]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - include/linux/netdevice.h
Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[mirror_ubuntu-hirsute-kernel.git] / include / linux / netdevice.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the Interfaces handler.
8 *
9 * Version: @(#)dev.h 1.0.10 08/12/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
16 * Bjorn Ekwall. <bj0rn@blox.se>
17 * Pekka Riikonen <priikone@poseidon.pspt.fi>
18 *
19 * Moved to /usr/include/linux for NET3
20 */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36
37 #include <net/net_namespace.h>
38 #ifdef CONFIG_DCB
39 #include <net/dcbnl.h>
40 #endif
41 #include <net/netprio_cgroup.h>
42 #include <net/xdp.h>
43
44 #include <linux/netdev_features.h>
45 #include <linux/neighbour.h>
46 #include <uapi/linux/netdevice.h>
47 #include <uapi/linux/if_bonding.h>
48 #include <uapi/linux/pkt_cls.h>
49 #include <linux/hashtable.h>
50
51 struct netpoll_info;
52 struct device;
53 struct ethtool_ops;
54 struct phy_device;
55 struct dsa_port;
56 struct ip_tunnel_parm;
57 struct macsec_context;
58 struct macsec_ops;
59
60 struct sfp_bus;
61 /* 802.11 specific */
62 struct wireless_dev;
63 /* 802.15.4 specific */
64 struct wpan_dev;
65 struct mpls_dev;
66 /* UDP Tunnel offloads */
67 struct udp_tunnel_info;
68 struct udp_tunnel_nic_info;
69 struct udp_tunnel_nic;
70 struct bpf_prog;
71 struct xdp_buff;
72
73 void synchronize_net(void);
74 void netdev_set_default_ethtool_ops(struct net_device *dev,
75 const struct ethtool_ops *ops);
76
77 /* Backlog congestion levels */
78 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
79 #define NET_RX_DROP 1 /* packet dropped */
80
81 #define MAX_NEST_DEV 8
82
83 /*
84 * Transmit return codes: transmit return codes originate from three different
85 * namespaces:
86 *
87 * - qdisc return codes
88 * - driver transmit return codes
89 * - errno values
90 *
91 * Drivers are allowed to return any one of those in their hard_start_xmit()
92 * function. Real network devices commonly used with qdiscs should only return
93 * the driver transmit return codes though - when qdiscs are used, the actual
94 * transmission happens asynchronously, so the value is not propagated to
95 * higher layers. Virtual network devices transmit synchronously; in this case
96 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
97 * others are propagated to higher layers.
98 */
99
100 /* qdisc ->enqueue() return codes. */
101 #define NET_XMIT_SUCCESS 0x00
102 #define NET_XMIT_DROP 0x01 /* skb dropped */
103 #define NET_XMIT_CN 0x02 /* congestion notification */
104 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
105
106 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
107 * indicates that the device will soon be dropping packets, or already drops
108 * some packets of the same priority; prompting us to send less aggressively. */
109 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
110 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
111
112 /* Driver transmit return codes */
113 #define NETDEV_TX_MASK 0xf0
114
115 enum netdev_tx {
116 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
117 NETDEV_TX_OK = 0x00, /* driver took care of packet */
118 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
119 };
120 typedef enum netdev_tx netdev_tx_t;
121
122 /*
123 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
124 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
125 */
126 static inline bool dev_xmit_complete(int rc)
127 {
128 /*
129 * Positive cases with an skb consumed by a driver:
130 * - successful transmission (rc == NETDEV_TX_OK)
131 * - error while transmitting (rc < 0)
132 * - error while queueing to a different device (rc & NET_XMIT_MASK)
133 */
134 if (likely(rc < NET_XMIT_MASK))
135 return true;
136
137 return false;
138 }
139
140 /*
141 * Compute the worst-case header length according to the protocols
142 * used.
143 */
144
145 #if defined(CONFIG_HYPERV_NET)
146 # define LL_MAX_HEADER 128
147 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
148 # if defined(CONFIG_MAC80211_MESH)
149 # define LL_MAX_HEADER 128
150 # else
151 # define LL_MAX_HEADER 96
152 # endif
153 #else
154 # define LL_MAX_HEADER 32
155 #endif
156
157 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
158 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
159 #define MAX_HEADER LL_MAX_HEADER
160 #else
161 #define MAX_HEADER (LL_MAX_HEADER + 48)
162 #endif
163
164 /*
165 * Old network device statistics. Fields are native words
166 * (unsigned long) so they can be read and written atomically.
167 */
168
169 struct net_device_stats {
170 unsigned long rx_packets;
171 unsigned long tx_packets;
172 unsigned long rx_bytes;
173 unsigned long tx_bytes;
174 unsigned long rx_errors;
175 unsigned long tx_errors;
176 unsigned long rx_dropped;
177 unsigned long tx_dropped;
178 unsigned long multicast;
179 unsigned long collisions;
180 unsigned long rx_length_errors;
181 unsigned long rx_over_errors;
182 unsigned long rx_crc_errors;
183 unsigned long rx_frame_errors;
184 unsigned long rx_fifo_errors;
185 unsigned long rx_missed_errors;
186 unsigned long tx_aborted_errors;
187 unsigned long tx_carrier_errors;
188 unsigned long tx_fifo_errors;
189 unsigned long tx_heartbeat_errors;
190 unsigned long tx_window_errors;
191 unsigned long rx_compressed;
192 unsigned long tx_compressed;
193 };
194
195
196 #include <linux/cache.h>
197 #include <linux/skbuff.h>
198
199 #ifdef CONFIG_RPS
200 #include <linux/static_key.h>
201 extern struct static_key_false rps_needed;
202 extern struct static_key_false rfs_needed;
203 #endif
204
205 struct neighbour;
206 struct neigh_parms;
207 struct sk_buff;
208
209 struct netdev_hw_addr {
210 struct list_head list;
211 unsigned char addr[MAX_ADDR_LEN];
212 unsigned char type;
213 #define NETDEV_HW_ADDR_T_LAN 1
214 #define NETDEV_HW_ADDR_T_SAN 2
215 #define NETDEV_HW_ADDR_T_UNICAST 3
216 #define NETDEV_HW_ADDR_T_MULTICAST 4
217 bool global_use;
218 int sync_cnt;
219 int refcount;
220 int synced;
221 struct rcu_head rcu_head;
222 };
223
224 struct netdev_hw_addr_list {
225 struct list_head list;
226 int count;
227 };
228
229 #define netdev_hw_addr_list_count(l) ((l)->count)
230 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
231 #define netdev_hw_addr_list_for_each(ha, l) \
232 list_for_each_entry(ha, &(l)->list, list)
233
234 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
235 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
236 #define netdev_for_each_uc_addr(ha, dev) \
237 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
238
239 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
240 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
241 #define netdev_for_each_mc_addr(ha, dev) \
242 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
243
244 struct hh_cache {
245 unsigned int hh_len;
246 seqlock_t hh_lock;
247
248 /* cached hardware header; allow for machine alignment needs. */
249 #define HH_DATA_MOD 16
250 #define HH_DATA_OFF(__len) \
251 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
252 #define HH_DATA_ALIGN(__len) \
253 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
254 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
255 };
256
257 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
258 * Alternative is:
259 * dev->hard_header_len ? (dev->hard_header_len +
260 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
261 *
262 * We could use other alignment values, but we must maintain the
263 * relationship HH alignment <= LL alignment.
264 */
265 #define LL_RESERVED_SPACE(dev) \
266 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
267 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
268 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
269
270 struct header_ops {
271 int (*create) (struct sk_buff *skb, struct net_device *dev,
272 unsigned short type, const void *daddr,
273 const void *saddr, unsigned int len);
274 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
275 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
276 void (*cache_update)(struct hh_cache *hh,
277 const struct net_device *dev,
278 const unsigned char *haddr);
279 bool (*validate)(const char *ll_header, unsigned int len);
280 __be16 (*parse_protocol)(const struct sk_buff *skb);
281 };
282
283 /* These flag bits are private to the generic network queueing
284 * layer; they may not be explicitly referenced by any other
285 * code.
286 */
287
288 enum netdev_state_t {
289 __LINK_STATE_START,
290 __LINK_STATE_PRESENT,
291 __LINK_STATE_NOCARRIER,
292 __LINK_STATE_LINKWATCH_PENDING,
293 __LINK_STATE_DORMANT,
294 __LINK_STATE_TESTING,
295 };
296
297
298 /*
299 * This structure holds boot-time configured netdevice settings. They
300 * are then used in the device probing.
301 */
302 struct netdev_boot_setup {
303 char name[IFNAMSIZ];
304 struct ifmap map;
305 };
306 #define NETDEV_BOOT_SETUP_MAX 8
307
308 int __init netdev_boot_setup(char *str);
309
310 struct gro_list {
311 struct list_head list;
312 int count;
313 };
314
315 /*
316 * size of gro hash buckets, must less than bit number of
317 * napi_struct::gro_bitmask
318 */
319 #define GRO_HASH_BUCKETS 8
320
321 /*
322 * Structure for NAPI scheduling similar to tasklet but with weighting
323 */
324 struct napi_struct {
325 /* The poll_list must only be managed by the entity which
326 * changes the state of the NAPI_STATE_SCHED bit. This means
327 * whoever atomically sets that bit can add this napi_struct
328 * to the per-CPU poll_list, and whoever clears that bit
329 * can remove from the list right before clearing the bit.
330 */
331 struct list_head poll_list;
332
333 unsigned long state;
334 int weight;
335 int defer_hard_irqs_count;
336 unsigned long gro_bitmask;
337 int (*poll)(struct napi_struct *, int);
338 #ifdef CONFIG_NETPOLL
339 int poll_owner;
340 #endif
341 struct net_device *dev;
342 struct gro_list gro_hash[GRO_HASH_BUCKETS];
343 struct sk_buff *skb;
344 struct list_head rx_list; /* Pending GRO_NORMAL skbs */
345 int rx_count; /* length of rx_list */
346 struct hrtimer timer;
347 struct list_head dev_list;
348 struct hlist_node napi_hash_node;
349 unsigned int napi_id;
350 };
351
352 enum {
353 NAPI_STATE_SCHED, /* Poll is scheduled */
354 NAPI_STATE_MISSED, /* reschedule a napi */
355 NAPI_STATE_DISABLE, /* Disable pending */
356 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
357 NAPI_STATE_LISTED, /* NAPI added to system lists */
358 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
359 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
360 };
361
362 enum {
363 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED),
364 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED),
365 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE),
366 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC),
367 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED),
368 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
369 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
370 };
371
372 enum gro_result {
373 GRO_MERGED,
374 GRO_MERGED_FREE,
375 GRO_HELD,
376 GRO_NORMAL,
377 GRO_DROP,
378 GRO_CONSUMED,
379 };
380 typedef enum gro_result gro_result_t;
381
382 /*
383 * enum rx_handler_result - Possible return values for rx_handlers.
384 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
385 * further.
386 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
387 * case skb->dev was changed by rx_handler.
388 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
389 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
390 *
391 * rx_handlers are functions called from inside __netif_receive_skb(), to do
392 * special processing of the skb, prior to delivery to protocol handlers.
393 *
394 * Currently, a net_device can only have a single rx_handler registered. Trying
395 * to register a second rx_handler will return -EBUSY.
396 *
397 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
398 * To unregister a rx_handler on a net_device, use
399 * netdev_rx_handler_unregister().
400 *
401 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
402 * do with the skb.
403 *
404 * If the rx_handler consumed the skb in some way, it should return
405 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
406 * the skb to be delivered in some other way.
407 *
408 * If the rx_handler changed skb->dev, to divert the skb to another
409 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
410 * new device will be called if it exists.
411 *
412 * If the rx_handler decides the skb should be ignored, it should return
413 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
414 * are registered on exact device (ptype->dev == skb->dev).
415 *
416 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
417 * delivered, it should return RX_HANDLER_PASS.
418 *
419 * A device without a registered rx_handler will behave as if rx_handler
420 * returned RX_HANDLER_PASS.
421 */
422
423 enum rx_handler_result {
424 RX_HANDLER_CONSUMED,
425 RX_HANDLER_ANOTHER,
426 RX_HANDLER_EXACT,
427 RX_HANDLER_PASS,
428 };
429 typedef enum rx_handler_result rx_handler_result_t;
430 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
431
432 void __napi_schedule(struct napi_struct *n);
433 void __napi_schedule_irqoff(struct napi_struct *n);
434
435 static inline bool napi_disable_pending(struct napi_struct *n)
436 {
437 return test_bit(NAPI_STATE_DISABLE, &n->state);
438 }
439
440 bool napi_schedule_prep(struct napi_struct *n);
441
442 /**
443 * napi_schedule - schedule NAPI poll
444 * @n: NAPI context
445 *
446 * Schedule NAPI poll routine to be called if it is not already
447 * running.
448 */
449 static inline void napi_schedule(struct napi_struct *n)
450 {
451 if (napi_schedule_prep(n))
452 __napi_schedule(n);
453 }
454
455 /**
456 * napi_schedule_irqoff - schedule NAPI poll
457 * @n: NAPI context
458 *
459 * Variant of napi_schedule(), assuming hard irqs are masked.
460 */
461 static inline void napi_schedule_irqoff(struct napi_struct *n)
462 {
463 if (napi_schedule_prep(n))
464 __napi_schedule_irqoff(n);
465 }
466
467 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
468 static inline bool napi_reschedule(struct napi_struct *napi)
469 {
470 if (napi_schedule_prep(napi)) {
471 __napi_schedule(napi);
472 return true;
473 }
474 return false;
475 }
476
477 bool napi_complete_done(struct napi_struct *n, int work_done);
478 /**
479 * napi_complete - NAPI processing complete
480 * @n: NAPI context
481 *
482 * Mark NAPI processing as complete.
483 * Consider using napi_complete_done() instead.
484 * Return false if device should avoid rearming interrupts.
485 */
486 static inline bool napi_complete(struct napi_struct *n)
487 {
488 return napi_complete_done(n, 0);
489 }
490
491 /**
492 * napi_disable - prevent NAPI from scheduling
493 * @n: NAPI context
494 *
495 * Stop NAPI from being scheduled on this context.
496 * Waits till any outstanding processing completes.
497 */
498 void napi_disable(struct napi_struct *n);
499
500 /**
501 * napi_enable - enable NAPI scheduling
502 * @n: NAPI context
503 *
504 * Resume NAPI from being scheduled on this context.
505 * Must be paired with napi_disable.
506 */
507 static inline void napi_enable(struct napi_struct *n)
508 {
509 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
510 smp_mb__before_atomic();
511 clear_bit(NAPI_STATE_SCHED, &n->state);
512 clear_bit(NAPI_STATE_NPSVC, &n->state);
513 }
514
515 /**
516 * napi_synchronize - wait until NAPI is not running
517 * @n: NAPI context
518 *
519 * Wait until NAPI is done being scheduled on this context.
520 * Waits till any outstanding processing completes but
521 * does not disable future activations.
522 */
523 static inline void napi_synchronize(const struct napi_struct *n)
524 {
525 if (IS_ENABLED(CONFIG_SMP))
526 while (test_bit(NAPI_STATE_SCHED, &n->state))
527 msleep(1);
528 else
529 barrier();
530 }
531
532 /**
533 * napi_if_scheduled_mark_missed - if napi is running, set the
534 * NAPIF_STATE_MISSED
535 * @n: NAPI context
536 *
537 * If napi is running, set the NAPIF_STATE_MISSED, and return true if
538 * NAPI is scheduled.
539 **/
540 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
541 {
542 unsigned long val, new;
543
544 do {
545 val = READ_ONCE(n->state);
546 if (val & NAPIF_STATE_DISABLE)
547 return true;
548
549 if (!(val & NAPIF_STATE_SCHED))
550 return false;
551
552 new = val | NAPIF_STATE_MISSED;
553 } while (cmpxchg(&n->state, val, new) != val);
554
555 return true;
556 }
557
558 enum netdev_queue_state_t {
559 __QUEUE_STATE_DRV_XOFF,
560 __QUEUE_STATE_STACK_XOFF,
561 __QUEUE_STATE_FROZEN,
562 };
563
564 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
565 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
566 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
567
568 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
569 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
570 QUEUE_STATE_FROZEN)
571 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
572 QUEUE_STATE_FROZEN)
573
574 /*
575 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
576 * netif_tx_* functions below are used to manipulate this flag. The
577 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
578 * queue independently. The netif_xmit_*stopped functions below are called
579 * to check if the queue has been stopped by the driver or stack (either
580 * of the XOFF bits are set in the state). Drivers should not need to call
581 * netif_xmit*stopped functions, they should only be using netif_tx_*.
582 */
583
584 struct netdev_queue {
585 /*
586 * read-mostly part
587 */
588 struct net_device *dev;
589 struct Qdisc __rcu *qdisc;
590 struct Qdisc *qdisc_sleeping;
591 #ifdef CONFIG_SYSFS
592 struct kobject kobj;
593 #endif
594 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
595 int numa_node;
596 #endif
597 unsigned long tx_maxrate;
598 /*
599 * Number of TX timeouts for this queue
600 * (/sys/class/net/DEV/Q/trans_timeout)
601 */
602 unsigned long trans_timeout;
603
604 /* Subordinate device that the queue has been assigned to */
605 struct net_device *sb_dev;
606 #ifdef CONFIG_XDP_SOCKETS
607 struct xsk_buff_pool *pool;
608 #endif
609 /*
610 * write-mostly part
611 */
612 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
613 int xmit_lock_owner;
614 /*
615 * Time (in jiffies) of last Tx
616 */
617 unsigned long trans_start;
618
619 unsigned long state;
620
621 #ifdef CONFIG_BQL
622 struct dql dql;
623 #endif
624 } ____cacheline_aligned_in_smp;
625
626 extern int sysctl_fb_tunnels_only_for_init_net;
627 extern int sysctl_devconf_inherit_init_net;
628
629 /*
630 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
631 * == 1 : For initns only
632 * == 2 : For none.
633 */
634 static inline bool net_has_fallback_tunnels(const struct net *net)
635 {
636 return !IS_ENABLED(CONFIG_SYSCTL) ||
637 !sysctl_fb_tunnels_only_for_init_net ||
638 (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1);
639 }
640
641 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
642 {
643 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
644 return q->numa_node;
645 #else
646 return NUMA_NO_NODE;
647 #endif
648 }
649
650 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
651 {
652 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
653 q->numa_node = node;
654 #endif
655 }
656
657 #ifdef CONFIG_RPS
658 /*
659 * This structure holds an RPS map which can be of variable length. The
660 * map is an array of CPUs.
661 */
662 struct rps_map {
663 unsigned int len;
664 struct rcu_head rcu;
665 u16 cpus[];
666 };
667 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
668
669 /*
670 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
671 * tail pointer for that CPU's input queue at the time of last enqueue, and
672 * a hardware filter index.
673 */
674 struct rps_dev_flow {
675 u16 cpu;
676 u16 filter;
677 unsigned int last_qtail;
678 };
679 #define RPS_NO_FILTER 0xffff
680
681 /*
682 * The rps_dev_flow_table structure contains a table of flow mappings.
683 */
684 struct rps_dev_flow_table {
685 unsigned int mask;
686 struct rcu_head rcu;
687 struct rps_dev_flow flows[];
688 };
689 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
690 ((_num) * sizeof(struct rps_dev_flow)))
691
692 /*
693 * The rps_sock_flow_table contains mappings of flows to the last CPU
694 * on which they were processed by the application (set in recvmsg).
695 * Each entry is a 32bit value. Upper part is the high-order bits
696 * of flow hash, lower part is CPU number.
697 * rps_cpu_mask is used to partition the space, depending on number of
698 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
699 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
700 * meaning we use 32-6=26 bits for the hash.
701 */
702 struct rps_sock_flow_table {
703 u32 mask;
704
705 u32 ents[] ____cacheline_aligned_in_smp;
706 };
707 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
708
709 #define RPS_NO_CPU 0xffff
710
711 extern u32 rps_cpu_mask;
712 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
713
714 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
715 u32 hash)
716 {
717 if (table && hash) {
718 unsigned int index = hash & table->mask;
719 u32 val = hash & ~rps_cpu_mask;
720
721 /* We only give a hint, preemption can change CPU under us */
722 val |= raw_smp_processor_id();
723
724 if (table->ents[index] != val)
725 table->ents[index] = val;
726 }
727 }
728
729 #ifdef CONFIG_RFS_ACCEL
730 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
731 u16 filter_id);
732 #endif
733 #endif /* CONFIG_RPS */
734
735 /* This structure contains an instance of an RX queue. */
736 struct netdev_rx_queue {
737 #ifdef CONFIG_RPS
738 struct rps_map __rcu *rps_map;
739 struct rps_dev_flow_table __rcu *rps_flow_table;
740 #endif
741 struct kobject kobj;
742 struct net_device *dev;
743 struct xdp_rxq_info xdp_rxq;
744 #ifdef CONFIG_XDP_SOCKETS
745 struct xsk_buff_pool *pool;
746 #endif
747 } ____cacheline_aligned_in_smp;
748
749 /*
750 * RX queue sysfs structures and functions.
751 */
752 struct rx_queue_attribute {
753 struct attribute attr;
754 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
755 ssize_t (*store)(struct netdev_rx_queue *queue,
756 const char *buf, size_t len);
757 };
758
759 #ifdef CONFIG_XPS
760 /*
761 * This structure holds an XPS map which can be of variable length. The
762 * map is an array of queues.
763 */
764 struct xps_map {
765 unsigned int len;
766 unsigned int alloc_len;
767 struct rcu_head rcu;
768 u16 queues[];
769 };
770 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
771 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
772 - sizeof(struct xps_map)) / sizeof(u16))
773
774 /*
775 * This structure holds all XPS maps for device. Maps are indexed by CPU.
776 */
777 struct xps_dev_maps {
778 struct rcu_head rcu;
779 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
780 };
781
782 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \
783 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
784
785 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
786 (_rxqs * (_tcs) * sizeof(struct xps_map *)))
787
788 #endif /* CONFIG_XPS */
789
790 #define TC_MAX_QUEUE 16
791 #define TC_BITMASK 15
792 /* HW offloaded queuing disciplines txq count and offset maps */
793 struct netdev_tc_txq {
794 u16 count;
795 u16 offset;
796 };
797
798 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
799 /*
800 * This structure is to hold information about the device
801 * configured to run FCoE protocol stack.
802 */
803 struct netdev_fcoe_hbainfo {
804 char manufacturer[64];
805 char serial_number[64];
806 char hardware_version[64];
807 char driver_version[64];
808 char optionrom_version[64];
809 char firmware_version[64];
810 char model[256];
811 char model_description[256];
812 };
813 #endif
814
815 #define MAX_PHYS_ITEM_ID_LEN 32
816
817 /* This structure holds a unique identifier to identify some
818 * physical item (port for example) used by a netdevice.
819 */
820 struct netdev_phys_item_id {
821 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
822 unsigned char id_len;
823 };
824
825 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
826 struct netdev_phys_item_id *b)
827 {
828 return a->id_len == b->id_len &&
829 memcmp(a->id, b->id, a->id_len) == 0;
830 }
831
832 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
833 struct sk_buff *skb,
834 struct net_device *sb_dev);
835
836 enum tc_setup_type {
837 TC_SETUP_QDISC_MQPRIO,
838 TC_SETUP_CLSU32,
839 TC_SETUP_CLSFLOWER,
840 TC_SETUP_CLSMATCHALL,
841 TC_SETUP_CLSBPF,
842 TC_SETUP_BLOCK,
843 TC_SETUP_QDISC_CBS,
844 TC_SETUP_QDISC_RED,
845 TC_SETUP_QDISC_PRIO,
846 TC_SETUP_QDISC_MQ,
847 TC_SETUP_QDISC_ETF,
848 TC_SETUP_ROOT_QDISC,
849 TC_SETUP_QDISC_GRED,
850 TC_SETUP_QDISC_TAPRIO,
851 TC_SETUP_FT,
852 TC_SETUP_QDISC_ETS,
853 TC_SETUP_QDISC_TBF,
854 TC_SETUP_QDISC_FIFO,
855 };
856
857 /* These structures hold the attributes of bpf state that are being passed
858 * to the netdevice through the bpf op.
859 */
860 enum bpf_netdev_command {
861 /* Set or clear a bpf program used in the earliest stages of packet
862 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
863 * is responsible for calling bpf_prog_put on any old progs that are
864 * stored. In case of error, the callee need not release the new prog
865 * reference, but on success it takes ownership and must bpf_prog_put
866 * when it is no longer used.
867 */
868 XDP_SETUP_PROG,
869 XDP_SETUP_PROG_HW,
870 /* BPF program for offload callbacks, invoked at program load time. */
871 BPF_OFFLOAD_MAP_ALLOC,
872 BPF_OFFLOAD_MAP_FREE,
873 XDP_SETUP_XSK_POOL,
874 };
875
876 struct bpf_prog_offload_ops;
877 struct netlink_ext_ack;
878 struct xdp_umem;
879 struct xdp_dev_bulk_queue;
880 struct bpf_xdp_link;
881
882 enum bpf_xdp_mode {
883 XDP_MODE_SKB = 0,
884 XDP_MODE_DRV = 1,
885 XDP_MODE_HW = 2,
886 __MAX_XDP_MODE
887 };
888
889 struct bpf_xdp_entity {
890 struct bpf_prog *prog;
891 struct bpf_xdp_link *link;
892 };
893
894 struct netdev_bpf {
895 enum bpf_netdev_command command;
896 union {
897 /* XDP_SETUP_PROG */
898 struct {
899 u32 flags;
900 struct bpf_prog *prog;
901 struct netlink_ext_ack *extack;
902 };
903 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
904 struct {
905 struct bpf_offloaded_map *offmap;
906 };
907 /* XDP_SETUP_XSK_POOL */
908 struct {
909 struct xsk_buff_pool *pool;
910 u16 queue_id;
911 } xsk;
912 };
913 };
914
915 /* Flags for ndo_xsk_wakeup. */
916 #define XDP_WAKEUP_RX (1 << 0)
917 #define XDP_WAKEUP_TX (1 << 1)
918
919 #ifdef CONFIG_XFRM_OFFLOAD
920 struct xfrmdev_ops {
921 int (*xdo_dev_state_add) (struct xfrm_state *x);
922 void (*xdo_dev_state_delete) (struct xfrm_state *x);
923 void (*xdo_dev_state_free) (struct xfrm_state *x);
924 bool (*xdo_dev_offload_ok) (struct sk_buff *skb,
925 struct xfrm_state *x);
926 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x);
927 };
928 #endif
929
930 struct dev_ifalias {
931 struct rcu_head rcuhead;
932 char ifalias[];
933 };
934
935 struct devlink;
936 struct tlsdev_ops;
937
938 struct netdev_name_node {
939 struct hlist_node hlist;
940 struct list_head list;
941 struct net_device *dev;
942 const char *name;
943 };
944
945 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
946 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
947
948 struct netdev_net_notifier {
949 struct list_head list;
950 struct notifier_block *nb;
951 };
952
953 /*
954 * This structure defines the management hooks for network devices.
955 * The following hooks can be defined; unless noted otherwise, they are
956 * optional and can be filled with a null pointer.
957 *
958 * int (*ndo_init)(struct net_device *dev);
959 * This function is called once when a network device is registered.
960 * The network device can use this for any late stage initialization
961 * or semantic validation. It can fail with an error code which will
962 * be propagated back to register_netdev.
963 *
964 * void (*ndo_uninit)(struct net_device *dev);
965 * This function is called when device is unregistered or when registration
966 * fails. It is not called if init fails.
967 *
968 * int (*ndo_open)(struct net_device *dev);
969 * This function is called when a network device transitions to the up
970 * state.
971 *
972 * int (*ndo_stop)(struct net_device *dev);
973 * This function is called when a network device transitions to the down
974 * state.
975 *
976 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
977 * struct net_device *dev);
978 * Called when a packet needs to be transmitted.
979 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
980 * the queue before that can happen; it's for obsolete devices and weird
981 * corner cases, but the stack really does a non-trivial amount
982 * of useless work if you return NETDEV_TX_BUSY.
983 * Required; cannot be NULL.
984 *
985 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
986 * struct net_device *dev
987 * netdev_features_t features);
988 * Called by core transmit path to determine if device is capable of
989 * performing offload operations on a given packet. This is to give
990 * the device an opportunity to implement any restrictions that cannot
991 * be otherwise expressed by feature flags. The check is called with
992 * the set of features that the stack has calculated and it returns
993 * those the driver believes to be appropriate.
994 *
995 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
996 * struct net_device *sb_dev);
997 * Called to decide which queue to use when device supports multiple
998 * transmit queues.
999 *
1000 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1001 * This function is called to allow device receiver to make
1002 * changes to configuration when multicast or promiscuous is enabled.
1003 *
1004 * void (*ndo_set_rx_mode)(struct net_device *dev);
1005 * This function is called device changes address list filtering.
1006 * If driver handles unicast address filtering, it should set
1007 * IFF_UNICAST_FLT in its priv_flags.
1008 *
1009 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1010 * This function is called when the Media Access Control address
1011 * needs to be changed. If this interface is not defined, the
1012 * MAC address can not be changed.
1013 *
1014 * int (*ndo_validate_addr)(struct net_device *dev);
1015 * Test if Media Access Control address is valid for the device.
1016 *
1017 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1018 * Called when a user requests an ioctl which can't be handled by
1019 * the generic interface code. If not defined ioctls return
1020 * not supported error code.
1021 *
1022 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1023 * Used to set network devices bus interface parameters. This interface
1024 * is retained for legacy reasons; new devices should use the bus
1025 * interface (PCI) for low level management.
1026 *
1027 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1028 * Called when a user wants to change the Maximum Transfer Unit
1029 * of a device.
1030 *
1031 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1032 * Callback used when the transmitter has not made any progress
1033 * for dev->watchdog ticks.
1034 *
1035 * void (*ndo_get_stats64)(struct net_device *dev,
1036 * struct rtnl_link_stats64 *storage);
1037 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1038 * Called when a user wants to get the network device usage
1039 * statistics. Drivers must do one of the following:
1040 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
1041 * rtnl_link_stats64 structure passed by the caller.
1042 * 2. Define @ndo_get_stats to update a net_device_stats structure
1043 * (which should normally be dev->stats) and return a pointer to
1044 * it. The structure may be changed asynchronously only if each
1045 * field is written atomically.
1046 * 3. Update dev->stats asynchronously and atomically, and define
1047 * neither operation.
1048 *
1049 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1050 * Return true if this device supports offload stats of this attr_id.
1051 *
1052 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1053 * void *attr_data)
1054 * Get statistics for offload operations by attr_id. Write it into the
1055 * attr_data pointer.
1056 *
1057 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1058 * If device supports VLAN filtering this function is called when a
1059 * VLAN id is registered.
1060 *
1061 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1062 * If device supports VLAN filtering this function is called when a
1063 * VLAN id is unregistered.
1064 *
1065 * void (*ndo_poll_controller)(struct net_device *dev);
1066 *
1067 * SR-IOV management functions.
1068 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1069 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1070 * u8 qos, __be16 proto);
1071 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1072 * int max_tx_rate);
1073 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1074 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1075 * int (*ndo_get_vf_config)(struct net_device *dev,
1076 * int vf, struct ifla_vf_info *ivf);
1077 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1078 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1079 * struct nlattr *port[]);
1080 *
1081 * Enable or disable the VF ability to query its RSS Redirection Table and
1082 * Hash Key. This is needed since on some devices VF share this information
1083 * with PF and querying it may introduce a theoretical security risk.
1084 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1085 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1086 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1087 * void *type_data);
1088 * Called to setup any 'tc' scheduler, classifier or action on @dev.
1089 * This is always called from the stack with the rtnl lock held and netif
1090 * tx queues stopped. This allows the netdevice to perform queue
1091 * management safely.
1092 *
1093 * Fiber Channel over Ethernet (FCoE) offload functions.
1094 * int (*ndo_fcoe_enable)(struct net_device *dev);
1095 * Called when the FCoE protocol stack wants to start using LLD for FCoE
1096 * so the underlying device can perform whatever needed configuration or
1097 * initialization to support acceleration of FCoE traffic.
1098 *
1099 * int (*ndo_fcoe_disable)(struct net_device *dev);
1100 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
1101 * so the underlying device can perform whatever needed clean-ups to
1102 * stop supporting acceleration of FCoE traffic.
1103 *
1104 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1105 * struct scatterlist *sgl, unsigned int sgc);
1106 * Called when the FCoE Initiator wants to initialize an I/O that
1107 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1108 * perform necessary setup and returns 1 to indicate the device is set up
1109 * successfully to perform DDP on this I/O, otherwise this returns 0.
1110 *
1111 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
1112 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
1113 * indicated by the FC exchange id 'xid', so the underlying device can
1114 * clean up and reuse resources for later DDP requests.
1115 *
1116 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1117 * struct scatterlist *sgl, unsigned int sgc);
1118 * Called when the FCoE Target wants to initialize an I/O that
1119 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1120 * perform necessary setup and returns 1 to indicate the device is set up
1121 * successfully to perform DDP on this I/O, otherwise this returns 0.
1122 *
1123 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1124 * struct netdev_fcoe_hbainfo *hbainfo);
1125 * Called when the FCoE Protocol stack wants information on the underlying
1126 * device. This information is utilized by the FCoE protocol stack to
1127 * register attributes with Fiber Channel management service as per the
1128 * FC-GS Fabric Device Management Information(FDMI) specification.
1129 *
1130 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1131 * Called when the underlying device wants to override default World Wide
1132 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1133 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1134 * protocol stack to use.
1135 *
1136 * RFS acceleration.
1137 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1138 * u16 rxq_index, u32 flow_id);
1139 * Set hardware filter for RFS. rxq_index is the target queue index;
1140 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1141 * Return the filter ID on success, or a negative error code.
1142 *
1143 * Slave management functions (for bridge, bonding, etc).
1144 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1145 * Called to make another netdev an underling.
1146 *
1147 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1148 * Called to release previously enslaved netdev.
1149 *
1150 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1151 * struct sk_buff *skb,
1152 * bool all_slaves);
1153 * Get the xmit slave of master device. If all_slaves is true, function
1154 * assume all the slaves can transmit.
1155 *
1156 * Feature/offload setting functions.
1157 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1158 * netdev_features_t features);
1159 * Adjusts the requested feature flags according to device-specific
1160 * constraints, and returns the resulting flags. Must not modify
1161 * the device state.
1162 *
1163 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1164 * Called to update device configuration to new features. Passed
1165 * feature set might be less than what was returned by ndo_fix_features()).
1166 * Must return >0 or -errno if it changed dev->features itself.
1167 *
1168 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1169 * struct net_device *dev,
1170 * const unsigned char *addr, u16 vid, u16 flags,
1171 * struct netlink_ext_ack *extack);
1172 * Adds an FDB entry to dev for addr.
1173 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1174 * struct net_device *dev,
1175 * const unsigned char *addr, u16 vid)
1176 * Deletes the FDB entry from dev coresponding to addr.
1177 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1178 * struct net_device *dev, struct net_device *filter_dev,
1179 * int *idx)
1180 * Used to add FDB entries to dump requests. Implementers should add
1181 * entries to skb and update idx with the number of entries.
1182 *
1183 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1184 * u16 flags, struct netlink_ext_ack *extack)
1185 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1186 * struct net_device *dev, u32 filter_mask,
1187 * int nlflags)
1188 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1189 * u16 flags);
1190 *
1191 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1192 * Called to change device carrier. Soft-devices (like dummy, team, etc)
1193 * which do not represent real hardware may define this to allow their
1194 * userspace components to manage their virtual carrier state. Devices
1195 * that determine carrier state from physical hardware properties (eg
1196 * network cables) or protocol-dependent mechanisms (eg
1197 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1198 *
1199 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1200 * struct netdev_phys_item_id *ppid);
1201 * Called to get ID of physical port of this device. If driver does
1202 * not implement this, it is assumed that the hw is not able to have
1203 * multiple net devices on single physical port.
1204 *
1205 * int (*ndo_get_port_parent_id)(struct net_device *dev,
1206 * struct netdev_phys_item_id *ppid)
1207 * Called to get the parent ID of the physical port of this device.
1208 *
1209 * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1210 * struct udp_tunnel_info *ti);
1211 * Called by UDP tunnel to notify a driver about the UDP port and socket
1212 * address family that a UDP tunnel is listnening to. It is called only
1213 * when a new port starts listening. The operation is protected by the
1214 * RTNL.
1215 *
1216 * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1217 * struct udp_tunnel_info *ti);
1218 * Called by UDP tunnel to notify the driver about a UDP port and socket
1219 * address family that the UDP tunnel is not listening to anymore. The
1220 * operation is protected by the RTNL.
1221 *
1222 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1223 * struct net_device *dev)
1224 * Called by upper layer devices to accelerate switching or other
1225 * station functionality into hardware. 'pdev is the lowerdev
1226 * to use for the offload and 'dev' is the net device that will
1227 * back the offload. Returns a pointer to the private structure
1228 * the upper layer will maintain.
1229 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1230 * Called by upper layer device to delete the station created
1231 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1232 * the station and priv is the structure returned by the add
1233 * operation.
1234 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1235 * int queue_index, u32 maxrate);
1236 * Called when a user wants to set a max-rate limitation of specific
1237 * TX queue.
1238 * int (*ndo_get_iflink)(const struct net_device *dev);
1239 * Called to get the iflink value of this device.
1240 * void (*ndo_change_proto_down)(struct net_device *dev,
1241 * bool proto_down);
1242 * This function is used to pass protocol port error state information
1243 * to the switch driver. The switch driver can react to the proto_down
1244 * by doing a phys down on the associated switch port.
1245 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1246 * This function is used to get egress tunnel information for given skb.
1247 * This is useful for retrieving outer tunnel header parameters while
1248 * sampling packet.
1249 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1250 * This function is used to specify the headroom that the skb must
1251 * consider when allocation skb during packet reception. Setting
1252 * appropriate rx headroom value allows avoiding skb head copy on
1253 * forward. Setting a negative value resets the rx headroom to the
1254 * default value.
1255 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1256 * This function is used to set or query state related to XDP on the
1257 * netdevice and manage BPF offload. See definition of
1258 * enum bpf_netdev_command for details.
1259 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1260 * u32 flags);
1261 * This function is used to submit @n XDP packets for transmit on a
1262 * netdevice. Returns number of frames successfully transmitted, frames
1263 * that got dropped are freed/returned via xdp_return_frame().
1264 * Returns negative number, means general error invoking ndo, meaning
1265 * no frames were xmit'ed and core-caller will free all frames.
1266 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1267 * This function is used to wake up the softirq, ksoftirqd or kthread
1268 * responsible for sending and/or receiving packets on a specific
1269 * queue id bound to an AF_XDP socket. The flags field specifies if
1270 * only RX, only Tx, or both should be woken up using the flags
1271 * XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1272 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1273 * Get devlink port instance associated with a given netdev.
1274 * Called with a reference on the netdevice and devlink locks only,
1275 * rtnl_lock is not held.
1276 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1277 * int cmd);
1278 * Add, change, delete or get information on an IPv4 tunnel.
1279 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1280 * If a device is paired with a peer device, return the peer instance.
1281 * The caller must be under RCU read context.
1282 */
1283 struct net_device_ops {
1284 int (*ndo_init)(struct net_device *dev);
1285 void (*ndo_uninit)(struct net_device *dev);
1286 int (*ndo_open)(struct net_device *dev);
1287 int (*ndo_stop)(struct net_device *dev);
1288 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1289 struct net_device *dev);
1290 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1291 struct net_device *dev,
1292 netdev_features_t features);
1293 u16 (*ndo_select_queue)(struct net_device *dev,
1294 struct sk_buff *skb,
1295 struct net_device *sb_dev);
1296 void (*ndo_change_rx_flags)(struct net_device *dev,
1297 int flags);
1298 void (*ndo_set_rx_mode)(struct net_device *dev);
1299 int (*ndo_set_mac_address)(struct net_device *dev,
1300 void *addr);
1301 int (*ndo_validate_addr)(struct net_device *dev);
1302 int (*ndo_do_ioctl)(struct net_device *dev,
1303 struct ifreq *ifr, int cmd);
1304 int (*ndo_set_config)(struct net_device *dev,
1305 struct ifmap *map);
1306 int (*ndo_change_mtu)(struct net_device *dev,
1307 int new_mtu);
1308 int (*ndo_neigh_setup)(struct net_device *dev,
1309 struct neigh_parms *);
1310 void (*ndo_tx_timeout) (struct net_device *dev,
1311 unsigned int txqueue);
1312
1313 void (*ndo_get_stats64)(struct net_device *dev,
1314 struct rtnl_link_stats64 *storage);
1315 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1316 int (*ndo_get_offload_stats)(int attr_id,
1317 const struct net_device *dev,
1318 void *attr_data);
1319 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1320
1321 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1322 __be16 proto, u16 vid);
1323 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1324 __be16 proto, u16 vid);
1325 #ifdef CONFIG_NET_POLL_CONTROLLER
1326 void (*ndo_poll_controller)(struct net_device *dev);
1327 int (*ndo_netpoll_setup)(struct net_device *dev,
1328 struct netpoll_info *info);
1329 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1330 #endif
1331 int (*ndo_set_vf_mac)(struct net_device *dev,
1332 int queue, u8 *mac);
1333 int (*ndo_set_vf_vlan)(struct net_device *dev,
1334 int queue, u16 vlan,
1335 u8 qos, __be16 proto);
1336 int (*ndo_set_vf_rate)(struct net_device *dev,
1337 int vf, int min_tx_rate,
1338 int max_tx_rate);
1339 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1340 int vf, bool setting);
1341 int (*ndo_set_vf_trust)(struct net_device *dev,
1342 int vf, bool setting);
1343 int (*ndo_get_vf_config)(struct net_device *dev,
1344 int vf,
1345 struct ifla_vf_info *ivf);
1346 int (*ndo_set_vf_link_state)(struct net_device *dev,
1347 int vf, int link_state);
1348 int (*ndo_get_vf_stats)(struct net_device *dev,
1349 int vf,
1350 struct ifla_vf_stats
1351 *vf_stats);
1352 int (*ndo_set_vf_port)(struct net_device *dev,
1353 int vf,
1354 struct nlattr *port[]);
1355 int (*ndo_get_vf_port)(struct net_device *dev,
1356 int vf, struct sk_buff *skb);
1357 int (*ndo_get_vf_guid)(struct net_device *dev,
1358 int vf,
1359 struct ifla_vf_guid *node_guid,
1360 struct ifla_vf_guid *port_guid);
1361 int (*ndo_set_vf_guid)(struct net_device *dev,
1362 int vf, u64 guid,
1363 int guid_type);
1364 int (*ndo_set_vf_rss_query_en)(
1365 struct net_device *dev,
1366 int vf, bool setting);
1367 int (*ndo_setup_tc)(struct net_device *dev,
1368 enum tc_setup_type type,
1369 void *type_data);
1370 #if IS_ENABLED(CONFIG_FCOE)
1371 int (*ndo_fcoe_enable)(struct net_device *dev);
1372 int (*ndo_fcoe_disable)(struct net_device *dev);
1373 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1374 u16 xid,
1375 struct scatterlist *sgl,
1376 unsigned int sgc);
1377 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1378 u16 xid);
1379 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1380 u16 xid,
1381 struct scatterlist *sgl,
1382 unsigned int sgc);
1383 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1384 struct netdev_fcoe_hbainfo *hbainfo);
1385 #endif
1386
1387 #if IS_ENABLED(CONFIG_LIBFCOE)
1388 #define NETDEV_FCOE_WWNN 0
1389 #define NETDEV_FCOE_WWPN 1
1390 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1391 u64 *wwn, int type);
1392 #endif
1393
1394 #ifdef CONFIG_RFS_ACCEL
1395 int (*ndo_rx_flow_steer)(struct net_device *dev,
1396 const struct sk_buff *skb,
1397 u16 rxq_index,
1398 u32 flow_id);
1399 #endif
1400 int (*ndo_add_slave)(struct net_device *dev,
1401 struct net_device *slave_dev,
1402 struct netlink_ext_ack *extack);
1403 int (*ndo_del_slave)(struct net_device *dev,
1404 struct net_device *slave_dev);
1405 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev,
1406 struct sk_buff *skb,
1407 bool all_slaves);
1408 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1409 netdev_features_t features);
1410 int (*ndo_set_features)(struct net_device *dev,
1411 netdev_features_t features);
1412 int (*ndo_neigh_construct)(struct net_device *dev,
1413 struct neighbour *n);
1414 void (*ndo_neigh_destroy)(struct net_device *dev,
1415 struct neighbour *n);
1416
1417 int (*ndo_fdb_add)(struct ndmsg *ndm,
1418 struct nlattr *tb[],
1419 struct net_device *dev,
1420 const unsigned char *addr,
1421 u16 vid,
1422 u16 flags,
1423 struct netlink_ext_ack *extack);
1424 int (*ndo_fdb_del)(struct ndmsg *ndm,
1425 struct nlattr *tb[],
1426 struct net_device *dev,
1427 const unsigned char *addr,
1428 u16 vid);
1429 int (*ndo_fdb_dump)(struct sk_buff *skb,
1430 struct netlink_callback *cb,
1431 struct net_device *dev,
1432 struct net_device *filter_dev,
1433 int *idx);
1434 int (*ndo_fdb_get)(struct sk_buff *skb,
1435 struct nlattr *tb[],
1436 struct net_device *dev,
1437 const unsigned char *addr,
1438 u16 vid, u32 portid, u32 seq,
1439 struct netlink_ext_ack *extack);
1440 int (*ndo_bridge_setlink)(struct net_device *dev,
1441 struct nlmsghdr *nlh,
1442 u16 flags,
1443 struct netlink_ext_ack *extack);
1444 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1445 u32 pid, u32 seq,
1446 struct net_device *dev,
1447 u32 filter_mask,
1448 int nlflags);
1449 int (*ndo_bridge_dellink)(struct net_device *dev,
1450 struct nlmsghdr *nlh,
1451 u16 flags);
1452 int (*ndo_change_carrier)(struct net_device *dev,
1453 bool new_carrier);
1454 int (*ndo_get_phys_port_id)(struct net_device *dev,
1455 struct netdev_phys_item_id *ppid);
1456 int (*ndo_get_port_parent_id)(struct net_device *dev,
1457 struct netdev_phys_item_id *ppid);
1458 int (*ndo_get_phys_port_name)(struct net_device *dev,
1459 char *name, size_t len);
1460 void (*ndo_udp_tunnel_add)(struct net_device *dev,
1461 struct udp_tunnel_info *ti);
1462 void (*ndo_udp_tunnel_del)(struct net_device *dev,
1463 struct udp_tunnel_info *ti);
1464 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1465 struct net_device *dev);
1466 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1467 void *priv);
1468
1469 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1470 int queue_index,
1471 u32 maxrate);
1472 int (*ndo_get_iflink)(const struct net_device *dev);
1473 int (*ndo_change_proto_down)(struct net_device *dev,
1474 bool proto_down);
1475 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1476 struct sk_buff *skb);
1477 void (*ndo_set_rx_headroom)(struct net_device *dev,
1478 int needed_headroom);
1479 int (*ndo_bpf)(struct net_device *dev,
1480 struct netdev_bpf *bpf);
1481 int (*ndo_xdp_xmit)(struct net_device *dev, int n,
1482 struct xdp_frame **xdp,
1483 u32 flags);
1484 int (*ndo_xsk_wakeup)(struct net_device *dev,
1485 u32 queue_id, u32 flags);
1486 struct devlink_port * (*ndo_get_devlink_port)(struct net_device *dev);
1487 int (*ndo_tunnel_ctl)(struct net_device *dev,
1488 struct ip_tunnel_parm *p, int cmd);
1489 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev);
1490 };
1491
1492 /**
1493 * enum netdev_priv_flags - &struct net_device priv_flags
1494 *
1495 * These are the &struct net_device, they are only set internally
1496 * by drivers and used in the kernel. These flags are invisible to
1497 * userspace; this means that the order of these flags can change
1498 * during any kernel release.
1499 *
1500 * You should have a pretty good reason to be extending these flags.
1501 *
1502 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1503 * @IFF_EBRIDGE: Ethernet bridging device
1504 * @IFF_BONDING: bonding master or slave
1505 * @IFF_ISATAP: ISATAP interface (RFC4214)
1506 * @IFF_WAN_HDLC: WAN HDLC device
1507 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1508 * release skb->dst
1509 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1510 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1511 * @IFF_MACVLAN_PORT: device used as macvlan port
1512 * @IFF_BRIDGE_PORT: device used as bridge port
1513 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1514 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1515 * @IFF_UNICAST_FLT: Supports unicast filtering
1516 * @IFF_TEAM_PORT: device used as team port
1517 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1518 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1519 * change when it's running
1520 * @IFF_MACVLAN: Macvlan device
1521 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1522 * underlying stacked devices
1523 * @IFF_L3MDEV_MASTER: device is an L3 master device
1524 * @IFF_NO_QUEUE: device can run without qdisc attached
1525 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1526 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1527 * @IFF_TEAM: device is a team device
1528 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1529 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1530 * entity (i.e. the master device for bridged veth)
1531 * @IFF_MACSEC: device is a MACsec device
1532 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1533 * @IFF_FAILOVER: device is a failover master device
1534 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1535 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1536 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1537 */
1538 enum netdev_priv_flags {
1539 IFF_802_1Q_VLAN = 1<<0,
1540 IFF_EBRIDGE = 1<<1,
1541 IFF_BONDING = 1<<2,
1542 IFF_ISATAP = 1<<3,
1543 IFF_WAN_HDLC = 1<<4,
1544 IFF_XMIT_DST_RELEASE = 1<<5,
1545 IFF_DONT_BRIDGE = 1<<6,
1546 IFF_DISABLE_NETPOLL = 1<<7,
1547 IFF_MACVLAN_PORT = 1<<8,
1548 IFF_BRIDGE_PORT = 1<<9,
1549 IFF_OVS_DATAPATH = 1<<10,
1550 IFF_TX_SKB_SHARING = 1<<11,
1551 IFF_UNICAST_FLT = 1<<12,
1552 IFF_TEAM_PORT = 1<<13,
1553 IFF_SUPP_NOFCS = 1<<14,
1554 IFF_LIVE_ADDR_CHANGE = 1<<15,
1555 IFF_MACVLAN = 1<<16,
1556 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1557 IFF_L3MDEV_MASTER = 1<<18,
1558 IFF_NO_QUEUE = 1<<19,
1559 IFF_OPENVSWITCH = 1<<20,
1560 IFF_L3MDEV_SLAVE = 1<<21,
1561 IFF_TEAM = 1<<22,
1562 IFF_RXFH_CONFIGURED = 1<<23,
1563 IFF_PHONY_HEADROOM = 1<<24,
1564 IFF_MACSEC = 1<<25,
1565 IFF_NO_RX_HANDLER = 1<<26,
1566 IFF_FAILOVER = 1<<27,
1567 IFF_FAILOVER_SLAVE = 1<<28,
1568 IFF_L3MDEV_RX_HANDLER = 1<<29,
1569 IFF_LIVE_RENAME_OK = 1<<30,
1570 };
1571
1572 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1573 #define IFF_EBRIDGE IFF_EBRIDGE
1574 #define IFF_BONDING IFF_BONDING
1575 #define IFF_ISATAP IFF_ISATAP
1576 #define IFF_WAN_HDLC IFF_WAN_HDLC
1577 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1578 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1579 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1580 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1581 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1582 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1583 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1584 #define IFF_UNICAST_FLT IFF_UNICAST_FLT
1585 #define IFF_TEAM_PORT IFF_TEAM_PORT
1586 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1587 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1588 #define IFF_MACVLAN IFF_MACVLAN
1589 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1590 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1591 #define IFF_NO_QUEUE IFF_NO_QUEUE
1592 #define IFF_OPENVSWITCH IFF_OPENVSWITCH
1593 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1594 #define IFF_TEAM IFF_TEAM
1595 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED
1596 #define IFF_MACSEC IFF_MACSEC
1597 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER
1598 #define IFF_FAILOVER IFF_FAILOVER
1599 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE
1600 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER
1601 #define IFF_LIVE_RENAME_OK IFF_LIVE_RENAME_OK
1602
1603 /**
1604 * struct net_device - The DEVICE structure.
1605 *
1606 * Actually, this whole structure is a big mistake. It mixes I/O
1607 * data with strictly "high-level" data, and it has to know about
1608 * almost every data structure used in the INET module.
1609 *
1610 * @name: This is the first field of the "visible" part of this structure
1611 * (i.e. as seen by users in the "Space.c" file). It is the name
1612 * of the interface.
1613 *
1614 * @name_node: Name hashlist node
1615 * @ifalias: SNMP alias
1616 * @mem_end: Shared memory end
1617 * @mem_start: Shared memory start
1618 * @base_addr: Device I/O address
1619 * @irq: Device IRQ number
1620 *
1621 * @state: Generic network queuing layer state, see netdev_state_t
1622 * @dev_list: The global list of network devices
1623 * @napi_list: List entry used for polling NAPI devices
1624 * @unreg_list: List entry when we are unregistering the
1625 * device; see the function unregister_netdev
1626 * @close_list: List entry used when we are closing the device
1627 * @ptype_all: Device-specific packet handlers for all protocols
1628 * @ptype_specific: Device-specific, protocol-specific packet handlers
1629 *
1630 * @adj_list: Directly linked devices, like slaves for bonding
1631 * @features: Currently active device features
1632 * @hw_features: User-changeable features
1633 *
1634 * @wanted_features: User-requested features
1635 * @vlan_features: Mask of features inheritable by VLAN devices
1636 *
1637 * @hw_enc_features: Mask of features inherited by encapsulating devices
1638 * This field indicates what encapsulation
1639 * offloads the hardware is capable of doing,
1640 * and drivers will need to set them appropriately.
1641 *
1642 * @mpls_features: Mask of features inheritable by MPLS
1643 * @gso_partial_features: value(s) from NETIF_F_GSO\*
1644 *
1645 * @ifindex: interface index
1646 * @group: The group the device belongs to
1647 *
1648 * @stats: Statistics struct, which was left as a legacy, use
1649 * rtnl_link_stats64 instead
1650 *
1651 * @rx_dropped: Dropped packets by core network,
1652 * do not use this in drivers
1653 * @tx_dropped: Dropped packets by core network,
1654 * do not use this in drivers
1655 * @rx_nohandler: nohandler dropped packets by core network on
1656 * inactive devices, do not use this in drivers
1657 * @carrier_up_count: Number of times the carrier has been up
1658 * @carrier_down_count: Number of times the carrier has been down
1659 *
1660 * @wireless_handlers: List of functions to handle Wireless Extensions,
1661 * instead of ioctl,
1662 * see <net/iw_handler.h> for details.
1663 * @wireless_data: Instance data managed by the core of wireless extensions
1664 *
1665 * @netdev_ops: Includes several pointers to callbacks,
1666 * if one wants to override the ndo_*() functions
1667 * @ethtool_ops: Management operations
1668 * @l3mdev_ops: Layer 3 master device operations
1669 * @ndisc_ops: Includes callbacks for different IPv6 neighbour
1670 * discovery handling. Necessary for e.g. 6LoWPAN.
1671 * @xfrmdev_ops: Transformation offload operations
1672 * @tlsdev_ops: Transport Layer Security offload operations
1673 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1674 * of Layer 2 headers.
1675 *
1676 * @flags: Interface flags (a la BSD)
1677 * @priv_flags: Like 'flags' but invisible to userspace,
1678 * see if.h for the definitions
1679 * @gflags: Global flags ( kept as legacy )
1680 * @padded: How much padding added by alloc_netdev()
1681 * @operstate: RFC2863 operstate
1682 * @link_mode: Mapping policy to operstate
1683 * @if_port: Selectable AUI, TP, ...
1684 * @dma: DMA channel
1685 * @mtu: Interface MTU value
1686 * @min_mtu: Interface Minimum MTU value
1687 * @max_mtu: Interface Maximum MTU value
1688 * @type: Interface hardware type
1689 * @hard_header_len: Maximum hardware header length.
1690 * @min_header_len: Minimum hardware header length
1691 *
1692 * @needed_headroom: Extra headroom the hardware may need, but not in all
1693 * cases can this be guaranteed
1694 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1695 * cases can this be guaranteed. Some cases also use
1696 * LL_MAX_HEADER instead to allocate the skb
1697 *
1698 * interface address info:
1699 *
1700 * @perm_addr: Permanent hw address
1701 * @addr_assign_type: Hw address assignment type
1702 * @addr_len: Hardware address length
1703 * @upper_level: Maximum depth level of upper devices.
1704 * @lower_level: Maximum depth level of lower devices.
1705 * @neigh_priv_len: Used in neigh_alloc()
1706 * @dev_id: Used to differentiate devices that share
1707 * the same link layer address
1708 * @dev_port: Used to differentiate devices that share
1709 * the same function
1710 * @addr_list_lock: XXX: need comments on this one
1711 * @name_assign_type: network interface name assignment type
1712 * @uc_promisc: Counter that indicates promiscuous mode
1713 * has been enabled due to the need to listen to
1714 * additional unicast addresses in a device that
1715 * does not implement ndo_set_rx_mode()
1716 * @uc: unicast mac addresses
1717 * @mc: multicast mac addresses
1718 * @dev_addrs: list of device hw addresses
1719 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1720 * @promiscuity: Number of times the NIC is told to work in
1721 * promiscuous mode; if it becomes 0 the NIC will
1722 * exit promiscuous mode
1723 * @allmulti: Counter, enables or disables allmulticast mode
1724 *
1725 * @vlan_info: VLAN info
1726 * @dsa_ptr: dsa specific data
1727 * @tipc_ptr: TIPC specific data
1728 * @atalk_ptr: AppleTalk link
1729 * @ip_ptr: IPv4 specific data
1730 * @dn_ptr: DECnet specific data
1731 * @ip6_ptr: IPv6 specific data
1732 * @ax25_ptr: AX.25 specific data
1733 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1734 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1735 * device struct
1736 * @mpls_ptr: mpls_dev struct pointer
1737 *
1738 * @dev_addr: Hw address (before bcast,
1739 * because most packets are unicast)
1740 *
1741 * @_rx: Array of RX queues
1742 * @num_rx_queues: Number of RX queues
1743 * allocated at register_netdev() time
1744 * @real_num_rx_queues: Number of RX queues currently active in device
1745 * @xdp_prog: XDP sockets filter program pointer
1746 * @gro_flush_timeout: timeout for GRO layer in NAPI
1747 * @napi_defer_hard_irqs: If not zero, provides a counter that would
1748 * allow to avoid NIC hard IRQ, on busy queues.
1749 *
1750 * @rx_handler: handler for received packets
1751 * @rx_handler_data: XXX: need comments on this one
1752 * @miniq_ingress: ingress/clsact qdisc specific data for
1753 * ingress processing
1754 * @ingress_queue: XXX: need comments on this one
1755 * @nf_hooks_ingress: netfilter hooks executed for ingress packets
1756 * @broadcast: hw bcast address
1757 *
1758 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1759 * indexed by RX queue number. Assigned by driver.
1760 * This must only be set if the ndo_rx_flow_steer
1761 * operation is defined
1762 * @index_hlist: Device index hash chain
1763 *
1764 * @_tx: Array of TX queues
1765 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1766 * @real_num_tx_queues: Number of TX queues currently active in device
1767 * @qdisc: Root qdisc from userspace point of view
1768 * @tx_queue_len: Max frames per queue allowed
1769 * @tx_global_lock: XXX: need comments on this one
1770 * @xdp_bulkq: XDP device bulk queue
1771 * @xps_cpus_map: all CPUs map for XPS device
1772 * @xps_rxqs_map: all RXQs map for XPS device
1773 *
1774 * @xps_maps: XXX: need comments on this one
1775 * @miniq_egress: clsact qdisc specific data for
1776 * egress processing
1777 * @qdisc_hash: qdisc hash table
1778 * @watchdog_timeo: Represents the timeout that is used by
1779 * the watchdog (see dev_watchdog())
1780 * @watchdog_timer: List of timers
1781 *
1782 * @proto_down_reason: reason a netdev interface is held down
1783 * @pcpu_refcnt: Number of references to this device
1784 * @todo_list: Delayed register/unregister
1785 * @link_watch_list: XXX: need comments on this one
1786 *
1787 * @reg_state: Register/unregister state machine
1788 * @dismantle: Device is going to be freed
1789 * @rtnl_link_state: This enum represents the phases of creating
1790 * a new link
1791 *
1792 * @needs_free_netdev: Should unregister perform free_netdev?
1793 * @priv_destructor: Called from unregister
1794 * @npinfo: XXX: need comments on this one
1795 * @nd_net: Network namespace this network device is inside
1796 *
1797 * @ml_priv: Mid-layer private
1798 * @lstats: Loopback statistics
1799 * @tstats: Tunnel statistics
1800 * @dstats: Dummy statistics
1801 * @vstats: Virtual ethernet statistics
1802 *
1803 * @garp_port: GARP
1804 * @mrp_port: MRP
1805 *
1806 * @dev: Class/net/name entry
1807 * @sysfs_groups: Space for optional device, statistics and wireless
1808 * sysfs groups
1809 *
1810 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1811 * @rtnl_link_ops: Rtnl_link_ops
1812 *
1813 * @gso_max_size: Maximum size of generic segmentation offload
1814 * @gso_max_segs: Maximum number of segments that can be passed to the
1815 * NIC for GSO
1816 *
1817 * @dcbnl_ops: Data Center Bridging netlink ops
1818 * @num_tc: Number of traffic classes in the net device
1819 * @tc_to_txq: XXX: need comments on this one
1820 * @prio_tc_map: XXX: need comments on this one
1821 *
1822 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1823 *
1824 * @priomap: XXX: need comments on this one
1825 * @phydev: Physical device may attach itself
1826 * for hardware timestamping
1827 * @sfp_bus: attached &struct sfp_bus structure.
1828 *
1829 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1830 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1831 *
1832 * @proto_down: protocol port state information can be sent to the
1833 * switch driver and used to set the phys state of the
1834 * switch port.
1835 *
1836 * @wol_enabled: Wake-on-LAN is enabled
1837 *
1838 * @net_notifier_list: List of per-net netdev notifier block
1839 * that follow this device when it is moved
1840 * to another network namespace.
1841 *
1842 * @macsec_ops: MACsec offloading ops
1843 *
1844 * @udp_tunnel_nic_info: static structure describing the UDP tunnel
1845 * offload capabilities of the device
1846 * @udp_tunnel_nic: UDP tunnel offload state
1847 * @xdp_state: stores info on attached XDP BPF programs
1848 *
1849 * @nested_level: Used as as a parameter of spin_lock_nested() of
1850 * dev->addr_list_lock.
1851 * @unlink_list: As netif_addr_lock() can be called recursively,
1852 * keep a list of interfaces to be deleted.
1853 *
1854 * FIXME: cleanup struct net_device such that network protocol info
1855 * moves out.
1856 */
1857
1858 struct net_device {
1859 char name[IFNAMSIZ];
1860 struct netdev_name_node *name_node;
1861 struct dev_ifalias __rcu *ifalias;
1862 /*
1863 * I/O specific fields
1864 * FIXME: Merge these and struct ifmap into one
1865 */
1866 unsigned long mem_end;
1867 unsigned long mem_start;
1868 unsigned long base_addr;
1869 int irq;
1870
1871 /*
1872 * Some hardware also needs these fields (state,dev_list,
1873 * napi_list,unreg_list,close_list) but they are not
1874 * part of the usual set specified in Space.c.
1875 */
1876
1877 unsigned long state;
1878
1879 struct list_head dev_list;
1880 struct list_head napi_list;
1881 struct list_head unreg_list;
1882 struct list_head close_list;
1883 struct list_head ptype_all;
1884 struct list_head ptype_specific;
1885
1886 struct {
1887 struct list_head upper;
1888 struct list_head lower;
1889 } adj_list;
1890
1891 netdev_features_t features;
1892 netdev_features_t hw_features;
1893 netdev_features_t wanted_features;
1894 netdev_features_t vlan_features;
1895 netdev_features_t hw_enc_features;
1896 netdev_features_t mpls_features;
1897 netdev_features_t gso_partial_features;
1898
1899 int ifindex;
1900 int group;
1901
1902 struct net_device_stats stats;
1903
1904 atomic_long_t rx_dropped;
1905 atomic_long_t tx_dropped;
1906 atomic_long_t rx_nohandler;
1907
1908 /* Stats to monitor link on/off, flapping */
1909 atomic_t carrier_up_count;
1910 atomic_t carrier_down_count;
1911
1912 #ifdef CONFIG_WIRELESS_EXT
1913 const struct iw_handler_def *wireless_handlers;
1914 struct iw_public_data *wireless_data;
1915 #endif
1916 const struct net_device_ops *netdev_ops;
1917 const struct ethtool_ops *ethtool_ops;
1918 #ifdef CONFIG_NET_L3_MASTER_DEV
1919 const struct l3mdev_ops *l3mdev_ops;
1920 #endif
1921 #if IS_ENABLED(CONFIG_IPV6)
1922 const struct ndisc_ops *ndisc_ops;
1923 #endif
1924
1925 #ifdef CONFIG_XFRM_OFFLOAD
1926 const struct xfrmdev_ops *xfrmdev_ops;
1927 #endif
1928
1929 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1930 const struct tlsdev_ops *tlsdev_ops;
1931 #endif
1932
1933 const struct header_ops *header_ops;
1934
1935 unsigned int flags;
1936 unsigned int priv_flags;
1937
1938 unsigned short gflags;
1939 unsigned short padded;
1940
1941 unsigned char operstate;
1942 unsigned char link_mode;
1943
1944 unsigned char if_port;
1945 unsigned char dma;
1946
1947 /* Note : dev->mtu is often read without holding a lock.
1948 * Writers usually hold RTNL.
1949 * It is recommended to use READ_ONCE() to annotate the reads,
1950 * and to use WRITE_ONCE() to annotate the writes.
1951 */
1952 unsigned int mtu;
1953 unsigned int min_mtu;
1954 unsigned int max_mtu;
1955 unsigned short type;
1956 unsigned short hard_header_len;
1957 unsigned char min_header_len;
1958 unsigned char name_assign_type;
1959
1960 unsigned short needed_headroom;
1961 unsigned short needed_tailroom;
1962
1963 /* Interface address info. */
1964 unsigned char perm_addr[MAX_ADDR_LEN];
1965 unsigned char addr_assign_type;
1966 unsigned char addr_len;
1967 unsigned char upper_level;
1968 unsigned char lower_level;
1969
1970 unsigned short neigh_priv_len;
1971 unsigned short dev_id;
1972 unsigned short dev_port;
1973 spinlock_t addr_list_lock;
1974
1975 struct netdev_hw_addr_list uc;
1976 struct netdev_hw_addr_list mc;
1977 struct netdev_hw_addr_list dev_addrs;
1978
1979 #ifdef CONFIG_SYSFS
1980 struct kset *queues_kset;
1981 #endif
1982 #ifdef CONFIG_LOCKDEP
1983 struct list_head unlink_list;
1984 #endif
1985 unsigned int promiscuity;
1986 unsigned int allmulti;
1987 bool uc_promisc;
1988 #ifdef CONFIG_LOCKDEP
1989 unsigned char nested_level;
1990 #endif
1991
1992
1993 /* Protocol-specific pointers */
1994
1995 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1996 struct vlan_info __rcu *vlan_info;
1997 #endif
1998 #if IS_ENABLED(CONFIG_NET_DSA)
1999 struct dsa_port *dsa_ptr;
2000 #endif
2001 #if IS_ENABLED(CONFIG_TIPC)
2002 struct tipc_bearer __rcu *tipc_ptr;
2003 #endif
2004 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
2005 void *atalk_ptr;
2006 #endif
2007 struct in_device __rcu *ip_ptr;
2008 #if IS_ENABLED(CONFIG_DECNET)
2009 struct dn_dev __rcu *dn_ptr;
2010 #endif
2011 struct inet6_dev __rcu *ip6_ptr;
2012 #if IS_ENABLED(CONFIG_AX25)
2013 void *ax25_ptr;
2014 #endif
2015 struct wireless_dev *ieee80211_ptr;
2016 struct wpan_dev *ieee802154_ptr;
2017 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2018 struct mpls_dev __rcu *mpls_ptr;
2019 #endif
2020
2021 /*
2022 * Cache lines mostly used on receive path (including eth_type_trans())
2023 */
2024 /* Interface address info used in eth_type_trans() */
2025 unsigned char *dev_addr;
2026
2027 struct netdev_rx_queue *_rx;
2028 unsigned int num_rx_queues;
2029 unsigned int real_num_rx_queues;
2030
2031 struct bpf_prog __rcu *xdp_prog;
2032 unsigned long gro_flush_timeout;
2033 int napi_defer_hard_irqs;
2034 rx_handler_func_t __rcu *rx_handler;
2035 void __rcu *rx_handler_data;
2036
2037 #ifdef CONFIG_NET_CLS_ACT
2038 struct mini_Qdisc __rcu *miniq_ingress;
2039 #endif
2040 struct netdev_queue __rcu *ingress_queue;
2041 #ifdef CONFIG_NETFILTER_INGRESS
2042 struct nf_hook_entries __rcu *nf_hooks_ingress;
2043 #endif
2044
2045 unsigned char broadcast[MAX_ADDR_LEN];
2046 #ifdef CONFIG_RFS_ACCEL
2047 struct cpu_rmap *rx_cpu_rmap;
2048 #endif
2049 struct hlist_node index_hlist;
2050
2051 /*
2052 * Cache lines mostly used on transmit path
2053 */
2054 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
2055 unsigned int num_tx_queues;
2056 unsigned int real_num_tx_queues;
2057 struct Qdisc *qdisc;
2058 unsigned int tx_queue_len;
2059 spinlock_t tx_global_lock;
2060
2061 struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2062
2063 #ifdef CONFIG_XPS
2064 struct xps_dev_maps __rcu *xps_cpus_map;
2065 struct xps_dev_maps __rcu *xps_rxqs_map;
2066 #endif
2067 #ifdef CONFIG_NET_CLS_ACT
2068 struct mini_Qdisc __rcu *miniq_egress;
2069 #endif
2070
2071 #ifdef CONFIG_NET_SCHED
2072 DECLARE_HASHTABLE (qdisc_hash, 4);
2073 #endif
2074 /* These may be needed for future network-power-down code. */
2075 struct timer_list watchdog_timer;
2076 int watchdog_timeo;
2077
2078 u32 proto_down_reason;
2079
2080 struct list_head todo_list;
2081 int __percpu *pcpu_refcnt;
2082
2083 struct list_head link_watch_list;
2084
2085 enum { NETREG_UNINITIALIZED=0,
2086 NETREG_REGISTERED, /* completed register_netdevice */
2087 NETREG_UNREGISTERING, /* called unregister_netdevice */
2088 NETREG_UNREGISTERED, /* completed unregister todo */
2089 NETREG_RELEASED, /* called free_netdev */
2090 NETREG_DUMMY, /* dummy device for NAPI poll */
2091 } reg_state:8;
2092
2093 bool dismantle;
2094
2095 enum {
2096 RTNL_LINK_INITIALIZED,
2097 RTNL_LINK_INITIALIZING,
2098 } rtnl_link_state:16;
2099
2100 bool needs_free_netdev;
2101 void (*priv_destructor)(struct net_device *dev);
2102
2103 #ifdef CONFIG_NETPOLL
2104 struct netpoll_info __rcu *npinfo;
2105 #endif
2106
2107 possible_net_t nd_net;
2108
2109 /* mid-layer private */
2110 union {
2111 void *ml_priv;
2112 struct pcpu_lstats __percpu *lstats;
2113 struct pcpu_sw_netstats __percpu *tstats;
2114 struct pcpu_dstats __percpu *dstats;
2115 };
2116
2117 #if IS_ENABLED(CONFIG_GARP)
2118 struct garp_port __rcu *garp_port;
2119 #endif
2120 #if IS_ENABLED(CONFIG_MRP)
2121 struct mrp_port __rcu *mrp_port;
2122 #endif
2123
2124 struct device dev;
2125 const struct attribute_group *sysfs_groups[4];
2126 const struct attribute_group *sysfs_rx_queue_group;
2127
2128 const struct rtnl_link_ops *rtnl_link_ops;
2129
2130 /* for setting kernel sock attribute on TCP connection setup */
2131 #define GSO_MAX_SIZE 65536
2132 unsigned int gso_max_size;
2133 #define GSO_MAX_SEGS 65535
2134 u16 gso_max_segs;
2135
2136 #ifdef CONFIG_DCB
2137 const struct dcbnl_rtnl_ops *dcbnl_ops;
2138 #endif
2139 s16 num_tc;
2140 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
2141 u8 prio_tc_map[TC_BITMASK + 1];
2142
2143 #if IS_ENABLED(CONFIG_FCOE)
2144 unsigned int fcoe_ddp_xid;
2145 #endif
2146 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2147 struct netprio_map __rcu *priomap;
2148 #endif
2149 struct phy_device *phydev;
2150 struct sfp_bus *sfp_bus;
2151 struct lock_class_key *qdisc_tx_busylock;
2152 struct lock_class_key *qdisc_running_key;
2153 bool proto_down;
2154 unsigned wol_enabled:1;
2155
2156 struct list_head net_notifier_list;
2157
2158 #if IS_ENABLED(CONFIG_MACSEC)
2159 /* MACsec management functions */
2160 const struct macsec_ops *macsec_ops;
2161 #endif
2162 const struct udp_tunnel_nic_info *udp_tunnel_nic_info;
2163 struct udp_tunnel_nic *udp_tunnel_nic;
2164
2165 /* protected by rtnl_lock */
2166 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE];
2167 };
2168 #define to_net_dev(d) container_of(d, struct net_device, dev)
2169
2170 static inline bool netif_elide_gro(const struct net_device *dev)
2171 {
2172 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2173 return true;
2174 return false;
2175 }
2176
2177 #define NETDEV_ALIGN 32
2178
2179 static inline
2180 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2181 {
2182 return dev->prio_tc_map[prio & TC_BITMASK];
2183 }
2184
2185 static inline
2186 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2187 {
2188 if (tc >= dev->num_tc)
2189 return -EINVAL;
2190
2191 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2192 return 0;
2193 }
2194
2195 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2196 void netdev_reset_tc(struct net_device *dev);
2197 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2198 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2199
2200 static inline
2201 int netdev_get_num_tc(struct net_device *dev)
2202 {
2203 return dev->num_tc;
2204 }
2205
2206 static inline void net_prefetch(void *p)
2207 {
2208 prefetch(p);
2209 #if L1_CACHE_BYTES < 128
2210 prefetch((u8 *)p + L1_CACHE_BYTES);
2211 #endif
2212 }
2213
2214 static inline void net_prefetchw(void *p)
2215 {
2216 prefetchw(p);
2217 #if L1_CACHE_BYTES < 128
2218 prefetchw((u8 *)p + L1_CACHE_BYTES);
2219 #endif
2220 }
2221
2222 void netdev_unbind_sb_channel(struct net_device *dev,
2223 struct net_device *sb_dev);
2224 int netdev_bind_sb_channel_queue(struct net_device *dev,
2225 struct net_device *sb_dev,
2226 u8 tc, u16 count, u16 offset);
2227 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2228 static inline int netdev_get_sb_channel(struct net_device *dev)
2229 {
2230 return max_t(int, -dev->num_tc, 0);
2231 }
2232
2233 static inline
2234 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2235 unsigned int index)
2236 {
2237 return &dev->_tx[index];
2238 }
2239
2240 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2241 const struct sk_buff *skb)
2242 {
2243 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2244 }
2245
2246 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2247 void (*f)(struct net_device *,
2248 struct netdev_queue *,
2249 void *),
2250 void *arg)
2251 {
2252 unsigned int i;
2253
2254 for (i = 0; i < dev->num_tx_queues; i++)
2255 f(dev, &dev->_tx[i], arg);
2256 }
2257
2258 #define netdev_lockdep_set_classes(dev) \
2259 { \
2260 static struct lock_class_key qdisc_tx_busylock_key; \
2261 static struct lock_class_key qdisc_running_key; \
2262 static struct lock_class_key qdisc_xmit_lock_key; \
2263 static struct lock_class_key dev_addr_list_lock_key; \
2264 unsigned int i; \
2265 \
2266 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \
2267 (dev)->qdisc_running_key = &qdisc_running_key; \
2268 lockdep_set_class(&(dev)->addr_list_lock, \
2269 &dev_addr_list_lock_key); \
2270 for (i = 0; i < (dev)->num_tx_queues; i++) \
2271 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \
2272 &qdisc_xmit_lock_key); \
2273 }
2274
2275 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2276 struct net_device *sb_dev);
2277 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2278 struct sk_buff *skb,
2279 struct net_device *sb_dev);
2280
2281 /* returns the headroom that the master device needs to take in account
2282 * when forwarding to this dev
2283 */
2284 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2285 {
2286 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2287 }
2288
2289 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2290 {
2291 if (dev->netdev_ops->ndo_set_rx_headroom)
2292 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2293 }
2294
2295 /* set the device rx headroom to the dev's default */
2296 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2297 {
2298 netdev_set_rx_headroom(dev, -1);
2299 }
2300
2301 /*
2302 * Net namespace inlines
2303 */
2304 static inline
2305 struct net *dev_net(const struct net_device *dev)
2306 {
2307 return read_pnet(&dev->nd_net);
2308 }
2309
2310 static inline
2311 void dev_net_set(struct net_device *dev, struct net *net)
2312 {
2313 write_pnet(&dev->nd_net, net);
2314 }
2315
2316 /**
2317 * netdev_priv - access network device private data
2318 * @dev: network device
2319 *
2320 * Get network device private data
2321 */
2322 static inline void *netdev_priv(const struct net_device *dev)
2323 {
2324 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2325 }
2326
2327 /* Set the sysfs physical device reference for the network logical device
2328 * if set prior to registration will cause a symlink during initialization.
2329 */
2330 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
2331
2332 /* Set the sysfs device type for the network logical device to allow
2333 * fine-grained identification of different network device types. For
2334 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2335 */
2336 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
2337
2338 /* Default NAPI poll() weight
2339 * Device drivers are strongly advised to not use bigger value
2340 */
2341 #define NAPI_POLL_WEIGHT 64
2342
2343 /**
2344 * netif_napi_add - initialize a NAPI context
2345 * @dev: network device
2346 * @napi: NAPI context
2347 * @poll: polling function
2348 * @weight: default weight
2349 *
2350 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2351 * *any* of the other NAPI-related functions.
2352 */
2353 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2354 int (*poll)(struct napi_struct *, int), int weight);
2355
2356 /**
2357 * netif_tx_napi_add - initialize a NAPI context
2358 * @dev: network device
2359 * @napi: NAPI context
2360 * @poll: polling function
2361 * @weight: default weight
2362 *
2363 * This variant of netif_napi_add() should be used from drivers using NAPI
2364 * to exclusively poll a TX queue.
2365 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2366 */
2367 static inline void netif_tx_napi_add(struct net_device *dev,
2368 struct napi_struct *napi,
2369 int (*poll)(struct napi_struct *, int),
2370 int weight)
2371 {
2372 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2373 netif_napi_add(dev, napi, poll, weight);
2374 }
2375
2376 /**
2377 * __netif_napi_del - remove a NAPI context
2378 * @napi: NAPI context
2379 *
2380 * Warning: caller must observe RCU grace period before freeing memory
2381 * containing @napi. Drivers might want to call this helper to combine
2382 * all the needed RCU grace periods into a single one.
2383 */
2384 void __netif_napi_del(struct napi_struct *napi);
2385
2386 /**
2387 * netif_napi_del - remove a NAPI context
2388 * @napi: NAPI context
2389 *
2390 * netif_napi_del() removes a NAPI context from the network device NAPI list
2391 */
2392 static inline void netif_napi_del(struct napi_struct *napi)
2393 {
2394 __netif_napi_del(napi);
2395 synchronize_net();
2396 }
2397
2398 struct napi_gro_cb {
2399 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2400 void *frag0;
2401
2402 /* Length of frag0. */
2403 unsigned int frag0_len;
2404
2405 /* This indicates where we are processing relative to skb->data. */
2406 int data_offset;
2407
2408 /* This is non-zero if the packet cannot be merged with the new skb. */
2409 u16 flush;
2410
2411 /* Save the IP ID here and check when we get to the transport layer */
2412 u16 flush_id;
2413
2414 /* Number of segments aggregated. */
2415 u16 count;
2416
2417 /* Start offset for remote checksum offload */
2418 u16 gro_remcsum_start;
2419
2420 /* jiffies when first packet was created/queued */
2421 unsigned long age;
2422
2423 /* Used in ipv6_gro_receive() and foo-over-udp */
2424 u16 proto;
2425
2426 /* This is non-zero if the packet may be of the same flow. */
2427 u8 same_flow:1;
2428
2429 /* Used in tunnel GRO receive */
2430 u8 encap_mark:1;
2431
2432 /* GRO checksum is valid */
2433 u8 csum_valid:1;
2434
2435 /* Number of checksums via CHECKSUM_UNNECESSARY */
2436 u8 csum_cnt:3;
2437
2438 /* Free the skb? */
2439 u8 free:2;
2440 #define NAPI_GRO_FREE 1
2441 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2442
2443 /* Used in foo-over-udp, set in udp[46]_gro_receive */
2444 u8 is_ipv6:1;
2445
2446 /* Used in GRE, set in fou/gue_gro_receive */
2447 u8 is_fou:1;
2448
2449 /* Used to determine if flush_id can be ignored */
2450 u8 is_atomic:1;
2451
2452 /* Number of gro_receive callbacks this packet already went through */
2453 u8 recursion_counter:4;
2454
2455 /* GRO is done by frag_list pointer chaining. */
2456 u8 is_flist:1;
2457
2458 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2459 __wsum csum;
2460
2461 /* used in skb_gro_receive() slow path */
2462 struct sk_buff *last;
2463 };
2464
2465 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2466
2467 #define GRO_RECURSION_LIMIT 15
2468 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2469 {
2470 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2471 }
2472
2473 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2474 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2475 struct list_head *head,
2476 struct sk_buff *skb)
2477 {
2478 if (unlikely(gro_recursion_inc_test(skb))) {
2479 NAPI_GRO_CB(skb)->flush |= 1;
2480 return NULL;
2481 }
2482
2483 return cb(head, skb);
2484 }
2485
2486 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2487 struct sk_buff *);
2488 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2489 struct sock *sk,
2490 struct list_head *head,
2491 struct sk_buff *skb)
2492 {
2493 if (unlikely(gro_recursion_inc_test(skb))) {
2494 NAPI_GRO_CB(skb)->flush |= 1;
2495 return NULL;
2496 }
2497
2498 return cb(sk, head, skb);
2499 }
2500
2501 struct packet_type {
2502 __be16 type; /* This is really htons(ether_type). */
2503 bool ignore_outgoing;
2504 struct net_device *dev; /* NULL is wildcarded here */
2505 int (*func) (struct sk_buff *,
2506 struct net_device *,
2507 struct packet_type *,
2508 struct net_device *);
2509 void (*list_func) (struct list_head *,
2510 struct packet_type *,
2511 struct net_device *);
2512 bool (*id_match)(struct packet_type *ptype,
2513 struct sock *sk);
2514 void *af_packet_priv;
2515 struct list_head list;
2516 };
2517
2518 struct offload_callbacks {
2519 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2520 netdev_features_t features);
2521 struct sk_buff *(*gro_receive)(struct list_head *head,
2522 struct sk_buff *skb);
2523 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2524 };
2525
2526 struct packet_offload {
2527 __be16 type; /* This is really htons(ether_type). */
2528 u16 priority;
2529 struct offload_callbacks callbacks;
2530 struct list_head list;
2531 };
2532
2533 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2534 struct pcpu_sw_netstats {
2535 u64 rx_packets;
2536 u64 rx_bytes;
2537 u64 tx_packets;
2538 u64 tx_bytes;
2539 struct u64_stats_sync syncp;
2540 } __aligned(4 * sizeof(u64));
2541
2542 struct pcpu_lstats {
2543 u64_stats_t packets;
2544 u64_stats_t bytes;
2545 struct u64_stats_sync syncp;
2546 } __aligned(2 * sizeof(u64));
2547
2548 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2549
2550 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2551 {
2552 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2553
2554 u64_stats_update_begin(&tstats->syncp);
2555 tstats->rx_bytes += len;
2556 tstats->rx_packets++;
2557 u64_stats_update_end(&tstats->syncp);
2558 }
2559
2560 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2561 unsigned int packets,
2562 unsigned int len)
2563 {
2564 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2565
2566 u64_stats_update_begin(&tstats->syncp);
2567 tstats->tx_bytes += len;
2568 tstats->tx_packets += packets;
2569 u64_stats_update_end(&tstats->syncp);
2570 }
2571
2572 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2573 {
2574 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2575
2576 u64_stats_update_begin(&lstats->syncp);
2577 u64_stats_add(&lstats->bytes, len);
2578 u64_stats_inc(&lstats->packets);
2579 u64_stats_update_end(&lstats->syncp);
2580 }
2581
2582 #define __netdev_alloc_pcpu_stats(type, gfp) \
2583 ({ \
2584 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2585 if (pcpu_stats) { \
2586 int __cpu; \
2587 for_each_possible_cpu(__cpu) { \
2588 typeof(type) *stat; \
2589 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2590 u64_stats_init(&stat->syncp); \
2591 } \
2592 } \
2593 pcpu_stats; \
2594 })
2595
2596 #define netdev_alloc_pcpu_stats(type) \
2597 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2598
2599 #define devm_netdev_alloc_pcpu_stats(dev, type) \
2600 ({ \
2601 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2602 if (pcpu_stats) { \
2603 int __cpu; \
2604 for_each_possible_cpu(__cpu) { \
2605 typeof(type) *stat; \
2606 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2607 u64_stats_init(&stat->syncp); \
2608 } \
2609 } \
2610 pcpu_stats; \
2611 })
2612
2613 enum netdev_lag_tx_type {
2614 NETDEV_LAG_TX_TYPE_UNKNOWN,
2615 NETDEV_LAG_TX_TYPE_RANDOM,
2616 NETDEV_LAG_TX_TYPE_BROADCAST,
2617 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2618 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2619 NETDEV_LAG_TX_TYPE_HASH,
2620 };
2621
2622 enum netdev_lag_hash {
2623 NETDEV_LAG_HASH_NONE,
2624 NETDEV_LAG_HASH_L2,
2625 NETDEV_LAG_HASH_L34,
2626 NETDEV_LAG_HASH_L23,
2627 NETDEV_LAG_HASH_E23,
2628 NETDEV_LAG_HASH_E34,
2629 NETDEV_LAG_HASH_UNKNOWN,
2630 };
2631
2632 struct netdev_lag_upper_info {
2633 enum netdev_lag_tx_type tx_type;
2634 enum netdev_lag_hash hash_type;
2635 };
2636
2637 struct netdev_lag_lower_state_info {
2638 u8 link_up : 1,
2639 tx_enabled : 1;
2640 };
2641
2642 #include <linux/notifier.h>
2643
2644 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2645 * and the rtnetlink notification exclusion list in rtnetlink_event() when
2646 * adding new types.
2647 */
2648 enum netdev_cmd {
2649 NETDEV_UP = 1, /* For now you can't veto a device up/down */
2650 NETDEV_DOWN,
2651 NETDEV_REBOOT, /* Tell a protocol stack a network interface
2652 detected a hardware crash and restarted
2653 - we can use this eg to kick tcp sessions
2654 once done */
2655 NETDEV_CHANGE, /* Notify device state change */
2656 NETDEV_REGISTER,
2657 NETDEV_UNREGISTER,
2658 NETDEV_CHANGEMTU, /* notify after mtu change happened */
2659 NETDEV_CHANGEADDR, /* notify after the address change */
2660 NETDEV_PRE_CHANGEADDR, /* notify before the address change */
2661 NETDEV_GOING_DOWN,
2662 NETDEV_CHANGENAME,
2663 NETDEV_FEAT_CHANGE,
2664 NETDEV_BONDING_FAILOVER,
2665 NETDEV_PRE_UP,
2666 NETDEV_PRE_TYPE_CHANGE,
2667 NETDEV_POST_TYPE_CHANGE,
2668 NETDEV_POST_INIT,
2669 NETDEV_RELEASE,
2670 NETDEV_NOTIFY_PEERS,
2671 NETDEV_JOIN,
2672 NETDEV_CHANGEUPPER,
2673 NETDEV_RESEND_IGMP,
2674 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */
2675 NETDEV_CHANGEINFODATA,
2676 NETDEV_BONDING_INFO,
2677 NETDEV_PRECHANGEUPPER,
2678 NETDEV_CHANGELOWERSTATE,
2679 NETDEV_UDP_TUNNEL_PUSH_INFO,
2680 NETDEV_UDP_TUNNEL_DROP_INFO,
2681 NETDEV_CHANGE_TX_QUEUE_LEN,
2682 NETDEV_CVLAN_FILTER_PUSH_INFO,
2683 NETDEV_CVLAN_FILTER_DROP_INFO,
2684 NETDEV_SVLAN_FILTER_PUSH_INFO,
2685 NETDEV_SVLAN_FILTER_DROP_INFO,
2686 };
2687 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2688
2689 int register_netdevice_notifier(struct notifier_block *nb);
2690 int unregister_netdevice_notifier(struct notifier_block *nb);
2691 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2692 int unregister_netdevice_notifier_net(struct net *net,
2693 struct notifier_block *nb);
2694 int register_netdevice_notifier_dev_net(struct net_device *dev,
2695 struct notifier_block *nb,
2696 struct netdev_net_notifier *nn);
2697 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2698 struct notifier_block *nb,
2699 struct netdev_net_notifier *nn);
2700
2701 struct netdev_notifier_info {
2702 struct net_device *dev;
2703 struct netlink_ext_ack *extack;
2704 };
2705
2706 struct netdev_notifier_info_ext {
2707 struct netdev_notifier_info info; /* must be first */
2708 union {
2709 u32 mtu;
2710 } ext;
2711 };
2712
2713 struct netdev_notifier_change_info {
2714 struct netdev_notifier_info info; /* must be first */
2715 unsigned int flags_changed;
2716 };
2717
2718 struct netdev_notifier_changeupper_info {
2719 struct netdev_notifier_info info; /* must be first */
2720 struct net_device *upper_dev; /* new upper dev */
2721 bool master; /* is upper dev master */
2722 bool linking; /* is the notification for link or unlink */
2723 void *upper_info; /* upper dev info */
2724 };
2725
2726 struct netdev_notifier_changelowerstate_info {
2727 struct netdev_notifier_info info; /* must be first */
2728 void *lower_state_info; /* is lower dev state */
2729 };
2730
2731 struct netdev_notifier_pre_changeaddr_info {
2732 struct netdev_notifier_info info; /* must be first */
2733 const unsigned char *dev_addr;
2734 };
2735
2736 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2737 struct net_device *dev)
2738 {
2739 info->dev = dev;
2740 info->extack = NULL;
2741 }
2742
2743 static inline struct net_device *
2744 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2745 {
2746 return info->dev;
2747 }
2748
2749 static inline struct netlink_ext_ack *
2750 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2751 {
2752 return info->extack;
2753 }
2754
2755 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2756
2757
2758 extern rwlock_t dev_base_lock; /* Device list lock */
2759
2760 #define for_each_netdev(net, d) \
2761 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2762 #define for_each_netdev_reverse(net, d) \
2763 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2764 #define for_each_netdev_rcu(net, d) \
2765 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2766 #define for_each_netdev_safe(net, d, n) \
2767 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2768 #define for_each_netdev_continue(net, d) \
2769 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2770 #define for_each_netdev_continue_reverse(net, d) \
2771 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2772 dev_list)
2773 #define for_each_netdev_continue_rcu(net, d) \
2774 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2775 #define for_each_netdev_in_bond_rcu(bond, slave) \
2776 for_each_netdev_rcu(&init_net, slave) \
2777 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2778 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2779
2780 static inline struct net_device *next_net_device(struct net_device *dev)
2781 {
2782 struct list_head *lh;
2783 struct net *net;
2784
2785 net = dev_net(dev);
2786 lh = dev->dev_list.next;
2787 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2788 }
2789
2790 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2791 {
2792 struct list_head *lh;
2793 struct net *net;
2794
2795 net = dev_net(dev);
2796 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2797 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2798 }
2799
2800 static inline struct net_device *first_net_device(struct net *net)
2801 {
2802 return list_empty(&net->dev_base_head) ? NULL :
2803 net_device_entry(net->dev_base_head.next);
2804 }
2805
2806 static inline struct net_device *first_net_device_rcu(struct net *net)
2807 {
2808 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2809
2810 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2811 }
2812
2813 int netdev_boot_setup_check(struct net_device *dev);
2814 unsigned long netdev_boot_base(const char *prefix, int unit);
2815 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2816 const char *hwaddr);
2817 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2818 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2819 void dev_add_pack(struct packet_type *pt);
2820 void dev_remove_pack(struct packet_type *pt);
2821 void __dev_remove_pack(struct packet_type *pt);
2822 void dev_add_offload(struct packet_offload *po);
2823 void dev_remove_offload(struct packet_offload *po);
2824
2825 int dev_get_iflink(const struct net_device *dev);
2826 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2827 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2828 unsigned short mask);
2829 struct net_device *dev_get_by_name(struct net *net, const char *name);
2830 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2831 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2832 int dev_alloc_name(struct net_device *dev, const char *name);
2833 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2834 void dev_close(struct net_device *dev);
2835 void dev_close_many(struct list_head *head, bool unlink);
2836 void dev_disable_lro(struct net_device *dev);
2837 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2838 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2839 struct net_device *sb_dev);
2840 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2841 struct net_device *sb_dev);
2842 int dev_queue_xmit(struct sk_buff *skb);
2843 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2844 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2845 int register_netdevice(struct net_device *dev);
2846 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2847 void unregister_netdevice_many(struct list_head *head);
2848 static inline void unregister_netdevice(struct net_device *dev)
2849 {
2850 unregister_netdevice_queue(dev, NULL);
2851 }
2852
2853 int netdev_refcnt_read(const struct net_device *dev);
2854 void free_netdev(struct net_device *dev);
2855 void netdev_freemem(struct net_device *dev);
2856 int init_dummy_netdev(struct net_device *dev);
2857
2858 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2859 struct sk_buff *skb,
2860 bool all_slaves);
2861 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2862 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2863 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2864 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2865 int netdev_get_name(struct net *net, char *name, int ifindex);
2866 int dev_restart(struct net_device *dev);
2867 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2868 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2869
2870 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2871 {
2872 return NAPI_GRO_CB(skb)->data_offset;
2873 }
2874
2875 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2876 {
2877 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2878 }
2879
2880 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2881 {
2882 NAPI_GRO_CB(skb)->data_offset += len;
2883 }
2884
2885 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2886 unsigned int offset)
2887 {
2888 return NAPI_GRO_CB(skb)->frag0 + offset;
2889 }
2890
2891 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2892 {
2893 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2894 }
2895
2896 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2897 {
2898 NAPI_GRO_CB(skb)->frag0 = NULL;
2899 NAPI_GRO_CB(skb)->frag0_len = 0;
2900 }
2901
2902 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2903 unsigned int offset)
2904 {
2905 if (!pskb_may_pull(skb, hlen))
2906 return NULL;
2907
2908 skb_gro_frag0_invalidate(skb);
2909 return skb->data + offset;
2910 }
2911
2912 static inline void *skb_gro_network_header(struct sk_buff *skb)
2913 {
2914 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2915 skb_network_offset(skb);
2916 }
2917
2918 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2919 const void *start, unsigned int len)
2920 {
2921 if (NAPI_GRO_CB(skb)->csum_valid)
2922 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2923 csum_partial(start, len, 0));
2924 }
2925
2926 /* GRO checksum functions. These are logical equivalents of the normal
2927 * checksum functions (in skbuff.h) except that they operate on the GRO
2928 * offsets and fields in sk_buff.
2929 */
2930
2931 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2932
2933 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2934 {
2935 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2936 }
2937
2938 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2939 bool zero_okay,
2940 __sum16 check)
2941 {
2942 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2943 skb_checksum_start_offset(skb) <
2944 skb_gro_offset(skb)) &&
2945 !skb_at_gro_remcsum_start(skb) &&
2946 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2947 (!zero_okay || check));
2948 }
2949
2950 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2951 __wsum psum)
2952 {
2953 if (NAPI_GRO_CB(skb)->csum_valid &&
2954 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2955 return 0;
2956
2957 NAPI_GRO_CB(skb)->csum = psum;
2958
2959 return __skb_gro_checksum_complete(skb);
2960 }
2961
2962 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2963 {
2964 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2965 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2966 NAPI_GRO_CB(skb)->csum_cnt--;
2967 } else {
2968 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2969 * verified a new top level checksum or an encapsulated one
2970 * during GRO. This saves work if we fallback to normal path.
2971 */
2972 __skb_incr_checksum_unnecessary(skb);
2973 }
2974 }
2975
2976 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2977 compute_pseudo) \
2978 ({ \
2979 __sum16 __ret = 0; \
2980 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2981 __ret = __skb_gro_checksum_validate_complete(skb, \
2982 compute_pseudo(skb, proto)); \
2983 if (!__ret) \
2984 skb_gro_incr_csum_unnecessary(skb); \
2985 __ret; \
2986 })
2987
2988 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2989 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2990
2991 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2992 compute_pseudo) \
2993 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2994
2995 #define skb_gro_checksum_simple_validate(skb) \
2996 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2997
2998 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2999 {
3000 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
3001 !NAPI_GRO_CB(skb)->csum_valid);
3002 }
3003
3004 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
3005 __wsum pseudo)
3006 {
3007 NAPI_GRO_CB(skb)->csum = ~pseudo;
3008 NAPI_GRO_CB(skb)->csum_valid = 1;
3009 }
3010
3011 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo) \
3012 do { \
3013 if (__skb_gro_checksum_convert_check(skb)) \
3014 __skb_gro_checksum_convert(skb, \
3015 compute_pseudo(skb, proto)); \
3016 } while (0)
3017
3018 struct gro_remcsum {
3019 int offset;
3020 __wsum delta;
3021 };
3022
3023 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
3024 {
3025 grc->offset = 0;
3026 grc->delta = 0;
3027 }
3028
3029 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
3030 unsigned int off, size_t hdrlen,
3031 int start, int offset,
3032 struct gro_remcsum *grc,
3033 bool nopartial)
3034 {
3035 __wsum delta;
3036 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
3037
3038 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
3039
3040 if (!nopartial) {
3041 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
3042 return ptr;
3043 }
3044
3045 ptr = skb_gro_header_fast(skb, off);
3046 if (skb_gro_header_hard(skb, off + plen)) {
3047 ptr = skb_gro_header_slow(skb, off + plen, off);
3048 if (!ptr)
3049 return NULL;
3050 }
3051
3052 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
3053 start, offset);
3054
3055 /* Adjust skb->csum since we changed the packet */
3056 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
3057
3058 grc->offset = off + hdrlen + offset;
3059 grc->delta = delta;
3060
3061 return ptr;
3062 }
3063
3064 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
3065 struct gro_remcsum *grc)
3066 {
3067 void *ptr;
3068 size_t plen = grc->offset + sizeof(u16);
3069
3070 if (!grc->delta)
3071 return;
3072
3073 ptr = skb_gro_header_fast(skb, grc->offset);
3074 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
3075 ptr = skb_gro_header_slow(skb, plen, grc->offset);
3076 if (!ptr)
3077 return;
3078 }
3079
3080 remcsum_unadjust((__sum16 *)ptr, grc->delta);
3081 }
3082
3083 #ifdef CONFIG_XFRM_OFFLOAD
3084 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3085 {
3086 if (PTR_ERR(pp) != -EINPROGRESS)
3087 NAPI_GRO_CB(skb)->flush |= flush;
3088 }
3089 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3090 struct sk_buff *pp,
3091 int flush,
3092 struct gro_remcsum *grc)
3093 {
3094 if (PTR_ERR(pp) != -EINPROGRESS) {
3095 NAPI_GRO_CB(skb)->flush |= flush;
3096 skb_gro_remcsum_cleanup(skb, grc);
3097 skb->remcsum_offload = 0;
3098 }
3099 }
3100 #else
3101 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3102 {
3103 NAPI_GRO_CB(skb)->flush |= flush;
3104 }
3105 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3106 struct sk_buff *pp,
3107 int flush,
3108 struct gro_remcsum *grc)
3109 {
3110 NAPI_GRO_CB(skb)->flush |= flush;
3111 skb_gro_remcsum_cleanup(skb, grc);
3112 skb->remcsum_offload = 0;
3113 }
3114 #endif
3115
3116 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3117 unsigned short type,
3118 const void *daddr, const void *saddr,
3119 unsigned int len)
3120 {
3121 if (!dev->header_ops || !dev->header_ops->create)
3122 return 0;
3123
3124 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3125 }
3126
3127 static inline int dev_parse_header(const struct sk_buff *skb,
3128 unsigned char *haddr)
3129 {
3130 const struct net_device *dev = skb->dev;
3131
3132 if (!dev->header_ops || !dev->header_ops->parse)
3133 return 0;
3134 return dev->header_ops->parse(skb, haddr);
3135 }
3136
3137 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3138 {
3139 const struct net_device *dev = skb->dev;
3140
3141 if (!dev->header_ops || !dev->header_ops->parse_protocol)
3142 return 0;
3143 return dev->header_ops->parse_protocol(skb);
3144 }
3145
3146 /* ll_header must have at least hard_header_len allocated */
3147 static inline bool dev_validate_header(const struct net_device *dev,
3148 char *ll_header, int len)
3149 {
3150 if (likely(len >= dev->hard_header_len))
3151 return true;
3152 if (len < dev->min_header_len)
3153 return false;
3154
3155 if (capable(CAP_SYS_RAWIO)) {
3156 memset(ll_header + len, 0, dev->hard_header_len - len);
3157 return true;
3158 }
3159
3160 if (dev->header_ops && dev->header_ops->validate)
3161 return dev->header_ops->validate(ll_header, len);
3162
3163 return false;
3164 }
3165
3166 static inline bool dev_has_header(const struct net_device *dev)
3167 {
3168 return dev->header_ops && dev->header_ops->create;
3169 }
3170
3171 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
3172 int len, int size);
3173 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
3174 static inline int unregister_gifconf(unsigned int family)
3175 {
3176 return register_gifconf(family, NULL);
3177 }
3178
3179 #ifdef CONFIG_NET_FLOW_LIMIT
3180 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
3181 struct sd_flow_limit {
3182 u64 count;
3183 unsigned int num_buckets;
3184 unsigned int history_head;
3185 u16 history[FLOW_LIMIT_HISTORY];
3186 u8 buckets[];
3187 };
3188
3189 extern int netdev_flow_limit_table_len;
3190 #endif /* CONFIG_NET_FLOW_LIMIT */
3191
3192 /*
3193 * Incoming packets are placed on per-CPU queues
3194 */
3195 struct softnet_data {
3196 struct list_head poll_list;
3197 struct sk_buff_head process_queue;
3198
3199 /* stats */
3200 unsigned int processed;
3201 unsigned int time_squeeze;
3202 unsigned int received_rps;
3203 #ifdef CONFIG_RPS
3204 struct softnet_data *rps_ipi_list;
3205 #endif
3206 #ifdef CONFIG_NET_FLOW_LIMIT
3207 struct sd_flow_limit __rcu *flow_limit;
3208 #endif
3209 struct Qdisc *output_queue;
3210 struct Qdisc **output_queue_tailp;
3211 struct sk_buff *completion_queue;
3212 #ifdef CONFIG_XFRM_OFFLOAD
3213 struct sk_buff_head xfrm_backlog;
3214 #endif
3215 /* written and read only by owning cpu: */
3216 struct {
3217 u16 recursion;
3218 u8 more;
3219 } xmit;
3220 #ifdef CONFIG_RPS
3221 /* input_queue_head should be written by cpu owning this struct,
3222 * and only read by other cpus. Worth using a cache line.
3223 */
3224 unsigned int input_queue_head ____cacheline_aligned_in_smp;
3225
3226 /* Elements below can be accessed between CPUs for RPS/RFS */
3227 call_single_data_t csd ____cacheline_aligned_in_smp;
3228 struct softnet_data *rps_ipi_next;
3229 unsigned int cpu;
3230 unsigned int input_queue_tail;
3231 #endif
3232 unsigned int dropped;
3233 struct sk_buff_head input_pkt_queue;
3234 struct napi_struct backlog;
3235
3236 };
3237
3238 static inline void input_queue_head_incr(struct softnet_data *sd)
3239 {
3240 #ifdef CONFIG_RPS
3241 sd->input_queue_head++;
3242 #endif
3243 }
3244
3245 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3246 unsigned int *qtail)
3247 {
3248 #ifdef CONFIG_RPS
3249 *qtail = ++sd->input_queue_tail;
3250 #endif
3251 }
3252
3253 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3254
3255 static inline int dev_recursion_level(void)
3256 {
3257 return this_cpu_read(softnet_data.xmit.recursion);
3258 }
3259
3260 #define XMIT_RECURSION_LIMIT 8
3261 static inline bool dev_xmit_recursion(void)
3262 {
3263 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3264 XMIT_RECURSION_LIMIT);
3265 }
3266
3267 static inline void dev_xmit_recursion_inc(void)
3268 {
3269 __this_cpu_inc(softnet_data.xmit.recursion);
3270 }
3271
3272 static inline void dev_xmit_recursion_dec(void)
3273 {
3274 __this_cpu_dec(softnet_data.xmit.recursion);
3275 }
3276
3277 void __netif_schedule(struct Qdisc *q);
3278 void netif_schedule_queue(struct netdev_queue *txq);
3279
3280 static inline void netif_tx_schedule_all(struct net_device *dev)
3281 {
3282 unsigned int i;
3283
3284 for (i = 0; i < dev->num_tx_queues; i++)
3285 netif_schedule_queue(netdev_get_tx_queue(dev, i));
3286 }
3287
3288 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3289 {
3290 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3291 }
3292
3293 /**
3294 * netif_start_queue - allow transmit
3295 * @dev: network device
3296 *
3297 * Allow upper layers to call the device hard_start_xmit routine.
3298 */
3299 static inline void netif_start_queue(struct net_device *dev)
3300 {
3301 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3302 }
3303
3304 static inline void netif_tx_start_all_queues(struct net_device *dev)
3305 {
3306 unsigned int i;
3307
3308 for (i = 0; i < dev->num_tx_queues; i++) {
3309 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3310 netif_tx_start_queue(txq);
3311 }
3312 }
3313
3314 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3315
3316 /**
3317 * netif_wake_queue - restart transmit
3318 * @dev: network device
3319 *
3320 * Allow upper layers to call the device hard_start_xmit routine.
3321 * Used for flow control when transmit resources are available.
3322 */
3323 static inline void netif_wake_queue(struct net_device *dev)
3324 {
3325 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3326 }
3327
3328 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3329 {
3330 unsigned int i;
3331
3332 for (i = 0; i < dev->num_tx_queues; i++) {
3333 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3334 netif_tx_wake_queue(txq);
3335 }
3336 }
3337
3338 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3339 {
3340 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3341 }
3342
3343 /**
3344 * netif_stop_queue - stop transmitted packets
3345 * @dev: network device
3346 *
3347 * Stop upper layers calling the device hard_start_xmit routine.
3348 * Used for flow control when transmit resources are unavailable.
3349 */
3350 static inline void netif_stop_queue(struct net_device *dev)
3351 {
3352 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3353 }
3354
3355 void netif_tx_stop_all_queues(struct net_device *dev);
3356
3357 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3358 {
3359 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3360 }
3361
3362 /**
3363 * netif_queue_stopped - test if transmit queue is flowblocked
3364 * @dev: network device
3365 *
3366 * Test if transmit queue on device is currently unable to send.
3367 */
3368 static inline bool netif_queue_stopped(const struct net_device *dev)
3369 {
3370 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3371 }
3372
3373 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3374 {
3375 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3376 }
3377
3378 static inline bool
3379 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3380 {
3381 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3382 }
3383
3384 static inline bool
3385 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3386 {
3387 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3388 }
3389
3390 /**
3391 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3392 * @dev_queue: pointer to transmit queue
3393 *
3394 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3395 * to give appropriate hint to the CPU.
3396 */
3397 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3398 {
3399 #ifdef CONFIG_BQL
3400 prefetchw(&dev_queue->dql.num_queued);
3401 #endif
3402 }
3403
3404 /**
3405 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3406 * @dev_queue: pointer to transmit queue
3407 *
3408 * BQL enabled drivers might use this helper in their TX completion path,
3409 * to give appropriate hint to the CPU.
3410 */
3411 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3412 {
3413 #ifdef CONFIG_BQL
3414 prefetchw(&dev_queue->dql.limit);
3415 #endif
3416 }
3417
3418 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3419 unsigned int bytes)
3420 {
3421 #ifdef CONFIG_BQL
3422 dql_queued(&dev_queue->dql, bytes);
3423
3424 if (likely(dql_avail(&dev_queue->dql) >= 0))
3425 return;
3426
3427 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3428
3429 /*
3430 * The XOFF flag must be set before checking the dql_avail below,
3431 * because in netdev_tx_completed_queue we update the dql_completed
3432 * before checking the XOFF flag.
3433 */
3434 smp_mb();
3435
3436 /* check again in case another CPU has just made room avail */
3437 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3438 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3439 #endif
3440 }
3441
3442 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3443 * that they should not test BQL status themselves.
3444 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3445 * skb of a batch.
3446 * Returns true if the doorbell must be used to kick the NIC.
3447 */
3448 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3449 unsigned int bytes,
3450 bool xmit_more)
3451 {
3452 if (xmit_more) {
3453 #ifdef CONFIG_BQL
3454 dql_queued(&dev_queue->dql, bytes);
3455 #endif
3456 return netif_tx_queue_stopped(dev_queue);
3457 }
3458 netdev_tx_sent_queue(dev_queue, bytes);
3459 return true;
3460 }
3461
3462 /**
3463 * netdev_sent_queue - report the number of bytes queued to hardware
3464 * @dev: network device
3465 * @bytes: number of bytes queued to the hardware device queue
3466 *
3467 * Report the number of bytes queued for sending/completion to the network
3468 * device hardware queue. @bytes should be a good approximation and should
3469 * exactly match netdev_completed_queue() @bytes
3470 */
3471 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3472 {
3473 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3474 }
3475
3476 static inline bool __netdev_sent_queue(struct net_device *dev,
3477 unsigned int bytes,
3478 bool xmit_more)
3479 {
3480 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3481 xmit_more);
3482 }
3483
3484 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3485 unsigned int pkts, unsigned int bytes)
3486 {
3487 #ifdef CONFIG_BQL
3488 if (unlikely(!bytes))
3489 return;
3490
3491 dql_completed(&dev_queue->dql, bytes);
3492
3493 /*
3494 * Without the memory barrier there is a small possiblity that
3495 * netdev_tx_sent_queue will miss the update and cause the queue to
3496 * be stopped forever
3497 */
3498 smp_mb();
3499
3500 if (unlikely(dql_avail(&dev_queue->dql) < 0))
3501 return;
3502
3503 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3504 netif_schedule_queue(dev_queue);
3505 #endif
3506 }
3507
3508 /**
3509 * netdev_completed_queue - report bytes and packets completed by device
3510 * @dev: network device
3511 * @pkts: actual number of packets sent over the medium
3512 * @bytes: actual number of bytes sent over the medium
3513 *
3514 * Report the number of bytes and packets transmitted by the network device
3515 * hardware queue over the physical medium, @bytes must exactly match the
3516 * @bytes amount passed to netdev_sent_queue()
3517 */
3518 static inline void netdev_completed_queue(struct net_device *dev,
3519 unsigned int pkts, unsigned int bytes)
3520 {
3521 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3522 }
3523
3524 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3525 {
3526 #ifdef CONFIG_BQL
3527 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3528 dql_reset(&q->dql);
3529 #endif
3530 }
3531
3532 /**
3533 * netdev_reset_queue - reset the packets and bytes count of a network device
3534 * @dev_queue: network device
3535 *
3536 * Reset the bytes and packet count of a network device and clear the
3537 * software flow control OFF bit for this network device
3538 */
3539 static inline void netdev_reset_queue(struct net_device *dev_queue)
3540 {
3541 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3542 }
3543
3544 /**
3545 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
3546 * @dev: network device
3547 * @queue_index: given tx queue index
3548 *
3549 * Returns 0 if given tx queue index >= number of device tx queues,
3550 * otherwise returns the originally passed tx queue index.
3551 */
3552 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3553 {
3554 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3555 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3556 dev->name, queue_index,
3557 dev->real_num_tx_queues);
3558 return 0;
3559 }
3560
3561 return queue_index;
3562 }
3563
3564 /**
3565 * netif_running - test if up
3566 * @dev: network device
3567 *
3568 * Test if the device has been brought up.
3569 */
3570 static inline bool netif_running(const struct net_device *dev)
3571 {
3572 return test_bit(__LINK_STATE_START, &dev->state);
3573 }
3574
3575 /*
3576 * Routines to manage the subqueues on a device. We only need start,
3577 * stop, and a check if it's stopped. All other device management is
3578 * done at the overall netdevice level.
3579 * Also test the device if we're multiqueue.
3580 */
3581
3582 /**
3583 * netif_start_subqueue - allow sending packets on subqueue
3584 * @dev: network device
3585 * @queue_index: sub queue index
3586 *
3587 * Start individual transmit queue of a device with multiple transmit queues.
3588 */
3589 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3590 {
3591 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3592
3593 netif_tx_start_queue(txq);
3594 }
3595
3596 /**
3597 * netif_stop_subqueue - stop sending packets on subqueue
3598 * @dev: network device
3599 * @queue_index: sub queue index
3600 *
3601 * Stop individual transmit queue of a device with multiple transmit queues.
3602 */
3603 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3604 {
3605 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3606 netif_tx_stop_queue(txq);
3607 }
3608
3609 /**
3610 * __netif_subqueue_stopped - test status of subqueue
3611 * @dev: network device
3612 * @queue_index: sub queue index
3613 *
3614 * Check individual transmit queue of a device with multiple transmit queues.
3615 */
3616 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3617 u16 queue_index)
3618 {
3619 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3620
3621 return netif_tx_queue_stopped(txq);
3622 }
3623
3624 /**
3625 * netif_subqueue_stopped - test status of subqueue
3626 * @dev: network device
3627 * @skb: sub queue buffer pointer
3628 *
3629 * Check individual transmit queue of a device with multiple transmit queues.
3630 */
3631 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3632 struct sk_buff *skb)
3633 {
3634 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3635 }
3636
3637 /**
3638 * netif_wake_subqueue - allow sending packets on subqueue
3639 * @dev: network device
3640 * @queue_index: sub queue index
3641 *
3642 * Resume individual transmit queue of a device with multiple transmit queues.
3643 */
3644 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3645 {
3646 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3647
3648 netif_tx_wake_queue(txq);
3649 }
3650
3651 #ifdef CONFIG_XPS
3652 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3653 u16 index);
3654 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3655 u16 index, bool is_rxqs_map);
3656
3657 /**
3658 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3659 * @j: CPU/Rx queue index
3660 * @mask: bitmask of all cpus/rx queues
3661 * @nr_bits: number of bits in the bitmask
3662 *
3663 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3664 */
3665 static inline bool netif_attr_test_mask(unsigned long j,
3666 const unsigned long *mask,
3667 unsigned int nr_bits)
3668 {
3669 cpu_max_bits_warn(j, nr_bits);
3670 return test_bit(j, mask);
3671 }
3672
3673 /**
3674 * netif_attr_test_online - Test for online CPU/Rx queue
3675 * @j: CPU/Rx queue index
3676 * @online_mask: bitmask for CPUs/Rx queues that are online
3677 * @nr_bits: number of bits in the bitmask
3678 *
3679 * Returns true if a CPU/Rx queue is online.
3680 */
3681 static inline bool netif_attr_test_online(unsigned long j,
3682 const unsigned long *online_mask,
3683 unsigned int nr_bits)
3684 {
3685 cpu_max_bits_warn(j, nr_bits);
3686
3687 if (online_mask)
3688 return test_bit(j, online_mask);
3689
3690 return (j < nr_bits);
3691 }
3692
3693 /**
3694 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3695 * @n: CPU/Rx queue index
3696 * @srcp: the cpumask/Rx queue mask pointer
3697 * @nr_bits: number of bits in the bitmask
3698 *
3699 * Returns >= nr_bits if no further CPUs/Rx queues set.
3700 */
3701 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3702 unsigned int nr_bits)
3703 {
3704 /* -1 is a legal arg here. */
3705 if (n != -1)
3706 cpu_max_bits_warn(n, nr_bits);
3707
3708 if (srcp)
3709 return find_next_bit(srcp, nr_bits, n + 1);
3710
3711 return n + 1;
3712 }
3713
3714 /**
3715 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3716 * @n: CPU/Rx queue index
3717 * @src1p: the first CPUs/Rx queues mask pointer
3718 * @src2p: the second CPUs/Rx queues mask pointer
3719 * @nr_bits: number of bits in the bitmask
3720 *
3721 * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3722 */
3723 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3724 const unsigned long *src2p,
3725 unsigned int nr_bits)
3726 {
3727 /* -1 is a legal arg here. */
3728 if (n != -1)
3729 cpu_max_bits_warn(n, nr_bits);
3730
3731 if (src1p && src2p)
3732 return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3733 else if (src1p)
3734 return find_next_bit(src1p, nr_bits, n + 1);
3735 else if (src2p)
3736 return find_next_bit(src2p, nr_bits, n + 1);
3737
3738 return n + 1;
3739 }
3740 #else
3741 static inline int netif_set_xps_queue(struct net_device *dev,
3742 const struct cpumask *mask,
3743 u16 index)
3744 {
3745 return 0;
3746 }
3747
3748 static inline int __netif_set_xps_queue(struct net_device *dev,
3749 const unsigned long *mask,
3750 u16 index, bool is_rxqs_map)
3751 {
3752 return 0;
3753 }
3754 #endif
3755
3756 /**
3757 * netif_is_multiqueue - test if device has multiple transmit queues
3758 * @dev: network device
3759 *
3760 * Check if device has multiple transmit queues
3761 */
3762 static inline bool netif_is_multiqueue(const struct net_device *dev)
3763 {
3764 return dev->num_tx_queues > 1;
3765 }
3766
3767 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3768
3769 #ifdef CONFIG_SYSFS
3770 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3771 #else
3772 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3773 unsigned int rxqs)
3774 {
3775 dev->real_num_rx_queues = rxqs;
3776 return 0;
3777 }
3778 #endif
3779
3780 static inline struct netdev_rx_queue *
3781 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3782 {
3783 return dev->_rx + rxq;
3784 }
3785
3786 #ifdef CONFIG_SYSFS
3787 static inline unsigned int get_netdev_rx_queue_index(
3788 struct netdev_rx_queue *queue)
3789 {
3790 struct net_device *dev = queue->dev;
3791 int index = queue - dev->_rx;
3792
3793 BUG_ON(index >= dev->num_rx_queues);
3794 return index;
3795 }
3796 #endif
3797
3798 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
3799 int netif_get_num_default_rss_queues(void);
3800
3801 enum skb_free_reason {
3802 SKB_REASON_CONSUMED,
3803 SKB_REASON_DROPPED,
3804 };
3805
3806 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3807 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3808
3809 /*
3810 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3811 * interrupt context or with hardware interrupts being disabled.
3812 * (in_irq() || irqs_disabled())
3813 *
3814 * We provide four helpers that can be used in following contexts :
3815 *
3816 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3817 * replacing kfree_skb(skb)
3818 *
3819 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3820 * Typically used in place of consume_skb(skb) in TX completion path
3821 *
3822 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3823 * replacing kfree_skb(skb)
3824 *
3825 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3826 * and consumed a packet. Used in place of consume_skb(skb)
3827 */
3828 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3829 {
3830 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3831 }
3832
3833 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3834 {
3835 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3836 }
3837
3838 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3839 {
3840 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3841 }
3842
3843 static inline void dev_consume_skb_any(struct sk_buff *skb)
3844 {
3845 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3846 }
3847
3848 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3849 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3850 int netif_rx(struct sk_buff *skb);
3851 int netif_rx_ni(struct sk_buff *skb);
3852 int netif_rx_any_context(struct sk_buff *skb);
3853 int netif_receive_skb(struct sk_buff *skb);
3854 int netif_receive_skb_core(struct sk_buff *skb);
3855 void netif_receive_skb_list(struct list_head *head);
3856 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3857 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3858 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3859 gro_result_t napi_gro_frags(struct napi_struct *napi);
3860 struct packet_offload *gro_find_receive_by_type(__be16 type);
3861 struct packet_offload *gro_find_complete_by_type(__be16 type);
3862
3863 static inline void napi_free_frags(struct napi_struct *napi)
3864 {
3865 kfree_skb(napi->skb);
3866 napi->skb = NULL;
3867 }
3868
3869 bool netdev_is_rx_handler_busy(struct net_device *dev);
3870 int netdev_rx_handler_register(struct net_device *dev,
3871 rx_handler_func_t *rx_handler,
3872 void *rx_handler_data);
3873 void netdev_rx_handler_unregister(struct net_device *dev);
3874
3875 bool dev_valid_name(const char *name);
3876 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3877 bool *need_copyout);
3878 int dev_ifconf(struct net *net, struct ifconf *, int);
3879 int dev_ethtool(struct net *net, struct ifreq *);
3880 unsigned int dev_get_flags(const struct net_device *);
3881 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3882 struct netlink_ext_ack *extack);
3883 int dev_change_flags(struct net_device *dev, unsigned int flags,
3884 struct netlink_ext_ack *extack);
3885 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3886 unsigned int gchanges);
3887 int dev_change_name(struct net_device *, const char *);
3888 int dev_set_alias(struct net_device *, const char *, size_t);
3889 int dev_get_alias(const struct net_device *, char *, size_t);
3890 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3891 int __dev_set_mtu(struct net_device *, int);
3892 int dev_validate_mtu(struct net_device *dev, int mtu,
3893 struct netlink_ext_ack *extack);
3894 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3895 struct netlink_ext_ack *extack);
3896 int dev_set_mtu(struct net_device *, int);
3897 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3898 void dev_set_group(struct net_device *, int);
3899 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3900 struct netlink_ext_ack *extack);
3901 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3902 struct netlink_ext_ack *extack);
3903 int dev_change_carrier(struct net_device *, bool new_carrier);
3904 int dev_get_phys_port_id(struct net_device *dev,
3905 struct netdev_phys_item_id *ppid);
3906 int dev_get_phys_port_name(struct net_device *dev,
3907 char *name, size_t len);
3908 int dev_get_port_parent_id(struct net_device *dev,
3909 struct netdev_phys_item_id *ppid, bool recurse);
3910 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3911 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3912 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3913 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
3914 u32 value);
3915 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3916 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3917 struct netdev_queue *txq, int *ret);
3918
3919 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3920 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3921 int fd, int expected_fd, u32 flags);
3922 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3923 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3924
3925 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3926
3927 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3928 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3929 bool is_skb_forwardable(const struct net_device *dev,
3930 const struct sk_buff *skb);
3931
3932 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3933 struct sk_buff *skb)
3934 {
3935 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3936 unlikely(!is_skb_forwardable(dev, skb))) {
3937 atomic_long_inc(&dev->rx_dropped);
3938 kfree_skb(skb);
3939 return NET_RX_DROP;
3940 }
3941
3942 skb_scrub_packet(skb, true);
3943 skb->priority = 0;
3944 return 0;
3945 }
3946
3947 bool dev_nit_active(struct net_device *dev);
3948 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3949
3950 extern int netdev_budget;
3951 extern unsigned int netdev_budget_usecs;
3952
3953 /* Called by rtnetlink.c:rtnl_unlock() */
3954 void netdev_run_todo(void);
3955
3956 /**
3957 * dev_put - release reference to device
3958 * @dev: network device
3959 *
3960 * Release reference to device to allow it to be freed.
3961 */
3962 static inline void dev_put(struct net_device *dev)
3963 {
3964 this_cpu_dec(*dev->pcpu_refcnt);
3965 }
3966
3967 /**
3968 * dev_hold - get reference to device
3969 * @dev: network device
3970 *
3971 * Hold reference to device to keep it from being freed.
3972 */
3973 static inline void dev_hold(struct net_device *dev)
3974 {
3975 this_cpu_inc(*dev->pcpu_refcnt);
3976 }
3977
3978 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3979 * and _off may be called from IRQ context, but it is caller
3980 * who is responsible for serialization of these calls.
3981 *
3982 * The name carrier is inappropriate, these functions should really be
3983 * called netif_lowerlayer_*() because they represent the state of any
3984 * kind of lower layer not just hardware media.
3985 */
3986
3987 void linkwatch_init_dev(struct net_device *dev);
3988 void linkwatch_fire_event(struct net_device *dev);
3989 void linkwatch_forget_dev(struct net_device *dev);
3990
3991 /**
3992 * netif_carrier_ok - test if carrier present
3993 * @dev: network device
3994 *
3995 * Check if carrier is present on device
3996 */
3997 static inline bool netif_carrier_ok(const struct net_device *dev)
3998 {
3999 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4000 }
4001
4002 unsigned long dev_trans_start(struct net_device *dev);
4003
4004 void __netdev_watchdog_up(struct net_device *dev);
4005
4006 void netif_carrier_on(struct net_device *dev);
4007
4008 void netif_carrier_off(struct net_device *dev);
4009
4010 /**
4011 * netif_dormant_on - mark device as dormant.
4012 * @dev: network device
4013 *
4014 * Mark device as dormant (as per RFC2863).
4015 *
4016 * The dormant state indicates that the relevant interface is not
4017 * actually in a condition to pass packets (i.e., it is not 'up') but is
4018 * in a "pending" state, waiting for some external event. For "on-
4019 * demand" interfaces, this new state identifies the situation where the
4020 * interface is waiting for events to place it in the up state.
4021 */
4022 static inline void netif_dormant_on(struct net_device *dev)
4023 {
4024 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4025 linkwatch_fire_event(dev);
4026 }
4027
4028 /**
4029 * netif_dormant_off - set device as not dormant.
4030 * @dev: network device
4031 *
4032 * Device is not in dormant state.
4033 */
4034 static inline void netif_dormant_off(struct net_device *dev)
4035 {
4036 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4037 linkwatch_fire_event(dev);
4038 }
4039
4040 /**
4041 * netif_dormant - test if device is dormant
4042 * @dev: network device
4043 *
4044 * Check if device is dormant.
4045 */
4046 static inline bool netif_dormant(const struct net_device *dev)
4047 {
4048 return test_bit(__LINK_STATE_DORMANT, &dev->state);
4049 }
4050
4051
4052 /**
4053 * netif_testing_on - mark device as under test.
4054 * @dev: network device
4055 *
4056 * Mark device as under test (as per RFC2863).
4057 *
4058 * The testing state indicates that some test(s) must be performed on
4059 * the interface. After completion, of the test, the interface state
4060 * will change to up, dormant, or down, as appropriate.
4061 */
4062 static inline void netif_testing_on(struct net_device *dev)
4063 {
4064 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4065 linkwatch_fire_event(dev);
4066 }
4067
4068 /**
4069 * netif_testing_off - set device as not under test.
4070 * @dev: network device
4071 *
4072 * Device is not in testing state.
4073 */
4074 static inline void netif_testing_off(struct net_device *dev)
4075 {
4076 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4077 linkwatch_fire_event(dev);
4078 }
4079
4080 /**
4081 * netif_testing - test if device is under test
4082 * @dev: network device
4083 *
4084 * Check if device is under test
4085 */
4086 static inline bool netif_testing(const struct net_device *dev)
4087 {
4088 return test_bit(__LINK_STATE_TESTING, &dev->state);
4089 }
4090
4091
4092 /**
4093 * netif_oper_up - test if device is operational
4094 * @dev: network device
4095 *
4096 * Check if carrier is operational
4097 */
4098 static inline bool netif_oper_up(const struct net_device *dev)
4099 {
4100 return (dev->operstate == IF_OPER_UP ||
4101 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4102 }
4103
4104 /**
4105 * netif_device_present - is device available or removed
4106 * @dev: network device
4107 *
4108 * Check if device has not been removed from system.
4109 */
4110 static inline bool netif_device_present(struct net_device *dev)
4111 {
4112 return test_bit(__LINK_STATE_PRESENT, &dev->state);
4113 }
4114
4115 void netif_device_detach(struct net_device *dev);
4116
4117 void netif_device_attach(struct net_device *dev);
4118
4119 /*
4120 * Network interface message level settings
4121 */
4122
4123 enum {
4124 NETIF_MSG_DRV_BIT,
4125 NETIF_MSG_PROBE_BIT,
4126 NETIF_MSG_LINK_BIT,
4127 NETIF_MSG_TIMER_BIT,
4128 NETIF_MSG_IFDOWN_BIT,
4129 NETIF_MSG_IFUP_BIT,
4130 NETIF_MSG_RX_ERR_BIT,
4131 NETIF_MSG_TX_ERR_BIT,
4132 NETIF_MSG_TX_QUEUED_BIT,
4133 NETIF_MSG_INTR_BIT,
4134 NETIF_MSG_TX_DONE_BIT,
4135 NETIF_MSG_RX_STATUS_BIT,
4136 NETIF_MSG_PKTDATA_BIT,
4137 NETIF_MSG_HW_BIT,
4138 NETIF_MSG_WOL_BIT,
4139
4140 /* When you add a new bit above, update netif_msg_class_names array
4141 * in net/ethtool/common.c
4142 */
4143 NETIF_MSG_CLASS_COUNT,
4144 };
4145 /* Both ethtool_ops interface and internal driver implementation use u32 */
4146 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4147
4148 #define __NETIF_MSG_BIT(bit) ((u32)1 << (bit))
4149 #define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4150
4151 #define NETIF_MSG_DRV __NETIF_MSG(DRV)
4152 #define NETIF_MSG_PROBE __NETIF_MSG(PROBE)
4153 #define NETIF_MSG_LINK __NETIF_MSG(LINK)
4154 #define NETIF_MSG_TIMER __NETIF_MSG(TIMER)
4155 #define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN)
4156 #define NETIF_MSG_IFUP __NETIF_MSG(IFUP)
4157 #define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR)
4158 #define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR)
4159 #define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED)
4160 #define NETIF_MSG_INTR __NETIF_MSG(INTR)
4161 #define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE)
4162 #define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS)
4163 #define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA)
4164 #define NETIF_MSG_HW __NETIF_MSG(HW)
4165 #define NETIF_MSG_WOL __NETIF_MSG(WOL)
4166
4167 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
4168 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
4169 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
4170 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
4171 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
4172 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
4173 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
4174 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
4175 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4176 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
4177 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
4178 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
4179 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
4180 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
4181 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
4182
4183 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4184 {
4185 /* use default */
4186 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4187 return default_msg_enable_bits;
4188 if (debug_value == 0) /* no output */
4189 return 0;
4190 /* set low N bits */
4191 return (1U << debug_value) - 1;
4192 }
4193
4194 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4195 {
4196 spin_lock(&txq->_xmit_lock);
4197 txq->xmit_lock_owner = cpu;
4198 }
4199
4200 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4201 {
4202 __acquire(&txq->_xmit_lock);
4203 return true;
4204 }
4205
4206 static inline void __netif_tx_release(struct netdev_queue *txq)
4207 {
4208 __release(&txq->_xmit_lock);
4209 }
4210
4211 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4212 {
4213 spin_lock_bh(&txq->_xmit_lock);
4214 txq->xmit_lock_owner = smp_processor_id();
4215 }
4216
4217 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4218 {
4219 bool ok = spin_trylock(&txq->_xmit_lock);
4220 if (likely(ok))
4221 txq->xmit_lock_owner = smp_processor_id();
4222 return ok;
4223 }
4224
4225 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4226 {
4227 txq->xmit_lock_owner = -1;
4228 spin_unlock(&txq->_xmit_lock);
4229 }
4230
4231 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4232 {
4233 txq->xmit_lock_owner = -1;
4234 spin_unlock_bh(&txq->_xmit_lock);
4235 }
4236
4237 static inline void txq_trans_update(struct netdev_queue *txq)
4238 {
4239 if (txq->xmit_lock_owner != -1)
4240 txq->trans_start = jiffies;
4241 }
4242
4243 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4244 static inline void netif_trans_update(struct net_device *dev)
4245 {
4246 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4247
4248 if (txq->trans_start != jiffies)
4249 txq->trans_start = jiffies;
4250 }
4251
4252 /**
4253 * netif_tx_lock - grab network device transmit lock
4254 * @dev: network device
4255 *
4256 * Get network device transmit lock
4257 */
4258 static inline void netif_tx_lock(struct net_device *dev)
4259 {
4260 unsigned int i;
4261 int cpu;
4262
4263 spin_lock(&dev->tx_global_lock);
4264 cpu = smp_processor_id();
4265 for (i = 0; i < dev->num_tx_queues; i++) {
4266 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4267
4268 /* We are the only thread of execution doing a
4269 * freeze, but we have to grab the _xmit_lock in
4270 * order to synchronize with threads which are in
4271 * the ->hard_start_xmit() handler and already
4272 * checked the frozen bit.
4273 */
4274 __netif_tx_lock(txq, cpu);
4275 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4276 __netif_tx_unlock(txq);
4277 }
4278 }
4279
4280 static inline void netif_tx_lock_bh(struct net_device *dev)
4281 {
4282 local_bh_disable();
4283 netif_tx_lock(dev);
4284 }
4285
4286 static inline void netif_tx_unlock(struct net_device *dev)
4287 {
4288 unsigned int i;
4289
4290 for (i = 0; i < dev->num_tx_queues; i++) {
4291 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4292
4293 /* No need to grab the _xmit_lock here. If the
4294 * queue is not stopped for another reason, we
4295 * force a schedule.
4296 */
4297 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4298 netif_schedule_queue(txq);
4299 }
4300 spin_unlock(&dev->tx_global_lock);
4301 }
4302
4303 static inline void netif_tx_unlock_bh(struct net_device *dev)
4304 {
4305 netif_tx_unlock(dev);
4306 local_bh_enable();
4307 }
4308
4309 #define HARD_TX_LOCK(dev, txq, cpu) { \
4310 if ((dev->features & NETIF_F_LLTX) == 0) { \
4311 __netif_tx_lock(txq, cpu); \
4312 } else { \
4313 __netif_tx_acquire(txq); \
4314 } \
4315 }
4316
4317 #define HARD_TX_TRYLOCK(dev, txq) \
4318 (((dev->features & NETIF_F_LLTX) == 0) ? \
4319 __netif_tx_trylock(txq) : \
4320 __netif_tx_acquire(txq))
4321
4322 #define HARD_TX_UNLOCK(dev, txq) { \
4323 if ((dev->features & NETIF_F_LLTX) == 0) { \
4324 __netif_tx_unlock(txq); \
4325 } else { \
4326 __netif_tx_release(txq); \
4327 } \
4328 }
4329
4330 static inline void netif_tx_disable(struct net_device *dev)
4331 {
4332 unsigned int i;
4333 int cpu;
4334
4335 local_bh_disable();
4336 cpu = smp_processor_id();
4337 for (i = 0; i < dev->num_tx_queues; i++) {
4338 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4339
4340 __netif_tx_lock(txq, cpu);
4341 netif_tx_stop_queue(txq);
4342 __netif_tx_unlock(txq);
4343 }
4344 local_bh_enable();
4345 }
4346
4347 static inline void netif_addr_lock(struct net_device *dev)
4348 {
4349 unsigned char nest_level = 0;
4350
4351 #ifdef CONFIG_LOCKDEP
4352 nest_level = dev->nested_level;
4353 #endif
4354 spin_lock_nested(&dev->addr_list_lock, nest_level);
4355 }
4356
4357 static inline void netif_addr_lock_bh(struct net_device *dev)
4358 {
4359 unsigned char nest_level = 0;
4360
4361 #ifdef CONFIG_LOCKDEP
4362 nest_level = dev->nested_level;
4363 #endif
4364 local_bh_disable();
4365 spin_lock_nested(&dev->addr_list_lock, nest_level);
4366 }
4367
4368 static inline void netif_addr_unlock(struct net_device *dev)
4369 {
4370 spin_unlock(&dev->addr_list_lock);
4371 }
4372
4373 static inline void netif_addr_unlock_bh(struct net_device *dev)
4374 {
4375 spin_unlock_bh(&dev->addr_list_lock);
4376 }
4377
4378 /*
4379 * dev_addrs walker. Should be used only for read access. Call with
4380 * rcu_read_lock held.
4381 */
4382 #define for_each_dev_addr(dev, ha) \
4383 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4384
4385 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4386
4387 void ether_setup(struct net_device *dev);
4388
4389 /* Support for loadable net-drivers */
4390 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4391 unsigned char name_assign_type,
4392 void (*setup)(struct net_device *),
4393 unsigned int txqs, unsigned int rxqs);
4394 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4395 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4396
4397 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4398 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4399 count)
4400
4401 int register_netdev(struct net_device *dev);
4402 void unregister_netdev(struct net_device *dev);
4403
4404 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4405
4406 /* General hardware address lists handling functions */
4407 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4408 struct netdev_hw_addr_list *from_list, int addr_len);
4409 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4410 struct netdev_hw_addr_list *from_list, int addr_len);
4411 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4412 struct net_device *dev,
4413 int (*sync)(struct net_device *, const unsigned char *),
4414 int (*unsync)(struct net_device *,
4415 const unsigned char *));
4416 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4417 struct net_device *dev,
4418 int (*sync)(struct net_device *,
4419 const unsigned char *, int),
4420 int (*unsync)(struct net_device *,
4421 const unsigned char *, int));
4422 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4423 struct net_device *dev,
4424 int (*unsync)(struct net_device *,
4425 const unsigned char *, int));
4426 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4427 struct net_device *dev,
4428 int (*unsync)(struct net_device *,
4429 const unsigned char *));
4430 void __hw_addr_init(struct netdev_hw_addr_list *list);
4431
4432 /* Functions used for device addresses handling */
4433 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4434 unsigned char addr_type);
4435 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4436 unsigned char addr_type);
4437 void dev_addr_flush(struct net_device *dev);
4438 int dev_addr_init(struct net_device *dev);
4439
4440 /* Functions used for unicast addresses handling */
4441 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4442 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4443 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4444 int dev_uc_sync(struct net_device *to, struct net_device *from);
4445 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4446 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4447 void dev_uc_flush(struct net_device *dev);
4448 void dev_uc_init(struct net_device *dev);
4449
4450 /**
4451 * __dev_uc_sync - Synchonize device's unicast list
4452 * @dev: device to sync
4453 * @sync: function to call if address should be added
4454 * @unsync: function to call if address should be removed
4455 *
4456 * Add newly added addresses to the interface, and release
4457 * addresses that have been deleted.
4458 */
4459 static inline int __dev_uc_sync(struct net_device *dev,
4460 int (*sync)(struct net_device *,
4461 const unsigned char *),
4462 int (*unsync)(struct net_device *,
4463 const unsigned char *))
4464 {
4465 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4466 }
4467
4468 /**
4469 * __dev_uc_unsync - Remove synchronized addresses from device
4470 * @dev: device to sync
4471 * @unsync: function to call if address should be removed
4472 *
4473 * Remove all addresses that were added to the device by dev_uc_sync().
4474 */
4475 static inline void __dev_uc_unsync(struct net_device *dev,
4476 int (*unsync)(struct net_device *,
4477 const unsigned char *))
4478 {
4479 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
4480 }
4481
4482 /* Functions used for multicast addresses handling */
4483 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4484 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4485 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4486 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4487 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4488 int dev_mc_sync(struct net_device *to, struct net_device *from);
4489 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4490 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4491 void dev_mc_flush(struct net_device *dev);
4492 void dev_mc_init(struct net_device *dev);
4493
4494 /**
4495 * __dev_mc_sync - Synchonize device's multicast list
4496 * @dev: device to sync
4497 * @sync: function to call if address should be added
4498 * @unsync: function to call if address should be removed
4499 *
4500 * Add newly added addresses to the interface, and release
4501 * addresses that have been deleted.
4502 */
4503 static inline int __dev_mc_sync(struct net_device *dev,
4504 int (*sync)(struct net_device *,
4505 const unsigned char *),
4506 int (*unsync)(struct net_device *,
4507 const unsigned char *))
4508 {
4509 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4510 }
4511
4512 /**
4513 * __dev_mc_unsync - Remove synchronized addresses from device
4514 * @dev: device to sync
4515 * @unsync: function to call if address should be removed
4516 *
4517 * Remove all addresses that were added to the device by dev_mc_sync().
4518 */
4519 static inline void __dev_mc_unsync(struct net_device *dev,
4520 int (*unsync)(struct net_device *,
4521 const unsigned char *))
4522 {
4523 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
4524 }
4525
4526 /* Functions used for secondary unicast and multicast support */
4527 void dev_set_rx_mode(struct net_device *dev);
4528 void __dev_set_rx_mode(struct net_device *dev);
4529 int dev_set_promiscuity(struct net_device *dev, int inc);
4530 int dev_set_allmulti(struct net_device *dev, int inc);
4531 void netdev_state_change(struct net_device *dev);
4532 void netdev_notify_peers(struct net_device *dev);
4533 void netdev_features_change(struct net_device *dev);
4534 /* Load a device via the kmod */
4535 void dev_load(struct net *net, const char *name);
4536 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4537 struct rtnl_link_stats64 *storage);
4538 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4539 const struct net_device_stats *netdev_stats);
4540 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4541 const struct pcpu_sw_netstats __percpu *netstats);
4542 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4543
4544 extern int netdev_max_backlog;
4545 extern int netdev_tstamp_prequeue;
4546 extern int weight_p;
4547 extern int dev_weight_rx_bias;
4548 extern int dev_weight_tx_bias;
4549 extern int dev_rx_weight;
4550 extern int dev_tx_weight;
4551 extern int gro_normal_batch;
4552
4553 enum {
4554 NESTED_SYNC_IMM_BIT,
4555 NESTED_SYNC_TODO_BIT,
4556 };
4557
4558 #define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit))
4559 #define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4560
4561 #define NESTED_SYNC_IMM __NESTED_SYNC(IMM)
4562 #define NESTED_SYNC_TODO __NESTED_SYNC(TODO)
4563
4564 struct netdev_nested_priv {
4565 unsigned char flags;
4566 void *data;
4567 };
4568
4569 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4570 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4571 struct list_head **iter);
4572 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4573 struct list_head **iter);
4574
4575 #ifdef CONFIG_LOCKDEP
4576 static LIST_HEAD(net_unlink_list);
4577
4578 static inline void net_unlink_todo(struct net_device *dev)
4579 {
4580 if (list_empty(&dev->unlink_list))
4581 list_add_tail(&dev->unlink_list, &net_unlink_list);
4582 }
4583 #endif
4584
4585 /* iterate through upper list, must be called under RCU read lock */
4586 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4587 for (iter = &(dev)->adj_list.upper, \
4588 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4589 updev; \
4590 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4591
4592 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4593 int (*fn)(struct net_device *upper_dev,
4594 struct netdev_nested_priv *priv),
4595 struct netdev_nested_priv *priv);
4596
4597 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4598 struct net_device *upper_dev);
4599
4600 bool netdev_has_any_upper_dev(struct net_device *dev);
4601
4602 void *netdev_lower_get_next_private(struct net_device *dev,
4603 struct list_head **iter);
4604 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4605 struct list_head **iter);
4606
4607 #define netdev_for_each_lower_private(dev, priv, iter) \
4608 for (iter = (dev)->adj_list.lower.next, \
4609 priv = netdev_lower_get_next_private(dev, &(iter)); \
4610 priv; \
4611 priv = netdev_lower_get_next_private(dev, &(iter)))
4612
4613 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4614 for (iter = &(dev)->adj_list.lower, \
4615 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4616 priv; \
4617 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4618
4619 void *netdev_lower_get_next(struct net_device *dev,
4620 struct list_head **iter);
4621
4622 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4623 for (iter = (dev)->adj_list.lower.next, \
4624 ldev = netdev_lower_get_next(dev, &(iter)); \
4625 ldev; \
4626 ldev = netdev_lower_get_next(dev, &(iter)))
4627
4628 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4629 struct list_head **iter);
4630 int netdev_walk_all_lower_dev(struct net_device *dev,
4631 int (*fn)(struct net_device *lower_dev,
4632 struct netdev_nested_priv *priv),
4633 struct netdev_nested_priv *priv);
4634 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4635 int (*fn)(struct net_device *lower_dev,
4636 struct netdev_nested_priv *priv),
4637 struct netdev_nested_priv *priv);
4638
4639 void *netdev_adjacent_get_private(struct list_head *adj_list);
4640 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4641 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4642 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4643 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4644 struct netlink_ext_ack *extack);
4645 int netdev_master_upper_dev_link(struct net_device *dev,
4646 struct net_device *upper_dev,
4647 void *upper_priv, void *upper_info,
4648 struct netlink_ext_ack *extack);
4649 void netdev_upper_dev_unlink(struct net_device *dev,
4650 struct net_device *upper_dev);
4651 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4652 struct net_device *new_dev,
4653 struct net_device *dev,
4654 struct netlink_ext_ack *extack);
4655 void netdev_adjacent_change_commit(struct net_device *old_dev,
4656 struct net_device *new_dev,
4657 struct net_device *dev);
4658 void netdev_adjacent_change_abort(struct net_device *old_dev,
4659 struct net_device *new_dev,
4660 struct net_device *dev);
4661 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4662 void *netdev_lower_dev_get_private(struct net_device *dev,
4663 struct net_device *lower_dev);
4664 void netdev_lower_state_changed(struct net_device *lower_dev,
4665 void *lower_state_info);
4666
4667 /* RSS keys are 40 or 52 bytes long */
4668 #define NETDEV_RSS_KEY_LEN 52
4669 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4670 void netdev_rss_key_fill(void *buffer, size_t len);
4671
4672 int skb_checksum_help(struct sk_buff *skb);
4673 int skb_crc32c_csum_help(struct sk_buff *skb);
4674 int skb_csum_hwoffload_help(struct sk_buff *skb,
4675 const netdev_features_t features);
4676
4677 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4678 netdev_features_t features, bool tx_path);
4679 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4680 netdev_features_t features);
4681
4682 struct netdev_bonding_info {
4683 ifslave slave;
4684 ifbond master;
4685 };
4686
4687 struct netdev_notifier_bonding_info {
4688 struct netdev_notifier_info info; /* must be first */
4689 struct netdev_bonding_info bonding_info;
4690 };
4691
4692 void netdev_bonding_info_change(struct net_device *dev,
4693 struct netdev_bonding_info *bonding_info);
4694
4695 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4696 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4697 #else
4698 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4699 const void *data)
4700 {
4701 }
4702 #endif
4703
4704 static inline
4705 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4706 {
4707 return __skb_gso_segment(skb, features, true);
4708 }
4709 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4710
4711 static inline bool can_checksum_protocol(netdev_features_t features,
4712 __be16 protocol)
4713 {
4714 if (protocol == htons(ETH_P_FCOE))
4715 return !!(features & NETIF_F_FCOE_CRC);
4716
4717 /* Assume this is an IP checksum (not SCTP CRC) */
4718
4719 if (features & NETIF_F_HW_CSUM) {
4720 /* Can checksum everything */
4721 return true;
4722 }
4723
4724 switch (protocol) {
4725 case htons(ETH_P_IP):
4726 return !!(features & NETIF_F_IP_CSUM);
4727 case htons(ETH_P_IPV6):
4728 return !!(features & NETIF_F_IPV6_CSUM);
4729 default:
4730 return false;
4731 }
4732 }
4733
4734 #ifdef CONFIG_BUG
4735 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4736 #else
4737 static inline void netdev_rx_csum_fault(struct net_device *dev,
4738 struct sk_buff *skb)
4739 {
4740 }
4741 #endif
4742 /* rx skb timestamps */
4743 void net_enable_timestamp(void);
4744 void net_disable_timestamp(void);
4745
4746 #ifdef CONFIG_PROC_FS
4747 int __init dev_proc_init(void);
4748 #else
4749 #define dev_proc_init() 0
4750 #endif
4751
4752 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4753 struct sk_buff *skb, struct net_device *dev,
4754 bool more)
4755 {
4756 __this_cpu_write(softnet_data.xmit.more, more);
4757 return ops->ndo_start_xmit(skb, dev);
4758 }
4759
4760 static inline bool netdev_xmit_more(void)
4761 {
4762 return __this_cpu_read(softnet_data.xmit.more);
4763 }
4764
4765 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4766 struct netdev_queue *txq, bool more)
4767 {
4768 const struct net_device_ops *ops = dev->netdev_ops;
4769 netdev_tx_t rc;
4770
4771 rc = __netdev_start_xmit(ops, skb, dev, more);
4772 if (rc == NETDEV_TX_OK)
4773 txq_trans_update(txq);
4774
4775 return rc;
4776 }
4777
4778 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4779 const void *ns);
4780 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4781 const void *ns);
4782
4783 extern const struct kobj_ns_type_operations net_ns_type_operations;
4784
4785 const char *netdev_drivername(const struct net_device *dev);
4786
4787 void linkwatch_run_queue(void);
4788
4789 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4790 netdev_features_t f2)
4791 {
4792 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4793 if (f1 & NETIF_F_HW_CSUM)
4794 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4795 else
4796 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4797 }
4798
4799 return f1 & f2;
4800 }
4801
4802 static inline netdev_features_t netdev_get_wanted_features(
4803 struct net_device *dev)
4804 {
4805 return (dev->features & ~dev->hw_features) | dev->wanted_features;
4806 }
4807 netdev_features_t netdev_increment_features(netdev_features_t all,
4808 netdev_features_t one, netdev_features_t mask);
4809
4810 /* Allow TSO being used on stacked device :
4811 * Performing the GSO segmentation before last device
4812 * is a performance improvement.
4813 */
4814 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4815 netdev_features_t mask)
4816 {
4817 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4818 }
4819
4820 int __netdev_update_features(struct net_device *dev);
4821 void netdev_update_features(struct net_device *dev);
4822 void netdev_change_features(struct net_device *dev);
4823
4824 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4825 struct net_device *dev);
4826
4827 netdev_features_t passthru_features_check(struct sk_buff *skb,
4828 struct net_device *dev,
4829 netdev_features_t features);
4830 netdev_features_t netif_skb_features(struct sk_buff *skb);
4831
4832 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4833 {
4834 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4835
4836 /* check flags correspondence */
4837 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4838 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4839 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4840 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4841 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4842 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4843 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4844 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4845 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4846 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4847 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4848 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4849 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4850 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4851 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4852 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4853 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4854 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4855 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4856
4857 return (features & feature) == feature;
4858 }
4859
4860 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4861 {
4862 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4863 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4864 }
4865
4866 static inline bool netif_needs_gso(struct sk_buff *skb,
4867 netdev_features_t features)
4868 {
4869 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4870 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4871 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4872 }
4873
4874 static inline void netif_set_gso_max_size(struct net_device *dev,
4875 unsigned int size)
4876 {
4877 dev->gso_max_size = size;
4878 }
4879
4880 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4881 int pulled_hlen, u16 mac_offset,
4882 int mac_len)
4883 {
4884 skb->protocol = protocol;
4885 skb->encapsulation = 1;
4886 skb_push(skb, pulled_hlen);
4887 skb_reset_transport_header(skb);
4888 skb->mac_header = mac_offset;
4889 skb->network_header = skb->mac_header + mac_len;
4890 skb->mac_len = mac_len;
4891 }
4892
4893 static inline bool netif_is_macsec(const struct net_device *dev)
4894 {
4895 return dev->priv_flags & IFF_MACSEC;
4896 }
4897
4898 static inline bool netif_is_macvlan(const struct net_device *dev)
4899 {
4900 return dev->priv_flags & IFF_MACVLAN;
4901 }
4902
4903 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4904 {
4905 return dev->priv_flags & IFF_MACVLAN_PORT;
4906 }
4907
4908 static inline bool netif_is_bond_master(const struct net_device *dev)
4909 {
4910 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4911 }
4912
4913 static inline bool netif_is_bond_slave(const struct net_device *dev)
4914 {
4915 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4916 }
4917
4918 static inline bool netif_supports_nofcs(struct net_device *dev)
4919 {
4920 return dev->priv_flags & IFF_SUPP_NOFCS;
4921 }
4922
4923 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4924 {
4925 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4926 }
4927
4928 static inline bool netif_is_l3_master(const struct net_device *dev)
4929 {
4930 return dev->priv_flags & IFF_L3MDEV_MASTER;
4931 }
4932
4933 static inline bool netif_is_l3_slave(const struct net_device *dev)
4934 {
4935 return dev->priv_flags & IFF_L3MDEV_SLAVE;
4936 }
4937
4938 static inline bool netif_is_bridge_master(const struct net_device *dev)
4939 {
4940 return dev->priv_flags & IFF_EBRIDGE;
4941 }
4942
4943 static inline bool netif_is_bridge_port(const struct net_device *dev)
4944 {
4945 return dev->priv_flags & IFF_BRIDGE_PORT;
4946 }
4947
4948 static inline bool netif_is_ovs_master(const struct net_device *dev)
4949 {
4950 return dev->priv_flags & IFF_OPENVSWITCH;
4951 }
4952
4953 static inline bool netif_is_ovs_port(const struct net_device *dev)
4954 {
4955 return dev->priv_flags & IFF_OVS_DATAPATH;
4956 }
4957
4958 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
4959 {
4960 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
4961 }
4962
4963 static inline bool netif_is_team_master(const struct net_device *dev)
4964 {
4965 return dev->priv_flags & IFF_TEAM;
4966 }
4967
4968 static inline bool netif_is_team_port(const struct net_device *dev)
4969 {
4970 return dev->priv_flags & IFF_TEAM_PORT;
4971 }
4972
4973 static inline bool netif_is_lag_master(const struct net_device *dev)
4974 {
4975 return netif_is_bond_master(dev) || netif_is_team_master(dev);
4976 }
4977
4978 static inline bool netif_is_lag_port(const struct net_device *dev)
4979 {
4980 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4981 }
4982
4983 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4984 {
4985 return dev->priv_flags & IFF_RXFH_CONFIGURED;
4986 }
4987
4988 static inline bool netif_is_failover(const struct net_device *dev)
4989 {
4990 return dev->priv_flags & IFF_FAILOVER;
4991 }
4992
4993 static inline bool netif_is_failover_slave(const struct net_device *dev)
4994 {
4995 return dev->priv_flags & IFF_FAILOVER_SLAVE;
4996 }
4997
4998 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4999 static inline void netif_keep_dst(struct net_device *dev)
5000 {
5001 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5002 }
5003
5004 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5005 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5006 {
5007 /* TODO: reserve and use an additional IFF bit, if we get more users */
5008 return dev->priv_flags & IFF_MACSEC;
5009 }
5010
5011 extern struct pernet_operations __net_initdata loopback_net_ops;
5012
5013 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5014
5015 /* netdev_printk helpers, similar to dev_printk */
5016
5017 static inline const char *netdev_name(const struct net_device *dev)
5018 {
5019 if (!dev->name[0] || strchr(dev->name, '%'))
5020 return "(unnamed net_device)";
5021 return dev->name;
5022 }
5023
5024 static inline bool netdev_unregistering(const struct net_device *dev)
5025 {
5026 return dev->reg_state == NETREG_UNREGISTERING;
5027 }
5028
5029 static inline const char *netdev_reg_state(const struct net_device *dev)
5030 {
5031 switch (dev->reg_state) {
5032 case NETREG_UNINITIALIZED: return " (uninitialized)";
5033 case NETREG_REGISTERED: return "";
5034 case NETREG_UNREGISTERING: return " (unregistering)";
5035 case NETREG_UNREGISTERED: return " (unregistered)";
5036 case NETREG_RELEASED: return " (released)";
5037 case NETREG_DUMMY: return " (dummy)";
5038 }
5039
5040 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5041 return " (unknown)";
5042 }
5043
5044 __printf(3, 4) __cold
5045 void netdev_printk(const char *level, const struct net_device *dev,
5046 const char *format, ...);
5047 __printf(2, 3) __cold
5048 void netdev_emerg(const struct net_device *dev, const char *format, ...);
5049 __printf(2, 3) __cold
5050 void netdev_alert(const struct net_device *dev, const char *format, ...);
5051 __printf(2, 3) __cold
5052 void netdev_crit(const struct net_device *dev, const char *format, ...);
5053 __printf(2, 3) __cold
5054 void netdev_err(const struct net_device *dev, const char *format, ...);
5055 __printf(2, 3) __cold
5056 void netdev_warn(const struct net_device *dev, const char *format, ...);
5057 __printf(2, 3) __cold
5058 void netdev_notice(const struct net_device *dev, const char *format, ...);
5059 __printf(2, 3) __cold
5060 void netdev_info(const struct net_device *dev, const char *format, ...);
5061
5062 #define netdev_level_once(level, dev, fmt, ...) \
5063 do { \
5064 static bool __print_once __read_mostly; \
5065 \
5066 if (!__print_once) { \
5067 __print_once = true; \
5068 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \
5069 } \
5070 } while (0)
5071
5072 #define netdev_emerg_once(dev, fmt, ...) \
5073 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
5074 #define netdev_alert_once(dev, fmt, ...) \
5075 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
5076 #define netdev_crit_once(dev, fmt, ...) \
5077 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
5078 #define netdev_err_once(dev, fmt, ...) \
5079 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
5080 #define netdev_warn_once(dev, fmt, ...) \
5081 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
5082 #define netdev_notice_once(dev, fmt, ...) \
5083 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
5084 #define netdev_info_once(dev, fmt, ...) \
5085 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
5086
5087 #define MODULE_ALIAS_NETDEV(device) \
5088 MODULE_ALIAS("netdev-" device)
5089
5090 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5091 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5092 #define netdev_dbg(__dev, format, args...) \
5093 do { \
5094 dynamic_netdev_dbg(__dev, format, ##args); \
5095 } while (0)
5096 #elif defined(DEBUG)
5097 #define netdev_dbg(__dev, format, args...) \
5098 netdev_printk(KERN_DEBUG, __dev, format, ##args)
5099 #else
5100 #define netdev_dbg(__dev, format, args...) \
5101 ({ \
5102 if (0) \
5103 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
5104 })
5105 #endif
5106
5107 #if defined(VERBOSE_DEBUG)
5108 #define netdev_vdbg netdev_dbg
5109 #else
5110
5111 #define netdev_vdbg(dev, format, args...) \
5112 ({ \
5113 if (0) \
5114 netdev_printk(KERN_DEBUG, dev, format, ##args); \
5115 0; \
5116 })
5117 #endif
5118
5119 /*
5120 * netdev_WARN() acts like dev_printk(), but with the key difference
5121 * of using a WARN/WARN_ON to get the message out, including the
5122 * file/line information and a backtrace.
5123 */
5124 #define netdev_WARN(dev, format, args...) \
5125 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \
5126 netdev_reg_state(dev), ##args)
5127
5128 #define netdev_WARN_ONCE(dev, format, args...) \
5129 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \
5130 netdev_reg_state(dev), ##args)
5131
5132 /* netif printk helpers, similar to netdev_printk */
5133
5134 #define netif_printk(priv, type, level, dev, fmt, args...) \
5135 do { \
5136 if (netif_msg_##type(priv)) \
5137 netdev_printk(level, (dev), fmt, ##args); \
5138 } while (0)
5139
5140 #define netif_level(level, priv, type, dev, fmt, args...) \
5141 do { \
5142 if (netif_msg_##type(priv)) \
5143 netdev_##level(dev, fmt, ##args); \
5144 } while (0)
5145
5146 #define netif_emerg(priv, type, dev, fmt, args...) \
5147 netif_level(emerg, priv, type, dev, fmt, ##args)
5148 #define netif_alert(priv, type, dev, fmt, args...) \
5149 netif_level(alert, priv, type, dev, fmt, ##args)
5150 #define netif_crit(priv, type, dev, fmt, args...) \
5151 netif_level(crit, priv, type, dev, fmt, ##args)
5152 #define netif_err(priv, type, dev, fmt, args...) \
5153 netif_level(err, priv, type, dev, fmt, ##args)
5154 #define netif_warn(priv, type, dev, fmt, args...) \
5155 netif_level(warn, priv, type, dev, fmt, ##args)
5156 #define netif_notice(priv, type, dev, fmt, args...) \
5157 netif_level(notice, priv, type, dev, fmt, ##args)
5158 #define netif_info(priv, type, dev, fmt, args...) \
5159 netif_level(info, priv, type, dev, fmt, ##args)
5160
5161 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5162 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5163 #define netif_dbg(priv, type, netdev, format, args...) \
5164 do { \
5165 if (netif_msg_##type(priv)) \
5166 dynamic_netdev_dbg(netdev, format, ##args); \
5167 } while (0)
5168 #elif defined(DEBUG)
5169 #define netif_dbg(priv, type, dev, format, args...) \
5170 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5171 #else
5172 #define netif_dbg(priv, type, dev, format, args...) \
5173 ({ \
5174 if (0) \
5175 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5176 0; \
5177 })
5178 #endif
5179
5180 /* if @cond then downgrade to debug, else print at @level */
5181 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \
5182 do { \
5183 if (cond) \
5184 netif_dbg(priv, type, netdev, fmt, ##args); \
5185 else \
5186 netif_ ## level(priv, type, netdev, fmt, ##args); \
5187 } while (0)
5188
5189 #if defined(VERBOSE_DEBUG)
5190 #define netif_vdbg netif_dbg
5191 #else
5192 #define netif_vdbg(priv, type, dev, format, args...) \
5193 ({ \
5194 if (0) \
5195 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5196 0; \
5197 })
5198 #endif
5199
5200 /*
5201 * The list of packet types we will receive (as opposed to discard)
5202 * and the routines to invoke.
5203 *
5204 * Why 16. Because with 16 the only overlap we get on a hash of the
5205 * low nibble of the protocol value is RARP/SNAP/X.25.
5206 *
5207 * 0800 IP
5208 * 0001 802.3
5209 * 0002 AX.25
5210 * 0004 802.2
5211 * 8035 RARP
5212 * 0005 SNAP
5213 * 0805 X.25
5214 * 0806 ARP
5215 * 8137 IPX
5216 * 0009 Localtalk
5217 * 86DD IPv6
5218 */
5219 #define PTYPE_HASH_SIZE (16)
5220 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
5221
5222 extern struct net_device *blackhole_netdev;
5223
5224 #endif /* _LINUX_NETDEVICE_H */