napi_add(struct net_device *dev,
2233 struct napi_struct *napi,
2234 int (*poll)(struct napi_struct *, int),
2235 int weight)
2236 {
2237 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2238 netif_napi_add(dev, napi, poll, weight);
2239 }
2240
2241 /**
2242 * netif_napi_del - remove a NAPI context
2243 * @napi: NAPI context
2244 *
2245 * netif_napi_del() removes a NAPI context from the network device NAPI list
2246 */
2247 void netif_napi_del(struct napi_struct *napi);
2248
2249 struct napi_gro_cb {
2250 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2251 void *frag0;
2252
2253 /* Length of frag0. */
2254 unsigned int frag0_len;
2255
2256 /* This indicates where we are processing relative to skb->data. */
2257 int data_offset;
2258
2259 /* This is non-zero if the packet cannot be merged with the new skb. */
2260 u16 flush;
2261
2262 /* Save the IP ID here and check when we get to the transport layer */
2263 u16 flush_id;
2264
2265 /* Number of segments aggregated. */
2266 u16 count;
2267
2268 /* Start offset for remote checksum offload */
2269 u16 gro_remcsum_start;
2270
2271 /* jiffies when first packet was created/queued */
2272 unsigned long age;
2273
2274 /* Used in ipv6_gro_receive() and foo-over-udp */
2275 u16 proto;
2276
2277 /* This is non-zero if the packet may be of the same flow. */
2278 u8 same_flow:1;
2279
2280 /* Used in tunnel GRO receive */
2281 u8 encap_mark:1;
2282
2283 /* GRO checksum is valid */
2284 u8 csum_valid:1;
2285
2286 /* Number of checksums via CHECKSUM_UNNECESSARY */
2287 u8 csum_cnt:3;
2288
2289 /* Free the skb? */
2290 u8 free:2;
2291 #define NAPI_GRO_FREE 1
2292 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2293
2294 /* Used in foo-over-udp, set in udp[46]_gro_receive */
2295 u8 is_ipv6:1;
2296
2297 /* Used in GRE, set in fou/gue_gro_receive */
2298 u8 is_fou:1;
2299
2300 /* Used to determine if flush_id can be ignored */
2301 u8 is_atomic:1;
2302
2303 /* Number of gro_receive callbacks this packet already went through */
2304 u8 recursion_counter:4;
2305
2306 /* 1 bit hole */
2307
2308 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2309 __wsum csum;
2310
2311 /* used in skb_gro_receive() slow path */
2312 struct sk_buff *last;
2313 };
2314
2315 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2316
2317 #define GRO_RECURSION_LIMIT 15
2318 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2319 {
2320 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2321 }
2322
2323 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2324 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2325 struct list_head *head,
2326 struct sk_buff *skb)
2327 {
2328 if (unlikely(gro_recursion_inc_test(skb))) {
2329 NAPI_GRO_CB(skb)->flush |= 1;
2330 return NULL;
2331 }
2332
2333 return cb(head, skb);
2334 }
2335
2336 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2337 struct sk_buff *);
2338 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2339 struct sock *sk,
2340 struct list_head *head,
2341 struct sk_buff *skb)
2342 {
2343 if (unlikely(gro_recursion_inc_test(skb))) {
2344 NAPI_GRO_CB(skb)->flush |= 1;
2345 return NULL;
2346 }
2347
2348 return cb(sk, head, skb);
2349 }
2350
2351 struct packet_type {
2352 __be16 type; /* This is really htons(ether_type). */
2353 bool ignore_outgoing;
2354 struct net_device *dev; /* NULL is wildcarded here */
2355 int (*func) (struct sk_buff *,
2356 struct net_device *,
2357 struct packet_type *,
2358 struct net_device *);
2359 void (*list_func) (struct list_head *,
2360 struct packet_type *,
2361 struct net_device *);
2362 bool (*id_match)(struct packet_type *ptype,
2363 struct sock *sk);
2364 void *af_packet_priv;
2365 struct list_head list;
2366 };
2367
2368 struct offload_callbacks {
2369 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2370 netdev_features_t features);
2371 struct sk_buff *(*gro_receive)(struct list_head *head,
2372 struct sk_buff *skb);
2373 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2374 };
2375
2376 struct packet_offload {
2377 __be16 type; /* This is really htons(ether_type). */
2378 u16 priority;
2379 struct offload_callbacks callbacks;
2380 struct list_head list;
2381 };
2382
2383 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2384 struct pcpu_sw_netstats {
2385 u64 rx_packets;
2386 u64 rx_bytes;
2387 u64 tx_packets;
2388 u64 tx_bytes;
2389 struct u64_stats_sync syncp;
2390 } __aligned(4 * sizeof(u64));
2391
2392 struct pcpu_lstats {
2393 u64 packets;
2394 u64 bytes;
2395 struct u64_stats_sync syncp;
2396 } __aligned(2 * sizeof(u64));
2397
2398 #define __netdev_alloc_pcpu_stats(type, gfp) \
2399 ({ \
2400 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2401 if (pcpu_stats) { \
2402 int __cpu; \
2403 for_each_possible_cpu(__cpu) { \
2404 typeof(type) *stat; \
2405 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2406 u64_stats_init(&stat->syncp); \
2407 } \
2408 } \
2409 pcpu_stats; \
2410 })
2411
2412 #define netdev_alloc_pcpu_stats(type) \
2413 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2414
2415 enum netdev_lag_tx_type {
2416 NETDEV_LAG_TX_TYPE_UNKNOWN,
2417 NETDEV_LAG_TX_TYPE_RANDOM,
2418 NETDEV_LAG_TX_TYPE_BROADCAST,
2419 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2420 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2421 NETDEV_LAG_TX_TYPE_HASH,
2422 };
2423
2424 enum netdev_lag_hash {
2425 NETDEV_LAG_HASH_NONE,
2426 NETDEV_LAG_HASH_L2,
2427 NETDEV_LAG_HASH_L34,
2428 NETDEV_LAG_HASH_L23,
2429 NETDEV_LAG_HASH_E23,
2430 NETDEV_LAG_HASH_E34,
2431 NETDEV_LAG_HASH_UNKNOWN,
2432 };
2433
2434 struct netdev_lag_upper_info {
2435 enum netdev_lag_tx_type tx_type;
2436 enum netdev_lag_hash hash_type;
2437 };
2438
2439 struct netdev_lag_lower_state_info {
2440 u8 link_up : 1,
2441 tx_enabled : 1;
2442 };
2443
2444 #include <linux/notifier.h>
2445
2446 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2447 * and the rtnetlink notification exclusion list in rtnetlink_event() when
2448 * adding new types.
2449 */
2450 enum netdev_cmd {
2451 NETDEV_UP = 1, /* For now you can't veto a device up/down */
2452 NETDEV_DOWN,
2453 NETDEV_REBOOT, /* Tell a protocol stack a network interface
2454 detected a hardware crash and restarted
2455 - we can use this eg to kick tcp sessions
2456 once done */
2457 NETDEV_CHANGE, /* Notify device state change */
2458 NETDEV_REGISTER,
2459 NETDEV_UNREGISTER,
2460 NETDEV_CHANGEMTU, /* notify after mtu change happened */
2461 NETDEV_CHANGEADDR, /* notify after the address change */
2462 NETDEV_PRE_CHANGEADDR, /* notify before the address change */
2463 NETDEV_GOING_DOWN,
2464 NETDEV_CHANGENAME,
2465 NETDEV_FEAT_CHANGE,
2466 NETDEV_BONDING_FAILOVER,
2467 NETDEV_PRE_UP,
2468 NETDEV_PRE_TYPE_CHANGE,
2469 NETDEV_POST_TYPE_CHANGE,
2470 NETDEV_POST_INIT,
2471 NETDEV_RELEASE,
2472 NETDEV_NOTIFY_PEERS,
2473 NETDEV_JOIN,
2474 NETDEV_CHANGEUPPER,
2475 NETDEV_RESEND_IGMP,
2476 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */
2477 NETDEV_CHANGEINFODATA,
2478 NETDEV_BONDING_INFO,
2479 NETDEV_PRECHANGEUPPER,
2480 NETDEV_CHANGELOWERSTATE,
2481 NETDEV_UDP_TUNNEL_PUSH_INFO,
2482 NETDEV_UDP_TUNNEL_DROP_INFO,
2483 NETDEV_CHANGE_TX_QUEUE_LEN,
2484 NETDEV_CVLAN_FILTER_PUSH_INFO,
2485 NETDEV_CVLAN_FILTER_DROP_INFO,
2486 NETDEV_SVLAN_FILTER_PUSH_INFO,
2487 NETDEV_SVLAN_FILTER_DROP_INFO,
2488 };
2489 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2490
2491 int register_netdevice_notifier(struct notifier_block *nb);
2492 int unregister_netdevice_notifier(struct notifier_block *nb);
2493
2494 struct netdev_notifier_info {
2495 struct net_device *dev;
2496 struct netlink_ext_ack *extack;
2497 };
2498
2499 struct netdev_notifier_info_ext {
2500 struct netdev_notifier_info info; /* must be first */
2501 union {
2502 u32 mtu;
2503 } ext;
2504 };
2505
2506 struct netdev_notifier_change_info {
2507 struct netdev_notifier_info info; /* must be first */
2508 unsigned int flags_changed;
2509 };
2510
2511 struct netdev_notifier_changeupper_info {
2512 struct netdev_notifier_info info; /* must be first */
2513 struct net_device *upper_dev; /* new upper dev */
2514 bool master; /* is upper dev master */
2515 bool linking; /* is the notification for link or unlink */
2516 void *upper_info; /* upper dev info */
2517 };
2518
2519 struct netdev_notifier_changelowerstate_info {
2520 struct netdev_notifier_info info; /* must be first */
2521 void *lower_state_info; /* is lower dev state */
2522 };
2523
2524 struct netdev_notifier_pre_changeaddr_info {
2525 struct netdev_notifier_info info; /* must be first */
2526 const unsigned char *dev_addr;
2527 };
2528
2529 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2530 struct net_device *dev)
2531 {
2532 info->dev = dev;
2533 info->extack = NULL;
2534 }
2535
2536 static inline struct net_device *
2537 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2538 {
2539 return info->dev;
2540 }
2541
2542 static inline struct netlink_ext_ack *
2543 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2544 {
2545 return info->extack;
2546 }
2547
2548 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2549
2550
2551 extern rwlock_t dev_base_lock; /* Device list lock */
2552
2553 #define for_each_netdev(net, d) \
2554 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2555 #define for_each_netdev_reverse(net, d) \
2556 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2557 #define for_each_netdev_rcu(net, d) \
2558 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2559 #define for_each_netdev_safe(net, d, n) \
2560 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2561 #define for_each_netdev_continue(net, d) \
2562 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2563 #define for_each_netdev_continue_rcu(net, d) \
2564 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2565 #define for_each_netdev_in_bond_rcu(bond, slave) \
2566 for_each_netdev_rcu(&init_net, slave) \
2567 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2568 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2569
2570 static inline struct net_device *next_net_device(struct net_device *dev)
2571 {
2572 struct list_head *lh;
2573 struct net *net;
2574
2575 net = dev_net(dev);
2576 lh = dev->dev_list.next;
2577 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2578 }
2579
2580 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2581 {
2582 struct list_head *lh;
2583 struct net *net;
2584
2585 net = dev_net(dev);
2586 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2587 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2588 }
2589
2590 static inline struct net_device *first_net_device(struct net *net)
2591 {
2592 return list_empty(&net->dev_base_head) ? NULL :
2593 net_device_entry(net->dev_base_head.next);
2594 }
2595
2596 static inline struct net_device *first_net_device_rcu(struct net *net)
2597 {
2598 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2599
2600 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2601 }
2602
2603 int netdev_boot_setup_check(struct net_device *dev);
2604 unsigned long netdev_boot_base(const char *prefix, int unit);
2605 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2606 const char *hwaddr);
2607 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2608 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2609 void dev_add_pack(struct packet_type *pt);
2610 void dev_remove_pack(struct packet_type *pt);
2611 void __dev_remove_pack(struct packet_type *pt);
2612 void dev_add_offload(struct packet_offload *po);
2613 void dev_remove_offload(struct packet_offload *po);
2614
2615 int dev_get_iflink(const struct net_device *dev);
2616 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2617 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2618 unsigned short mask);
2619 struct net_device *dev_get_by_name(struct net *net, const char *name);
2620 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2621 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2622 int dev_alloc_name(struct net_device *dev, const char *name);
2623 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2624 void dev_close(struct net_device *dev);
2625 void dev_close_many(struct list_head *head, bool unlink);
2626 void dev_disable_lro(struct net_device *dev);
2627 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2628 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2629 struct net_device *sb_dev,
2630 select_queue_fallback_t fallback);
2631 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2632 struct net_device *sb_dev,
2633 select_queue_fallback_t fallback);
2634 int dev_queue_xmit(struct sk_buff *skb);
2635 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2636 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2637 int register_netdevice(struct net_device *dev);
2638 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2639 void unregister_netdevice_many(struct list_head *head);
2640 static inline void unregister_netdevice(struct net_device *dev)
2641 {
2642 unregister_netdevice_queue(dev, NULL);
2643 }
2644
2645 int netdev_refcnt_read(const struct net_device *dev);
2646 void free_netdev(struct net_device *dev);
2647 void netdev_freemem(struct net_device *dev);
2648 void synchronize_net(void);
2649 int init_dummy_netdev(struct net_device *dev);
2650
2651 DECLARE_PER_CPU(int, xmit_recursion);
2652 #define XMIT_RECURSION_LIMIT 10
2653
2654 static inline int dev_recursion_level(void)
2655 {
2656 return this_cpu_read(xmit_recursion);
2657 }
2658
2659 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2660 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2661 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2662 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2663 int netdev_get_name(struct net *net, char *name, int ifindex);
2664 int dev_restart(struct net_device *dev);
2665 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2666
2667 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2668 {
2669 return NAPI_GRO_CB(skb)->data_offset;
2670 }
2671
2672 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2673 {
2674 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2675 }
2676
2677 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2678 {
2679 NAPI_GRO_CB(skb)->data_offset += len;
2680 }
2681
2682 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2683 unsigned int offset)
2684 {
2685 return NAPI_GRO_CB(skb)->frag0 + offset;
2686 }
2687
2688 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2689 {
2690 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2691 }
2692
2693 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2694 {
2695 NAPI_GRO_CB(skb)->frag0 = NULL;
2696 NAPI_GRO_CB(skb)->frag0_len = 0;
2697 }
2698
2699 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2700 unsigned int offset)
2701 {
2702 if (!pskb_may_pull(skb, hlen))
2703 return NULL;
2704
2705 skb_gro_frag0_invalidate(skb);
2706 return skb->data + offset;
2707 }
2708
2709 static inline void *skb_gro_network_header(struct sk_buff *skb)
2710 {
2711 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2712 skb_network_offset(skb);
2713 }
2714
2715 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2716 const void *start, unsigned int len)
2717 {
2718 if (NAPI_GRO_CB(skb)->csum_valid)
2719 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2720 csum_partial(start, len, 0));
2721 }
2722
2723 /* GRO checksum functions. These are logical equivalents of the normal
2724 * checksum functions (in skbuff.h) except that they operate on the GRO
2725 * offsets and fields in sk_buff.
2726 */
2727
2728 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2729
2730 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2731 {
2732 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2733 }
2734
2735 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2736 bool zero_okay,
2737 __sum16 check)
2738 {
2739 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2740 skb_checksum_start_offset(skb) <
2741 skb_gro_offset(skb)) &&
2742 !skb_at_gro_remcsum_start(skb) &&
2743 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2744 (!zero_okay || check));
2745 }
2746
2747 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2748 __wsum psum)
2749 {
2750 if (NAPI_GRO_CB(skb)->csum_valid &&
2751 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2752 return 0;
2753
2754 NAPI_GRO_CB(skb)->csum = psum;
2755
2756 return __skb_gro_checksum_complete(skb);
2757 }
2758
2759 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2760 {
2761 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2762 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2763 NAPI_GRO_CB(skb)->csum_cnt--;
2764 } else {
2765 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2766 * verified a new top level checksum or an encapsulated one
2767 * during GRO. This saves work if we fallback to normal path.
2768 */
2769 __skb_incr_checksum_unnecessary(skb);
2770 }
2771 }
2772
2773 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2774 compute_pseudo) \
2775 ({ \
2776 __sum16 __ret = 0; \
2777 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2778 __ret = __skb_gro_checksum_validate_complete(skb, \
2779 compute_pseudo(skb, proto)); \
2780 if (!__ret) \
2781 skb_gro_incr_csum_unnecessary(skb); \
2782 __ret; \
2783 })
2784
2785 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2786 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2787
2788 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2789 compute_pseudo) \
2790 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2791
2792 #define skb_gro_checksum_simple_validate(skb) \
2793 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2794
2795 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2796 {
2797 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2798 !NAPI_GRO_CB(skb)->csum_valid);
2799 }
2800
2801 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2802 __sum16 check, __wsum pseudo)
2803 {
2804 NAPI_GRO_CB(skb)->csum = ~pseudo;
2805 NAPI_GRO_CB(skb)->csum_valid = 1;
2806 }
2807
2808 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2809 do { \
2810 if (__skb_gro_checksum_convert_check(skb)) \
2811 __skb_gro_checksum_convert(skb, check, \
2812 compute_pseudo(skb, proto)); \
2813 } while (0)
2814
2815 struct gro_remcsum {
2816 int offset;
2817 __wsum delta;
2818 };
2819
2820 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2821 {
2822 grc->offset = 0;
2823 grc->delta = 0;
2824 }
2825
2826 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2827 unsigned int off, size_t hdrlen,
2828 int start, int offset,
2829 struct gro_remcsum *grc,
2830 bool nopartial)
2831 {
2832 __wsum delta;
2833 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2834
2835 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2836
2837 if (!nopartial) {
2838 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2839 return ptr;
2840 }
2841
2842 ptr = skb_gro_header_fast(skb, off);
2843 if (skb_gro_header_hard(skb, off + plen)) {
2844 ptr = skb_gro_header_slow(skb, off + plen, off);
2845 if (!ptr)
2846 return NULL;
2847 }
2848
2849 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2850 start, offset);
2851
2852 /* Adjust skb->csum since we changed the packet */
2853 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2854
2855 grc->offset = off + hdrlen + offset;
2856 grc->delta = delta;
2857
2858 return ptr;
2859 }
2860
2861 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2862 struct gro_remcsum *grc)
2863 {
2864 void *ptr;
2865 size_t plen = grc->offset + sizeof(u16);
2866
2867 if (!grc->delta)
2868 return;
2869
2870 ptr = skb_gro_header_fast(skb, grc->offset);
2871 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2872 ptr = skb_gro_header_slow(skb, plen, grc->offset);
2873 if (!ptr)
2874 return;
2875 }
2876
2877 remcsum_unadjust((__sum16 *)ptr, grc->delta);
2878 }
2879
2880 #ifdef CONFIG_XFRM_OFFLOAD
2881 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2882 {
2883 if (PTR_ERR(pp) != -EINPROGRESS)
2884 NAPI_GRO_CB(skb)->flush |= flush;
2885 }
2886 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2887 struct sk_buff *pp,
2888 int flush,
2889 struct gro_remcsum *grc)
2890 {
2891 if (PTR_ERR(pp) != -EINPROGRESS) {
2892 NAPI_GRO_CB(skb)->flush |= flush;
2893 skb_gro_remcsum_cleanup(skb, grc);
2894 skb->remcsum_offload = 0;
2895 }
2896 }
2897 #else
2898 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2899 {
2900 NAPI_GRO_CB(skb)->flush |= flush;
2901 }
2902 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2903 struct sk_buff *pp,
2904 int flush,
2905 struct gro_remcsum *grc)
2906 {
2907 NAPI_GRO_CB(skb)->flush |= flush;
2908 skb_gro_remcsum_cleanup(skb, grc);
2909 skb->remcsum_offload = 0;
2910 }
2911 #endif
2912
2913 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2914 unsigned short type,
2915 const void *daddr, const void *saddr,
2916 unsigned int len)
2917 {
2918 if (!dev->header_ops || !dev->header_ops->create)
2919 return 0;
2920
2921 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2922 }
2923
2924 static inline int dev_parse_header(const struct sk_buff *skb,
2925 unsigned char *haddr)
2926 {
2927 const struct net_device *dev = skb->dev;
2928
2929 if (!dev->header_ops || !dev->header_ops->parse)
2930 return 0;
2931 return dev->header_ops->parse(skb, haddr);
2932 }
2933
2934 /* ll_header must have at least hard_header_len allocated */
2935 static inline bool dev_validate_header(const struct net_device *dev,
2936 char *ll_header, int len)
2937 {
2938 if (likely(len >= dev->hard_header_len))
2939 return true;
2940 if (len < dev->min_header_len)
2941 return false;
2942
2943 if (capable(CAP_SYS_RAWIO)) {
2944 memset(ll_header + len, 0, dev->hard_header_len - len);
2945 return true;
2946 }
2947
2948 if (dev->header_ops && dev->header_ops->validate)
2949 return dev->header_ops->validate(ll_header, len);
2950
2951 return false;
2952 }
2953
2954 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
2955 int len, int size);
2956 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2957 static inline int unregister_gifconf(unsigned int family)
2958 {
2959 return register_gifconf(family, NULL);
2960 }
2961
2962 #ifdef CONFIG_NET_FLOW_LIMIT
2963 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
2964 struct sd_flow_limit {
2965 u64 count;
2966 unsigned int num_buckets;
2967 unsigned int history_head;
2968 u16 history[FLOW_LIMIT_HISTORY];
2969 u8 buckets[];
2970 };
2971
2972 extern int netdev_flow_limit_table_len;
2973 #endif /* CONFIG_NET_FLOW_LIMIT */
2974
2975 /*
2976 * Incoming packets are placed on per-CPU queues
2977 */
2978 struct softnet_data {
2979 struct list_head poll_list;
2980 struct sk_buff_head process_queue;
2981
2982 /* stats */
2983 unsigned int processed;
2984 unsigned int time_squeeze;
2985 unsigned int received_rps;
2986 #ifdef CONFIG_RPS
2987 struct softnet_data *rps_ipi_list;
2988 #endif
2989 #ifdef CONFIG_NET_FLOW_LIMIT
2990 struct sd_flow_limit __rcu *flow_limit;
2991 #endif
2992 struct Qdisc *output_queue;
2993 struct Qdisc **output_queue_tailp;
2994 struct sk_buff *completion_queue;
2995 #ifdef CONFIG_XFRM_OFFLOAD
2996 struct sk_buff_head xfrm_backlog;
2997 #endif
2998 #ifdef CONFIG_RPS
2999 /* input_queue_head should be written by cpu owning this struct,
3000 * and only read by other cpus. Worth using a cache line.
3001 */
3002 unsigned int input_queue_head ____cacheline_aligned_in_smp;
3003
3004 /* Elements below can be accessed between CPUs for RPS/RFS */
3005 call_single_data_t csd ____cacheline_aligned_in_smp;
3006 struct softnet_data *rps_ipi_next;
3007 unsigned int cpu;
3008 unsigned int input_queue_tail;
3009 #endif
3010 unsigned int dropped;
3011 struct sk_buff_head input_pkt_queue;
3012 struct napi_struct backlog;
3013
3014 };
3015
3016 static inline void input_queue_head_incr(struct softnet_data *sd)
3017 {
3018 #ifdef CONFIG_RPS
3019 sd->input_queue_head++;
3020 #endif
3021 }
3022
3023 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3024 unsigned int *qtail)
3025 {
3026 #ifdef CONFIG_RPS
3027 *qtail = ++sd->input_queue_tail;
3028 #endif
3029 }
3030
3031 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3032
3033 void __netif_schedule(struct Qdisc *q);
3034 void netif_schedule_queue(struct netdev_queue *txq);
3035
3036 static inline void netif_tx_schedule_all(struct net_device *dev)
3037 {
3038 unsigned int i;
3039
3040 for (i = 0; i < dev->num_tx_queues; i++)
3041 netif_schedule_queue(netdev_get_tx_queue(dev, i));
3042 }
3043
3044 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3045 {
3046 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3047 }
3048
3049 /**
3050 * netif_start_queue - allow transmit
3051 * @dev: network device
3052 *
3053 * Allow upper layers to call the device hard_start_xmit routine.
3054 */
3055 static inline void netif_start_queue(struct net_device *dev)
3056 {
3057 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3058 }
3059
3060 static inline void netif_tx_start_all_queues(struct net_device *dev)
3061 {
3062 unsigned int i;
3063
3064 for (i = 0; i < dev->num_tx_queues; i++) {
3065 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3066 netif_tx_start_queue(txq);
3067 }
3068 }
3069
3070 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3071
3072 /**
3073 * netif_wake_queue - restart transmit
3074 * @dev: network device
3075 *
3076 * Allow upper layers to call the device hard_start_xmit routine.
3077 * Used for flow control when transmit resources are available.
3078 */
3079 static inline void netif_wake_queue(struct net_device *dev)
3080 {
3081 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3082 }
3083
3084 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3085 {
3086 unsigned int i;
3087
3088 for (i = 0; i < dev->num_tx_queues; i++) {
3089 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3090 netif_tx_wake_queue(txq);
3091 }
3092 }
3093
3094 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3095 {
3096 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3097 }
3098
3099 /**
3100 * netif_stop_queue - stop transmitted packets
3101 * @dev: network device
3102 *
3103 * Stop upper layers calling the device hard_start_xmit routine.
3104 * Used for flow control when transmit resources are unavailable.
3105 */
3106 static inline void netif_stop_queue(struct net_device *dev)
3107 {
3108 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3109 }
3110
3111 void netif_tx_stop_all_queues(struct net_device *dev);
3112
3113 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3114 {
3115 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3116 }
3117
3118 /**
3119 * netif_queue_stopped - test if transmit queue is flowblocked
3120 * @dev: network device
3121 *
3122 * Test if transmit queue on device is currently unable to send.
3123 */
3124 static inline bool netif_queue_stopped(const struct net_device *dev)
3125 {
3126 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3127 }
3128
3129 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3130 {
3131 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3132 }
3133
3134 static inline bool
3135 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3136 {
3137 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3138 }
3139
3140 static inline bool
3141 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3142 {
3143 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3144 }
3145
3146 /**
3147 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3148 * @dev_queue: pointer to transmit queue
3149 *
3150 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3151 * to give appropriate hint to the CPU.
3152 */
3153 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3154 {
3155 #ifdef CONFIG_BQL
3156 prefetchw(&dev_queue->dql.num_queued);
3157 #endif
3158 }
3159
3160 /**
3161 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3162 * @dev_queue: pointer to transmit queue
3163 *
3164 * BQL enabled drivers might use this helper in their TX completion path,
3165 * to give appropriate hint to the CPU.
3166 */
3167 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3168 {
3169 #ifdef CONFIG_BQL
3170 prefetchw(&dev_queue->dql.limit);
3171 #endif
3172 }
3173
3174 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3175 unsigned int bytes)
3176 {
3177 #ifdef CONFIG_BQL
3178 dql_queued(&dev_queue->dql, bytes);
3179
3180 if (likely(dql_avail(&dev_queue->dql) >= 0))
3181 return;
3182
3183 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3184
3185 /*
3186 * The XOFF flag must be set before checking the dql_avail below,
3187 * because in netdev_tx_completed_queue we update the dql_completed
3188 * before checking the XOFF flag.
3189 */
3190 smp_mb();
3191
3192 /* check again in case another CPU has just made room avail */
3193 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3194 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3195 #endif
3196 }
3197
3198 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3199 * that they should not test BQL status themselves.
3200 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3201 * skb of a batch.
3202 * Returns true if the doorbell must be used to kick the NIC.
3203 */
3204 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3205 unsigned int bytes,
3206 bool xmit_more)
3207 {
3208 if (xmit_more) {
3209 #ifdef CONFIG_BQL
3210 dql_queued(&dev_queue->dql, bytes);
3211 #endif
3212 return netif_tx_queue_stopped(dev_queue);
3213 }
3214 netdev_tx_sent_queue(dev_queue, bytes);
3215 return true;
3216 }
3217
3218 /**
3219 * netdev_sent_queue - report the number of bytes queued to hardware
3220 * @dev: network device
3221 * @bytes: number of bytes queued to the hardware device queue
3222 *
3223 * Report the number of bytes queued for sending/completion to the network
3224 * device hardware queue. @bytes should be a good approximation and should
3225 * exactly match netdev_completed_queue() @bytes
3226 */
3227 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3228 {
3229 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3230 }
3231
3232 static inline bool __netdev_sent_queue(struct net_device *dev,
3233 unsigned int bytes,
3234 bool xmit_more)
3235 {
3236 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3237 xmit_more);
3238 }
3239
3240 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3241 unsigned int pkts, unsigned int bytes)
3242 {
3243 #ifdef CONFIG_BQL
3244 if (unlikely(!bytes))
3245 return;
3246
3247 dql_completed(&dev_queue->dql, bytes);
3248
3249 /*
3250 * Without the memory barrier there is a small possiblity that
3251 * netdev_tx_sent_queue will miss the update and cause the queue to
3252 * be stopped forever
3253 */
3254 smp_mb();
3255
3256 if (dql_avail(&dev_queue->dql) < 0)
3257 return;
3258
3259 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3260 netif_schedule_queue(dev_queue);
3261 #endif
3262 }
3263
3264 /**
3265 * netdev_completed_queue - report bytes and packets completed by device
3266 * @dev: network device
3267 * @pkts: actual number of packets sent over the medium
3268 * @bytes: actual number of bytes sent over the medium
3269 *
3270 * Report the number of bytes and packets transmitted by the network device
3271 * hardware queue over the physical medium, @bytes must exactly match the
3272 * @bytes amount passed to netdev_sent_queue()
3273 */
3274 static inline void netdev_completed_queue(struct net_device *dev,
3275 unsigned int pkts, unsigned int bytes)
3276 {
3277 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3278 }
3279
3280 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3281 {
3282 #ifdef CONFIG_BQL
3283 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3284 dql_reset(&q->dql);
3285 #endif
3286 }
3287
3288 /**
3289 * netdev_reset_queue - reset the packets and bytes count of a network device
3290 * @dev_queue: network device
3291 *
3292 * Reset the bytes and packet count of a network device and clear the
3293 * software flow control OFF bit for this network device
3294 */
3295 static inline void netdev_reset_queue(struct net_device *dev_queue)
3296 {
3297 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3298 }
3299
3300 /**
3301 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
3302 * @dev: network device
3303 * @queue_index: given tx queue index
3304 *
3305 * Returns 0 if given tx queue index >= number of device tx queues,
3306 * otherwise returns the originally passed tx queue index.
3307 */
3308 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3309 {
3310 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3311 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3312 dev->name, queue_index,
3313 dev->real_num_tx_queues);
3314 return 0;
3315 }
3316
3317 return queue_index;
3318 }
3319
3320 /**
3321 * netif_running - test if up
3322 * @dev: network device
3323 *
3324 * Test if the device has been brought up.
3325 */
3326 static inline bool netif_running(const struct net_device *dev)
3327 {
3328 return test_bit(__LINK_STATE_START, &dev->state);
3329 }
3330
3331 /*
3332 * Routines to manage the subqueues on a device. We only need start,
3333 * stop, and a check if it's stopped. All other device management is
3334 * done at the overall netdevice level.
3335 * Also test the device if we're multiqueue.
3336 */
3337
3338 /**
3339 * netif_start_subqueue - allow sending packets on subqueue
3340 * @dev: network device
3341 * @queue_index: sub queue index
3342 *
3343 * Start individual transmit queue of a device with multiple transmit queues.
3344 */
3345 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3346 {
3347 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3348
3349 netif_tx_start_queue(txq);
3350 }
3351
3352 /**
3353 * netif_stop_subqueue - stop sending packets on subqueue
3354 * @dev: network device
3355 * @queue_index: sub queue index
3356 *
3357 * Stop individual transmit queue of a device with multiple transmit queues.
3358 */
3359 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3360 {
3361 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3362 netif_tx_stop_queue(txq);
3363 }
3364
3365 /**
3366 * netif_subqueue_stopped - test status of subqueue
3367 * @dev: network device
3368 * @queue_index: sub queue index
3369 *
3370 * Check individual transmit queue of a device with multiple transmit queues.
3371 */
3372 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3373 u16 queue_index)
3374 {
3375 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3376
3377 return netif_tx_queue_stopped(txq);
3378 }
3379
3380 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3381 struct sk_buff *skb)
3382 {
3383 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3384 }
3385
3386 /**
3387 * netif_wake_subqueue - allow sending packets on subqueue
3388 * @dev: network device
3389 * @queue_index: sub queue index
3390 *
3391 * Resume individual transmit queue of a device with multiple transmit queues.
3392 */
3393 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3394 {
3395 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3396
3397 netif_tx_wake_queue(txq);
3398 }
3399
3400 #ifdef CONFIG_XPS
3401 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3402 u16 index);
3403 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3404 u16 index, bool is_rxqs_map);
3405
3406 /**
3407 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3408 * @j: CPU/Rx queue index
3409 * @mask: bitmask of all cpus/rx queues
3410 * @nr_bits: number of bits in the bitmask
3411 *
3412 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3413 */
3414 static inline bool netif_attr_test_mask(unsigned long j,
3415 const unsigned long *mask,
3416 unsigned int nr_bits)
3417 {
3418 cpu_max_bits_warn(j, nr_bits);
3419 return test_bit(j, mask);
3420 }
3421
3422 /**
3423 * netif_attr_test_online - Test for online CPU/Rx queue
3424 * @j: CPU/Rx queue index
3425 * @online_mask: bitmask for CPUs/Rx queues that are online
3426 * @nr_bits: number of bits in the bitmask
3427 *
3428 * Returns true if a CPU/Rx queue is online.
3429 */
3430 static inline bool netif_attr_test_online(unsigned long j,
3431 const unsigned long *online_mask,
3432 unsigned int nr_bits)
3433 {
3434 cpu_max_bits_warn(j, nr_bits);
3435
3436 if (online_mask)
3437 return test_bit(j, online_mask);
3438
3439 return (j < nr_bits);
3440 }
3441
3442 /**
3443 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3444 * @n: CPU/Rx queue index
3445 * @srcp: the cpumask/Rx queue mask pointer
3446 * @nr_bits: number of bits in the bitmask
3447 *
3448 * Returns >= nr_bits if no further CPUs/Rx queues set.
3449 */
3450 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3451 unsigned int nr_bits)
3452 {
3453 /* -1 is a legal arg here. */
3454 if (n != -1)
3455 cpu_max_bits_warn(n, nr_bits);
3456
3457 if (srcp)
3458 return find_next_bit(srcp, nr_bits, n + 1);
3459
3460 return n + 1;
3461 }
3462
3463 /**
3464 * netif_attrmask_next_and - get the next CPU/Rx queue in *src1p & *src2p
3465 * @n: CPU/Rx queue index
3466 * @src1p: the first CPUs/Rx queues mask pointer
3467 * @src2p: the second CPUs/Rx queues mask pointer
3468 * @nr_bits: number of bits in the bitmask
3469 *
3470 * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3471 */
3472 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3473 const unsigned long *src2p,
3474 unsigned int nr_bits)
3475 {
3476 /* -1 is a legal arg here. */
3477 if (n != -1)
3478 cpu_max_bits_warn(n, nr_bits);
3479
3480 if (src1p && src2p)
3481 return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3482 else if (src1p)
3483 return find_next_bit(src1p, nr_bits, n + 1);
3484 else if (src2p)
3485 return find_next_bit(src2p, nr_bits, n + 1);
3486
3487 return n + 1;
3488 }
3489 #else
3490 static inline int netif_set_xps_queue(struct net_device *dev,
3491 const struct cpumask *mask,
3492 u16 index)
3493 {
3494 return 0;
3495 }
3496
3497 static inline int __netif_set_xps_queue(struct net_device *dev,
3498 const unsigned long *mask,
3499 u16 index, bool is_rxqs_map)
3500 {
3501 return 0;
3502 }
3503 #endif
3504
3505 /**
3506 * netif_is_multiqueue - test if device has multiple transmit queues
3507 * @dev: network device
3508 *
3509 * Check if device has multiple transmit queues
3510 */
3511 static inline bool netif_is_multiqueue(const struct net_device *dev)
3512 {
3513 return dev->num_tx_queues > 1;
3514 }
3515
3516 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3517
3518 #ifdef CONFIG_SYSFS
3519 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3520 #else
3521 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3522 unsigned int rxqs)
3523 {
3524 dev->real_num_rx_queues = rxqs;
3525 return 0;
3526 }
3527 #endif
3528
3529 static inline struct netdev_rx_queue *
3530 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3531 {
3532 return dev->_rx + rxq;
3533 }
3534
3535 #ifdef CONFIG_SYSFS
3536 static inline unsigned int get_netdev_rx_queue_index(
3537 struct netdev_rx_queue *queue)
3538 {
3539 struct net_device *dev = queue->dev;
3540 int index = queue - dev->_rx;
3541
3542 BUG_ON(index >= dev->num_rx_queues);
3543 return index;
3544 }
3545 #endif
3546
3547 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
3548 int netif_get_num_default_rss_queues(void);
3549
3550 enum skb_free_reason {
3551 SKB_REASON_CONSUMED,
3552 SKB_REASON_DROPPED,
3553 };
3554
3555 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3556 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3557
3558 /*
3559 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3560 * interrupt context or with hardware interrupts being disabled.
3561 * (in_irq() || irqs_disabled())
3562 *
3563 * We provide four helpers that can be used in following contexts :
3564 *
3565 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3566 * replacing kfree_skb(skb)
3567 *
3568 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3569 * Typically used in place of consume_skb(skb) in TX completion path
3570 *
3571 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3572 * replacing kfree_skb(skb)
3573 *
3574 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3575 * and consumed a packet. Used in place of consume_skb(skb)
3576 */
3577 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3578 {
3579 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3580 }
3581
3582 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3583 {
3584 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3585 }
3586
3587 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3588 {
3589 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3590 }
3591
3592 static inline void dev_consume_skb_any(struct sk_buff *skb)
3593 {
3594 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3595 }
3596
3597 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3598 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3599 int netif_rx(struct sk_buff *skb);
3600 int netif_rx_ni(struct sk_buff *skb);
3601 int netif_receive_skb(struct sk_buff *skb);
3602 int netif_receive_skb_core(struct sk_buff *skb);
3603 void netif_receive_skb_list(struct list_head *head);
3604 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3605 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3606 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3607 gro_result_t napi_gro_frags(struct napi_struct *napi);
3608 struct packet_offload *gro_find_receive_by_type(__be16 type);
3609 struct packet_offload *gro_find_complete_by_type(__be16 type);
3610
3611 static inline void napi_free_frags(struct napi_struct *napi)
3612 {
3613 kfree_skb(napi->skb);
3614 napi->skb = NULL;
3615 }
3616
3617 bool netdev_is_rx_handler_busy(struct net_device *dev);
3618 int netdev_rx_handler_register(struct net_device *dev,
3619 rx_handler_func_t *rx_handler,
3620 void *rx_handler_data);
3621 void netdev_rx_handler_unregister(struct net_device *dev);
3622
3623 bool dev_valid_name(const char *name);
3624 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3625 bool *need_copyout);
3626 int dev_ifconf(struct net *net, struct ifconf *, int);
3627 int dev_ethtool(struct net *net, struct ifreq *);
3628 unsigned int dev_get_flags(const struct net_device *);
3629 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3630 struct netlink_ext_ack *extack);
3631 int dev_change_flags(struct net_device *dev, unsigned int flags,
3632 struct netlink_ext_ack *extack);
3633 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3634 unsigned int gchanges);
3635 int dev_change_name(struct net_device *, const char *);
3636 int dev_set_alias(struct net_device *, const char *, size_t);
3637 int dev_get_alias(const struct net_device *, char *, size_t);
3638 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3639 int __dev_set_mtu(struct net_device *, int);
3640 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3641 struct netlink_ext_ack *extack);
3642 int dev_set_mtu(struct net_device *, int);
3643 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3644 void dev_set_group(struct net_device *, int);
3645 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3646 struct netlink_ext_ack *extack);
3647 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3648 struct netlink_ext_ack *extack);
3649 int dev_change_carrier(struct net_device *, bool new_carrier);
3650 int dev_get_phys_port_id(struct net_device *dev,
3651 struct netdev_phys_item_id *ppid);
3652 int dev_get_phys_port_name(struct net_device *dev,
3653 char *name, size_t len);
3654 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3655 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3656 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3657 struct netdev_queue *txq, int *ret);
3658
3659 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3660 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3661 int fd, u32 flags);
3662 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3663 enum bpf_netdev_command cmd);
3664 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3665
3666 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3667 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3668 bool is_skb_forwardable(const struct net_device *dev,
3669 const struct sk_buff *skb);
3670
3671 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3672 struct sk_buff *skb)
3673 {
3674 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3675 unlikely(!is_skb_forwardable(dev, skb))) {
3676 atomic_long_inc(&dev->rx_dropped);
3677 kfree_skb(skb);
3678 return NET_RX_DROP;
3679 }
3680
3681 skb_scrub_packet(skb, true);
3682 skb->priority = 0;
3683 return 0;
3684 }
3685
3686 bool dev_nit_active(struct net_device *dev);
3687 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3688
3689 extern int netdev_budget;
3690 extern unsigned int netdev_budget_usecs;
3691
3692 /* Called by rtnetlink.c:rtnl_unlock() */
3693 void netdev_run_todo(void);
3694
3695 /**
3696 * dev_put - release reference to device
3697 * @dev: network device
3698 *
3699 * Release reference to device to allow it to be freed.
3700 */
3701 static inline void dev_put(struct net_device *dev)
3702 {
3703 this_cpu_dec(*dev->pcpu_refcnt);
3704 }
3705
3706 /**
3707 * dev_hold - get reference to device
3708 * @dev: network device
3709 *
3710 * Hold reference to device to keep it from being freed.
3711 */
3712 static inline void dev_hold(struct net_device *dev)
3713 {
3714 this_cpu_inc(*dev->pcpu_refcnt);
3715 }
3716
3717 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3718 * and _off may be called from IRQ context, but it is caller
3719 * who is responsible for serialization of these calls.
3720 *
3721 * The name carrier is inappropriate, these functions should really be
3722 * called netif_lowerlayer_*() because they represent the state of any
3723 * kind of lower layer not just hardware media.
3724 */
3725
3726 void linkwatch_init_dev(struct net_device *dev);
3727 void linkwatch_fire_event(struct net_device *dev);
3728 void linkwatch_forget_dev(struct net_device *dev);
3729
3730 /**
3731 * netif_carrier_ok - test if carrier present
3732 * @dev: network device
3733 *
3734 * Check if carrier is present on device
3735 */
3736 static inline bool netif_carrier_ok(const struct net_device *dev)
3737 {
3738 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3739 }
3740
3741 unsigned long dev_trans_start(struct net_device *dev);
3742
3743 void __netdev_watchdog_up(struct net_device *dev);
3744
3745 void netif_carrier_on(struct net_device *dev);
3746
3747 void netif_carrier_off(struct net_device *dev);
3748
3749 /**
3750 * netif_dormant_on - mark device as dormant.
3751 * @dev: network device
3752 *
3753 * Mark device as dormant (as per RFC2863).
3754 *
3755 * The dormant state indicates that the relevant interface is not
3756 * actually in a condition to pass packets (i.e., it is not 'up') but is
3757 * in a "pending" state, waiting for some external event. For "on-
3758 * demand" interfaces, this new state identifies the situation where the
3759 * interface is waiting for events to place it in the up state.
3760 */
3761 static inline void netif_dormant_on(struct net_device *dev)
3762 {
3763 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3764 linkwatch_fire_event(dev);
3765 }
3766
3767 /**
3768 * netif_dormant_off - set device as not dormant.
3769 * @dev: network device
3770 *
3771 * Device is not in dormant state.
3772 */
3773 static inline void netif_dormant_off(struct net_device *dev)
3774 {
3775 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3776 linkwatch_fire_event(dev);
3777 }
3778
3779 /**
3780 * netif_dormant - test if device is dormant
3781 * @dev: network device
3782 *
3783 * Check if device is dormant.
3784 */
3785 static inline bool netif_dormant(const struct net_device *dev)
3786 {
3787 return test_bit(__LINK_STATE_DORMANT, &dev->state);
3788 }
3789
3790
3791 /**
3792 * netif_oper_up - test if device is operational
3793 * @dev: network device
3794 *
3795 * Check if carrier is operational
3796 */
3797 static inline bool netif_oper_up(const struct net_device *dev)
3798 {
3799 return (dev->operstate == IF_OPER_UP ||
3800 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3801 }
3802
3803 /**
3804 * netif_device_present - is device available or removed
3805 * @dev: network device
3806 *
3807 * Check if device has not been removed from system.
3808 */
3809 static inline bool netif_device_present(struct net_device *dev)
3810 {
3811 return test_bit(__LINK_STATE_PRESENT, &dev->state);
3812 }
3813
3814 void netif_device_detach(struct net_device *dev);
3815
3816 void netif_device_attach(struct net_device *dev);
3817
3818 /*
3819 * Network interface message level settings
3820 */
3821
3822 enum {
3823 NETIF_MSG_DRV = 0x0001,
3824 NETIF_MSG_PROBE = 0x0002,
3825 NETIF_MSG_LINK = 0x0004,
3826 NETIF_MSG_TIMER = 0x0008,
3827 NETIF_MSG_IFDOWN = 0x0010,
3828 NETIF_MSG_IFUP = 0x0020,
3829 NETIF_MSG_RX_ERR = 0x0040,
3830 NETIF_MSG_TX_ERR = 0x0080,
3831 NETIF_MSG_TX_QUEUED = 0x0100,
3832 NETIF_MSG_INTR = 0x0200,
3833 NETIF_MSG_TX_DONE = 0x0400,
3834 NETIF_MSG_RX_STATUS = 0x0800,
3835 NETIF_MSG_PKTDATA = 0x1000,
3836 NETIF_MSG_HW = 0x2000,
3837 NETIF_MSG_WOL = 0x4000,
3838 };
3839
3840 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
3841 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
3842 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
3843 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
3844 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
3845 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
3846 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
3847 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
3848 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3849 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
3850 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
3851 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3852 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
3853 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
3854 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
3855
3856 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3857 {
3858 /* use default */
3859 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3860 return default_msg_enable_bits;
3861 if (debug_value == 0) /* no output */
3862 return 0;
3863 /* set low N bits */
3864 return (1 << debug_value) - 1;
3865 }
3866
3867 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3868 {
3869 spin_lock(&txq->_xmit_lock);
3870 txq->xmit_lock_owner = cpu;
3871 }
3872
3873 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3874 {
3875 __acquire(&txq->_xmit_lock);
3876 return true;
3877 }
3878
3879 static inline void __netif_tx_release(struct netdev_queue *txq)
3880 {
3881 __release(&txq->_xmit_lock);
3882 }
3883
3884 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3885 {
3886 spin_lock_bh(&txq->_xmit_lock);
3887 txq->xmit_lock_owner = smp_processor_id();
3888 }
3889
3890 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3891 {
3892 bool ok = spin_trylock(&txq->_xmit_lock);
3893 if (likely(ok))
3894 txq->xmit_lock_owner = smp_processor_id();
3895 return ok;
3896 }
3897
3898 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3899 {
3900 txq->xmit_lock_owner = -1;
3901 spin_unlock(&txq->_xmit_lock);
3902 }
3903
3904 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3905 {
3906 txq->xmit_lock_owner = -1;
3907 spin_unlock_bh(&txq->_xmit_lock);
3908 }
3909
3910 static inline void txq_trans_update(struct netdev_queue *txq)
3911 {
3912 if (txq->xmit_lock_owner != -1)
3913 txq->trans_start = jiffies;
3914 }
3915
3916 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3917 static inline void netif_trans_update(struct net_device *dev)
3918 {
3919 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3920
3921 if (txq->trans_start != jiffies)
3922 txq->trans_start = jiffies;
3923 }
3924
3925 /**
3926 * netif_tx_lock - grab network device transmit lock
3927 * @dev: network device
3928 *
3929 * Get network device transmit lock
3930 */
3931 static inline void netif_tx_lock(struct net_device *dev)
3932 {
3933 unsigned int i;
3934 int cpu;
3935
3936 spin_lock(&dev->tx_global_lock);
3937 cpu = smp_processor_id();
3938 for (i = 0; i < dev->num_tx_queues; i++) {
3939 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3940
3941 /* We are the only thread of execution doing a
3942 * freeze, but we have to grab the _xmit_lock in
3943 * order to synchronize with threads which are in
3944 * the ->hard_start_xmit() handler and already
3945 * checked the frozen bit.
3946 */
3947 __netif_tx_lock(txq, cpu);
3948 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3949 __netif_tx_unlock(txq);
3950 }
3951 }
3952
3953 static inline void netif_tx_lock_bh(struct net_device *dev)
3954 {
3955 local_bh_disable();
3956 netif_tx_lock(dev);
3957 }
3958
3959 static inline void netif_tx_unlock(struct net_device *dev)
3960 {
3961 unsigned int i;
3962
3963 for (i = 0; i < dev->num_tx_queues; i++) {
3964 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3965
3966 /* No need to grab the _xmit_lock here. If the
3967 * queue is not stopped for another reason, we
3968 * force a schedule.
3969 */
3970 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3971 netif_schedule_queue(txq);
3972 }
3973 spin_unlock(&dev->tx_global_lock);
3974 }
3975
3976 static inline void netif_tx_unlock_bh(struct net_device *dev)
3977 {
3978 netif_tx_unlock(dev);
3979 local_bh_enable();
3980 }
3981
3982 #define HARD_TX_LOCK(dev, txq, cpu) { \
3983 if ((dev->features & NETIF_F_LLTX) == 0) { \
3984 __netif_tx_lock(txq, cpu); \
3985 } else { \
3986 __netif_tx_acquire(txq); \
3987 } \
3988 }
3989
3990 #define HARD_TX_TRYLOCK(dev, txq) \
3991 (((dev->features & NETIF_F_LLTX) == 0) ? \
3992 __netif_tx_trylock(txq) : \
3993 __netif_tx_acquire(txq))
3994
3995 #define HARD_TX_UNLOCK(dev, txq) { \
3996 if ((dev->features & NETIF_F_LLTX) == 0) { \
3997 __netif_tx_unlock(txq); \
3998 } else { \
3999 __netif_tx_release(txq); \
4000 } \
4001 }
4002
4003 static inline void netif_tx_disable(struct net_device *dev)
4004 {
4005 unsigned int i;
4006 int cpu;
4007
4008 local_bh_disable();
4009 cpu = smp_processor_id();
4010 for (i = 0; i < dev->num_tx_queues; i++) {
4011 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4012
4013 __netif_tx_lock(txq, cpu);
4014 netif_tx_stop_queue(txq);
4015 __netif_tx_unlock(txq);
4016 }
4017 local_bh_enable();
4018 }
4019
4020 static inline void netif_addr_lock(struct net_device *dev)
4021 {
4022 spin_lock(&dev->addr_list_lock);
4023 }
4024
4025 static inline void netif_addr_lock_nested(struct net_device *dev)
4026 {
4027 int subclass = SINGLE_DEPTH_NESTING;
4028
4029 if (dev->netdev_ops->ndo_get_lock_subclass)
4030 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
4031
4032 spin_lock_nested(&dev->addr_list_lock, subclass);
4033 }
4034
4035 static inline void netif_addr_lock_bh(struct net_device *dev)
4036 {
4037 spin_lock_bh(&dev->addr_list_lock);
4038 }
4039
4040 static inline void netif_addr_unlock(struct net_device *dev)
4041 {
4042 spin_unlock(&dev->addr_list_lock);
4043 }
4044
4045 static inline void netif_addr_unlock_bh(struct net_device *dev)
4046 {
4047 spin_unlock_bh(&dev->addr_list_lock);
4048 }
4049
4050 /*
4051 * dev_addrs walker. Should be used only for read access. Call with
4052 * rcu_read_lock held.
4053 */
4054 #define for_each_dev_addr(dev, ha) \
4055 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4056
4057 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4058
4059 void ether_setup(struct net_device *dev);
4060
4061 /* Support for loadable net-drivers */
4062 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4063 unsigned char name_assign_type,
4064 void (*setup)(struct net_device *),
4065 unsigned int txqs, unsigned int rxqs);
4066 int dev_get_valid_name(struct net *net, struct net_device *dev,
4067 const char *name);
4068
4069 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4070 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4071
4072 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4073 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4074 count)
4075
4076 int register_netdev(struct net_device *dev);
4077 void unregister_netdev(struct net_device *dev);
4078
4079 /* General hardware address lists handling functions */
4080 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4081 struct netdev_hw_addr_list *from_list, int addr_len);
4082 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4083 struct netdev_hw_addr_list *from_list, int addr_len);
4084 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4085 struct net_device *dev,
4086 int (*sync)(struct net_device *, const unsigned char *),
4087 int (*unsync)(struct net_device *,
4088 const unsigned char *));
4089 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4090 struct net_device *dev,
4091 int (*sync)(struct net_device *,
4092 const unsigned char *, int),
4093 int (*unsync)(struct net_device *,
4094 const unsigned char *, int));
4095 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4096 struct net_device *dev,
4097 int (*unsync)(struct net_device *,
4098 const unsigned char *, int));
4099 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4100 struct net_device *dev,
4101 int (*unsync)(struct net_device *,
4102 const unsigned char *));
4103 void __hw_addr_init(struct netdev_hw_addr_list *list);
4104
4105 /* Functions used for device addresses handling */
4106 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4107 unsigned char addr_type);
4108 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4109 unsigned char addr_type);
4110 void dev_addr_flush(struct net_device *dev);
4111 int dev_addr_init(struct net_device *dev);
4112
4113 /* Functions used for unicast addresses handling */
4114 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4115 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4116 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4117 int dev_uc_sync(struct net_device *to, struct net_device *from);
4118 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4119 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4120 void dev_uc_flush(struct net_device *dev);
4121 void dev_uc_init(struct net_device *dev);
4122
4123 /**
4124 * __dev_uc_sync - Synchonize device's unicast list
4125 * @dev: device to sync
4126 * @sync: function to call if address should be added
4127 * @unsync: function to call if address should be removed
4128 *
4129 * Add newly added addresses to the interface, and release
4130 * addresses that have been deleted.
4131 */
4132 static inline int __dev_uc_sync(struct net_device *dev,
4133 int (*sync)(struct net_device *,
4134 const unsigned char *),
4135 int (*unsync)(struct net_device *,
4136 const unsigned char *))
4137 {
4138 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4139 }
4140
4141 /**
4142 * __dev_uc_unsync - Remove synchronized addresses from device
4143 * @dev: device to sync
4144 * @unsync: function to call if address should be removed
4145 *
4146 * Remove all addresses that were added to the device by dev_uc_sync().
4147 */
4148 static inline void __dev_uc_unsync(struct net_device *dev,
4149 int (*unsync)(struct net_device *,
4150 const unsigned char *))
4151 {
4152 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
4153 }
4154
4155 /* Functions used for multicast addresses handling */
4156 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4157 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4158 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4159 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4160 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4161 int dev_mc_sync(struct net_device *to, struct net_device *from);
4162 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4163 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4164 void dev_mc_flush(struct net_device *dev);
4165 void dev_mc_init(struct net_device *dev);
4166
4167 /**
4168 * __dev_mc_sync - Synchonize device's multicast list
4169 * @dev: device to sync
4170 * @sync: function to call if address should be added
4171 * @unsync: function to call if address should be removed
4172 *
4173 * Add newly added addresses to the interface, and release
4174 * addresses that have been deleted.
4175 */
4176 static inline int __dev_mc_sync(struct net_device *dev,
4177 int (*sync)(struct net_device *,
4178 const unsigned char *),
4179 int (*unsync)(struct net_device *,
4180 const unsigned char *))
4181 {
4182 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4183 }
4184
4185 /**
4186 * __dev_mc_unsync - Remove synchronized addresses from device
4187 * @dev: device to sync
4188 * @unsync: function to call if address should be removed
4189 *
4190 * Remove all addresses that were added to the device by dev_mc_sync().
4191 */
4192 static inline void __dev_mc_unsync(struct net_device *dev,
4193 int (*unsync)(struct net_device *,
4194 const unsigned char *))
4195 {
4196 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
4197 }
4198
4199 /* Functions used for secondary unicast and multicast support */
4200 void dev_set_rx_mode(struct net_device *dev);
4201 void __dev_set_rx_mode(struct net_device *dev);
4202 int dev_set_promiscuity(struct net_device *dev, int inc);
4203 int dev_set_allmulti(struct net_device *dev, int inc);
4204 void netdev_state_change(struct net_device *dev);
4205 void netdev_notify_peers(struct net_device *dev);
4206 void netdev_features_change(struct net_device *dev);
4207 /* Load a device via the kmod */
4208 void dev_load(struct net *net, const char *name);
4209 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4210 struct rtnl_link_stats64 *storage);
4211 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4212 const struct net_device_stats *netdev_stats);
4213
4214 extern int netdev_max_backlog;
4215 extern int netdev_tstamp_prequeue;
4216 extern int weight_p;
4217 extern int dev_weight_rx_bias;
4218 extern int dev_weight_tx_bias;
4219 extern int dev_rx_weight;
4220 extern int dev_tx_weight;
4221
4222 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4223 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4224 struct list_head **iter);
4225 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4226 struct list_head **iter);
4227
4228 /* iterate through upper list, must be called under RCU read lock */
4229 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4230 for (iter = &(dev)->adj_list.upper, \
4231 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4232 updev; \
4233 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4234
4235 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4236 int (*fn)(struct net_device *upper_dev,
4237 void *data),
4238 void *data);
4239
4240 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4241 struct net_device *upper_dev);
4242
4243 bool netdev_has_any_upper_dev(struct net_device *dev);
4244
4245 void *netdev_lower_get_next_private(struct net_device *dev,
4246 struct list_head **iter);
4247 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4248 struct list_head **iter);
4249
4250 #define netdev_for_each_lower_private(dev, priv, iter) \
4251 for (iter = (dev)->adj_list.lower.next, \
4252 priv = netdev_lower_get_next_private(dev, &(iter)); \
4253 priv; \
4254 priv = netdev_lower_get_next_private(dev, &(iter)))
4255
4256 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4257 for (iter = &(dev)->adj_list.lower, \
4258 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4259 priv; \
4260 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4261
4262 void *netdev_lower_get_next(struct net_device *dev,
4263 struct list_head **iter);
4264
4265 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4266 for (iter = (dev)->adj_list.lower.next, \
4267 ldev = netdev_lower_get_next(dev, &(iter)); \
4268 ldev; \
4269 ldev = netdev_lower_get_next(dev, &(iter)))
4270
4271 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
4272 struct list_head **iter);
4273 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
4274 struct list_head **iter);
4275
4276 int netdev_walk_all_lower_dev(struct net_device *dev,
4277 int (*fn)(struct net_device *lower_dev,
4278 void *data),
4279 void *data);
4280 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4281 int (*fn)(struct net_device *lower_dev,
4282 void *data),
4283 void *data);
4284
4285 void *netdev_adjacent_get_private(struct list_head *adj_list);
4286 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4287 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4288 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4289 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4290 struct netlink_ext_ack *extack);
4291 int netdev_master_upper_dev_link(struct net_device *dev,
4292 struct net_device *upper_dev,
4293 void *upper_priv, void *upper_info,
4294 struct netlink_ext_ack *extack);
4295 void netdev_upper_dev_unlink(struct net_device *dev,
4296 struct net_device *upper_dev);
4297 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4298 void *netdev_lower_dev_get_private(struct net_device *dev,
4299 struct net_device *lower_dev);
4300 void netdev_lower_state_changed(struct net_device *lower_dev,
4301 void *lower_state_info);
4302
4303 /* RSS keys are 40 or 52 bytes long */
4304 #define NETDEV_RSS_KEY_LEN 52
4305 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4306 void netdev_rss_key_fill(void *buffer, size_t len);
4307
4308 int dev_get_nest_level(struct net_device *dev);
4309 int skb_checksum_help(struct sk_buff *skb);
4310 int skb_crc32c_csum_help(struct sk_buff *skb);
4311 int skb_csum_hwoffload_help(struct sk_buff *skb,
4312 const netdev_features_t features);
4313
4314 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4315 netdev_features_t features, bool tx_path);
4316 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4317 netdev_features_t features);
4318
4319 struct netdev_bonding_info {
4320 ifslave slave;
4321 ifbond master;
4322 };
4323
4324 struct netdev_notifier_bonding_info {
4325 struct netdev_notifier_info info; /* must be first */
4326 struct netdev_bonding_info bonding_info;
4327 };
4328
4329 void netdev_bonding_info_change(struct net_device *dev,
4330 struct netdev_bonding_info *bonding_info);
4331
4332 static inline
4333 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4334 {
4335 return __skb_gso_segment(skb, features, true);
4336 }
4337 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4338
4339 static inline bool can_checksum_protocol(netdev_features_t features,
4340 __be16 protocol)
4341 {
4342 if (protocol == htons(ETH_P_FCOE))
4343 return !!(features & NETIF_F_FCOE_CRC);
4344
4345 /* Assume this is an IP checksum (not SCTP CRC) */
4346
4347 if (features & NETIF_F_HW_CSUM) {
4348 /* Can checksum everything */
4349 return true;
4350 }
4351
4352 switch (protocol) {
4353 case htons(ETH_P_IP):
4354 return !!(features & NETIF_F_IP_CSUM);
4355 case htons(ETH_P_IPV6):
4356 return !!(features & NETIF_F_IPV6_CSUM);
4357 default:
4358 return false;
4359 }
4360 }
4361
4362 #ifdef CONFIG_BUG
4363 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4364 #else
4365 static inline void netdev_rx_csum_fault(struct net_device *dev,
4366 struct sk_buff *skb)
4367 {
4368 }
4369 #endif
4370 /* rx skb timestamps */
4371 void net_enable_timestamp(void);
4372 void net_disable_timestamp(void);
4373
4374 #ifdef CONFIG_PROC_FS
4375 int __init dev_proc_init(void);
4376 #else
4377 #define dev_proc_init() 0
4378 #endif
4379
4380 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4381 struct sk_buff *skb, struct net_device *dev,
4382 bool more)
4383 {
4384 skb->xmit_more = more ? 1 : 0;
4385 return ops->ndo_start_xmit(skb, dev);
4386 }
4387
4388 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4389 struct netdev_queue *txq, bool more)
4390 {
4391 const struct net_device_ops *ops = dev->netdev_ops;
4392 netdev_tx_t rc;
4393
4394 rc = __netdev_start_xmit(ops, skb, dev, more);
4395 if (rc == NETDEV_TX_OK)
4396 txq_trans_update(txq);
4397
4398 return rc;
4399 }
4400
4401 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4402 const void *ns);
4403 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4404 const void *ns);
4405
4406 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4407 {
4408 return netdev_class_create_file_ns(class_attr, NULL);
4409 }
4410
4411 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4412 {
4413 netdev_class_remove_file_ns(class_attr, NULL);
4414 }
4415
4416 extern const struct kobj_ns_type_operations net_ns_type_operations;
4417
4418 const char *netdev_drivername(const struct net_device *dev);
4419
4420 void linkwatch_run_queue(void);
4421
4422 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4423 netdev_features_t f2)
4424 {
4425 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4426 if (f1 & NETIF_F_HW_CSUM)
4427 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4428 else
4429 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4430 }
4431
4432 return f1 & f2;
4433 }
4434
4435 static inline netdev_features_t netdev_get_wanted_features(
4436 struct net_device *dev)
4437 {
4438 return (dev->features & ~dev->hw_features) | dev->wanted_features;
4439 }
4440 netdev_features_t netdev_increment_features(netdev_features_t all,
4441 netdev_features_t one, netdev_features_t mask);
4442
4443 /* Allow TSO being used on stacked device :
4444 * Performing the GSO segmentation before last device
4445 * is a performance improvement.
4446 */
4447 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4448 netdev_features_t mask)
4449 {
4450 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4451 }
4452
4453 int __netdev_update_features(struct net_device *dev);
4454 void netdev_update_features(struct net_device *dev);
4455 void netdev_change_features(struct net_device *dev);
4456
4457 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4458 struct net_device *dev);
4459
4460 netdev_features_t passthru_features_check(struct sk_buff *skb,
4461 struct net_device *dev,
4462 netdev_features_t features);
4463 netdev_features_t netif_skb_features(struct sk_buff *skb);
4464
4465 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4466 {
4467 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4468
4469 /* check flags correspondence */
4470 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4471 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4472 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4473 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4474 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4475 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4476 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4477 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4478 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4479 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4480 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4481 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4482 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4483 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4484 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4485 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4486 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4487 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4488
4489 return (features & feature) == feature;
4490 }
4491
4492 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4493 {
4494 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4495 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4496 }
4497
4498 static inline bool netif_needs_gso(struct sk_buff *skb,
4499 netdev_features_t features)
4500 {
4501 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4502 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4503 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4504 }
4505
4506 static inline void netif_set_gso_max_size(struct net_device *dev,
4507 unsigned int size)
4508 {
4509 dev->gso_max_size = size;
4510 }
4511
4512 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4513 int pulled_hlen, u16 mac_offset,
4514 int mac_len)
4515 {
4516 skb->protocol = protocol;
4517 skb->encapsulation = 1;
4518 skb_push(skb, pulled_hlen);
4519 skb_reset_transport_header(skb);
4520 skb->mac_header = mac_offset;
4521 skb->network_header = skb->mac_header + mac_len;
4522 skb->mac_len = mac_len;
4523 }
4524
4525 static inline bool netif_is_macsec(const struct net_device *dev)
4526 {
4527 return dev->priv_flags & IFF_MACSEC;
4528 }
4529
4530 static inline bool netif_is_macvlan(const struct net_device *dev)
4531 {
4532 return dev->priv_flags & IFF_MACVLAN;
4533 }
4534
4535 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4536 {
4537 return dev->priv_flags & IFF_MACVLAN_PORT;
4538 }
4539
4540 static inline bool netif_is_bond_master(const struct net_device *dev)
4541 {
4542 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4543 }
4544
4545 static inline bool netif_is_bond_slave(const struct net_device *dev)
4546 {
4547 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4548 }
4549
4550 static inline bool netif_supports_nofcs(struct net_device *dev)
4551 {
4552 return dev->priv_flags & IFF_SUPP_NOFCS;
4553 }
4554
4555 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4556 {
4557 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4558 }
4559
4560 static inline bool netif_is_l3_master(const struct net_device *dev)
4561 {
4562 return dev->priv_flags & IFF_L3MDEV_MASTER;
4563 }
4564
4565 static inline bool netif_is_l3_slave(const struct net_device *dev)
4566 {
4567 return dev->priv_flags & IFF_L3MDEV_SLAVE;
4568 }
4569
4570 static inline bool netif_is_bridge_master(const struct net_device *dev)
4571 {
4572 return dev->priv_flags & IFF_EBRIDGE;
4573 }
4574
4575 static inline bool netif_is_bridge_port(const struct net_device *dev)
4576 {
4577 return dev->priv_flags & IFF_BRIDGE_PORT;
4578 }
4579
4580 static inline bool netif_is_ovs_master(const struct net_device *dev)
4581 {
4582 return dev->priv_flags & IFF_OPENVSWITCH;
4583 }
4584
4585 static inline bool netif_is_ovs_port(const struct net_device *dev)
4586 {
4587 return dev->priv_flags & IFF_OVS_DATAPATH;
4588 }
4589
4590 static inline bool netif_is_team_master(const struct net_device *dev)
4591 {
4592 return dev->priv_flags & IFF_TEAM;
4593 }
4594
4595 static inline bool netif_is_team_port(const struct net_device *dev)
4596 {
4597 return dev->priv_flags & IFF_TEAM_PORT;
4598 }
4599
4600 static inline bool netif_is_lag_master(const struct net_device *dev)
4601 {
4602 return netif_is_bond_master(dev) || netif_is_team_master(dev);
4603 }
4604
4605 static inline bool netif_is_lag_port(const struct net_device *dev)
4606 {
4607 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4608 }
4609
4610 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4611 {
4612 return dev->priv_flags & IFF_RXFH_CONFIGURED;
4613 }
4614
4615 static inline bool netif_is_failover(const struct net_device *dev)
4616 {
4617 return dev->priv_flags & IFF_FAILOVER;
4618 }
4619
4620 static inline bool netif_is_failover_slave(const struct net_device *dev)
4621 {
4622 return dev->priv_flags & IFF_FAILOVER_SLAVE;
4623 }
4624
4625 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4626 static inline void netif_keep_dst(struct net_device *dev)
4627 {
4628 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4629 }
4630
4631 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4632 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4633 {
4634 /* TODO: reserve and use an additional IFF bit, if we get more users */
4635 return dev->priv_flags & IFF_MACSEC;
4636 }
4637
4638 extern struct pernet_operations __net_initdata loopback_net_ops;
4639
4640 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4641
4642 /* netdev_printk helpers, similar to dev_printk */
4643
4644 static inline const char *netdev_name(const struct net_device *dev)
4645 {
4646 if (!dev->name[0] || strchr(dev->name, '%'))
4647 return "(unnamed net_device)";
4648 return dev->name;
4649 }
4650
4651 static inline bool netdev_unregistering(const struct net_device *dev)
4652 {
4653 return dev->reg_state == NETREG_UNREGISTERING;
4654 }
4655
4656 static inline const char *netdev_reg_state(const struct net_device *dev)
4657 {
4658 switch (dev->reg_state) {
4659 case NETREG_UNINITIALIZED: return " (uninitialized)";
4660 case NETREG_REGISTERED: return "";
4661 case NETREG_UNREGISTERING: return " (unregistering)";
4662 case NETREG_UNREGISTERED: return " (unregistered)";
4663 case NETREG_RELEASED: return " (released)";
4664 case NETREG_DUMMY: return " (dummy)";
4665 }
4666
4667 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4668 return " (unknown)";
4669 }
4670
4671 __printf(3, 4)
4672 void netdev_printk(const char *level, const struct net_device *dev,
4673 const char *format, ...);
4674 __printf(2, 3)
4675 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4676 __printf(2, 3)
4677 void netdev_alert(const struct net_device *dev, const char *format, ...);
4678 __printf(2, 3)
4679 void netdev_crit(const struct net_device *dev, const char *format, ...);
4680 __printf(2, 3)
4681 void netdev_err(const struct net_device *dev, const char *format, ...);
4682 __printf(2, 3)
4683 void netdev_warn(const struct net_device *dev, const char *format, ...);
4684 __printf(2, 3)
4685 void netdev_notice(const struct net_device *dev, const char *format, ...);
4686 __printf(2, 3)
4687 void netdev_info(const struct net_device *dev, const char *format, ...);
4688
4689 #define netdev_level_once(level, dev, fmt, ...) \
4690 do { \
4691 static bool __print_once __read_mostly; \
4692 \
4693 if (!__print_once) { \
4694 __print_once = true; \
4695 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \
4696 } \
4697 } while (0)
4698
4699 #define netdev_emerg_once(dev, fmt, ...) \
4700 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4701 #define netdev_alert_once(dev, fmt, ...) \
4702 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4703 #define netdev_crit_once(dev, fmt, ...) \
4704 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4705 #define netdev_err_once(dev, fmt, ...) \
4706 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4707 #define netdev_warn_once(dev, fmt, ...) \
4708 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4709 #define netdev_notice_once(dev, fmt, ...) \
4710 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4711 #define netdev_info_once(dev, fmt, ...) \
4712 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4713
4714 #define MODULE_ALIAS_NETDEV(device) \
4715 MODULE_ALIAS("netdev-" device)
4716
4717 #if defined(CONFIG_DYNAMIC_DEBUG)
4718 #define netdev_dbg(__dev, format, args...) \
4719 do { \
4720 dynamic_netdev_dbg(__dev, format, ##args); \
4721 } while (0)
4722 #elif defined(DEBUG)
4723 #define netdev_dbg(__dev, format, args...) \
4724 netdev_printk(KERN_DEBUG, __dev, format, ##args)
4725 #else
4726 #define netdev_dbg(__dev, format, args...) \
4727 ({ \
4728 if (0) \
4729 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4730 })
4731 #endif
4732
4733 #if defined(VERBOSE_DEBUG)
4734 #define netdev_vdbg netdev_dbg
4735 #else
4736
4737 #define netdev_vdbg(dev, format, args...) \
4738 ({ \
4739 if (0) \
4740 netdev_printk(KERN_DEBUG, dev, format, ##args); \
4741 0; \
4742 })
4743 #endif
4744
4745 /*
4746 * netdev_WARN() acts like dev_printk(), but with the key difference
4747 * of using a WARN/WARN_ON to get the message out, including the
4748 * file/line information and a backtrace.
4749 */
4750 #define netdev_WARN(dev, format, args...) \
4751 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \
4752 netdev_reg_state(dev), ##args)
4753
4754 #define netdev_WARN_ONCE(dev, format, args...) \
4755 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \
4756 netdev_reg_state(dev), ##args)
4757
4758 /* netif printk helpers, similar to netdev_printk */
4759
4760 #define netif_printk(priv, type, level, dev, fmt, args...) \
4761 do { \
4762 if (netif_msg_##type(priv)) \
4763 netdev_printk(level, (dev), fmt, ##args); \
4764 } while (0)
4765
4766 #define netif_level(level, priv, type, dev, fmt, args...) \
4767 do { \
4768 if (netif_msg_##type(priv)) \
4769 netdev_##level(dev, fmt, ##args); \
4770 } while (0)
4771
4772 #define netif_emerg(priv, type, dev, fmt, args...) \
4773 netif_level(emerg, priv, type, dev, fmt, ##args)
4774 #define netif_alert(priv, type, dev, fmt, args...) \
4775 netif_level(alert, priv, type, dev, fmt, ##args)
4776 #define netif_crit(priv, type, dev, fmt, args...) \
4777 netif_level(crit, priv, type, dev, fmt, ##args)
4778 #define netif_err(priv, type, dev, fmt, args...) \
4779 netif_level(err, priv, type, dev, fmt, ##args)
4780 #define netif_warn(priv, type, dev, fmt, args...) \
4781 netif_level(warn, priv, type, dev, fmt, ##args)
4782 #define netif_notice(priv, type, dev, fmt, args...) \
4783 netif_level(notice, priv, type, dev, fmt, ##args)
4784 #define netif_info(priv, type, dev, fmt, args...) \
4785 netif_level(info, priv, type, dev, fmt, ##args)
4786
4787 #if defined(CONFIG_DYNAMIC_DEBUG)
4788 #define netif_dbg(priv, type, netdev, format, args...) \
4789 do { \
4790 if (netif_msg_##type(priv)) \
4791 dynamic_netdev_dbg(netdev, format, ##args); \
4792 } while (0)
4793 #elif defined(DEBUG)
4794 #define netif_dbg(priv, type, dev, format, args...) \
4795 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4796 #else
4797 #define netif_dbg(priv, type, dev, format, args...) \
4798 ({ \
4799 if (0) \
4800 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4801 0; \
4802 })
4803 #endif
4804
4805 /* if @cond then downgrade to debug, else print at @level */
4806 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \
4807 do { \
4808 if (cond) \
4809 netif_dbg(priv, type, netdev, fmt, ##args); \
4810 else \
4811 netif_ ## level(priv, type, netdev, fmt, ##args); \
4812 } while (0)
4813
4814 #if defined(VERBOSE_DEBUG)
4815 #define netif_vdbg netif_dbg
4816 #else
4817 #define netif_vdbg(priv, type, dev, format, args...) \
4818 ({ \
4819 if (0) \
4820 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4821 0; \
4822 })
4823 #endif
4824
4825 /*
4826 * The list of packet types we will receive (as opposed to discard)
4827 * and the routines to invoke.
4828 *
4829 * Why 16. Because with 16 the only overlap we get on a hash of the
4830 * low nibble of the protocol value is RARP/SNAP/X.25.
4831 *
4832 * 0800 IP
4833 * 0001 802.3
4834 * 0002 AX.25
4835 * 0004 802.2
4836 * 8035 RARP
4837 * 0005 SNAP
4838 * 0805 X.25
4839 * 0806 ARP
4840 * 8137 IPX
4841 * 0009 Localtalk
4842 * 86DD IPv6
4843 */
4844 #define PTYPE_HASH_SIZE (16)
4845 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4846
4847 #endif /* _LINUX_NETDEVICE_H */