]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/netdevice.h
Merge tag 'rdma-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/roland...
[mirror_ubuntu-bionic-kernel.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/if.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_link.h>
32
33 #ifdef __KERNEL__
34 #include <linux/pm_qos.h>
35 #include <linux/timer.h>
36 #include <linux/delay.h>
37 #include <linux/atomic.h>
38 #include <asm/cache.h>
39 #include <asm/byteorder.h>
40
41 #include <linux/device.h>
42 #include <linux/percpu.h>
43 #include <linux/rculist.h>
44 #include <linux/dmaengine.h>
45 #include <linux/workqueue.h>
46 #include <linux/dynamic_queue_limits.h>
47
48 #include <linux/ethtool.h>
49 #include <net/net_namespace.h>
50 #include <net/dsa.h>
51 #ifdef CONFIG_DCB
52 #include <net/dcbnl.h>
53 #endif
54 #include <net/netprio_cgroup.h>
55
56 #include <linux/netdev_features.h>
57
58 struct netpoll_info;
59 struct phy_device;
60 /* 802.11 specific */
61 struct wireless_dev;
62 /* source back-compat hooks */
63 #define SET_ETHTOOL_OPS(netdev,ops) \
64 ( (netdev)->ethtool_ops = (ops) )
65
66 /* hardware address assignment types */
67 #define NET_ADDR_PERM 0 /* address is permanent (default) */
68 #define NET_ADDR_RANDOM 1 /* address is generated randomly */
69 #define NET_ADDR_STOLEN 2 /* address is stolen from other device */
70
71 /* Backlog congestion levels */
72 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
73 #define NET_RX_DROP 1 /* packet dropped */
74
75 /*
76 * Transmit return codes: transmit return codes originate from three different
77 * namespaces:
78 *
79 * - qdisc return codes
80 * - driver transmit return codes
81 * - errno values
82 *
83 * Drivers are allowed to return any one of those in their hard_start_xmit()
84 * function. Real network devices commonly used with qdiscs should only return
85 * the driver transmit return codes though - when qdiscs are used, the actual
86 * transmission happens asynchronously, so the value is not propagated to
87 * higher layers. Virtual network devices transmit synchronously, in this case
88 * the driver transmit return codes are consumed by dev_queue_xmit(), all
89 * others are propagated to higher layers.
90 */
91
92 /* qdisc ->enqueue() return codes. */
93 #define NET_XMIT_SUCCESS 0x00
94 #define NET_XMIT_DROP 0x01 /* skb dropped */
95 #define NET_XMIT_CN 0x02 /* congestion notification */
96 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
97 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
98
99 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
100 * indicates that the device will soon be dropping packets, or already drops
101 * some packets of the same priority; prompting us to send less aggressively. */
102 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
103 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
104
105 /* Driver transmit return codes */
106 #define NETDEV_TX_MASK 0xf0
107
108 enum netdev_tx {
109 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
110 NETDEV_TX_OK = 0x00, /* driver took care of packet */
111 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
112 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
113 };
114 typedef enum netdev_tx netdev_tx_t;
115
116 /*
117 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
118 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
119 */
120 static inline bool dev_xmit_complete(int rc)
121 {
122 /*
123 * Positive cases with an skb consumed by a driver:
124 * - successful transmission (rc == NETDEV_TX_OK)
125 * - error while transmitting (rc < 0)
126 * - error while queueing to a different device (rc & NET_XMIT_MASK)
127 */
128 if (likely(rc < NET_XMIT_MASK))
129 return true;
130
131 return false;
132 }
133
134 #endif
135
136 #define MAX_ADDR_LEN 32 /* Largest hardware address length */
137
138 /* Initial net device group. All devices belong to group 0 by default. */
139 #define INIT_NETDEV_GROUP 0
140
141 #ifdef __KERNEL__
142 /*
143 * Compute the worst case header length according to the protocols
144 * used.
145 */
146
147 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
148 # if defined(CONFIG_MAC80211_MESH)
149 # define LL_MAX_HEADER 128
150 # else
151 # define LL_MAX_HEADER 96
152 # endif
153 #elif IS_ENABLED(CONFIG_TR)
154 # define LL_MAX_HEADER 48
155 #else
156 # define LL_MAX_HEADER 32
157 #endif
158
159 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
160 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
161 #define MAX_HEADER LL_MAX_HEADER
162 #else
163 #define MAX_HEADER (LL_MAX_HEADER + 48)
164 #endif
165
166 /*
167 * Old network device statistics. Fields are native words
168 * (unsigned long) so they can be read and written atomically.
169 */
170
171 struct net_device_stats {
172 unsigned long rx_packets;
173 unsigned long tx_packets;
174 unsigned long rx_bytes;
175 unsigned long tx_bytes;
176 unsigned long rx_errors;
177 unsigned long tx_errors;
178 unsigned long rx_dropped;
179 unsigned long tx_dropped;
180 unsigned long multicast;
181 unsigned long collisions;
182 unsigned long rx_length_errors;
183 unsigned long rx_over_errors;
184 unsigned long rx_crc_errors;
185 unsigned long rx_frame_errors;
186 unsigned long rx_fifo_errors;
187 unsigned long rx_missed_errors;
188 unsigned long tx_aborted_errors;
189 unsigned long tx_carrier_errors;
190 unsigned long tx_fifo_errors;
191 unsigned long tx_heartbeat_errors;
192 unsigned long tx_window_errors;
193 unsigned long rx_compressed;
194 unsigned long tx_compressed;
195 };
196
197 #endif /* __KERNEL__ */
198
199
200 /* Media selection options. */
201 enum {
202 IF_PORT_UNKNOWN = 0,
203 IF_PORT_10BASE2,
204 IF_PORT_10BASET,
205 IF_PORT_AUI,
206 IF_PORT_100BASET,
207 IF_PORT_100BASETX,
208 IF_PORT_100BASEFX
209 };
210
211 #ifdef __KERNEL__
212
213 #include <linux/cache.h>
214 #include <linux/skbuff.h>
215
216 #ifdef CONFIG_RPS
217 #include <linux/static_key.h>
218 extern struct static_key rps_needed;
219 #endif
220
221 struct neighbour;
222 struct neigh_parms;
223 struct sk_buff;
224
225 struct netdev_hw_addr {
226 struct list_head list;
227 unsigned char addr[MAX_ADDR_LEN];
228 unsigned char type;
229 #define NETDEV_HW_ADDR_T_LAN 1
230 #define NETDEV_HW_ADDR_T_SAN 2
231 #define NETDEV_HW_ADDR_T_SLAVE 3
232 #define NETDEV_HW_ADDR_T_UNICAST 4
233 #define NETDEV_HW_ADDR_T_MULTICAST 5
234 bool synced;
235 bool global_use;
236 int refcount;
237 struct rcu_head rcu_head;
238 };
239
240 struct netdev_hw_addr_list {
241 struct list_head list;
242 int count;
243 };
244
245 #define netdev_hw_addr_list_count(l) ((l)->count)
246 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
247 #define netdev_hw_addr_list_for_each(ha, l) \
248 list_for_each_entry(ha, &(l)->list, list)
249
250 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
251 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
252 #define netdev_for_each_uc_addr(ha, dev) \
253 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
254
255 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
256 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
257 #define netdev_for_each_mc_addr(ha, dev) \
258 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
259
260 struct hh_cache {
261 u16 hh_len;
262 u16 __pad;
263 seqlock_t hh_lock;
264
265 /* cached hardware header; allow for machine alignment needs. */
266 #define HH_DATA_MOD 16
267 #define HH_DATA_OFF(__len) \
268 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
269 #define HH_DATA_ALIGN(__len) \
270 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
271 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
272 };
273
274 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
275 * Alternative is:
276 * dev->hard_header_len ? (dev->hard_header_len +
277 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
278 *
279 * We could use other alignment values, but we must maintain the
280 * relationship HH alignment <= LL alignment.
281 */
282 #define LL_RESERVED_SPACE(dev) \
283 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
284 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
285 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
286
287 struct header_ops {
288 int (*create) (struct sk_buff *skb, struct net_device *dev,
289 unsigned short type, const void *daddr,
290 const void *saddr, unsigned len);
291 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
292 int (*rebuild)(struct sk_buff *skb);
293 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
294 void (*cache_update)(struct hh_cache *hh,
295 const struct net_device *dev,
296 const unsigned char *haddr);
297 };
298
299 /* These flag bits are private to the generic network queueing
300 * layer, they may not be explicitly referenced by any other
301 * code.
302 */
303
304 enum netdev_state_t {
305 __LINK_STATE_START,
306 __LINK_STATE_PRESENT,
307 __LINK_STATE_NOCARRIER,
308 __LINK_STATE_LINKWATCH_PENDING,
309 __LINK_STATE_DORMANT,
310 };
311
312
313 /*
314 * This structure holds at boot time configured netdevice settings. They
315 * are then used in the device probing.
316 */
317 struct netdev_boot_setup {
318 char name[IFNAMSIZ];
319 struct ifmap map;
320 };
321 #define NETDEV_BOOT_SETUP_MAX 8
322
323 extern int __init netdev_boot_setup(char *str);
324
325 /*
326 * Structure for NAPI scheduling similar to tasklet but with weighting
327 */
328 struct napi_struct {
329 /* The poll_list must only be managed by the entity which
330 * changes the state of the NAPI_STATE_SCHED bit. This means
331 * whoever atomically sets that bit can add this napi_struct
332 * to the per-cpu poll_list, and whoever clears that bit
333 * can remove from the list right before clearing the bit.
334 */
335 struct list_head poll_list;
336
337 unsigned long state;
338 int weight;
339 int (*poll)(struct napi_struct *, int);
340 #ifdef CONFIG_NETPOLL
341 spinlock_t poll_lock;
342 int poll_owner;
343 #endif
344
345 unsigned int gro_count;
346
347 struct net_device *dev;
348 struct list_head dev_list;
349 struct sk_buff *gro_list;
350 struct sk_buff *skb;
351 };
352
353 enum {
354 NAPI_STATE_SCHED, /* Poll is scheduled */
355 NAPI_STATE_DISABLE, /* Disable pending */
356 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
357 };
358
359 enum gro_result {
360 GRO_MERGED,
361 GRO_MERGED_FREE,
362 GRO_HELD,
363 GRO_NORMAL,
364 GRO_DROP,
365 };
366 typedef enum gro_result gro_result_t;
367
368 /*
369 * enum rx_handler_result - Possible return values for rx_handlers.
370 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
371 * further.
372 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
373 * case skb->dev was changed by rx_handler.
374 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
375 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
376 *
377 * rx_handlers are functions called from inside __netif_receive_skb(), to do
378 * special processing of the skb, prior to delivery to protocol handlers.
379 *
380 * Currently, a net_device can only have a single rx_handler registered. Trying
381 * to register a second rx_handler will return -EBUSY.
382 *
383 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
384 * To unregister a rx_handler on a net_device, use
385 * netdev_rx_handler_unregister().
386 *
387 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
388 * do with the skb.
389 *
390 * If the rx_handler consumed to skb in some way, it should return
391 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
392 * the skb to be delivered in some other ways.
393 *
394 * If the rx_handler changed skb->dev, to divert the skb to another
395 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
396 * new device will be called if it exists.
397 *
398 * If the rx_handler consider the skb should be ignored, it should return
399 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
400 * are registred on exact device (ptype->dev == skb->dev).
401 *
402 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
403 * delivered, it should return RX_HANDLER_PASS.
404 *
405 * A device without a registered rx_handler will behave as if rx_handler
406 * returned RX_HANDLER_PASS.
407 */
408
409 enum rx_handler_result {
410 RX_HANDLER_CONSUMED,
411 RX_HANDLER_ANOTHER,
412 RX_HANDLER_EXACT,
413 RX_HANDLER_PASS,
414 };
415 typedef enum rx_handler_result rx_handler_result_t;
416 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
417
418 extern void __napi_schedule(struct napi_struct *n);
419
420 static inline bool napi_disable_pending(struct napi_struct *n)
421 {
422 return test_bit(NAPI_STATE_DISABLE, &n->state);
423 }
424
425 /**
426 * napi_schedule_prep - check if napi can be scheduled
427 * @n: napi context
428 *
429 * Test if NAPI routine is already running, and if not mark
430 * it as running. This is used as a condition variable
431 * insure only one NAPI poll instance runs. We also make
432 * sure there is no pending NAPI disable.
433 */
434 static inline bool napi_schedule_prep(struct napi_struct *n)
435 {
436 return !napi_disable_pending(n) &&
437 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
438 }
439
440 /**
441 * napi_schedule - schedule NAPI poll
442 * @n: napi context
443 *
444 * Schedule NAPI poll routine to be called if it is not already
445 * running.
446 */
447 static inline void napi_schedule(struct napi_struct *n)
448 {
449 if (napi_schedule_prep(n))
450 __napi_schedule(n);
451 }
452
453 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
454 static inline bool napi_reschedule(struct napi_struct *napi)
455 {
456 if (napi_schedule_prep(napi)) {
457 __napi_schedule(napi);
458 return true;
459 }
460 return false;
461 }
462
463 /**
464 * napi_complete - NAPI processing complete
465 * @n: napi context
466 *
467 * Mark NAPI processing as complete.
468 */
469 extern void __napi_complete(struct napi_struct *n);
470 extern void napi_complete(struct napi_struct *n);
471
472 /**
473 * napi_disable - prevent NAPI from scheduling
474 * @n: napi context
475 *
476 * Stop NAPI from being scheduled on this context.
477 * Waits till any outstanding processing completes.
478 */
479 static inline void napi_disable(struct napi_struct *n)
480 {
481 set_bit(NAPI_STATE_DISABLE, &n->state);
482 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
483 msleep(1);
484 clear_bit(NAPI_STATE_DISABLE, &n->state);
485 }
486
487 /**
488 * napi_enable - enable NAPI scheduling
489 * @n: napi context
490 *
491 * Resume NAPI from being scheduled on this context.
492 * Must be paired with napi_disable.
493 */
494 static inline void napi_enable(struct napi_struct *n)
495 {
496 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
497 smp_mb__before_clear_bit();
498 clear_bit(NAPI_STATE_SCHED, &n->state);
499 }
500
501 #ifdef CONFIG_SMP
502 /**
503 * napi_synchronize - wait until NAPI is not running
504 * @n: napi context
505 *
506 * Wait until NAPI is done being scheduled on this context.
507 * Waits till any outstanding processing completes but
508 * does not disable future activations.
509 */
510 static inline void napi_synchronize(const struct napi_struct *n)
511 {
512 while (test_bit(NAPI_STATE_SCHED, &n->state))
513 msleep(1);
514 }
515 #else
516 # define napi_synchronize(n) barrier()
517 #endif
518
519 enum netdev_queue_state_t {
520 __QUEUE_STATE_DRV_XOFF,
521 __QUEUE_STATE_STACK_XOFF,
522 __QUEUE_STATE_FROZEN,
523 #define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF) | \
524 (1 << __QUEUE_STATE_STACK_XOFF))
525 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
526 (1 << __QUEUE_STATE_FROZEN))
527 };
528 /*
529 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
530 * netif_tx_* functions below are used to manipulate this flag. The
531 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
532 * queue independently. The netif_xmit_*stopped functions below are called
533 * to check if the queue has been stopped by the driver or stack (either
534 * of the XOFF bits are set in the state). Drivers should not need to call
535 * netif_xmit*stopped functions, they should only be using netif_tx_*.
536 */
537
538 struct netdev_queue {
539 /*
540 * read mostly part
541 */
542 struct net_device *dev;
543 struct Qdisc *qdisc;
544 struct Qdisc *qdisc_sleeping;
545 #ifdef CONFIG_SYSFS
546 struct kobject kobj;
547 #endif
548 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
549 int numa_node;
550 #endif
551 /*
552 * write mostly part
553 */
554 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
555 int xmit_lock_owner;
556 /*
557 * please use this field instead of dev->trans_start
558 */
559 unsigned long trans_start;
560
561 /*
562 * Number of TX timeouts for this queue
563 * (/sys/class/net/DEV/Q/trans_timeout)
564 */
565 unsigned long trans_timeout;
566
567 unsigned long state;
568
569 #ifdef CONFIG_BQL
570 struct dql dql;
571 #endif
572 } ____cacheline_aligned_in_smp;
573
574 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
575 {
576 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
577 return q->numa_node;
578 #else
579 return NUMA_NO_NODE;
580 #endif
581 }
582
583 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
584 {
585 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
586 q->numa_node = node;
587 #endif
588 }
589
590 #ifdef CONFIG_RPS
591 /*
592 * This structure holds an RPS map which can be of variable length. The
593 * map is an array of CPUs.
594 */
595 struct rps_map {
596 unsigned int len;
597 struct rcu_head rcu;
598 u16 cpus[0];
599 };
600 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
601
602 /*
603 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
604 * tail pointer for that CPU's input queue at the time of last enqueue, and
605 * a hardware filter index.
606 */
607 struct rps_dev_flow {
608 u16 cpu;
609 u16 filter;
610 unsigned int last_qtail;
611 };
612 #define RPS_NO_FILTER 0xffff
613
614 /*
615 * The rps_dev_flow_table structure contains a table of flow mappings.
616 */
617 struct rps_dev_flow_table {
618 unsigned int mask;
619 struct rcu_head rcu;
620 struct work_struct free_work;
621 struct rps_dev_flow flows[0];
622 };
623 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
624 ((_num) * sizeof(struct rps_dev_flow)))
625
626 /*
627 * The rps_sock_flow_table contains mappings of flows to the last CPU
628 * on which they were processed by the application (set in recvmsg).
629 */
630 struct rps_sock_flow_table {
631 unsigned int mask;
632 u16 ents[0];
633 };
634 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
635 ((_num) * sizeof(u16)))
636
637 #define RPS_NO_CPU 0xffff
638
639 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
640 u32 hash)
641 {
642 if (table && hash) {
643 unsigned int cpu, index = hash & table->mask;
644
645 /* We only give a hint, preemption can change cpu under us */
646 cpu = raw_smp_processor_id();
647
648 if (table->ents[index] != cpu)
649 table->ents[index] = cpu;
650 }
651 }
652
653 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
654 u32 hash)
655 {
656 if (table && hash)
657 table->ents[hash & table->mask] = RPS_NO_CPU;
658 }
659
660 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
661
662 #ifdef CONFIG_RFS_ACCEL
663 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
664 u32 flow_id, u16 filter_id);
665 #endif
666
667 /* This structure contains an instance of an RX queue. */
668 struct netdev_rx_queue {
669 struct rps_map __rcu *rps_map;
670 struct rps_dev_flow_table __rcu *rps_flow_table;
671 struct kobject kobj;
672 struct net_device *dev;
673 } ____cacheline_aligned_in_smp;
674 #endif /* CONFIG_RPS */
675
676 #ifdef CONFIG_XPS
677 /*
678 * This structure holds an XPS map which can be of variable length. The
679 * map is an array of queues.
680 */
681 struct xps_map {
682 unsigned int len;
683 unsigned int alloc_len;
684 struct rcu_head rcu;
685 u16 queues[0];
686 };
687 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
688 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
689 / sizeof(u16))
690
691 /*
692 * This structure holds all XPS maps for device. Maps are indexed by CPU.
693 */
694 struct xps_dev_maps {
695 struct rcu_head rcu;
696 struct xps_map __rcu *cpu_map[0];
697 };
698 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
699 (nr_cpu_ids * sizeof(struct xps_map *)))
700 #endif /* CONFIG_XPS */
701
702 #define TC_MAX_QUEUE 16
703 #define TC_BITMASK 15
704 /* HW offloaded queuing disciplines txq count and offset maps */
705 struct netdev_tc_txq {
706 u16 count;
707 u16 offset;
708 };
709
710 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
711 /*
712 * This structure is to hold information about the device
713 * configured to run FCoE protocol stack.
714 */
715 struct netdev_fcoe_hbainfo {
716 char manufacturer[64];
717 char serial_number[64];
718 char hardware_version[64];
719 char driver_version[64];
720 char optionrom_version[64];
721 char firmware_version[64];
722 char model[256];
723 char model_description[256];
724 };
725 #endif
726
727 /*
728 * This structure defines the management hooks for network devices.
729 * The following hooks can be defined; unless noted otherwise, they are
730 * optional and can be filled with a null pointer.
731 *
732 * int (*ndo_init)(struct net_device *dev);
733 * This function is called once when network device is registered.
734 * The network device can use this to any late stage initializaton
735 * or semantic validattion. It can fail with an error code which will
736 * be propogated back to register_netdev
737 *
738 * void (*ndo_uninit)(struct net_device *dev);
739 * This function is called when device is unregistered or when registration
740 * fails. It is not called if init fails.
741 *
742 * int (*ndo_open)(struct net_device *dev);
743 * This function is called when network device transistions to the up
744 * state.
745 *
746 * int (*ndo_stop)(struct net_device *dev);
747 * This function is called when network device transistions to the down
748 * state.
749 *
750 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
751 * struct net_device *dev);
752 * Called when a packet needs to be transmitted.
753 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
754 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
755 * Required can not be NULL.
756 *
757 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
758 * Called to decide which queue to when device supports multiple
759 * transmit queues.
760 *
761 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
762 * This function is called to allow device receiver to make
763 * changes to configuration when multicast or promiscious is enabled.
764 *
765 * void (*ndo_set_rx_mode)(struct net_device *dev);
766 * This function is called device changes address list filtering.
767 * If driver handles unicast address filtering, it should set
768 * IFF_UNICAST_FLT to its priv_flags.
769 *
770 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
771 * This function is called when the Media Access Control address
772 * needs to be changed. If this interface is not defined, the
773 * mac address can not be changed.
774 *
775 * int (*ndo_validate_addr)(struct net_device *dev);
776 * Test if Media Access Control address is valid for the device.
777 *
778 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
779 * Called when a user request an ioctl which can't be handled by
780 * the generic interface code. If not defined ioctl's return
781 * not supported error code.
782 *
783 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
784 * Used to set network devices bus interface parameters. This interface
785 * is retained for legacy reason, new devices should use the bus
786 * interface (PCI) for low level management.
787 *
788 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
789 * Called when a user wants to change the Maximum Transfer Unit
790 * of a device. If not defined, any request to change MTU will
791 * will return an error.
792 *
793 * void (*ndo_tx_timeout)(struct net_device *dev);
794 * Callback uses when the transmitter has not made any progress
795 * for dev->watchdog ticks.
796 *
797 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
798 * struct rtnl_link_stats64 *storage);
799 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
800 * Called when a user wants to get the network device usage
801 * statistics. Drivers must do one of the following:
802 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
803 * rtnl_link_stats64 structure passed by the caller.
804 * 2. Define @ndo_get_stats to update a net_device_stats structure
805 * (which should normally be dev->stats) and return a pointer to
806 * it. The structure may be changed asynchronously only if each
807 * field is written atomically.
808 * 3. Update dev->stats asynchronously and atomically, and define
809 * neither operation.
810 *
811 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
812 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
813 * this function is called when a VLAN id is registered.
814 *
815 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
816 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
817 * this function is called when a VLAN id is unregistered.
818 *
819 * void (*ndo_poll_controller)(struct net_device *dev);
820 *
821 * SR-IOV management functions.
822 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
823 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
824 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
825 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
826 * int (*ndo_get_vf_config)(struct net_device *dev,
827 * int vf, struct ifla_vf_info *ivf);
828 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
829 * struct nlattr *port[]);
830 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
831 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
832 * Called to setup 'tc' number of traffic classes in the net device. This
833 * is always called from the stack with the rtnl lock held and netif tx
834 * queues stopped. This allows the netdevice to perform queue management
835 * safely.
836 *
837 * Fiber Channel over Ethernet (FCoE) offload functions.
838 * int (*ndo_fcoe_enable)(struct net_device *dev);
839 * Called when the FCoE protocol stack wants to start using LLD for FCoE
840 * so the underlying device can perform whatever needed configuration or
841 * initialization to support acceleration of FCoE traffic.
842 *
843 * int (*ndo_fcoe_disable)(struct net_device *dev);
844 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
845 * so the underlying device can perform whatever needed clean-ups to
846 * stop supporting acceleration of FCoE traffic.
847 *
848 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
849 * struct scatterlist *sgl, unsigned int sgc);
850 * Called when the FCoE Initiator wants to initialize an I/O that
851 * is a possible candidate for Direct Data Placement (DDP). The LLD can
852 * perform necessary setup and returns 1 to indicate the device is set up
853 * successfully to perform DDP on this I/O, otherwise this returns 0.
854 *
855 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
856 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
857 * indicated by the FC exchange id 'xid', so the underlying device can
858 * clean up and reuse resources for later DDP requests.
859 *
860 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
861 * struct scatterlist *sgl, unsigned int sgc);
862 * Called when the FCoE Target wants to initialize an I/O that
863 * is a possible candidate for Direct Data Placement (DDP). The LLD can
864 * perform necessary setup and returns 1 to indicate the device is set up
865 * successfully to perform DDP on this I/O, otherwise this returns 0.
866 *
867 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
868 * struct netdev_fcoe_hbainfo *hbainfo);
869 * Called when the FCoE Protocol stack wants information on the underlying
870 * device. This information is utilized by the FCoE protocol stack to
871 * register attributes with Fiber Channel management service as per the
872 * FC-GS Fabric Device Management Information(FDMI) specification.
873 *
874 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
875 * Called when the underlying device wants to override default World Wide
876 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
877 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
878 * protocol stack to use.
879 *
880 * RFS acceleration.
881 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
882 * u16 rxq_index, u32 flow_id);
883 * Set hardware filter for RFS. rxq_index is the target queue index;
884 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
885 * Return the filter ID on success, or a negative error code.
886 *
887 * Slave management functions (for bridge, bonding, etc). User should
888 * call netdev_set_master() to set dev->master properly.
889 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
890 * Called to make another netdev an underling.
891 *
892 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
893 * Called to release previously enslaved netdev.
894 *
895 * Feature/offload setting functions.
896 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
897 * netdev_features_t features);
898 * Adjusts the requested feature flags according to device-specific
899 * constraints, and returns the resulting flags. Must not modify
900 * the device state.
901 *
902 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
903 * Called to update device configuration to new features. Passed
904 * feature set might be less than what was returned by ndo_fix_features()).
905 * Must return >0 or -errno if it changed dev->features itself.
906 *
907 */
908 struct net_device_ops {
909 int (*ndo_init)(struct net_device *dev);
910 void (*ndo_uninit)(struct net_device *dev);
911 int (*ndo_open)(struct net_device *dev);
912 int (*ndo_stop)(struct net_device *dev);
913 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
914 struct net_device *dev);
915 u16 (*ndo_select_queue)(struct net_device *dev,
916 struct sk_buff *skb);
917 void (*ndo_change_rx_flags)(struct net_device *dev,
918 int flags);
919 void (*ndo_set_rx_mode)(struct net_device *dev);
920 int (*ndo_set_mac_address)(struct net_device *dev,
921 void *addr);
922 int (*ndo_validate_addr)(struct net_device *dev);
923 int (*ndo_do_ioctl)(struct net_device *dev,
924 struct ifreq *ifr, int cmd);
925 int (*ndo_set_config)(struct net_device *dev,
926 struct ifmap *map);
927 int (*ndo_change_mtu)(struct net_device *dev,
928 int new_mtu);
929 int (*ndo_neigh_setup)(struct net_device *dev,
930 struct neigh_parms *);
931 void (*ndo_tx_timeout) (struct net_device *dev);
932
933 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
934 struct rtnl_link_stats64 *storage);
935 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
936
937 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
938 unsigned short vid);
939 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
940 unsigned short vid);
941 #ifdef CONFIG_NET_POLL_CONTROLLER
942 void (*ndo_poll_controller)(struct net_device *dev);
943 int (*ndo_netpoll_setup)(struct net_device *dev,
944 struct netpoll_info *info);
945 void (*ndo_netpoll_cleanup)(struct net_device *dev);
946 #endif
947 int (*ndo_set_vf_mac)(struct net_device *dev,
948 int queue, u8 *mac);
949 int (*ndo_set_vf_vlan)(struct net_device *dev,
950 int queue, u16 vlan, u8 qos);
951 int (*ndo_set_vf_tx_rate)(struct net_device *dev,
952 int vf, int rate);
953 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
954 int vf, bool setting);
955 int (*ndo_get_vf_config)(struct net_device *dev,
956 int vf,
957 struct ifla_vf_info *ivf);
958 int (*ndo_set_vf_port)(struct net_device *dev,
959 int vf,
960 struct nlattr *port[]);
961 int (*ndo_get_vf_port)(struct net_device *dev,
962 int vf, struct sk_buff *skb);
963 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
964 #if IS_ENABLED(CONFIG_FCOE)
965 int (*ndo_fcoe_enable)(struct net_device *dev);
966 int (*ndo_fcoe_disable)(struct net_device *dev);
967 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
968 u16 xid,
969 struct scatterlist *sgl,
970 unsigned int sgc);
971 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
972 u16 xid);
973 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
974 u16 xid,
975 struct scatterlist *sgl,
976 unsigned int sgc);
977 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
978 struct netdev_fcoe_hbainfo *hbainfo);
979 #endif
980
981 #if IS_ENABLED(CONFIG_LIBFCOE)
982 #define NETDEV_FCOE_WWNN 0
983 #define NETDEV_FCOE_WWPN 1
984 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
985 u64 *wwn, int type);
986 #endif
987
988 #ifdef CONFIG_RFS_ACCEL
989 int (*ndo_rx_flow_steer)(struct net_device *dev,
990 const struct sk_buff *skb,
991 u16 rxq_index,
992 u32 flow_id);
993 #endif
994 int (*ndo_add_slave)(struct net_device *dev,
995 struct net_device *slave_dev);
996 int (*ndo_del_slave)(struct net_device *dev,
997 struct net_device *slave_dev);
998 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
999 netdev_features_t features);
1000 int (*ndo_set_features)(struct net_device *dev,
1001 netdev_features_t features);
1002 int (*ndo_neigh_construct)(struct neighbour *n);
1003 void (*ndo_neigh_destroy)(struct neighbour *n);
1004 };
1005
1006 /*
1007 * The DEVICE structure.
1008 * Actually, this whole structure is a big mistake. It mixes I/O
1009 * data with strictly "high-level" data, and it has to know about
1010 * almost every data structure used in the INET module.
1011 *
1012 * FIXME: cleanup struct net_device such that network protocol info
1013 * moves out.
1014 */
1015
1016 struct net_device {
1017
1018 /*
1019 * This is the first field of the "visible" part of this structure
1020 * (i.e. as seen by users in the "Space.c" file). It is the name
1021 * of the interface.
1022 */
1023 char name[IFNAMSIZ];
1024
1025 struct pm_qos_request pm_qos_req;
1026
1027 /* device name hash chain */
1028 struct hlist_node name_hlist;
1029 /* snmp alias */
1030 char *ifalias;
1031
1032 /*
1033 * I/O specific fields
1034 * FIXME: Merge these and struct ifmap into one
1035 */
1036 unsigned long mem_end; /* shared mem end */
1037 unsigned long mem_start; /* shared mem start */
1038 unsigned long base_addr; /* device I/O address */
1039 unsigned int irq; /* device IRQ number */
1040
1041 /*
1042 * Some hardware also needs these fields, but they are not
1043 * part of the usual set specified in Space.c.
1044 */
1045
1046 unsigned long state;
1047
1048 struct list_head dev_list;
1049 struct list_head napi_list;
1050 struct list_head unreg_list;
1051
1052 /* currently active device features */
1053 netdev_features_t features;
1054 /* user-changeable features */
1055 netdev_features_t hw_features;
1056 /* user-requested features */
1057 netdev_features_t wanted_features;
1058 /* mask of features inheritable by VLAN devices */
1059 netdev_features_t vlan_features;
1060
1061 /* Interface index. Unique device identifier */
1062 int ifindex;
1063 int iflink;
1064
1065 struct net_device_stats stats;
1066 atomic_long_t rx_dropped; /* dropped packets by core network
1067 * Do not use this in drivers.
1068 */
1069
1070 #ifdef CONFIG_WIRELESS_EXT
1071 /* List of functions to handle Wireless Extensions (instead of ioctl).
1072 * See <net/iw_handler.h> for details. Jean II */
1073 const struct iw_handler_def * wireless_handlers;
1074 /* Instance data managed by the core of Wireless Extensions. */
1075 struct iw_public_data * wireless_data;
1076 #endif
1077 /* Management operations */
1078 const struct net_device_ops *netdev_ops;
1079 const struct ethtool_ops *ethtool_ops;
1080
1081 /* Hardware header description */
1082 const struct header_ops *header_ops;
1083
1084 unsigned int flags; /* interface flags (a la BSD) */
1085 unsigned int priv_flags; /* Like 'flags' but invisible to userspace.
1086 * See if.h for definitions. */
1087 unsigned short gflags;
1088 unsigned short padded; /* How much padding added by alloc_netdev() */
1089
1090 unsigned char operstate; /* RFC2863 operstate */
1091 unsigned char link_mode; /* mapping policy to operstate */
1092
1093 unsigned char if_port; /* Selectable AUI, TP,..*/
1094 unsigned char dma; /* DMA channel */
1095
1096 unsigned int mtu; /* interface MTU value */
1097 unsigned short type; /* interface hardware type */
1098 unsigned short hard_header_len; /* hardware hdr length */
1099
1100 /* extra head- and tailroom the hardware may need, but not in all cases
1101 * can this be guaranteed, especially tailroom. Some cases also use
1102 * LL_MAX_HEADER instead to allocate the skb.
1103 */
1104 unsigned short needed_headroom;
1105 unsigned short needed_tailroom;
1106
1107 /* Interface address info. */
1108 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1109 unsigned char addr_assign_type; /* hw address assignment type */
1110 unsigned char addr_len; /* hardware address length */
1111 unsigned char neigh_priv_len;
1112 unsigned short dev_id; /* for shared network cards */
1113
1114 spinlock_t addr_list_lock;
1115 struct netdev_hw_addr_list uc; /* Unicast mac addresses */
1116 struct netdev_hw_addr_list mc; /* Multicast mac addresses */
1117 bool uc_promisc;
1118 unsigned int promiscuity;
1119 unsigned int allmulti;
1120
1121
1122 /* Protocol specific pointers */
1123
1124 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1125 struct vlan_info __rcu *vlan_info; /* VLAN info */
1126 #endif
1127 #if IS_ENABLED(CONFIG_NET_DSA)
1128 struct dsa_switch_tree *dsa_ptr; /* dsa specific data */
1129 #endif
1130 void *atalk_ptr; /* AppleTalk link */
1131 struct in_device __rcu *ip_ptr; /* IPv4 specific data */
1132 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */
1133 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */
1134 void *ec_ptr; /* Econet specific data */
1135 void *ax25_ptr; /* AX.25 specific data */
1136 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data,
1137 assign before registering */
1138
1139 /*
1140 * Cache lines mostly used on receive path (including eth_type_trans())
1141 */
1142 unsigned long last_rx; /* Time of last Rx
1143 * This should not be set in
1144 * drivers, unless really needed,
1145 * because network stack (bonding)
1146 * use it if/when necessary, to
1147 * avoid dirtying this cache line.
1148 */
1149
1150 struct net_device *master; /* Pointer to master device of a group,
1151 * which this device is member of.
1152 */
1153
1154 /* Interface address info used in eth_type_trans() */
1155 unsigned char *dev_addr; /* hw address, (before bcast
1156 because most packets are
1157 unicast) */
1158
1159 struct netdev_hw_addr_list dev_addrs; /* list of device
1160 hw addresses */
1161
1162 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */
1163
1164 #ifdef CONFIG_SYSFS
1165 struct kset *queues_kset;
1166 #endif
1167
1168 #ifdef CONFIG_RPS
1169 struct netdev_rx_queue *_rx;
1170
1171 /* Number of RX queues allocated at register_netdev() time */
1172 unsigned int num_rx_queues;
1173
1174 /* Number of RX queues currently active in device */
1175 unsigned int real_num_rx_queues;
1176
1177 #ifdef CONFIG_RFS_ACCEL
1178 /* CPU reverse-mapping for RX completion interrupts, indexed
1179 * by RX queue number. Assigned by driver. This must only be
1180 * set if the ndo_rx_flow_steer operation is defined. */
1181 struct cpu_rmap *rx_cpu_rmap;
1182 #endif
1183 #endif
1184
1185 rx_handler_func_t __rcu *rx_handler;
1186 void __rcu *rx_handler_data;
1187
1188 struct netdev_queue __rcu *ingress_queue;
1189
1190 /*
1191 * Cache lines mostly used on transmit path
1192 */
1193 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1194
1195 /* Number of TX queues allocated at alloc_netdev_mq() time */
1196 unsigned int num_tx_queues;
1197
1198 /* Number of TX queues currently active in device */
1199 unsigned int real_num_tx_queues;
1200
1201 /* root qdisc from userspace point of view */
1202 struct Qdisc *qdisc;
1203
1204 unsigned long tx_queue_len; /* Max frames per queue allowed */
1205 spinlock_t tx_global_lock;
1206
1207 #ifdef CONFIG_XPS
1208 struct xps_dev_maps __rcu *xps_maps;
1209 #endif
1210
1211 /* These may be needed for future network-power-down code. */
1212
1213 /*
1214 * trans_start here is expensive for high speed devices on SMP,
1215 * please use netdev_queue->trans_start instead.
1216 */
1217 unsigned long trans_start; /* Time (in jiffies) of last Tx */
1218
1219 int watchdog_timeo; /* used by dev_watchdog() */
1220 struct timer_list watchdog_timer;
1221
1222 /* Number of references to this device */
1223 int __percpu *pcpu_refcnt;
1224
1225 /* delayed register/unregister */
1226 struct list_head todo_list;
1227 /* device index hash chain */
1228 struct hlist_node index_hlist;
1229
1230 struct list_head link_watch_list;
1231
1232 /* register/unregister state machine */
1233 enum { NETREG_UNINITIALIZED=0,
1234 NETREG_REGISTERED, /* completed register_netdevice */
1235 NETREG_UNREGISTERING, /* called unregister_netdevice */
1236 NETREG_UNREGISTERED, /* completed unregister todo */
1237 NETREG_RELEASED, /* called free_netdev */
1238 NETREG_DUMMY, /* dummy device for NAPI poll */
1239 } reg_state:8;
1240
1241 bool dismantle; /* device is going do be freed */
1242
1243 enum {
1244 RTNL_LINK_INITIALIZED,
1245 RTNL_LINK_INITIALIZING,
1246 } rtnl_link_state:16;
1247
1248 /* Called from unregister, can be used to call free_netdev */
1249 void (*destructor)(struct net_device *dev);
1250
1251 #ifdef CONFIG_NETPOLL
1252 struct netpoll_info *npinfo;
1253 #endif
1254
1255 #ifdef CONFIG_NET_NS
1256 /* Network namespace this network device is inside */
1257 struct net *nd_net;
1258 #endif
1259
1260 /* mid-layer private */
1261 union {
1262 void *ml_priv;
1263 struct pcpu_lstats __percpu *lstats; /* loopback stats */
1264 struct pcpu_tstats __percpu *tstats; /* tunnel stats */
1265 struct pcpu_dstats __percpu *dstats; /* dummy stats */
1266 };
1267 /* GARP */
1268 struct garp_port __rcu *garp_port;
1269
1270 /* class/net/name entry */
1271 struct device dev;
1272 /* space for optional device, statistics, and wireless sysfs groups */
1273 const struct attribute_group *sysfs_groups[4];
1274
1275 /* rtnetlink link ops */
1276 const struct rtnl_link_ops *rtnl_link_ops;
1277
1278 /* for setting kernel sock attribute on TCP connection setup */
1279 #define GSO_MAX_SIZE 65536
1280 unsigned int gso_max_size;
1281
1282 #ifdef CONFIG_DCB
1283 /* Data Center Bridging netlink ops */
1284 const struct dcbnl_rtnl_ops *dcbnl_ops;
1285 #endif
1286 u8 num_tc;
1287 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1288 u8 prio_tc_map[TC_BITMASK + 1];
1289
1290 #if IS_ENABLED(CONFIG_FCOE)
1291 /* max exchange id for FCoE LRO by ddp */
1292 unsigned int fcoe_ddp_xid;
1293 #endif
1294 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1295 struct netprio_map __rcu *priomap;
1296 #endif
1297 /* phy device may attach itself for hardware timestamping */
1298 struct phy_device *phydev;
1299
1300 /* group the device belongs to */
1301 int group;
1302 };
1303 #define to_net_dev(d) container_of(d, struct net_device, dev)
1304
1305 #define NETDEV_ALIGN 32
1306
1307 static inline
1308 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1309 {
1310 return dev->prio_tc_map[prio & TC_BITMASK];
1311 }
1312
1313 static inline
1314 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1315 {
1316 if (tc >= dev->num_tc)
1317 return -EINVAL;
1318
1319 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1320 return 0;
1321 }
1322
1323 static inline
1324 void netdev_reset_tc(struct net_device *dev)
1325 {
1326 dev->num_tc = 0;
1327 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1328 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1329 }
1330
1331 static inline
1332 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1333 {
1334 if (tc >= dev->num_tc)
1335 return -EINVAL;
1336
1337 dev->tc_to_txq[tc].count = count;
1338 dev->tc_to_txq[tc].offset = offset;
1339 return 0;
1340 }
1341
1342 static inline
1343 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1344 {
1345 if (num_tc > TC_MAX_QUEUE)
1346 return -EINVAL;
1347
1348 dev->num_tc = num_tc;
1349 return 0;
1350 }
1351
1352 static inline
1353 int netdev_get_num_tc(struct net_device *dev)
1354 {
1355 return dev->num_tc;
1356 }
1357
1358 static inline
1359 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1360 unsigned int index)
1361 {
1362 return &dev->_tx[index];
1363 }
1364
1365 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1366 void (*f)(struct net_device *,
1367 struct netdev_queue *,
1368 void *),
1369 void *arg)
1370 {
1371 unsigned int i;
1372
1373 for (i = 0; i < dev->num_tx_queues; i++)
1374 f(dev, &dev->_tx[i], arg);
1375 }
1376
1377 /*
1378 * Net namespace inlines
1379 */
1380 static inline
1381 struct net *dev_net(const struct net_device *dev)
1382 {
1383 return read_pnet(&dev->nd_net);
1384 }
1385
1386 static inline
1387 void dev_net_set(struct net_device *dev, struct net *net)
1388 {
1389 #ifdef CONFIG_NET_NS
1390 release_net(dev->nd_net);
1391 dev->nd_net = hold_net(net);
1392 #endif
1393 }
1394
1395 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1396 {
1397 #ifdef CONFIG_NET_DSA_TAG_DSA
1398 if (dev->dsa_ptr != NULL)
1399 return dsa_uses_dsa_tags(dev->dsa_ptr);
1400 #endif
1401
1402 return 0;
1403 }
1404
1405 #ifndef CONFIG_NET_NS
1406 static inline void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1407 {
1408 skb->dev = dev;
1409 }
1410 #else /* CONFIG_NET_NS */
1411 void skb_set_dev(struct sk_buff *skb, struct net_device *dev);
1412 #endif
1413
1414 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1415 {
1416 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1417 if (dev->dsa_ptr != NULL)
1418 return dsa_uses_trailer_tags(dev->dsa_ptr);
1419 #endif
1420
1421 return 0;
1422 }
1423
1424 /**
1425 * netdev_priv - access network device private data
1426 * @dev: network device
1427 *
1428 * Get network device private data
1429 */
1430 static inline void *netdev_priv(const struct net_device *dev)
1431 {
1432 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1433 }
1434
1435 /* Set the sysfs physical device reference for the network logical device
1436 * if set prior to registration will cause a symlink during initialization.
1437 */
1438 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1439
1440 /* Set the sysfs device type for the network logical device to allow
1441 * fin grained indentification of different network device types. For
1442 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1443 */
1444 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1445
1446 /**
1447 * netif_napi_add - initialize a napi context
1448 * @dev: network device
1449 * @napi: napi context
1450 * @poll: polling function
1451 * @weight: default weight
1452 *
1453 * netif_napi_add() must be used to initialize a napi context prior to calling
1454 * *any* of the other napi related functions.
1455 */
1456 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1457 int (*poll)(struct napi_struct *, int), int weight);
1458
1459 /**
1460 * netif_napi_del - remove a napi context
1461 * @napi: napi context
1462 *
1463 * netif_napi_del() removes a napi context from the network device napi list
1464 */
1465 void netif_napi_del(struct napi_struct *napi);
1466
1467 struct napi_gro_cb {
1468 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1469 void *frag0;
1470
1471 /* Length of frag0. */
1472 unsigned int frag0_len;
1473
1474 /* This indicates where we are processing relative to skb->data. */
1475 int data_offset;
1476
1477 /* This is non-zero if the packet may be of the same flow. */
1478 int same_flow;
1479
1480 /* This is non-zero if the packet cannot be merged with the new skb. */
1481 int flush;
1482
1483 /* Number of segments aggregated. */
1484 int count;
1485
1486 /* Free the skb? */
1487 int free;
1488 };
1489
1490 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1491
1492 struct packet_type {
1493 __be16 type; /* This is really htons(ether_type). */
1494 struct net_device *dev; /* NULL is wildcarded here */
1495 int (*func) (struct sk_buff *,
1496 struct net_device *,
1497 struct packet_type *,
1498 struct net_device *);
1499 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1500 netdev_features_t features);
1501 int (*gso_send_check)(struct sk_buff *skb);
1502 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1503 struct sk_buff *skb);
1504 int (*gro_complete)(struct sk_buff *skb);
1505 void *af_packet_priv;
1506 struct list_head list;
1507 };
1508
1509 #include <linux/notifier.h>
1510
1511 /* netdevice notifier chain. Please remember to update the rtnetlink
1512 * notification exclusion list in rtnetlink_event() when adding new
1513 * types.
1514 */
1515 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
1516 #define NETDEV_DOWN 0x0002
1517 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
1518 detected a hardware crash and restarted
1519 - we can use this eg to kick tcp sessions
1520 once done */
1521 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
1522 #define NETDEV_REGISTER 0x0005
1523 #define NETDEV_UNREGISTER 0x0006
1524 #define NETDEV_CHANGEMTU 0x0007
1525 #define NETDEV_CHANGEADDR 0x0008
1526 #define NETDEV_GOING_DOWN 0x0009
1527 #define NETDEV_CHANGENAME 0x000A
1528 #define NETDEV_FEAT_CHANGE 0x000B
1529 #define NETDEV_BONDING_FAILOVER 0x000C
1530 #define NETDEV_PRE_UP 0x000D
1531 #define NETDEV_PRE_TYPE_CHANGE 0x000E
1532 #define NETDEV_POST_TYPE_CHANGE 0x000F
1533 #define NETDEV_POST_INIT 0x0010
1534 #define NETDEV_UNREGISTER_BATCH 0x0011
1535 #define NETDEV_RELEASE 0x0012
1536 #define NETDEV_NOTIFY_PEERS 0x0013
1537 #define NETDEV_JOIN 0x0014
1538
1539 extern int register_netdevice_notifier(struct notifier_block *nb);
1540 extern int unregister_netdevice_notifier(struct notifier_block *nb);
1541 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1542
1543
1544 extern rwlock_t dev_base_lock; /* Device list lock */
1545
1546
1547 #define for_each_netdev(net, d) \
1548 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1549 #define for_each_netdev_reverse(net, d) \
1550 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1551 #define for_each_netdev_rcu(net, d) \
1552 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1553 #define for_each_netdev_safe(net, d, n) \
1554 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1555 #define for_each_netdev_continue(net, d) \
1556 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1557 #define for_each_netdev_continue_rcu(net, d) \
1558 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1559 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
1560
1561 static inline struct net_device *next_net_device(struct net_device *dev)
1562 {
1563 struct list_head *lh;
1564 struct net *net;
1565
1566 net = dev_net(dev);
1567 lh = dev->dev_list.next;
1568 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1569 }
1570
1571 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1572 {
1573 struct list_head *lh;
1574 struct net *net;
1575
1576 net = dev_net(dev);
1577 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1578 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1579 }
1580
1581 static inline struct net_device *first_net_device(struct net *net)
1582 {
1583 return list_empty(&net->dev_base_head) ? NULL :
1584 net_device_entry(net->dev_base_head.next);
1585 }
1586
1587 static inline struct net_device *first_net_device_rcu(struct net *net)
1588 {
1589 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1590
1591 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1592 }
1593
1594 extern int netdev_boot_setup_check(struct net_device *dev);
1595 extern unsigned long netdev_boot_base(const char *prefix, int unit);
1596 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1597 const char *hwaddr);
1598 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1599 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1600 extern void dev_add_pack(struct packet_type *pt);
1601 extern void dev_remove_pack(struct packet_type *pt);
1602 extern void __dev_remove_pack(struct packet_type *pt);
1603
1604 extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1605 unsigned short mask);
1606 extern struct net_device *dev_get_by_name(struct net *net, const char *name);
1607 extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1608 extern struct net_device *__dev_get_by_name(struct net *net, const char *name);
1609 extern int dev_alloc_name(struct net_device *dev, const char *name);
1610 extern int dev_open(struct net_device *dev);
1611 extern int dev_close(struct net_device *dev);
1612 extern void dev_disable_lro(struct net_device *dev);
1613 extern int dev_queue_xmit(struct sk_buff *skb);
1614 extern int register_netdevice(struct net_device *dev);
1615 extern void unregister_netdevice_queue(struct net_device *dev,
1616 struct list_head *head);
1617 extern void unregister_netdevice_many(struct list_head *head);
1618 static inline void unregister_netdevice(struct net_device *dev)
1619 {
1620 unregister_netdevice_queue(dev, NULL);
1621 }
1622
1623 extern int netdev_refcnt_read(const struct net_device *dev);
1624 extern void free_netdev(struct net_device *dev);
1625 extern void synchronize_net(void);
1626 extern int init_dummy_netdev(struct net_device *dev);
1627 extern void netdev_resync_ops(struct net_device *dev);
1628
1629 extern struct net_device *dev_get_by_index(struct net *net, int ifindex);
1630 extern struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1631 extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1632 extern int dev_restart(struct net_device *dev);
1633 #ifdef CONFIG_NETPOLL_TRAP
1634 extern int netpoll_trap(void);
1635 #endif
1636 extern int skb_gro_receive(struct sk_buff **head,
1637 struct sk_buff *skb);
1638 extern void skb_gro_reset_offset(struct sk_buff *skb);
1639
1640 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1641 {
1642 return NAPI_GRO_CB(skb)->data_offset;
1643 }
1644
1645 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1646 {
1647 return skb->len - NAPI_GRO_CB(skb)->data_offset;
1648 }
1649
1650 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1651 {
1652 NAPI_GRO_CB(skb)->data_offset += len;
1653 }
1654
1655 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1656 unsigned int offset)
1657 {
1658 return NAPI_GRO_CB(skb)->frag0 + offset;
1659 }
1660
1661 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1662 {
1663 return NAPI_GRO_CB(skb)->frag0_len < hlen;
1664 }
1665
1666 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1667 unsigned int offset)
1668 {
1669 if (!pskb_may_pull(skb, hlen))
1670 return NULL;
1671
1672 NAPI_GRO_CB(skb)->frag0 = NULL;
1673 NAPI_GRO_CB(skb)->frag0_len = 0;
1674 return skb->data + offset;
1675 }
1676
1677 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1678 {
1679 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1680 }
1681
1682 static inline void *skb_gro_network_header(struct sk_buff *skb)
1683 {
1684 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1685 skb_network_offset(skb);
1686 }
1687
1688 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1689 unsigned short type,
1690 const void *daddr, const void *saddr,
1691 unsigned len)
1692 {
1693 if (!dev->header_ops || !dev->header_ops->create)
1694 return 0;
1695
1696 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1697 }
1698
1699 static inline int dev_parse_header(const struct sk_buff *skb,
1700 unsigned char *haddr)
1701 {
1702 const struct net_device *dev = skb->dev;
1703
1704 if (!dev->header_ops || !dev->header_ops->parse)
1705 return 0;
1706 return dev->header_ops->parse(skb, haddr);
1707 }
1708
1709 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1710 extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1711 static inline int unregister_gifconf(unsigned int family)
1712 {
1713 return register_gifconf(family, NULL);
1714 }
1715
1716 /*
1717 * Incoming packets are placed on per-cpu queues
1718 */
1719 struct softnet_data {
1720 struct Qdisc *output_queue;
1721 struct Qdisc **output_queue_tailp;
1722 struct list_head poll_list;
1723 struct sk_buff *completion_queue;
1724 struct sk_buff_head process_queue;
1725
1726 /* stats */
1727 unsigned int processed;
1728 unsigned int time_squeeze;
1729 unsigned int cpu_collision;
1730 unsigned int received_rps;
1731
1732 #ifdef CONFIG_RPS
1733 struct softnet_data *rps_ipi_list;
1734
1735 /* Elements below can be accessed between CPUs for RPS */
1736 struct call_single_data csd ____cacheline_aligned_in_smp;
1737 struct softnet_data *rps_ipi_next;
1738 unsigned int cpu;
1739 unsigned int input_queue_head;
1740 unsigned int input_queue_tail;
1741 #endif
1742 unsigned dropped;
1743 struct sk_buff_head input_pkt_queue;
1744 struct napi_struct backlog;
1745 };
1746
1747 static inline void input_queue_head_incr(struct softnet_data *sd)
1748 {
1749 #ifdef CONFIG_RPS
1750 sd->input_queue_head++;
1751 #endif
1752 }
1753
1754 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1755 unsigned int *qtail)
1756 {
1757 #ifdef CONFIG_RPS
1758 *qtail = ++sd->input_queue_tail;
1759 #endif
1760 }
1761
1762 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1763
1764 extern void __netif_schedule(struct Qdisc *q);
1765
1766 static inline void netif_schedule_queue(struct netdev_queue *txq)
1767 {
1768 if (!(txq->state & QUEUE_STATE_ANY_XOFF))
1769 __netif_schedule(txq->qdisc);
1770 }
1771
1772 static inline void netif_tx_schedule_all(struct net_device *dev)
1773 {
1774 unsigned int i;
1775
1776 for (i = 0; i < dev->num_tx_queues; i++)
1777 netif_schedule_queue(netdev_get_tx_queue(dev, i));
1778 }
1779
1780 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1781 {
1782 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1783 }
1784
1785 /**
1786 * netif_start_queue - allow transmit
1787 * @dev: network device
1788 *
1789 * Allow upper layers to call the device hard_start_xmit routine.
1790 */
1791 static inline void netif_start_queue(struct net_device *dev)
1792 {
1793 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1794 }
1795
1796 static inline void netif_tx_start_all_queues(struct net_device *dev)
1797 {
1798 unsigned int i;
1799
1800 for (i = 0; i < dev->num_tx_queues; i++) {
1801 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1802 netif_tx_start_queue(txq);
1803 }
1804 }
1805
1806 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1807 {
1808 #ifdef CONFIG_NETPOLL_TRAP
1809 if (netpoll_trap()) {
1810 netif_tx_start_queue(dev_queue);
1811 return;
1812 }
1813 #endif
1814 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
1815 __netif_schedule(dev_queue->qdisc);
1816 }
1817
1818 /**
1819 * netif_wake_queue - restart transmit
1820 * @dev: network device
1821 *
1822 * Allow upper layers to call the device hard_start_xmit routine.
1823 * Used for flow control when transmit resources are available.
1824 */
1825 static inline void netif_wake_queue(struct net_device *dev)
1826 {
1827 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1828 }
1829
1830 static inline void netif_tx_wake_all_queues(struct net_device *dev)
1831 {
1832 unsigned int i;
1833
1834 for (i = 0; i < dev->num_tx_queues; i++) {
1835 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1836 netif_tx_wake_queue(txq);
1837 }
1838 }
1839
1840 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1841 {
1842 if (WARN_ON(!dev_queue)) {
1843 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
1844 return;
1845 }
1846 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1847 }
1848
1849 /**
1850 * netif_stop_queue - stop transmitted packets
1851 * @dev: network device
1852 *
1853 * Stop upper layers calling the device hard_start_xmit routine.
1854 * Used for flow control when transmit resources are unavailable.
1855 */
1856 static inline void netif_stop_queue(struct net_device *dev)
1857 {
1858 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1859 }
1860
1861 static inline void netif_tx_stop_all_queues(struct net_device *dev)
1862 {
1863 unsigned int i;
1864
1865 for (i = 0; i < dev->num_tx_queues; i++) {
1866 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1867 netif_tx_stop_queue(txq);
1868 }
1869 }
1870
1871 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1872 {
1873 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1874 }
1875
1876 /**
1877 * netif_queue_stopped - test if transmit queue is flowblocked
1878 * @dev: network device
1879 *
1880 * Test if transmit queue on device is currently unable to send.
1881 */
1882 static inline bool netif_queue_stopped(const struct net_device *dev)
1883 {
1884 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1885 }
1886
1887 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
1888 {
1889 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
1890 }
1891
1892 static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
1893 {
1894 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
1895 }
1896
1897 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
1898 unsigned int bytes)
1899 {
1900 #ifdef CONFIG_BQL
1901 dql_queued(&dev_queue->dql, bytes);
1902
1903 if (likely(dql_avail(&dev_queue->dql) >= 0))
1904 return;
1905
1906 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1907
1908 /*
1909 * The XOFF flag must be set before checking the dql_avail below,
1910 * because in netdev_tx_completed_queue we update the dql_completed
1911 * before checking the XOFF flag.
1912 */
1913 smp_mb();
1914
1915 /* check again in case another CPU has just made room avail */
1916 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
1917 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1918 #endif
1919 }
1920
1921 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
1922 {
1923 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
1924 }
1925
1926 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
1927 unsigned pkts, unsigned bytes)
1928 {
1929 #ifdef CONFIG_BQL
1930 if (unlikely(!bytes))
1931 return;
1932
1933 dql_completed(&dev_queue->dql, bytes);
1934
1935 /*
1936 * Without the memory barrier there is a small possiblity that
1937 * netdev_tx_sent_queue will miss the update and cause the queue to
1938 * be stopped forever
1939 */
1940 smp_mb();
1941
1942 if (dql_avail(&dev_queue->dql) < 0)
1943 return;
1944
1945 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
1946 netif_schedule_queue(dev_queue);
1947 #endif
1948 }
1949
1950 static inline void netdev_completed_queue(struct net_device *dev,
1951 unsigned pkts, unsigned bytes)
1952 {
1953 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
1954 }
1955
1956 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
1957 {
1958 #ifdef CONFIG_BQL
1959 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
1960 dql_reset(&q->dql);
1961 #endif
1962 }
1963
1964 static inline void netdev_reset_queue(struct net_device *dev_queue)
1965 {
1966 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
1967 }
1968
1969 /**
1970 * netif_running - test if up
1971 * @dev: network device
1972 *
1973 * Test if the device has been brought up.
1974 */
1975 static inline bool netif_running(const struct net_device *dev)
1976 {
1977 return test_bit(__LINK_STATE_START, &dev->state);
1978 }
1979
1980 /*
1981 * Routines to manage the subqueues on a device. We only need start
1982 * stop, and a check if it's stopped. All other device management is
1983 * done at the overall netdevice level.
1984 * Also test the device if we're multiqueue.
1985 */
1986
1987 /**
1988 * netif_start_subqueue - allow sending packets on subqueue
1989 * @dev: network device
1990 * @queue_index: sub queue index
1991 *
1992 * Start individual transmit queue of a device with multiple transmit queues.
1993 */
1994 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
1995 {
1996 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1997
1998 netif_tx_start_queue(txq);
1999 }
2000
2001 /**
2002 * netif_stop_subqueue - stop sending packets on subqueue
2003 * @dev: network device
2004 * @queue_index: sub queue index
2005 *
2006 * Stop individual transmit queue of a device with multiple transmit queues.
2007 */
2008 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2009 {
2010 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2011 #ifdef CONFIG_NETPOLL_TRAP
2012 if (netpoll_trap())
2013 return;
2014 #endif
2015 netif_tx_stop_queue(txq);
2016 }
2017
2018 /**
2019 * netif_subqueue_stopped - test status of subqueue
2020 * @dev: network device
2021 * @queue_index: sub queue index
2022 *
2023 * Check individual transmit queue of a device with multiple transmit queues.
2024 */
2025 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2026 u16 queue_index)
2027 {
2028 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2029
2030 return netif_tx_queue_stopped(txq);
2031 }
2032
2033 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2034 struct sk_buff *skb)
2035 {
2036 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2037 }
2038
2039 /**
2040 * netif_wake_subqueue - allow sending packets on subqueue
2041 * @dev: network device
2042 * @queue_index: sub queue index
2043 *
2044 * Resume individual transmit queue of a device with multiple transmit queues.
2045 */
2046 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2047 {
2048 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2049 #ifdef CONFIG_NETPOLL_TRAP
2050 if (netpoll_trap())
2051 return;
2052 #endif
2053 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2054 __netif_schedule(txq->qdisc);
2055 }
2056
2057 /*
2058 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2059 * as a distribution range limit for the returned value.
2060 */
2061 static inline u16 skb_tx_hash(const struct net_device *dev,
2062 const struct sk_buff *skb)
2063 {
2064 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2065 }
2066
2067 /**
2068 * netif_is_multiqueue - test if device has multiple transmit queues
2069 * @dev: network device
2070 *
2071 * Check if device has multiple transmit queues
2072 */
2073 static inline bool netif_is_multiqueue(const struct net_device *dev)
2074 {
2075 return dev->num_tx_queues > 1;
2076 }
2077
2078 extern int netif_set_real_num_tx_queues(struct net_device *dev,
2079 unsigned int txq);
2080
2081 #ifdef CONFIG_RPS
2082 extern int netif_set_real_num_rx_queues(struct net_device *dev,
2083 unsigned int rxq);
2084 #else
2085 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2086 unsigned int rxq)
2087 {
2088 return 0;
2089 }
2090 #endif
2091
2092 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2093 const struct net_device *from_dev)
2094 {
2095 netif_set_real_num_tx_queues(to_dev, from_dev->real_num_tx_queues);
2096 #ifdef CONFIG_RPS
2097 return netif_set_real_num_rx_queues(to_dev,
2098 from_dev->real_num_rx_queues);
2099 #else
2100 return 0;
2101 #endif
2102 }
2103
2104 /* Use this variant when it is known for sure that it
2105 * is executing from hardware interrupt context or with hardware interrupts
2106 * disabled.
2107 */
2108 extern void dev_kfree_skb_irq(struct sk_buff *skb);
2109
2110 /* Use this variant in places where it could be invoked
2111 * from either hardware interrupt or other context, with hardware interrupts
2112 * either disabled or enabled.
2113 */
2114 extern void dev_kfree_skb_any(struct sk_buff *skb);
2115
2116 extern int netif_rx(struct sk_buff *skb);
2117 extern int netif_rx_ni(struct sk_buff *skb);
2118 extern int netif_receive_skb(struct sk_buff *skb);
2119 extern gro_result_t dev_gro_receive(struct napi_struct *napi,
2120 struct sk_buff *skb);
2121 extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb);
2122 extern gro_result_t napi_gro_receive(struct napi_struct *napi,
2123 struct sk_buff *skb);
2124 extern void napi_gro_flush(struct napi_struct *napi);
2125 extern struct sk_buff * napi_get_frags(struct napi_struct *napi);
2126 extern gro_result_t napi_frags_finish(struct napi_struct *napi,
2127 struct sk_buff *skb,
2128 gro_result_t ret);
2129 extern struct sk_buff * napi_frags_skb(struct napi_struct *napi);
2130 extern gro_result_t napi_gro_frags(struct napi_struct *napi);
2131
2132 static inline void napi_free_frags(struct napi_struct *napi)
2133 {
2134 kfree_skb(napi->skb);
2135 napi->skb = NULL;
2136 }
2137
2138 extern int netdev_rx_handler_register(struct net_device *dev,
2139 rx_handler_func_t *rx_handler,
2140 void *rx_handler_data);
2141 extern void netdev_rx_handler_unregister(struct net_device *dev);
2142
2143 extern bool dev_valid_name(const char *name);
2144 extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2145 extern int dev_ethtool(struct net *net, struct ifreq *);
2146 extern unsigned dev_get_flags(const struct net_device *);
2147 extern int __dev_change_flags(struct net_device *, unsigned int flags);
2148 extern int dev_change_flags(struct net_device *, unsigned);
2149 extern void __dev_notify_flags(struct net_device *, unsigned int old_flags);
2150 extern int dev_change_name(struct net_device *, const char *);
2151 extern int dev_set_alias(struct net_device *, const char *, size_t);
2152 extern int dev_change_net_namespace(struct net_device *,
2153 struct net *, const char *);
2154 extern int dev_set_mtu(struct net_device *, int);
2155 extern void dev_set_group(struct net_device *, int);
2156 extern int dev_set_mac_address(struct net_device *,
2157 struct sockaddr *);
2158 extern int dev_hard_start_xmit(struct sk_buff *skb,
2159 struct net_device *dev,
2160 struct netdev_queue *txq);
2161 extern int dev_forward_skb(struct net_device *dev,
2162 struct sk_buff *skb);
2163
2164 extern int netdev_budget;
2165
2166 /* Called by rtnetlink.c:rtnl_unlock() */
2167 extern void netdev_run_todo(void);
2168
2169 /**
2170 * dev_put - release reference to device
2171 * @dev: network device
2172 *
2173 * Release reference to device to allow it to be freed.
2174 */
2175 static inline void dev_put(struct net_device *dev)
2176 {
2177 this_cpu_dec(*dev->pcpu_refcnt);
2178 }
2179
2180 /**
2181 * dev_hold - get reference to device
2182 * @dev: network device
2183 *
2184 * Hold reference to device to keep it from being freed.
2185 */
2186 static inline void dev_hold(struct net_device *dev)
2187 {
2188 this_cpu_inc(*dev->pcpu_refcnt);
2189 }
2190
2191 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2192 * and _off may be called from IRQ context, but it is caller
2193 * who is responsible for serialization of these calls.
2194 *
2195 * The name carrier is inappropriate, these functions should really be
2196 * called netif_lowerlayer_*() because they represent the state of any
2197 * kind of lower layer not just hardware media.
2198 */
2199
2200 extern void linkwatch_fire_event(struct net_device *dev);
2201 extern void linkwatch_forget_dev(struct net_device *dev);
2202
2203 /**
2204 * netif_carrier_ok - test if carrier present
2205 * @dev: network device
2206 *
2207 * Check if carrier is present on device
2208 */
2209 static inline bool netif_carrier_ok(const struct net_device *dev)
2210 {
2211 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2212 }
2213
2214 extern unsigned long dev_trans_start(struct net_device *dev);
2215
2216 extern void __netdev_watchdog_up(struct net_device *dev);
2217
2218 extern void netif_carrier_on(struct net_device *dev);
2219
2220 extern void netif_carrier_off(struct net_device *dev);
2221
2222 extern void netif_notify_peers(struct net_device *dev);
2223
2224 /**
2225 * netif_dormant_on - mark device as dormant.
2226 * @dev: network device
2227 *
2228 * Mark device as dormant (as per RFC2863).
2229 *
2230 * The dormant state indicates that the relevant interface is not
2231 * actually in a condition to pass packets (i.e., it is not 'up') but is
2232 * in a "pending" state, waiting for some external event. For "on-
2233 * demand" interfaces, this new state identifies the situation where the
2234 * interface is waiting for events to place it in the up state.
2235 *
2236 */
2237 static inline void netif_dormant_on(struct net_device *dev)
2238 {
2239 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2240 linkwatch_fire_event(dev);
2241 }
2242
2243 /**
2244 * netif_dormant_off - set device as not dormant.
2245 * @dev: network device
2246 *
2247 * Device is not in dormant state.
2248 */
2249 static inline void netif_dormant_off(struct net_device *dev)
2250 {
2251 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2252 linkwatch_fire_event(dev);
2253 }
2254
2255 /**
2256 * netif_dormant - test if carrier present
2257 * @dev: network device
2258 *
2259 * Check if carrier is present on device
2260 */
2261 static inline bool netif_dormant(const struct net_device *dev)
2262 {
2263 return test_bit(__LINK_STATE_DORMANT, &dev->state);
2264 }
2265
2266
2267 /**
2268 * netif_oper_up - test if device is operational
2269 * @dev: network device
2270 *
2271 * Check if carrier is operational
2272 */
2273 static inline bool netif_oper_up(const struct net_device *dev)
2274 {
2275 return (dev->operstate == IF_OPER_UP ||
2276 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2277 }
2278
2279 /**
2280 * netif_device_present - is device available or removed
2281 * @dev: network device
2282 *
2283 * Check if device has not been removed from system.
2284 */
2285 static inline bool netif_device_present(struct net_device *dev)
2286 {
2287 return test_bit(__LINK_STATE_PRESENT, &dev->state);
2288 }
2289
2290 extern void netif_device_detach(struct net_device *dev);
2291
2292 extern void netif_device_attach(struct net_device *dev);
2293
2294 /*
2295 * Network interface message level settings
2296 */
2297
2298 enum {
2299 NETIF_MSG_DRV = 0x0001,
2300 NETIF_MSG_PROBE = 0x0002,
2301 NETIF_MSG_LINK = 0x0004,
2302 NETIF_MSG_TIMER = 0x0008,
2303 NETIF_MSG_IFDOWN = 0x0010,
2304 NETIF_MSG_IFUP = 0x0020,
2305 NETIF_MSG_RX_ERR = 0x0040,
2306 NETIF_MSG_TX_ERR = 0x0080,
2307 NETIF_MSG_TX_QUEUED = 0x0100,
2308 NETIF_MSG_INTR = 0x0200,
2309 NETIF_MSG_TX_DONE = 0x0400,
2310 NETIF_MSG_RX_STATUS = 0x0800,
2311 NETIF_MSG_PKTDATA = 0x1000,
2312 NETIF_MSG_HW = 0x2000,
2313 NETIF_MSG_WOL = 0x4000,
2314 };
2315
2316 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
2317 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
2318 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
2319 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
2320 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
2321 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
2322 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
2323 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
2324 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2325 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
2326 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
2327 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
2328 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
2329 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
2330 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
2331
2332 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2333 {
2334 /* use default */
2335 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2336 return default_msg_enable_bits;
2337 if (debug_value == 0) /* no output */
2338 return 0;
2339 /* set low N bits */
2340 return (1 << debug_value) - 1;
2341 }
2342
2343 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2344 {
2345 spin_lock(&txq->_xmit_lock);
2346 txq->xmit_lock_owner = cpu;
2347 }
2348
2349 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2350 {
2351 spin_lock_bh(&txq->_xmit_lock);
2352 txq->xmit_lock_owner = smp_processor_id();
2353 }
2354
2355 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
2356 {
2357 bool ok = spin_trylock(&txq->_xmit_lock);
2358 if (likely(ok))
2359 txq->xmit_lock_owner = smp_processor_id();
2360 return ok;
2361 }
2362
2363 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2364 {
2365 txq->xmit_lock_owner = -1;
2366 spin_unlock(&txq->_xmit_lock);
2367 }
2368
2369 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2370 {
2371 txq->xmit_lock_owner = -1;
2372 spin_unlock_bh(&txq->_xmit_lock);
2373 }
2374
2375 static inline void txq_trans_update(struct netdev_queue *txq)
2376 {
2377 if (txq->xmit_lock_owner != -1)
2378 txq->trans_start = jiffies;
2379 }
2380
2381 /**
2382 * netif_tx_lock - grab network device transmit lock
2383 * @dev: network device
2384 *
2385 * Get network device transmit lock
2386 */
2387 static inline void netif_tx_lock(struct net_device *dev)
2388 {
2389 unsigned int i;
2390 int cpu;
2391
2392 spin_lock(&dev->tx_global_lock);
2393 cpu = smp_processor_id();
2394 for (i = 0; i < dev->num_tx_queues; i++) {
2395 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2396
2397 /* We are the only thread of execution doing a
2398 * freeze, but we have to grab the _xmit_lock in
2399 * order to synchronize with threads which are in
2400 * the ->hard_start_xmit() handler and already
2401 * checked the frozen bit.
2402 */
2403 __netif_tx_lock(txq, cpu);
2404 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2405 __netif_tx_unlock(txq);
2406 }
2407 }
2408
2409 static inline void netif_tx_lock_bh(struct net_device *dev)
2410 {
2411 local_bh_disable();
2412 netif_tx_lock(dev);
2413 }
2414
2415 static inline void netif_tx_unlock(struct net_device *dev)
2416 {
2417 unsigned int i;
2418
2419 for (i = 0; i < dev->num_tx_queues; i++) {
2420 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2421
2422 /* No need to grab the _xmit_lock here. If the
2423 * queue is not stopped for another reason, we
2424 * force a schedule.
2425 */
2426 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2427 netif_schedule_queue(txq);
2428 }
2429 spin_unlock(&dev->tx_global_lock);
2430 }
2431
2432 static inline void netif_tx_unlock_bh(struct net_device *dev)
2433 {
2434 netif_tx_unlock(dev);
2435 local_bh_enable();
2436 }
2437
2438 #define HARD_TX_LOCK(dev, txq, cpu) { \
2439 if ((dev->features & NETIF_F_LLTX) == 0) { \
2440 __netif_tx_lock(txq, cpu); \
2441 } \
2442 }
2443
2444 #define HARD_TX_UNLOCK(dev, txq) { \
2445 if ((dev->features & NETIF_F_LLTX) == 0) { \
2446 __netif_tx_unlock(txq); \
2447 } \
2448 }
2449
2450 static inline void netif_tx_disable(struct net_device *dev)
2451 {
2452 unsigned int i;
2453 int cpu;
2454
2455 local_bh_disable();
2456 cpu = smp_processor_id();
2457 for (i = 0; i < dev->num_tx_queues; i++) {
2458 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2459
2460 __netif_tx_lock(txq, cpu);
2461 netif_tx_stop_queue(txq);
2462 __netif_tx_unlock(txq);
2463 }
2464 local_bh_enable();
2465 }
2466
2467 static inline void netif_addr_lock(struct net_device *dev)
2468 {
2469 spin_lock(&dev->addr_list_lock);
2470 }
2471
2472 static inline void netif_addr_lock_nested(struct net_device *dev)
2473 {
2474 spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING);
2475 }
2476
2477 static inline void netif_addr_lock_bh(struct net_device *dev)
2478 {
2479 spin_lock_bh(&dev->addr_list_lock);
2480 }
2481
2482 static inline void netif_addr_unlock(struct net_device *dev)
2483 {
2484 spin_unlock(&dev->addr_list_lock);
2485 }
2486
2487 static inline void netif_addr_unlock_bh(struct net_device *dev)
2488 {
2489 spin_unlock_bh(&dev->addr_list_lock);
2490 }
2491
2492 /*
2493 * dev_addrs walker. Should be used only for read access. Call with
2494 * rcu_read_lock held.
2495 */
2496 #define for_each_dev_addr(dev, ha) \
2497 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2498
2499 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2500
2501 extern void ether_setup(struct net_device *dev);
2502
2503 /* Support for loadable net-drivers */
2504 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2505 void (*setup)(struct net_device *),
2506 unsigned int txqs, unsigned int rxqs);
2507 #define alloc_netdev(sizeof_priv, name, setup) \
2508 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2509
2510 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2511 alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2512
2513 extern int register_netdev(struct net_device *dev);
2514 extern void unregister_netdev(struct net_device *dev);
2515
2516 /* General hardware address lists handling functions */
2517 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2518 struct netdev_hw_addr_list *from_list,
2519 int addr_len, unsigned char addr_type);
2520 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2521 struct netdev_hw_addr_list *from_list,
2522 int addr_len, unsigned char addr_type);
2523 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2524 struct netdev_hw_addr_list *from_list,
2525 int addr_len);
2526 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2527 struct netdev_hw_addr_list *from_list,
2528 int addr_len);
2529 extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2530 extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2531
2532 /* Functions used for device addresses handling */
2533 extern int dev_addr_add(struct net_device *dev, unsigned char *addr,
2534 unsigned char addr_type);
2535 extern int dev_addr_del(struct net_device *dev, unsigned char *addr,
2536 unsigned char addr_type);
2537 extern int dev_addr_add_multiple(struct net_device *to_dev,
2538 struct net_device *from_dev,
2539 unsigned char addr_type);
2540 extern int dev_addr_del_multiple(struct net_device *to_dev,
2541 struct net_device *from_dev,
2542 unsigned char addr_type);
2543 extern void dev_addr_flush(struct net_device *dev);
2544 extern int dev_addr_init(struct net_device *dev);
2545
2546 /* Functions used for unicast addresses handling */
2547 extern int dev_uc_add(struct net_device *dev, unsigned char *addr);
2548 extern int dev_uc_del(struct net_device *dev, unsigned char *addr);
2549 extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2550 extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2551 extern void dev_uc_flush(struct net_device *dev);
2552 extern void dev_uc_init(struct net_device *dev);
2553
2554 /* Functions used for multicast addresses handling */
2555 extern int dev_mc_add(struct net_device *dev, unsigned char *addr);
2556 extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr);
2557 extern int dev_mc_del(struct net_device *dev, unsigned char *addr);
2558 extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr);
2559 extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2560 extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2561 extern void dev_mc_flush(struct net_device *dev);
2562 extern void dev_mc_init(struct net_device *dev);
2563
2564 /* Functions used for secondary unicast and multicast support */
2565 extern void dev_set_rx_mode(struct net_device *dev);
2566 extern void __dev_set_rx_mode(struct net_device *dev);
2567 extern int dev_set_promiscuity(struct net_device *dev, int inc);
2568 extern int dev_set_allmulti(struct net_device *dev, int inc);
2569 extern void netdev_state_change(struct net_device *dev);
2570 extern int netdev_bonding_change(struct net_device *dev,
2571 unsigned long event);
2572 extern void netdev_features_change(struct net_device *dev);
2573 /* Load a device via the kmod */
2574 extern void dev_load(struct net *net, const char *name);
2575 extern void dev_mcast_init(void);
2576 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2577 struct rtnl_link_stats64 *storage);
2578 extern void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
2579 const struct net_device_stats *netdev_stats);
2580
2581 extern int netdev_max_backlog;
2582 extern int netdev_tstamp_prequeue;
2583 extern int weight_p;
2584 extern int bpf_jit_enable;
2585 extern int netdev_set_master(struct net_device *dev, struct net_device *master);
2586 extern int netdev_set_bond_master(struct net_device *dev,
2587 struct net_device *master);
2588 extern int skb_checksum_help(struct sk_buff *skb);
2589 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb,
2590 netdev_features_t features);
2591 #ifdef CONFIG_BUG
2592 extern void netdev_rx_csum_fault(struct net_device *dev);
2593 #else
2594 static inline void netdev_rx_csum_fault(struct net_device *dev)
2595 {
2596 }
2597 #endif
2598 /* rx skb timestamps */
2599 extern void net_enable_timestamp(void);
2600 extern void net_disable_timestamp(void);
2601
2602 #ifdef CONFIG_PROC_FS
2603 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
2604 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2605 extern void dev_seq_stop(struct seq_file *seq, void *v);
2606 extern int dev_seq_open_ops(struct inode *inode, struct file *file,
2607 const struct seq_operations *ops);
2608 #endif
2609
2610 extern int netdev_class_create_file(struct class_attribute *class_attr);
2611 extern void netdev_class_remove_file(struct class_attribute *class_attr);
2612
2613 extern struct kobj_ns_type_operations net_ns_type_operations;
2614
2615 extern const char *netdev_drivername(const struct net_device *dev);
2616
2617 extern void linkwatch_run_queue(void);
2618
2619 static inline netdev_features_t netdev_get_wanted_features(
2620 struct net_device *dev)
2621 {
2622 return (dev->features & ~dev->hw_features) | dev->wanted_features;
2623 }
2624 netdev_features_t netdev_increment_features(netdev_features_t all,
2625 netdev_features_t one, netdev_features_t mask);
2626 int __netdev_update_features(struct net_device *dev);
2627 void netdev_update_features(struct net_device *dev);
2628 void netdev_change_features(struct net_device *dev);
2629
2630 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2631 struct net_device *dev);
2632
2633 netdev_features_t netif_skb_features(struct sk_buff *skb);
2634
2635 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
2636 {
2637 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
2638
2639 /* check flags correspondence */
2640 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
2641 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
2642 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
2643 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
2644 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
2645 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
2646
2647 return (features & feature) == feature;
2648 }
2649
2650 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
2651 {
2652 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2653 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2654 }
2655
2656 static inline bool netif_needs_gso(struct sk_buff *skb,
2657 netdev_features_t features)
2658 {
2659 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2660 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
2661 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
2662 }
2663
2664 static inline void netif_set_gso_max_size(struct net_device *dev,
2665 unsigned int size)
2666 {
2667 dev->gso_max_size = size;
2668 }
2669
2670 static inline bool netif_is_bond_slave(struct net_device *dev)
2671 {
2672 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2673 }
2674
2675 static inline bool netif_supports_nofcs(struct net_device *dev)
2676 {
2677 return dev->priv_flags & IFF_SUPP_NOFCS;
2678 }
2679
2680 extern struct pernet_operations __net_initdata loopback_net_ops;
2681
2682 /* Logging, debugging and troubleshooting/diagnostic helpers. */
2683
2684 /* netdev_printk helpers, similar to dev_printk */
2685
2686 static inline const char *netdev_name(const struct net_device *dev)
2687 {
2688 if (dev->reg_state != NETREG_REGISTERED)
2689 return "(unregistered net_device)";
2690 return dev->name;
2691 }
2692
2693 extern int __netdev_printk(const char *level, const struct net_device *dev,
2694 struct va_format *vaf);
2695
2696 extern __printf(3, 4)
2697 int netdev_printk(const char *level, const struct net_device *dev,
2698 const char *format, ...);
2699 extern __printf(2, 3)
2700 int netdev_emerg(const struct net_device *dev, const char *format, ...);
2701 extern __printf(2, 3)
2702 int netdev_alert(const struct net_device *dev, const char *format, ...);
2703 extern __printf(2, 3)
2704 int netdev_crit(const struct net_device *dev, const char *format, ...);
2705 extern __printf(2, 3)
2706 int netdev_err(const struct net_device *dev, const char *format, ...);
2707 extern __printf(2, 3)
2708 int netdev_warn(const struct net_device *dev, const char *format, ...);
2709 extern __printf(2, 3)
2710 int netdev_notice(const struct net_device *dev, const char *format, ...);
2711 extern __printf(2, 3)
2712 int netdev_info(const struct net_device *dev, const char *format, ...);
2713
2714 #define MODULE_ALIAS_NETDEV(device) \
2715 MODULE_ALIAS("netdev-" device)
2716
2717 #if defined(CONFIG_DYNAMIC_DEBUG)
2718 #define netdev_dbg(__dev, format, args...) \
2719 do { \
2720 dynamic_netdev_dbg(__dev, format, ##args); \
2721 } while (0)
2722 #elif defined(DEBUG)
2723 #define netdev_dbg(__dev, format, args...) \
2724 netdev_printk(KERN_DEBUG, __dev, format, ##args)
2725 #else
2726 #define netdev_dbg(__dev, format, args...) \
2727 ({ \
2728 if (0) \
2729 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2730 0; \
2731 })
2732 #endif
2733
2734 #if defined(VERBOSE_DEBUG)
2735 #define netdev_vdbg netdev_dbg
2736 #else
2737
2738 #define netdev_vdbg(dev, format, args...) \
2739 ({ \
2740 if (0) \
2741 netdev_printk(KERN_DEBUG, dev, format, ##args); \
2742 0; \
2743 })
2744 #endif
2745
2746 /*
2747 * netdev_WARN() acts like dev_printk(), but with the key difference
2748 * of using a WARN/WARN_ON to get the message out, including the
2749 * file/line information and a backtrace.
2750 */
2751 #define netdev_WARN(dev, format, args...) \
2752 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2753
2754 /* netif printk helpers, similar to netdev_printk */
2755
2756 #define netif_printk(priv, type, level, dev, fmt, args...) \
2757 do { \
2758 if (netif_msg_##type(priv)) \
2759 netdev_printk(level, (dev), fmt, ##args); \
2760 } while (0)
2761
2762 #define netif_level(level, priv, type, dev, fmt, args...) \
2763 do { \
2764 if (netif_msg_##type(priv)) \
2765 netdev_##level(dev, fmt, ##args); \
2766 } while (0)
2767
2768 #define netif_emerg(priv, type, dev, fmt, args...) \
2769 netif_level(emerg, priv, type, dev, fmt, ##args)
2770 #define netif_alert(priv, type, dev, fmt, args...) \
2771 netif_level(alert, priv, type, dev, fmt, ##args)
2772 #define netif_crit(priv, type, dev, fmt, args...) \
2773 netif_level(crit, priv, type, dev, fmt, ##args)
2774 #define netif_err(priv, type, dev, fmt, args...) \
2775 netif_level(err, priv, type, dev, fmt, ##args)
2776 #define netif_warn(priv, type, dev, fmt, args...) \
2777 netif_level(warn, priv, type, dev, fmt, ##args)
2778 #define netif_notice(priv, type, dev, fmt, args...) \
2779 netif_level(notice, priv, type, dev, fmt, ##args)
2780 #define netif_info(priv, type, dev, fmt, args...) \
2781 netif_level(info, priv, type, dev, fmt, ##args)
2782
2783 #if defined(DEBUG)
2784 #define netif_dbg(priv, type, dev, format, args...) \
2785 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2786 #elif defined(CONFIG_DYNAMIC_DEBUG)
2787 #define netif_dbg(priv, type, netdev, format, args...) \
2788 do { \
2789 if (netif_msg_##type(priv)) \
2790 dynamic_netdev_dbg(netdev, format, ##args); \
2791 } while (0)
2792 #else
2793 #define netif_dbg(priv, type, dev, format, args...) \
2794 ({ \
2795 if (0) \
2796 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2797 0; \
2798 })
2799 #endif
2800
2801 #if defined(VERBOSE_DEBUG)
2802 #define netif_vdbg netif_dbg
2803 #else
2804 #define netif_vdbg(priv, type, dev, format, args...) \
2805 ({ \
2806 if (0) \
2807 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2808 0; \
2809 })
2810 #endif
2811
2812 #endif /* __KERNEL__ */
2813
2814 #endif /* _LINUX_NETDEVICE_H */