]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/netdevice.h
net offloading: Pass features into netif_needs_gso().
[mirror_ubuntu-bionic-kernel.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/if.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_link.h>
32
33 #ifdef __KERNEL__
34 #include <linux/pm_qos_params.h>
35 #include <linux/timer.h>
36 #include <linux/delay.h>
37 #include <linux/mm.h>
38 #include <asm/atomic.h>
39 #include <asm/cache.h>
40 #include <asm/byteorder.h>
41
42 #include <linux/device.h>
43 #include <linux/percpu.h>
44 #include <linux/rculist.h>
45 #include <linux/dmaengine.h>
46 #include <linux/workqueue.h>
47
48 #include <linux/ethtool.h>
49 #include <net/net_namespace.h>
50 #include <net/dsa.h>
51 #ifdef CONFIG_DCB
52 #include <net/dcbnl.h>
53 #endif
54
55 struct vlan_group;
56 struct netpoll_info;
57 struct phy_device;
58 /* 802.11 specific */
59 struct wireless_dev;
60 /* source back-compat hooks */
61 #define SET_ETHTOOL_OPS(netdev,ops) \
62 ( (netdev)->ethtool_ops = (ops) )
63
64 #define HAVE_ALLOC_NETDEV /* feature macro: alloc_xxxdev
65 functions are available. */
66 #define HAVE_FREE_NETDEV /* free_netdev() */
67 #define HAVE_NETDEV_PRIV /* netdev_priv() */
68
69 /* hardware address assignment types */
70 #define NET_ADDR_PERM 0 /* address is permanent (default) */
71 #define NET_ADDR_RANDOM 1 /* address is generated randomly */
72 #define NET_ADDR_STOLEN 2 /* address is stolen from other device */
73
74 /* Backlog congestion levels */
75 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
76 #define NET_RX_DROP 1 /* packet dropped */
77
78 /*
79 * Transmit return codes: transmit return codes originate from three different
80 * namespaces:
81 *
82 * - qdisc return codes
83 * - driver transmit return codes
84 * - errno values
85 *
86 * Drivers are allowed to return any one of those in their hard_start_xmit()
87 * function. Real network devices commonly used with qdiscs should only return
88 * the driver transmit return codes though - when qdiscs are used, the actual
89 * transmission happens asynchronously, so the value is not propagated to
90 * higher layers. Virtual network devices transmit synchronously, in this case
91 * the driver transmit return codes are consumed by dev_queue_xmit(), all
92 * others are propagated to higher layers.
93 */
94
95 /* qdisc ->enqueue() return codes. */
96 #define NET_XMIT_SUCCESS 0x00
97 #define NET_XMIT_DROP 0x01 /* skb dropped */
98 #define NET_XMIT_CN 0x02 /* congestion notification */
99 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
100 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
101
102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
103 * indicates that the device will soon be dropping packets, or already drops
104 * some packets of the same priority; prompting us to send less aggressively. */
105 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
106 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
107
108 /* Driver transmit return codes */
109 #define NETDEV_TX_MASK 0xf0
110
111 enum netdev_tx {
112 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
113 NETDEV_TX_OK = 0x00, /* driver took care of packet */
114 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
115 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
116 };
117 typedef enum netdev_tx netdev_tx_t;
118
119 /*
120 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
121 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
122 */
123 static inline bool dev_xmit_complete(int rc)
124 {
125 /*
126 * Positive cases with an skb consumed by a driver:
127 * - successful transmission (rc == NETDEV_TX_OK)
128 * - error while transmitting (rc < 0)
129 * - error while queueing to a different device (rc & NET_XMIT_MASK)
130 */
131 if (likely(rc < NET_XMIT_MASK))
132 return true;
133
134 return false;
135 }
136
137 #endif
138
139 #define MAX_ADDR_LEN 32 /* Largest hardware address length */
140
141 #ifdef __KERNEL__
142 /*
143 * Compute the worst case header length according to the protocols
144 * used.
145 */
146
147 #if defined(CONFIG_WLAN) || defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
148 # if defined(CONFIG_MAC80211_MESH)
149 # define LL_MAX_HEADER 128
150 # else
151 # define LL_MAX_HEADER 96
152 # endif
153 #elif defined(CONFIG_TR) || defined(CONFIG_TR_MODULE)
154 # define LL_MAX_HEADER 48
155 #else
156 # define LL_MAX_HEADER 32
157 #endif
158
159 #if !defined(CONFIG_NET_IPIP) && !defined(CONFIG_NET_IPIP_MODULE) && \
160 !defined(CONFIG_NET_IPGRE) && !defined(CONFIG_NET_IPGRE_MODULE) && \
161 !defined(CONFIG_IPV6_SIT) && !defined(CONFIG_IPV6_SIT_MODULE) && \
162 !defined(CONFIG_IPV6_TUNNEL) && !defined(CONFIG_IPV6_TUNNEL_MODULE)
163 #define MAX_HEADER LL_MAX_HEADER
164 #else
165 #define MAX_HEADER (LL_MAX_HEADER + 48)
166 #endif
167
168 /*
169 * Old network device statistics. Fields are native words
170 * (unsigned long) so they can be read and written atomically.
171 */
172
173 struct net_device_stats {
174 unsigned long rx_packets;
175 unsigned long tx_packets;
176 unsigned long rx_bytes;
177 unsigned long tx_bytes;
178 unsigned long rx_errors;
179 unsigned long tx_errors;
180 unsigned long rx_dropped;
181 unsigned long tx_dropped;
182 unsigned long multicast;
183 unsigned long collisions;
184 unsigned long rx_length_errors;
185 unsigned long rx_over_errors;
186 unsigned long rx_crc_errors;
187 unsigned long rx_frame_errors;
188 unsigned long rx_fifo_errors;
189 unsigned long rx_missed_errors;
190 unsigned long tx_aborted_errors;
191 unsigned long tx_carrier_errors;
192 unsigned long tx_fifo_errors;
193 unsigned long tx_heartbeat_errors;
194 unsigned long tx_window_errors;
195 unsigned long rx_compressed;
196 unsigned long tx_compressed;
197 };
198
199 #endif /* __KERNEL__ */
200
201
202 /* Media selection options. */
203 enum {
204 IF_PORT_UNKNOWN = 0,
205 IF_PORT_10BASE2,
206 IF_PORT_10BASET,
207 IF_PORT_AUI,
208 IF_PORT_100BASET,
209 IF_PORT_100BASETX,
210 IF_PORT_100BASEFX
211 };
212
213 #ifdef __KERNEL__
214
215 #include <linux/cache.h>
216 #include <linux/skbuff.h>
217
218 struct neighbour;
219 struct neigh_parms;
220 struct sk_buff;
221
222 struct netdev_hw_addr {
223 struct list_head list;
224 unsigned char addr[MAX_ADDR_LEN];
225 unsigned char type;
226 #define NETDEV_HW_ADDR_T_LAN 1
227 #define NETDEV_HW_ADDR_T_SAN 2
228 #define NETDEV_HW_ADDR_T_SLAVE 3
229 #define NETDEV_HW_ADDR_T_UNICAST 4
230 #define NETDEV_HW_ADDR_T_MULTICAST 5
231 bool synced;
232 bool global_use;
233 int refcount;
234 struct rcu_head rcu_head;
235 };
236
237 struct netdev_hw_addr_list {
238 struct list_head list;
239 int count;
240 };
241
242 #define netdev_hw_addr_list_count(l) ((l)->count)
243 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
244 #define netdev_hw_addr_list_for_each(ha, l) \
245 list_for_each_entry(ha, &(l)->list, list)
246
247 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
248 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
249 #define netdev_for_each_uc_addr(ha, dev) \
250 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
251
252 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
253 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
254 #define netdev_for_each_mc_addr(ha, dev) \
255 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
256
257 struct hh_cache {
258 struct hh_cache *hh_next; /* Next entry */
259 atomic_t hh_refcnt; /* number of users */
260 /*
261 * We want hh_output, hh_len, hh_lock and hh_data be a in a separate
262 * cache line on SMP.
263 * They are mostly read, but hh_refcnt may be changed quite frequently,
264 * incurring cache line ping pongs.
265 */
266 __be16 hh_type ____cacheline_aligned_in_smp;
267 /* protocol identifier, f.e ETH_P_IP
268 * NOTE: For VLANs, this will be the
269 * encapuslated type. --BLG
270 */
271 u16 hh_len; /* length of header */
272 int (*hh_output)(struct sk_buff *skb);
273 seqlock_t hh_lock;
274
275 /* cached hardware header; allow for machine alignment needs. */
276 #define HH_DATA_MOD 16
277 #define HH_DATA_OFF(__len) \
278 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
279 #define HH_DATA_ALIGN(__len) \
280 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
281 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
282 };
283
284 static inline void hh_cache_put(struct hh_cache *hh)
285 {
286 if (atomic_dec_and_test(&hh->hh_refcnt))
287 kfree(hh);
288 }
289
290 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
291 * Alternative is:
292 * dev->hard_header_len ? (dev->hard_header_len +
293 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
294 *
295 * We could use other alignment values, but we must maintain the
296 * relationship HH alignment <= LL alignment.
297 *
298 * LL_ALLOCATED_SPACE also takes into account the tailroom the device
299 * may need.
300 */
301 #define LL_RESERVED_SPACE(dev) \
302 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
303 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
304 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
305 #define LL_ALLOCATED_SPACE(dev) \
306 ((((dev)->hard_header_len+(dev)->needed_headroom+(dev)->needed_tailroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
307
308 struct header_ops {
309 int (*create) (struct sk_buff *skb, struct net_device *dev,
310 unsigned short type, const void *daddr,
311 const void *saddr, unsigned len);
312 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
313 int (*rebuild)(struct sk_buff *skb);
314 #define HAVE_HEADER_CACHE
315 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh);
316 void (*cache_update)(struct hh_cache *hh,
317 const struct net_device *dev,
318 const unsigned char *haddr);
319 };
320
321 /* These flag bits are private to the generic network queueing
322 * layer, they may not be explicitly referenced by any other
323 * code.
324 */
325
326 enum netdev_state_t {
327 __LINK_STATE_START,
328 __LINK_STATE_PRESENT,
329 __LINK_STATE_NOCARRIER,
330 __LINK_STATE_LINKWATCH_PENDING,
331 __LINK_STATE_DORMANT,
332 };
333
334
335 /*
336 * This structure holds at boot time configured netdevice settings. They
337 * are then used in the device probing.
338 */
339 struct netdev_boot_setup {
340 char name[IFNAMSIZ];
341 struct ifmap map;
342 };
343 #define NETDEV_BOOT_SETUP_MAX 8
344
345 extern int __init netdev_boot_setup(char *str);
346
347 /*
348 * Structure for NAPI scheduling similar to tasklet but with weighting
349 */
350 struct napi_struct {
351 /* The poll_list must only be managed by the entity which
352 * changes the state of the NAPI_STATE_SCHED bit. This means
353 * whoever atomically sets that bit can add this napi_struct
354 * to the per-cpu poll_list, and whoever clears that bit
355 * can remove from the list right before clearing the bit.
356 */
357 struct list_head poll_list;
358
359 unsigned long state;
360 int weight;
361 int (*poll)(struct napi_struct *, int);
362 #ifdef CONFIG_NETPOLL
363 spinlock_t poll_lock;
364 int poll_owner;
365 #endif
366
367 unsigned int gro_count;
368
369 struct net_device *dev;
370 struct list_head dev_list;
371 struct sk_buff *gro_list;
372 struct sk_buff *skb;
373 };
374
375 enum {
376 NAPI_STATE_SCHED, /* Poll is scheduled */
377 NAPI_STATE_DISABLE, /* Disable pending */
378 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
379 };
380
381 enum gro_result {
382 GRO_MERGED,
383 GRO_MERGED_FREE,
384 GRO_HELD,
385 GRO_NORMAL,
386 GRO_DROP,
387 };
388 typedef enum gro_result gro_result_t;
389
390 typedef struct sk_buff *rx_handler_func_t(struct sk_buff *skb);
391
392 extern void __napi_schedule(struct napi_struct *n);
393
394 static inline int napi_disable_pending(struct napi_struct *n)
395 {
396 return test_bit(NAPI_STATE_DISABLE, &n->state);
397 }
398
399 /**
400 * napi_schedule_prep - check if napi can be scheduled
401 * @n: napi context
402 *
403 * Test if NAPI routine is already running, and if not mark
404 * it as running. This is used as a condition variable
405 * insure only one NAPI poll instance runs. We also make
406 * sure there is no pending NAPI disable.
407 */
408 static inline int napi_schedule_prep(struct napi_struct *n)
409 {
410 return !napi_disable_pending(n) &&
411 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
412 }
413
414 /**
415 * napi_schedule - schedule NAPI poll
416 * @n: napi context
417 *
418 * Schedule NAPI poll routine to be called if it is not already
419 * running.
420 */
421 static inline void napi_schedule(struct napi_struct *n)
422 {
423 if (napi_schedule_prep(n))
424 __napi_schedule(n);
425 }
426
427 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
428 static inline int napi_reschedule(struct napi_struct *napi)
429 {
430 if (napi_schedule_prep(napi)) {
431 __napi_schedule(napi);
432 return 1;
433 }
434 return 0;
435 }
436
437 /**
438 * napi_complete - NAPI processing complete
439 * @n: napi context
440 *
441 * Mark NAPI processing as complete.
442 */
443 extern void __napi_complete(struct napi_struct *n);
444 extern void napi_complete(struct napi_struct *n);
445
446 /**
447 * napi_disable - prevent NAPI from scheduling
448 * @n: napi context
449 *
450 * Stop NAPI from being scheduled on this context.
451 * Waits till any outstanding processing completes.
452 */
453 static inline void napi_disable(struct napi_struct *n)
454 {
455 set_bit(NAPI_STATE_DISABLE, &n->state);
456 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
457 msleep(1);
458 clear_bit(NAPI_STATE_DISABLE, &n->state);
459 }
460
461 /**
462 * napi_enable - enable NAPI scheduling
463 * @n: napi context
464 *
465 * Resume NAPI from being scheduled on this context.
466 * Must be paired with napi_disable.
467 */
468 static inline void napi_enable(struct napi_struct *n)
469 {
470 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
471 smp_mb__before_clear_bit();
472 clear_bit(NAPI_STATE_SCHED, &n->state);
473 }
474
475 #ifdef CONFIG_SMP
476 /**
477 * napi_synchronize - wait until NAPI is not running
478 * @n: napi context
479 *
480 * Wait until NAPI is done being scheduled on this context.
481 * Waits till any outstanding processing completes but
482 * does not disable future activations.
483 */
484 static inline void napi_synchronize(const struct napi_struct *n)
485 {
486 while (test_bit(NAPI_STATE_SCHED, &n->state))
487 msleep(1);
488 }
489 #else
490 # define napi_synchronize(n) barrier()
491 #endif
492
493 enum netdev_queue_state_t {
494 __QUEUE_STATE_XOFF,
495 __QUEUE_STATE_FROZEN,
496 #define QUEUE_STATE_XOFF_OR_FROZEN ((1 << __QUEUE_STATE_XOFF) | \
497 (1 << __QUEUE_STATE_FROZEN))
498 };
499
500 struct netdev_queue {
501 /*
502 * read mostly part
503 */
504 struct net_device *dev;
505 struct Qdisc *qdisc;
506 unsigned long state;
507 struct Qdisc *qdisc_sleeping;
508 #ifdef CONFIG_RPS
509 struct kobject kobj;
510 #endif
511 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
512 int numa_node;
513 #endif
514 /*
515 * write mostly part
516 */
517 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
518 int xmit_lock_owner;
519 /*
520 * please use this field instead of dev->trans_start
521 */
522 unsigned long trans_start;
523 u64 tx_bytes;
524 u64 tx_packets;
525 u64 tx_dropped;
526 } ____cacheline_aligned_in_smp;
527
528 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
529 {
530 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
531 return q->numa_node;
532 #else
533 return NUMA_NO_NODE;
534 #endif
535 }
536
537 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
538 {
539 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
540 q->numa_node = node;
541 #endif
542 }
543
544 #ifdef CONFIG_RPS
545 /*
546 * This structure holds an RPS map which can be of variable length. The
547 * map is an array of CPUs.
548 */
549 struct rps_map {
550 unsigned int len;
551 struct rcu_head rcu;
552 u16 cpus[0];
553 };
554 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + (_num * sizeof(u16)))
555
556 /*
557 * The rps_dev_flow structure contains the mapping of a flow to a CPU and the
558 * tail pointer for that CPU's input queue at the time of last enqueue.
559 */
560 struct rps_dev_flow {
561 u16 cpu;
562 u16 fill;
563 unsigned int last_qtail;
564 };
565
566 /*
567 * The rps_dev_flow_table structure contains a table of flow mappings.
568 */
569 struct rps_dev_flow_table {
570 unsigned int mask;
571 struct rcu_head rcu;
572 struct work_struct free_work;
573 struct rps_dev_flow flows[0];
574 };
575 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
576 (_num * sizeof(struct rps_dev_flow)))
577
578 /*
579 * The rps_sock_flow_table contains mappings of flows to the last CPU
580 * on which they were processed by the application (set in recvmsg).
581 */
582 struct rps_sock_flow_table {
583 unsigned int mask;
584 u16 ents[0];
585 };
586 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
587 (_num * sizeof(u16)))
588
589 #define RPS_NO_CPU 0xffff
590
591 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
592 u32 hash)
593 {
594 if (table && hash) {
595 unsigned int cpu, index = hash & table->mask;
596
597 /* We only give a hint, preemption can change cpu under us */
598 cpu = raw_smp_processor_id();
599
600 if (table->ents[index] != cpu)
601 table->ents[index] = cpu;
602 }
603 }
604
605 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
606 u32 hash)
607 {
608 if (table && hash)
609 table->ents[hash & table->mask] = RPS_NO_CPU;
610 }
611
612 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
613
614 /* This structure contains an instance of an RX queue. */
615 struct netdev_rx_queue {
616 struct rps_map __rcu *rps_map;
617 struct rps_dev_flow_table __rcu *rps_flow_table;
618 struct kobject kobj;
619 struct net_device *dev;
620 } ____cacheline_aligned_in_smp;
621 #endif /* CONFIG_RPS */
622
623 #ifdef CONFIG_XPS
624 /*
625 * This structure holds an XPS map which can be of variable length. The
626 * map is an array of queues.
627 */
628 struct xps_map {
629 unsigned int len;
630 unsigned int alloc_len;
631 struct rcu_head rcu;
632 u16 queues[0];
633 };
634 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + (_num * sizeof(u16)))
635 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
636 / sizeof(u16))
637
638 /*
639 * This structure holds all XPS maps for device. Maps are indexed by CPU.
640 */
641 struct xps_dev_maps {
642 struct rcu_head rcu;
643 struct xps_map __rcu *cpu_map[0];
644 };
645 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
646 (nr_cpu_ids * sizeof(struct xps_map *)))
647 #endif /* CONFIG_XPS */
648
649 /*
650 * This structure defines the management hooks for network devices.
651 * The following hooks can be defined; unless noted otherwise, they are
652 * optional and can be filled with a null pointer.
653 *
654 * int (*ndo_init)(struct net_device *dev);
655 * This function is called once when network device is registered.
656 * The network device can use this to any late stage initializaton
657 * or semantic validattion. It can fail with an error code which will
658 * be propogated back to register_netdev
659 *
660 * void (*ndo_uninit)(struct net_device *dev);
661 * This function is called when device is unregistered or when registration
662 * fails. It is not called if init fails.
663 *
664 * int (*ndo_open)(struct net_device *dev);
665 * This function is called when network device transistions to the up
666 * state.
667 *
668 * int (*ndo_stop)(struct net_device *dev);
669 * This function is called when network device transistions to the down
670 * state.
671 *
672 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
673 * struct net_device *dev);
674 * Called when a packet needs to be transmitted.
675 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
676 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
677 * Required can not be NULL.
678 *
679 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
680 * Called to decide which queue to when device supports multiple
681 * transmit queues.
682 *
683 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
684 * This function is called to allow device receiver to make
685 * changes to configuration when multicast or promiscious is enabled.
686 *
687 * void (*ndo_set_rx_mode)(struct net_device *dev);
688 * This function is called device changes address list filtering.
689 *
690 * void (*ndo_set_multicast_list)(struct net_device *dev);
691 * This function is called when the multicast address list changes.
692 *
693 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
694 * This function is called when the Media Access Control address
695 * needs to be changed. If this interface is not defined, the
696 * mac address can not be changed.
697 *
698 * int (*ndo_validate_addr)(struct net_device *dev);
699 * Test if Media Access Control address is valid for the device.
700 *
701 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
702 * Called when a user request an ioctl which can't be handled by
703 * the generic interface code. If not defined ioctl's return
704 * not supported error code.
705 *
706 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
707 * Used to set network devices bus interface parameters. This interface
708 * is retained for legacy reason, new devices should use the bus
709 * interface (PCI) for low level management.
710 *
711 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
712 * Called when a user wants to change the Maximum Transfer Unit
713 * of a device. If not defined, any request to change MTU will
714 * will return an error.
715 *
716 * void (*ndo_tx_timeout)(struct net_device *dev);
717 * Callback uses when the transmitter has not made any progress
718 * for dev->watchdog ticks.
719 *
720 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
721 * struct rtnl_link_stats64 *storage);
722 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
723 * Called when a user wants to get the network device usage
724 * statistics. Drivers must do one of the following:
725 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
726 * rtnl_link_stats64 structure passed by the caller.
727 * 2. Define @ndo_get_stats to update a net_device_stats structure
728 * (which should normally be dev->stats) and return a pointer to
729 * it. The structure may be changed asynchronously only if each
730 * field is written atomically.
731 * 3. Update dev->stats asynchronously and atomically, and define
732 * neither operation.
733 *
734 * void (*ndo_vlan_rx_register)(struct net_device *dev, struct vlan_group *grp);
735 * If device support VLAN receive acceleration
736 * (ie. dev->features & NETIF_F_HW_VLAN_RX), then this function is called
737 * when vlan groups for the device changes. Note: grp is NULL
738 * if no vlan's groups are being used.
739 *
740 * void (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
741 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
742 * this function is called when a VLAN id is registered.
743 *
744 * void (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
745 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
746 * this function is called when a VLAN id is unregistered.
747 *
748 * void (*ndo_poll_controller)(struct net_device *dev);
749 *
750 * SR-IOV management functions.
751 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
752 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
753 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
754 * int (*ndo_get_vf_config)(struct net_device *dev,
755 * int vf, struct ifla_vf_info *ivf);
756 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
757 * struct nlattr *port[]);
758 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
759 */
760 #define HAVE_NET_DEVICE_OPS
761 struct net_device_ops {
762 int (*ndo_init)(struct net_device *dev);
763 void (*ndo_uninit)(struct net_device *dev);
764 int (*ndo_open)(struct net_device *dev);
765 int (*ndo_stop)(struct net_device *dev);
766 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
767 struct net_device *dev);
768 u16 (*ndo_select_queue)(struct net_device *dev,
769 struct sk_buff *skb);
770 void (*ndo_change_rx_flags)(struct net_device *dev,
771 int flags);
772 void (*ndo_set_rx_mode)(struct net_device *dev);
773 void (*ndo_set_multicast_list)(struct net_device *dev);
774 int (*ndo_set_mac_address)(struct net_device *dev,
775 void *addr);
776 int (*ndo_validate_addr)(struct net_device *dev);
777 int (*ndo_do_ioctl)(struct net_device *dev,
778 struct ifreq *ifr, int cmd);
779 int (*ndo_set_config)(struct net_device *dev,
780 struct ifmap *map);
781 int (*ndo_change_mtu)(struct net_device *dev,
782 int new_mtu);
783 int (*ndo_neigh_setup)(struct net_device *dev,
784 struct neigh_parms *);
785 void (*ndo_tx_timeout) (struct net_device *dev);
786
787 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
788 struct rtnl_link_stats64 *storage);
789 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
790
791 void (*ndo_vlan_rx_register)(struct net_device *dev,
792 struct vlan_group *grp);
793 void (*ndo_vlan_rx_add_vid)(struct net_device *dev,
794 unsigned short vid);
795 void (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
796 unsigned short vid);
797 #ifdef CONFIG_NET_POLL_CONTROLLER
798 void (*ndo_poll_controller)(struct net_device *dev);
799 int (*ndo_netpoll_setup)(struct net_device *dev,
800 struct netpoll_info *info);
801 void (*ndo_netpoll_cleanup)(struct net_device *dev);
802 #endif
803 int (*ndo_set_vf_mac)(struct net_device *dev,
804 int queue, u8 *mac);
805 int (*ndo_set_vf_vlan)(struct net_device *dev,
806 int queue, u16 vlan, u8 qos);
807 int (*ndo_set_vf_tx_rate)(struct net_device *dev,
808 int vf, int rate);
809 int (*ndo_get_vf_config)(struct net_device *dev,
810 int vf,
811 struct ifla_vf_info *ivf);
812 int (*ndo_set_vf_port)(struct net_device *dev,
813 int vf,
814 struct nlattr *port[]);
815 int (*ndo_get_vf_port)(struct net_device *dev,
816 int vf, struct sk_buff *skb);
817 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
818 int (*ndo_fcoe_enable)(struct net_device *dev);
819 int (*ndo_fcoe_disable)(struct net_device *dev);
820 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
821 u16 xid,
822 struct scatterlist *sgl,
823 unsigned int sgc);
824 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
825 u16 xid);
826 #define NETDEV_FCOE_WWNN 0
827 #define NETDEV_FCOE_WWPN 1
828 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
829 u64 *wwn, int type);
830 #endif
831 };
832
833 /*
834 * The DEVICE structure.
835 * Actually, this whole structure is a big mistake. It mixes I/O
836 * data with strictly "high-level" data, and it has to know about
837 * almost every data structure used in the INET module.
838 *
839 * FIXME: cleanup struct net_device such that network protocol info
840 * moves out.
841 */
842
843 struct net_device {
844
845 /*
846 * This is the first field of the "visible" part of this structure
847 * (i.e. as seen by users in the "Space.c" file). It is the name
848 * of the interface.
849 */
850 char name[IFNAMSIZ];
851
852 struct pm_qos_request_list pm_qos_req;
853
854 /* device name hash chain */
855 struct hlist_node name_hlist;
856 /* snmp alias */
857 char *ifalias;
858
859 /*
860 * I/O specific fields
861 * FIXME: Merge these and struct ifmap into one
862 */
863 unsigned long mem_end; /* shared mem end */
864 unsigned long mem_start; /* shared mem start */
865 unsigned long base_addr; /* device I/O address */
866 unsigned int irq; /* device IRQ number */
867
868 /*
869 * Some hardware also needs these fields, but they are not
870 * part of the usual set specified in Space.c.
871 */
872
873 unsigned char if_port; /* Selectable AUI, TP,..*/
874 unsigned char dma; /* DMA channel */
875
876 unsigned long state;
877
878 struct list_head dev_list;
879 struct list_head napi_list;
880 struct list_head unreg_list;
881
882 /* Net device features */
883 unsigned long features;
884 #define NETIF_F_SG 1 /* Scatter/gather IO. */
885 #define NETIF_F_IP_CSUM 2 /* Can checksum TCP/UDP over IPv4. */
886 #define NETIF_F_NO_CSUM 4 /* Does not require checksum. F.e. loopack. */
887 #define NETIF_F_HW_CSUM 8 /* Can checksum all the packets. */
888 #define NETIF_F_IPV6_CSUM 16 /* Can checksum TCP/UDP over IPV6 */
889 #define NETIF_F_HIGHDMA 32 /* Can DMA to high memory. */
890 #define NETIF_F_FRAGLIST 64 /* Scatter/gather IO. */
891 #define NETIF_F_HW_VLAN_TX 128 /* Transmit VLAN hw acceleration */
892 #define NETIF_F_HW_VLAN_RX 256 /* Receive VLAN hw acceleration */
893 #define NETIF_F_HW_VLAN_FILTER 512 /* Receive filtering on VLAN */
894 #define NETIF_F_VLAN_CHALLENGED 1024 /* Device cannot handle VLAN packets */
895 #define NETIF_F_GSO 2048 /* Enable software GSO. */
896 #define NETIF_F_LLTX 4096 /* LockLess TX - deprecated. Please */
897 /* do not use LLTX in new drivers */
898 #define NETIF_F_NETNS_LOCAL 8192 /* Does not change network namespaces */
899 #define NETIF_F_GRO 16384 /* Generic receive offload */
900 #define NETIF_F_LRO 32768 /* large receive offload */
901
902 /* the GSO_MASK reserves bits 16 through 23 */
903 #define NETIF_F_FCOE_CRC (1 << 24) /* FCoE CRC32 */
904 #define NETIF_F_SCTP_CSUM (1 << 25) /* SCTP checksum offload */
905 #define NETIF_F_FCOE_MTU (1 << 26) /* Supports max FCoE MTU, 2158 bytes*/
906 #define NETIF_F_NTUPLE (1 << 27) /* N-tuple filters supported */
907 #define NETIF_F_RXHASH (1 << 28) /* Receive hashing offload */
908
909 /* Segmentation offload features */
910 #define NETIF_F_GSO_SHIFT 16
911 #define NETIF_F_GSO_MASK 0x00ff0000
912 #define NETIF_F_TSO (SKB_GSO_TCPV4 << NETIF_F_GSO_SHIFT)
913 #define NETIF_F_UFO (SKB_GSO_UDP << NETIF_F_GSO_SHIFT)
914 #define NETIF_F_GSO_ROBUST (SKB_GSO_DODGY << NETIF_F_GSO_SHIFT)
915 #define NETIF_F_TSO_ECN (SKB_GSO_TCP_ECN << NETIF_F_GSO_SHIFT)
916 #define NETIF_F_TSO6 (SKB_GSO_TCPV6 << NETIF_F_GSO_SHIFT)
917 #define NETIF_F_FSO (SKB_GSO_FCOE << NETIF_F_GSO_SHIFT)
918
919 /* List of features with software fallbacks. */
920 #define NETIF_F_GSO_SOFTWARE (NETIF_F_TSO | NETIF_F_TSO_ECN | \
921 NETIF_F_TSO6 | NETIF_F_UFO)
922
923
924 #define NETIF_F_GEN_CSUM (NETIF_F_NO_CSUM | NETIF_F_HW_CSUM)
925 #define NETIF_F_V4_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IP_CSUM)
926 #define NETIF_F_V6_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IPV6_CSUM)
927 #define NETIF_F_ALL_CSUM (NETIF_F_V4_CSUM | NETIF_F_V6_CSUM)
928
929 /*
930 * If one device supports one of these features, then enable them
931 * for all in netdev_increment_features.
932 */
933 #define NETIF_F_ONE_FOR_ALL (NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ROBUST | \
934 NETIF_F_SG | NETIF_F_HIGHDMA | \
935 NETIF_F_FRAGLIST)
936
937 /* Interface index. Unique device identifier */
938 int ifindex;
939 int iflink;
940
941 struct net_device_stats stats;
942 atomic_long_t rx_dropped; /* dropped packets by core network
943 * Do not use this in drivers.
944 */
945
946 #ifdef CONFIG_WIRELESS_EXT
947 /* List of functions to handle Wireless Extensions (instead of ioctl).
948 * See <net/iw_handler.h> for details. Jean II */
949 const struct iw_handler_def * wireless_handlers;
950 /* Instance data managed by the core of Wireless Extensions. */
951 struct iw_public_data * wireless_data;
952 #endif
953 /* Management operations */
954 const struct net_device_ops *netdev_ops;
955 const struct ethtool_ops *ethtool_ops;
956
957 /* Hardware header description */
958 const struct header_ops *header_ops;
959
960 unsigned int flags; /* interface flags (a la BSD) */
961 unsigned short gflags;
962 unsigned int priv_flags; /* Like 'flags' but invisible to userspace. */
963 unsigned short padded; /* How much padding added by alloc_netdev() */
964
965 unsigned char operstate; /* RFC2863 operstate */
966 unsigned char link_mode; /* mapping policy to operstate */
967
968 unsigned int mtu; /* interface MTU value */
969 unsigned short type; /* interface hardware type */
970 unsigned short hard_header_len; /* hardware hdr length */
971
972 /* extra head- and tailroom the hardware may need, but not in all cases
973 * can this be guaranteed, especially tailroom. Some cases also use
974 * LL_MAX_HEADER instead to allocate the skb.
975 */
976 unsigned short needed_headroom;
977 unsigned short needed_tailroom;
978
979 /* Interface address info. */
980 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
981 unsigned char addr_assign_type; /* hw address assignment type */
982 unsigned char addr_len; /* hardware address length */
983 unsigned short dev_id; /* for shared network cards */
984
985 spinlock_t addr_list_lock;
986 struct netdev_hw_addr_list uc; /* Unicast mac addresses */
987 struct netdev_hw_addr_list mc; /* Multicast mac addresses */
988 int uc_promisc;
989 unsigned int promiscuity;
990 unsigned int allmulti;
991
992
993 /* Protocol specific pointers */
994
995 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
996 struct vlan_group __rcu *vlgrp; /* VLAN group */
997 #endif
998 #ifdef CONFIG_NET_DSA
999 void *dsa_ptr; /* dsa specific data */
1000 #endif
1001 void *atalk_ptr; /* AppleTalk link */
1002 struct in_device __rcu *ip_ptr; /* IPv4 specific data */
1003 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */
1004 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */
1005 void *ec_ptr; /* Econet specific data */
1006 void *ax25_ptr; /* AX.25 specific data */
1007 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data,
1008 assign before registering */
1009
1010 /*
1011 * Cache lines mostly used on receive path (including eth_type_trans())
1012 */
1013 unsigned long last_rx; /* Time of last Rx
1014 * This should not be set in
1015 * drivers, unless really needed,
1016 * because network stack (bonding)
1017 * use it if/when necessary, to
1018 * avoid dirtying this cache line.
1019 */
1020
1021 struct net_device *master; /* Pointer to master device of a group,
1022 * which this device is member of.
1023 */
1024
1025 /* Interface address info used in eth_type_trans() */
1026 unsigned char *dev_addr; /* hw address, (before bcast
1027 because most packets are
1028 unicast) */
1029
1030 struct netdev_hw_addr_list dev_addrs; /* list of device
1031 hw addresses */
1032
1033 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */
1034
1035 #ifdef CONFIG_RPS
1036 struct kset *queues_kset;
1037
1038 struct netdev_rx_queue *_rx;
1039
1040 /* Number of RX queues allocated at register_netdev() time */
1041 unsigned int num_rx_queues;
1042
1043 /* Number of RX queues currently active in device */
1044 unsigned int real_num_rx_queues;
1045 #endif
1046
1047 rx_handler_func_t __rcu *rx_handler;
1048 void __rcu *rx_handler_data;
1049
1050 struct netdev_queue __rcu *ingress_queue;
1051
1052 /*
1053 * Cache lines mostly used on transmit path
1054 */
1055 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1056
1057 /* Number of TX queues allocated at alloc_netdev_mq() time */
1058 unsigned int num_tx_queues;
1059
1060 /* Number of TX queues currently active in device */
1061 unsigned int real_num_tx_queues;
1062
1063 /* root qdisc from userspace point of view */
1064 struct Qdisc *qdisc;
1065
1066 unsigned long tx_queue_len; /* Max frames per queue allowed */
1067 spinlock_t tx_global_lock;
1068
1069 #ifdef CONFIG_XPS
1070 struct xps_dev_maps __rcu *xps_maps;
1071 #endif
1072
1073 /* These may be needed for future network-power-down code. */
1074
1075 /*
1076 * trans_start here is expensive for high speed devices on SMP,
1077 * please use netdev_queue->trans_start instead.
1078 */
1079 unsigned long trans_start; /* Time (in jiffies) of last Tx */
1080
1081 int watchdog_timeo; /* used by dev_watchdog() */
1082 struct timer_list watchdog_timer;
1083
1084 /* Number of references to this device */
1085 int __percpu *pcpu_refcnt;
1086
1087 /* delayed register/unregister */
1088 struct list_head todo_list;
1089 /* device index hash chain */
1090 struct hlist_node index_hlist;
1091
1092 struct list_head link_watch_list;
1093
1094 /* register/unregister state machine */
1095 enum { NETREG_UNINITIALIZED=0,
1096 NETREG_REGISTERED, /* completed register_netdevice */
1097 NETREG_UNREGISTERING, /* called unregister_netdevice */
1098 NETREG_UNREGISTERED, /* completed unregister todo */
1099 NETREG_RELEASED, /* called free_netdev */
1100 NETREG_DUMMY, /* dummy device for NAPI poll */
1101 } reg_state:16;
1102
1103 enum {
1104 RTNL_LINK_INITIALIZED,
1105 RTNL_LINK_INITIALIZING,
1106 } rtnl_link_state:16;
1107
1108 /* Called from unregister, can be used to call free_netdev */
1109 void (*destructor)(struct net_device *dev);
1110
1111 #ifdef CONFIG_NETPOLL
1112 struct netpoll_info *npinfo;
1113 #endif
1114
1115 #ifdef CONFIG_NET_NS
1116 /* Network namespace this network device is inside */
1117 struct net *nd_net;
1118 #endif
1119
1120 /* mid-layer private */
1121 union {
1122 void *ml_priv;
1123 struct pcpu_lstats __percpu *lstats; /* loopback stats */
1124 struct pcpu_tstats __percpu *tstats; /* tunnel stats */
1125 struct pcpu_dstats __percpu *dstats; /* dummy stats */
1126 };
1127 /* GARP */
1128 struct garp_port __rcu *garp_port;
1129
1130 /* class/net/name entry */
1131 struct device dev;
1132 /* space for optional device, statistics, and wireless sysfs groups */
1133 const struct attribute_group *sysfs_groups[4];
1134
1135 /* rtnetlink link ops */
1136 const struct rtnl_link_ops *rtnl_link_ops;
1137
1138 /* VLAN feature mask */
1139 unsigned long vlan_features;
1140
1141 /* for setting kernel sock attribute on TCP connection setup */
1142 #define GSO_MAX_SIZE 65536
1143 unsigned int gso_max_size;
1144
1145 #ifdef CONFIG_DCB
1146 /* Data Center Bridging netlink ops */
1147 const struct dcbnl_rtnl_ops *dcbnl_ops;
1148 #endif
1149
1150 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
1151 /* max exchange id for FCoE LRO by ddp */
1152 unsigned int fcoe_ddp_xid;
1153 #endif
1154 /* n-tuple filter list attached to this device */
1155 struct ethtool_rx_ntuple_list ethtool_ntuple_list;
1156
1157 /* phy device may attach itself for hardware timestamping */
1158 struct phy_device *phydev;
1159 };
1160 #define to_net_dev(d) container_of(d, struct net_device, dev)
1161
1162 #define NETDEV_ALIGN 32
1163
1164 static inline
1165 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1166 unsigned int index)
1167 {
1168 return &dev->_tx[index];
1169 }
1170
1171 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1172 void (*f)(struct net_device *,
1173 struct netdev_queue *,
1174 void *),
1175 void *arg)
1176 {
1177 unsigned int i;
1178
1179 for (i = 0; i < dev->num_tx_queues; i++)
1180 f(dev, &dev->_tx[i], arg);
1181 }
1182
1183 /*
1184 * Net namespace inlines
1185 */
1186 static inline
1187 struct net *dev_net(const struct net_device *dev)
1188 {
1189 return read_pnet(&dev->nd_net);
1190 }
1191
1192 static inline
1193 void dev_net_set(struct net_device *dev, struct net *net)
1194 {
1195 #ifdef CONFIG_NET_NS
1196 release_net(dev->nd_net);
1197 dev->nd_net = hold_net(net);
1198 #endif
1199 }
1200
1201 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1202 {
1203 #ifdef CONFIG_NET_DSA_TAG_DSA
1204 if (dev->dsa_ptr != NULL)
1205 return dsa_uses_dsa_tags(dev->dsa_ptr);
1206 #endif
1207
1208 return 0;
1209 }
1210
1211 #ifndef CONFIG_NET_NS
1212 static inline void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1213 {
1214 skb->dev = dev;
1215 }
1216 #else /* CONFIG_NET_NS */
1217 void skb_set_dev(struct sk_buff *skb, struct net_device *dev);
1218 #endif
1219
1220 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1221 {
1222 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1223 if (dev->dsa_ptr != NULL)
1224 return dsa_uses_trailer_tags(dev->dsa_ptr);
1225 #endif
1226
1227 return 0;
1228 }
1229
1230 /**
1231 * netdev_priv - access network device private data
1232 * @dev: network device
1233 *
1234 * Get network device private data
1235 */
1236 static inline void *netdev_priv(const struct net_device *dev)
1237 {
1238 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1239 }
1240
1241 /* Set the sysfs physical device reference for the network logical device
1242 * if set prior to registration will cause a symlink during initialization.
1243 */
1244 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1245
1246 /* Set the sysfs device type for the network logical device to allow
1247 * fin grained indentification of different network device types. For
1248 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1249 */
1250 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1251
1252 /**
1253 * netif_napi_add - initialize a napi context
1254 * @dev: network device
1255 * @napi: napi context
1256 * @poll: polling function
1257 * @weight: default weight
1258 *
1259 * netif_napi_add() must be used to initialize a napi context prior to calling
1260 * *any* of the other napi related functions.
1261 */
1262 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1263 int (*poll)(struct napi_struct *, int), int weight);
1264
1265 /**
1266 * netif_napi_del - remove a napi context
1267 * @napi: napi context
1268 *
1269 * netif_napi_del() removes a napi context from the network device napi list
1270 */
1271 void netif_napi_del(struct napi_struct *napi);
1272
1273 struct napi_gro_cb {
1274 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1275 void *frag0;
1276
1277 /* Length of frag0. */
1278 unsigned int frag0_len;
1279
1280 /* This indicates where we are processing relative to skb->data. */
1281 int data_offset;
1282
1283 /* This is non-zero if the packet may be of the same flow. */
1284 int same_flow;
1285
1286 /* This is non-zero if the packet cannot be merged with the new skb. */
1287 int flush;
1288
1289 /* Number of segments aggregated. */
1290 int count;
1291
1292 /* Free the skb? */
1293 int free;
1294 };
1295
1296 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1297
1298 struct packet_type {
1299 __be16 type; /* This is really htons(ether_type). */
1300 struct net_device *dev; /* NULL is wildcarded here */
1301 int (*func) (struct sk_buff *,
1302 struct net_device *,
1303 struct packet_type *,
1304 struct net_device *);
1305 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1306 int features);
1307 int (*gso_send_check)(struct sk_buff *skb);
1308 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1309 struct sk_buff *skb);
1310 int (*gro_complete)(struct sk_buff *skb);
1311 void *af_packet_priv;
1312 struct list_head list;
1313 };
1314
1315 #include <linux/interrupt.h>
1316 #include <linux/notifier.h>
1317
1318 extern rwlock_t dev_base_lock; /* Device list lock */
1319
1320
1321 #define for_each_netdev(net, d) \
1322 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1323 #define for_each_netdev_reverse(net, d) \
1324 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1325 #define for_each_netdev_rcu(net, d) \
1326 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1327 #define for_each_netdev_safe(net, d, n) \
1328 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1329 #define for_each_netdev_continue(net, d) \
1330 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1331 #define for_each_netdev_continue_rcu(net, d) \
1332 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1333 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
1334
1335 static inline struct net_device *next_net_device(struct net_device *dev)
1336 {
1337 struct list_head *lh;
1338 struct net *net;
1339
1340 net = dev_net(dev);
1341 lh = dev->dev_list.next;
1342 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1343 }
1344
1345 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1346 {
1347 struct list_head *lh;
1348 struct net *net;
1349
1350 net = dev_net(dev);
1351 lh = rcu_dereference(dev->dev_list.next);
1352 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1353 }
1354
1355 static inline struct net_device *first_net_device(struct net *net)
1356 {
1357 return list_empty(&net->dev_base_head) ? NULL :
1358 net_device_entry(net->dev_base_head.next);
1359 }
1360
1361 extern int netdev_boot_setup_check(struct net_device *dev);
1362 extern unsigned long netdev_boot_base(const char *prefix, int unit);
1363 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1364 const char *hwaddr);
1365 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1366 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1367 extern void dev_add_pack(struct packet_type *pt);
1368 extern void dev_remove_pack(struct packet_type *pt);
1369 extern void __dev_remove_pack(struct packet_type *pt);
1370
1371 extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1372 unsigned short mask);
1373 extern struct net_device *dev_get_by_name(struct net *net, const char *name);
1374 extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1375 extern struct net_device *__dev_get_by_name(struct net *net, const char *name);
1376 extern int dev_alloc_name(struct net_device *dev, const char *name);
1377 extern int dev_open(struct net_device *dev);
1378 extern int dev_close(struct net_device *dev);
1379 extern void dev_disable_lro(struct net_device *dev);
1380 extern int dev_queue_xmit(struct sk_buff *skb);
1381 extern int register_netdevice(struct net_device *dev);
1382 extern void unregister_netdevice_queue(struct net_device *dev,
1383 struct list_head *head);
1384 extern void unregister_netdevice_many(struct list_head *head);
1385 static inline void unregister_netdevice(struct net_device *dev)
1386 {
1387 unregister_netdevice_queue(dev, NULL);
1388 }
1389
1390 extern int netdev_refcnt_read(const struct net_device *dev);
1391 extern void free_netdev(struct net_device *dev);
1392 extern void synchronize_net(void);
1393 extern int register_netdevice_notifier(struct notifier_block *nb);
1394 extern int unregister_netdevice_notifier(struct notifier_block *nb);
1395 extern int init_dummy_netdev(struct net_device *dev);
1396 extern void netdev_resync_ops(struct net_device *dev);
1397
1398 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1399 extern struct net_device *dev_get_by_index(struct net *net, int ifindex);
1400 extern struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1401 extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1402 extern int dev_restart(struct net_device *dev);
1403 #ifdef CONFIG_NETPOLL_TRAP
1404 extern int netpoll_trap(void);
1405 #endif
1406 extern int skb_gro_receive(struct sk_buff **head,
1407 struct sk_buff *skb);
1408 extern void skb_gro_reset_offset(struct sk_buff *skb);
1409
1410 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1411 {
1412 return NAPI_GRO_CB(skb)->data_offset;
1413 }
1414
1415 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1416 {
1417 return skb->len - NAPI_GRO_CB(skb)->data_offset;
1418 }
1419
1420 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1421 {
1422 NAPI_GRO_CB(skb)->data_offset += len;
1423 }
1424
1425 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1426 unsigned int offset)
1427 {
1428 return NAPI_GRO_CB(skb)->frag0 + offset;
1429 }
1430
1431 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1432 {
1433 return NAPI_GRO_CB(skb)->frag0_len < hlen;
1434 }
1435
1436 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1437 unsigned int offset)
1438 {
1439 NAPI_GRO_CB(skb)->frag0 = NULL;
1440 NAPI_GRO_CB(skb)->frag0_len = 0;
1441 return pskb_may_pull(skb, hlen) ? skb->data + offset : NULL;
1442 }
1443
1444 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1445 {
1446 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1447 }
1448
1449 static inline void *skb_gro_network_header(struct sk_buff *skb)
1450 {
1451 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1452 skb_network_offset(skb);
1453 }
1454
1455 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1456 unsigned short type,
1457 const void *daddr, const void *saddr,
1458 unsigned len)
1459 {
1460 if (!dev->header_ops || !dev->header_ops->create)
1461 return 0;
1462
1463 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1464 }
1465
1466 static inline int dev_parse_header(const struct sk_buff *skb,
1467 unsigned char *haddr)
1468 {
1469 const struct net_device *dev = skb->dev;
1470
1471 if (!dev->header_ops || !dev->header_ops->parse)
1472 return 0;
1473 return dev->header_ops->parse(skb, haddr);
1474 }
1475
1476 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1477 extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1478 static inline int unregister_gifconf(unsigned int family)
1479 {
1480 return register_gifconf(family, NULL);
1481 }
1482
1483 /*
1484 * Incoming packets are placed on per-cpu queues
1485 */
1486 struct softnet_data {
1487 struct Qdisc *output_queue;
1488 struct Qdisc **output_queue_tailp;
1489 struct list_head poll_list;
1490 struct sk_buff *completion_queue;
1491 struct sk_buff_head process_queue;
1492
1493 /* stats */
1494 unsigned int processed;
1495 unsigned int time_squeeze;
1496 unsigned int cpu_collision;
1497 unsigned int received_rps;
1498
1499 #ifdef CONFIG_RPS
1500 struct softnet_data *rps_ipi_list;
1501
1502 /* Elements below can be accessed between CPUs for RPS */
1503 struct call_single_data csd ____cacheline_aligned_in_smp;
1504 struct softnet_data *rps_ipi_next;
1505 unsigned int cpu;
1506 unsigned int input_queue_head;
1507 unsigned int input_queue_tail;
1508 #endif
1509 unsigned dropped;
1510 struct sk_buff_head input_pkt_queue;
1511 struct napi_struct backlog;
1512 };
1513
1514 static inline void input_queue_head_incr(struct softnet_data *sd)
1515 {
1516 #ifdef CONFIG_RPS
1517 sd->input_queue_head++;
1518 #endif
1519 }
1520
1521 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1522 unsigned int *qtail)
1523 {
1524 #ifdef CONFIG_RPS
1525 *qtail = ++sd->input_queue_tail;
1526 #endif
1527 }
1528
1529 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1530
1531 #define HAVE_NETIF_QUEUE
1532
1533 extern void __netif_schedule(struct Qdisc *q);
1534
1535 static inline void netif_schedule_queue(struct netdev_queue *txq)
1536 {
1537 if (!test_bit(__QUEUE_STATE_XOFF, &txq->state))
1538 __netif_schedule(txq->qdisc);
1539 }
1540
1541 static inline void netif_tx_schedule_all(struct net_device *dev)
1542 {
1543 unsigned int i;
1544
1545 for (i = 0; i < dev->num_tx_queues; i++)
1546 netif_schedule_queue(netdev_get_tx_queue(dev, i));
1547 }
1548
1549 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1550 {
1551 clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1552 }
1553
1554 /**
1555 * netif_start_queue - allow transmit
1556 * @dev: network device
1557 *
1558 * Allow upper layers to call the device hard_start_xmit routine.
1559 */
1560 static inline void netif_start_queue(struct net_device *dev)
1561 {
1562 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1563 }
1564
1565 static inline void netif_tx_start_all_queues(struct net_device *dev)
1566 {
1567 unsigned int i;
1568
1569 for (i = 0; i < dev->num_tx_queues; i++) {
1570 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1571 netif_tx_start_queue(txq);
1572 }
1573 }
1574
1575 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1576 {
1577 #ifdef CONFIG_NETPOLL_TRAP
1578 if (netpoll_trap()) {
1579 netif_tx_start_queue(dev_queue);
1580 return;
1581 }
1582 #endif
1583 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state))
1584 __netif_schedule(dev_queue->qdisc);
1585 }
1586
1587 /**
1588 * netif_wake_queue - restart transmit
1589 * @dev: network device
1590 *
1591 * Allow upper layers to call the device hard_start_xmit routine.
1592 * Used for flow control when transmit resources are available.
1593 */
1594 static inline void netif_wake_queue(struct net_device *dev)
1595 {
1596 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1597 }
1598
1599 static inline void netif_tx_wake_all_queues(struct net_device *dev)
1600 {
1601 unsigned int i;
1602
1603 for (i = 0; i < dev->num_tx_queues; i++) {
1604 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1605 netif_tx_wake_queue(txq);
1606 }
1607 }
1608
1609 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1610 {
1611 if (WARN_ON(!dev_queue)) {
1612 printk(KERN_INFO "netif_stop_queue() cannot be called before "
1613 "register_netdev()");
1614 return;
1615 }
1616 set_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1617 }
1618
1619 /**
1620 * netif_stop_queue - stop transmitted packets
1621 * @dev: network device
1622 *
1623 * Stop upper layers calling the device hard_start_xmit routine.
1624 * Used for flow control when transmit resources are unavailable.
1625 */
1626 static inline void netif_stop_queue(struct net_device *dev)
1627 {
1628 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1629 }
1630
1631 static inline void netif_tx_stop_all_queues(struct net_device *dev)
1632 {
1633 unsigned int i;
1634
1635 for (i = 0; i < dev->num_tx_queues; i++) {
1636 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1637 netif_tx_stop_queue(txq);
1638 }
1639 }
1640
1641 static inline int netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1642 {
1643 return test_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1644 }
1645
1646 /**
1647 * netif_queue_stopped - test if transmit queue is flowblocked
1648 * @dev: network device
1649 *
1650 * Test if transmit queue on device is currently unable to send.
1651 */
1652 static inline int netif_queue_stopped(const struct net_device *dev)
1653 {
1654 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1655 }
1656
1657 static inline int netif_tx_queue_frozen_or_stopped(const struct netdev_queue *dev_queue)
1658 {
1659 return dev_queue->state & QUEUE_STATE_XOFF_OR_FROZEN;
1660 }
1661
1662 /**
1663 * netif_running - test if up
1664 * @dev: network device
1665 *
1666 * Test if the device has been brought up.
1667 */
1668 static inline int netif_running(const struct net_device *dev)
1669 {
1670 return test_bit(__LINK_STATE_START, &dev->state);
1671 }
1672
1673 /*
1674 * Routines to manage the subqueues on a device. We only need start
1675 * stop, and a check if it's stopped. All other device management is
1676 * done at the overall netdevice level.
1677 * Also test the device if we're multiqueue.
1678 */
1679
1680 /**
1681 * netif_start_subqueue - allow sending packets on subqueue
1682 * @dev: network device
1683 * @queue_index: sub queue index
1684 *
1685 * Start individual transmit queue of a device with multiple transmit queues.
1686 */
1687 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
1688 {
1689 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1690
1691 netif_tx_start_queue(txq);
1692 }
1693
1694 /**
1695 * netif_stop_subqueue - stop sending packets on subqueue
1696 * @dev: network device
1697 * @queue_index: sub queue index
1698 *
1699 * Stop individual transmit queue of a device with multiple transmit queues.
1700 */
1701 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
1702 {
1703 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1704 #ifdef CONFIG_NETPOLL_TRAP
1705 if (netpoll_trap())
1706 return;
1707 #endif
1708 netif_tx_stop_queue(txq);
1709 }
1710
1711 /**
1712 * netif_subqueue_stopped - test status of subqueue
1713 * @dev: network device
1714 * @queue_index: sub queue index
1715 *
1716 * Check individual transmit queue of a device with multiple transmit queues.
1717 */
1718 static inline int __netif_subqueue_stopped(const struct net_device *dev,
1719 u16 queue_index)
1720 {
1721 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1722
1723 return netif_tx_queue_stopped(txq);
1724 }
1725
1726 static inline int netif_subqueue_stopped(const struct net_device *dev,
1727 struct sk_buff *skb)
1728 {
1729 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
1730 }
1731
1732 /**
1733 * netif_wake_subqueue - allow sending packets on subqueue
1734 * @dev: network device
1735 * @queue_index: sub queue index
1736 *
1737 * Resume individual transmit queue of a device with multiple transmit queues.
1738 */
1739 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
1740 {
1741 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1742 #ifdef CONFIG_NETPOLL_TRAP
1743 if (netpoll_trap())
1744 return;
1745 #endif
1746 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &txq->state))
1747 __netif_schedule(txq->qdisc);
1748 }
1749
1750 /*
1751 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
1752 * as a distribution range limit for the returned value.
1753 */
1754 static inline u16 skb_tx_hash(const struct net_device *dev,
1755 const struct sk_buff *skb)
1756 {
1757 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
1758 }
1759
1760 /**
1761 * netif_is_multiqueue - test if device has multiple transmit queues
1762 * @dev: network device
1763 *
1764 * Check if device has multiple transmit queues
1765 */
1766 static inline int netif_is_multiqueue(const struct net_device *dev)
1767 {
1768 return dev->num_tx_queues > 1;
1769 }
1770
1771 extern int netif_set_real_num_tx_queues(struct net_device *dev,
1772 unsigned int txq);
1773
1774 #ifdef CONFIG_RPS
1775 extern int netif_set_real_num_rx_queues(struct net_device *dev,
1776 unsigned int rxq);
1777 #else
1778 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
1779 unsigned int rxq)
1780 {
1781 return 0;
1782 }
1783 #endif
1784
1785 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
1786 const struct net_device *from_dev)
1787 {
1788 netif_set_real_num_tx_queues(to_dev, from_dev->real_num_tx_queues);
1789 #ifdef CONFIG_RPS
1790 return netif_set_real_num_rx_queues(to_dev,
1791 from_dev->real_num_rx_queues);
1792 #else
1793 return 0;
1794 #endif
1795 }
1796
1797 /* Use this variant when it is known for sure that it
1798 * is executing from hardware interrupt context or with hardware interrupts
1799 * disabled.
1800 */
1801 extern void dev_kfree_skb_irq(struct sk_buff *skb);
1802
1803 /* Use this variant in places where it could be invoked
1804 * from either hardware interrupt or other context, with hardware interrupts
1805 * either disabled or enabled.
1806 */
1807 extern void dev_kfree_skb_any(struct sk_buff *skb);
1808
1809 #define HAVE_NETIF_RX 1
1810 extern int netif_rx(struct sk_buff *skb);
1811 extern int netif_rx_ni(struct sk_buff *skb);
1812 #define HAVE_NETIF_RECEIVE_SKB 1
1813 extern int netif_receive_skb(struct sk_buff *skb);
1814 extern gro_result_t dev_gro_receive(struct napi_struct *napi,
1815 struct sk_buff *skb);
1816 extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb);
1817 extern gro_result_t napi_gro_receive(struct napi_struct *napi,
1818 struct sk_buff *skb);
1819 extern void napi_gro_flush(struct napi_struct *napi);
1820 extern struct sk_buff * napi_get_frags(struct napi_struct *napi);
1821 extern gro_result_t napi_frags_finish(struct napi_struct *napi,
1822 struct sk_buff *skb,
1823 gro_result_t ret);
1824 extern struct sk_buff * napi_frags_skb(struct napi_struct *napi);
1825 extern gro_result_t napi_gro_frags(struct napi_struct *napi);
1826
1827 static inline void napi_free_frags(struct napi_struct *napi)
1828 {
1829 kfree_skb(napi->skb);
1830 napi->skb = NULL;
1831 }
1832
1833 extern int netdev_rx_handler_register(struct net_device *dev,
1834 rx_handler_func_t *rx_handler,
1835 void *rx_handler_data);
1836 extern void netdev_rx_handler_unregister(struct net_device *dev);
1837
1838 extern int dev_valid_name(const char *name);
1839 extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
1840 extern int dev_ethtool(struct net *net, struct ifreq *);
1841 extern unsigned dev_get_flags(const struct net_device *);
1842 extern int __dev_change_flags(struct net_device *, unsigned int flags);
1843 extern int dev_change_flags(struct net_device *, unsigned);
1844 extern void __dev_notify_flags(struct net_device *, unsigned int old_flags);
1845 extern int dev_change_name(struct net_device *, const char *);
1846 extern int dev_set_alias(struct net_device *, const char *, size_t);
1847 extern int dev_change_net_namespace(struct net_device *,
1848 struct net *, const char *);
1849 extern int dev_set_mtu(struct net_device *, int);
1850 extern int dev_set_mac_address(struct net_device *,
1851 struct sockaddr *);
1852 extern int dev_hard_start_xmit(struct sk_buff *skb,
1853 struct net_device *dev,
1854 struct netdev_queue *txq);
1855 extern int dev_forward_skb(struct net_device *dev,
1856 struct sk_buff *skb);
1857
1858 extern int netdev_budget;
1859
1860 /* Called by rtnetlink.c:rtnl_unlock() */
1861 extern void netdev_run_todo(void);
1862
1863 /**
1864 * dev_put - release reference to device
1865 * @dev: network device
1866 *
1867 * Release reference to device to allow it to be freed.
1868 */
1869 static inline void dev_put(struct net_device *dev)
1870 {
1871 irqsafe_cpu_dec(*dev->pcpu_refcnt);
1872 }
1873
1874 /**
1875 * dev_hold - get reference to device
1876 * @dev: network device
1877 *
1878 * Hold reference to device to keep it from being freed.
1879 */
1880 static inline void dev_hold(struct net_device *dev)
1881 {
1882 irqsafe_cpu_inc(*dev->pcpu_refcnt);
1883 }
1884
1885 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
1886 * and _off may be called from IRQ context, but it is caller
1887 * who is responsible for serialization of these calls.
1888 *
1889 * The name carrier is inappropriate, these functions should really be
1890 * called netif_lowerlayer_*() because they represent the state of any
1891 * kind of lower layer not just hardware media.
1892 */
1893
1894 extern void linkwatch_fire_event(struct net_device *dev);
1895 extern void linkwatch_forget_dev(struct net_device *dev);
1896
1897 /**
1898 * netif_carrier_ok - test if carrier present
1899 * @dev: network device
1900 *
1901 * Check if carrier is present on device
1902 */
1903 static inline int netif_carrier_ok(const struct net_device *dev)
1904 {
1905 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
1906 }
1907
1908 extern unsigned long dev_trans_start(struct net_device *dev);
1909
1910 extern void __netdev_watchdog_up(struct net_device *dev);
1911
1912 extern void netif_carrier_on(struct net_device *dev);
1913
1914 extern void netif_carrier_off(struct net_device *dev);
1915
1916 extern void netif_notify_peers(struct net_device *dev);
1917
1918 /**
1919 * netif_dormant_on - mark device as dormant.
1920 * @dev: network device
1921 *
1922 * Mark device as dormant (as per RFC2863).
1923 *
1924 * The dormant state indicates that the relevant interface is not
1925 * actually in a condition to pass packets (i.e., it is not 'up') but is
1926 * in a "pending" state, waiting for some external event. For "on-
1927 * demand" interfaces, this new state identifies the situation where the
1928 * interface is waiting for events to place it in the up state.
1929 *
1930 */
1931 static inline void netif_dormant_on(struct net_device *dev)
1932 {
1933 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
1934 linkwatch_fire_event(dev);
1935 }
1936
1937 /**
1938 * netif_dormant_off - set device as not dormant.
1939 * @dev: network device
1940 *
1941 * Device is not in dormant state.
1942 */
1943 static inline void netif_dormant_off(struct net_device *dev)
1944 {
1945 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
1946 linkwatch_fire_event(dev);
1947 }
1948
1949 /**
1950 * netif_dormant - test if carrier present
1951 * @dev: network device
1952 *
1953 * Check if carrier is present on device
1954 */
1955 static inline int netif_dormant(const struct net_device *dev)
1956 {
1957 return test_bit(__LINK_STATE_DORMANT, &dev->state);
1958 }
1959
1960
1961 /**
1962 * netif_oper_up - test if device is operational
1963 * @dev: network device
1964 *
1965 * Check if carrier is operational
1966 */
1967 static inline int netif_oper_up(const struct net_device *dev)
1968 {
1969 return (dev->operstate == IF_OPER_UP ||
1970 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
1971 }
1972
1973 /**
1974 * netif_device_present - is device available or removed
1975 * @dev: network device
1976 *
1977 * Check if device has not been removed from system.
1978 */
1979 static inline int netif_device_present(struct net_device *dev)
1980 {
1981 return test_bit(__LINK_STATE_PRESENT, &dev->state);
1982 }
1983
1984 extern void netif_device_detach(struct net_device *dev);
1985
1986 extern void netif_device_attach(struct net_device *dev);
1987
1988 /*
1989 * Network interface message level settings
1990 */
1991 #define HAVE_NETIF_MSG 1
1992
1993 enum {
1994 NETIF_MSG_DRV = 0x0001,
1995 NETIF_MSG_PROBE = 0x0002,
1996 NETIF_MSG_LINK = 0x0004,
1997 NETIF_MSG_TIMER = 0x0008,
1998 NETIF_MSG_IFDOWN = 0x0010,
1999 NETIF_MSG_IFUP = 0x0020,
2000 NETIF_MSG_RX_ERR = 0x0040,
2001 NETIF_MSG_TX_ERR = 0x0080,
2002 NETIF_MSG_TX_QUEUED = 0x0100,
2003 NETIF_MSG_INTR = 0x0200,
2004 NETIF_MSG_TX_DONE = 0x0400,
2005 NETIF_MSG_RX_STATUS = 0x0800,
2006 NETIF_MSG_PKTDATA = 0x1000,
2007 NETIF_MSG_HW = 0x2000,
2008 NETIF_MSG_WOL = 0x4000,
2009 };
2010
2011 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
2012 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
2013 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
2014 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
2015 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
2016 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
2017 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
2018 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
2019 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2020 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
2021 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
2022 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
2023 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
2024 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
2025 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
2026
2027 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2028 {
2029 /* use default */
2030 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2031 return default_msg_enable_bits;
2032 if (debug_value == 0) /* no output */
2033 return 0;
2034 /* set low N bits */
2035 return (1 << debug_value) - 1;
2036 }
2037
2038 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2039 {
2040 spin_lock(&txq->_xmit_lock);
2041 txq->xmit_lock_owner = cpu;
2042 }
2043
2044 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2045 {
2046 spin_lock_bh(&txq->_xmit_lock);
2047 txq->xmit_lock_owner = smp_processor_id();
2048 }
2049
2050 static inline int __netif_tx_trylock(struct netdev_queue *txq)
2051 {
2052 int ok = spin_trylock(&txq->_xmit_lock);
2053 if (likely(ok))
2054 txq->xmit_lock_owner = smp_processor_id();
2055 return ok;
2056 }
2057
2058 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2059 {
2060 txq->xmit_lock_owner = -1;
2061 spin_unlock(&txq->_xmit_lock);
2062 }
2063
2064 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2065 {
2066 txq->xmit_lock_owner = -1;
2067 spin_unlock_bh(&txq->_xmit_lock);
2068 }
2069
2070 static inline void txq_trans_update(struct netdev_queue *txq)
2071 {
2072 if (txq->xmit_lock_owner != -1)
2073 txq->trans_start = jiffies;
2074 }
2075
2076 /**
2077 * netif_tx_lock - grab network device transmit lock
2078 * @dev: network device
2079 *
2080 * Get network device transmit lock
2081 */
2082 static inline void netif_tx_lock(struct net_device *dev)
2083 {
2084 unsigned int i;
2085 int cpu;
2086
2087 spin_lock(&dev->tx_global_lock);
2088 cpu = smp_processor_id();
2089 for (i = 0; i < dev->num_tx_queues; i++) {
2090 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2091
2092 /* We are the only thread of execution doing a
2093 * freeze, but we have to grab the _xmit_lock in
2094 * order to synchronize with threads which are in
2095 * the ->hard_start_xmit() handler and already
2096 * checked the frozen bit.
2097 */
2098 __netif_tx_lock(txq, cpu);
2099 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2100 __netif_tx_unlock(txq);
2101 }
2102 }
2103
2104 static inline void netif_tx_lock_bh(struct net_device *dev)
2105 {
2106 local_bh_disable();
2107 netif_tx_lock(dev);
2108 }
2109
2110 static inline void netif_tx_unlock(struct net_device *dev)
2111 {
2112 unsigned int i;
2113
2114 for (i = 0; i < dev->num_tx_queues; i++) {
2115 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2116
2117 /* No need to grab the _xmit_lock here. If the
2118 * queue is not stopped for another reason, we
2119 * force a schedule.
2120 */
2121 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2122 netif_schedule_queue(txq);
2123 }
2124 spin_unlock(&dev->tx_global_lock);
2125 }
2126
2127 static inline void netif_tx_unlock_bh(struct net_device *dev)
2128 {
2129 netif_tx_unlock(dev);
2130 local_bh_enable();
2131 }
2132
2133 #define HARD_TX_LOCK(dev, txq, cpu) { \
2134 if ((dev->features & NETIF_F_LLTX) == 0) { \
2135 __netif_tx_lock(txq, cpu); \
2136 } \
2137 }
2138
2139 #define HARD_TX_UNLOCK(dev, txq) { \
2140 if ((dev->features & NETIF_F_LLTX) == 0) { \
2141 __netif_tx_unlock(txq); \
2142 } \
2143 }
2144
2145 static inline void netif_tx_disable(struct net_device *dev)
2146 {
2147 unsigned int i;
2148 int cpu;
2149
2150 local_bh_disable();
2151 cpu = smp_processor_id();
2152 for (i = 0; i < dev->num_tx_queues; i++) {
2153 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2154
2155 __netif_tx_lock(txq, cpu);
2156 netif_tx_stop_queue(txq);
2157 __netif_tx_unlock(txq);
2158 }
2159 local_bh_enable();
2160 }
2161
2162 static inline void netif_addr_lock(struct net_device *dev)
2163 {
2164 spin_lock(&dev->addr_list_lock);
2165 }
2166
2167 static inline void netif_addr_lock_bh(struct net_device *dev)
2168 {
2169 spin_lock_bh(&dev->addr_list_lock);
2170 }
2171
2172 static inline void netif_addr_unlock(struct net_device *dev)
2173 {
2174 spin_unlock(&dev->addr_list_lock);
2175 }
2176
2177 static inline void netif_addr_unlock_bh(struct net_device *dev)
2178 {
2179 spin_unlock_bh(&dev->addr_list_lock);
2180 }
2181
2182 /*
2183 * dev_addrs walker. Should be used only for read access. Call with
2184 * rcu_read_lock held.
2185 */
2186 #define for_each_dev_addr(dev, ha) \
2187 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2188
2189 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2190
2191 extern void ether_setup(struct net_device *dev);
2192
2193 /* Support for loadable net-drivers */
2194 extern struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
2195 void (*setup)(struct net_device *),
2196 unsigned int queue_count);
2197 #define alloc_netdev(sizeof_priv, name, setup) \
2198 alloc_netdev_mq(sizeof_priv, name, setup, 1)
2199 extern int register_netdev(struct net_device *dev);
2200 extern void unregister_netdev(struct net_device *dev);
2201
2202 /* General hardware address lists handling functions */
2203 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2204 struct netdev_hw_addr_list *from_list,
2205 int addr_len, unsigned char addr_type);
2206 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2207 struct netdev_hw_addr_list *from_list,
2208 int addr_len, unsigned char addr_type);
2209 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2210 struct netdev_hw_addr_list *from_list,
2211 int addr_len);
2212 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2213 struct netdev_hw_addr_list *from_list,
2214 int addr_len);
2215 extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2216 extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2217
2218 /* Functions used for device addresses handling */
2219 extern int dev_addr_add(struct net_device *dev, unsigned char *addr,
2220 unsigned char addr_type);
2221 extern int dev_addr_del(struct net_device *dev, unsigned char *addr,
2222 unsigned char addr_type);
2223 extern int dev_addr_add_multiple(struct net_device *to_dev,
2224 struct net_device *from_dev,
2225 unsigned char addr_type);
2226 extern int dev_addr_del_multiple(struct net_device *to_dev,
2227 struct net_device *from_dev,
2228 unsigned char addr_type);
2229 extern void dev_addr_flush(struct net_device *dev);
2230 extern int dev_addr_init(struct net_device *dev);
2231
2232 /* Functions used for unicast addresses handling */
2233 extern int dev_uc_add(struct net_device *dev, unsigned char *addr);
2234 extern int dev_uc_del(struct net_device *dev, unsigned char *addr);
2235 extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2236 extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2237 extern void dev_uc_flush(struct net_device *dev);
2238 extern void dev_uc_init(struct net_device *dev);
2239
2240 /* Functions used for multicast addresses handling */
2241 extern int dev_mc_add(struct net_device *dev, unsigned char *addr);
2242 extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr);
2243 extern int dev_mc_del(struct net_device *dev, unsigned char *addr);
2244 extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr);
2245 extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2246 extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2247 extern void dev_mc_flush(struct net_device *dev);
2248 extern void dev_mc_init(struct net_device *dev);
2249
2250 /* Functions used for secondary unicast and multicast support */
2251 extern void dev_set_rx_mode(struct net_device *dev);
2252 extern void __dev_set_rx_mode(struct net_device *dev);
2253 extern int dev_set_promiscuity(struct net_device *dev, int inc);
2254 extern int dev_set_allmulti(struct net_device *dev, int inc);
2255 extern void netdev_state_change(struct net_device *dev);
2256 extern int netdev_bonding_change(struct net_device *dev,
2257 unsigned long event);
2258 extern void netdev_features_change(struct net_device *dev);
2259 /* Load a device via the kmod */
2260 extern void dev_load(struct net *net, const char *name);
2261 extern void dev_mcast_init(void);
2262 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2263 struct rtnl_link_stats64 *storage);
2264 extern void dev_txq_stats_fold(const struct net_device *dev,
2265 struct rtnl_link_stats64 *stats);
2266
2267 extern int netdev_max_backlog;
2268 extern int netdev_tstamp_prequeue;
2269 extern int weight_p;
2270 extern int netdev_set_master(struct net_device *dev, struct net_device *master);
2271 extern int skb_checksum_help(struct sk_buff *skb);
2272 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features);
2273 #ifdef CONFIG_BUG
2274 extern void netdev_rx_csum_fault(struct net_device *dev);
2275 #else
2276 static inline void netdev_rx_csum_fault(struct net_device *dev)
2277 {
2278 }
2279 #endif
2280 /* rx skb timestamps */
2281 extern void net_enable_timestamp(void);
2282 extern void net_disable_timestamp(void);
2283
2284 #ifdef CONFIG_PROC_FS
2285 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
2286 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2287 extern void dev_seq_stop(struct seq_file *seq, void *v);
2288 #endif
2289
2290 extern int netdev_class_create_file(struct class_attribute *class_attr);
2291 extern void netdev_class_remove_file(struct class_attribute *class_attr);
2292
2293 extern struct kobj_ns_type_operations net_ns_type_operations;
2294
2295 extern char *netdev_drivername(const struct net_device *dev, char *buffer, int len);
2296
2297 extern void linkwatch_run_queue(void);
2298
2299 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
2300 unsigned long mask);
2301 unsigned long netdev_fix_features(unsigned long features, const char *name);
2302
2303 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2304 struct net_device *dev);
2305
2306 int netif_skb_features(struct sk_buff *skb);
2307
2308 static inline int net_gso_ok(int features, int gso_type)
2309 {
2310 int feature = gso_type << NETIF_F_GSO_SHIFT;
2311 return (features & feature) == feature;
2312 }
2313
2314 static inline int skb_gso_ok(struct sk_buff *skb, int features)
2315 {
2316 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2317 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2318 }
2319
2320 static inline int netif_needs_gso(struct sk_buff *skb, int features)
2321 {
2322 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2323 unlikely(skb->ip_summed != CHECKSUM_PARTIAL));
2324 }
2325
2326 static inline void netif_set_gso_max_size(struct net_device *dev,
2327 unsigned int size)
2328 {
2329 dev->gso_max_size = size;
2330 }
2331
2332 extern int __skb_bond_should_drop(struct sk_buff *skb,
2333 struct net_device *master);
2334
2335 static inline int skb_bond_should_drop(struct sk_buff *skb,
2336 struct net_device *master)
2337 {
2338 if (master)
2339 return __skb_bond_should_drop(skb, master);
2340 return 0;
2341 }
2342
2343 extern struct pernet_operations __net_initdata loopback_net_ops;
2344
2345 static inline int dev_ethtool_get_settings(struct net_device *dev,
2346 struct ethtool_cmd *cmd)
2347 {
2348 if (!dev->ethtool_ops || !dev->ethtool_ops->get_settings)
2349 return -EOPNOTSUPP;
2350 return dev->ethtool_ops->get_settings(dev, cmd);
2351 }
2352
2353 static inline u32 dev_ethtool_get_rx_csum(struct net_device *dev)
2354 {
2355 if (!dev->ethtool_ops || !dev->ethtool_ops->get_rx_csum)
2356 return 0;
2357 return dev->ethtool_ops->get_rx_csum(dev);
2358 }
2359
2360 static inline u32 dev_ethtool_get_flags(struct net_device *dev)
2361 {
2362 if (!dev->ethtool_ops || !dev->ethtool_ops->get_flags)
2363 return 0;
2364 return dev->ethtool_ops->get_flags(dev);
2365 }
2366
2367 /* Logging, debugging and troubleshooting/diagnostic helpers. */
2368
2369 /* netdev_printk helpers, similar to dev_printk */
2370
2371 static inline const char *netdev_name(const struct net_device *dev)
2372 {
2373 if (dev->reg_state != NETREG_REGISTERED)
2374 return "(unregistered net_device)";
2375 return dev->name;
2376 }
2377
2378 extern int netdev_printk(const char *level, const struct net_device *dev,
2379 const char *format, ...)
2380 __attribute__ ((format (printf, 3, 4)));
2381 extern int netdev_emerg(const struct net_device *dev, const char *format, ...)
2382 __attribute__ ((format (printf, 2, 3)));
2383 extern int netdev_alert(const struct net_device *dev, const char *format, ...)
2384 __attribute__ ((format (printf, 2, 3)));
2385 extern int netdev_crit(const struct net_device *dev, const char *format, ...)
2386 __attribute__ ((format (printf, 2, 3)));
2387 extern int netdev_err(const struct net_device *dev, const char *format, ...)
2388 __attribute__ ((format (printf, 2, 3)));
2389 extern int netdev_warn(const struct net_device *dev, const char *format, ...)
2390 __attribute__ ((format (printf, 2, 3)));
2391 extern int netdev_notice(const struct net_device *dev, const char *format, ...)
2392 __attribute__ ((format (printf, 2, 3)));
2393 extern int netdev_info(const struct net_device *dev, const char *format, ...)
2394 __attribute__ ((format (printf, 2, 3)));
2395
2396 #if defined(DEBUG)
2397 #define netdev_dbg(__dev, format, args...) \
2398 netdev_printk(KERN_DEBUG, __dev, format, ##args)
2399 #elif defined(CONFIG_DYNAMIC_DEBUG)
2400 #define netdev_dbg(__dev, format, args...) \
2401 do { \
2402 dynamic_dev_dbg((__dev)->dev.parent, "%s: " format, \
2403 netdev_name(__dev), ##args); \
2404 } while (0)
2405 #else
2406 #define netdev_dbg(__dev, format, args...) \
2407 ({ \
2408 if (0) \
2409 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2410 0; \
2411 })
2412 #endif
2413
2414 #if defined(VERBOSE_DEBUG)
2415 #define netdev_vdbg netdev_dbg
2416 #else
2417
2418 #define netdev_vdbg(dev, format, args...) \
2419 ({ \
2420 if (0) \
2421 netdev_printk(KERN_DEBUG, dev, format, ##args); \
2422 0; \
2423 })
2424 #endif
2425
2426 /*
2427 * netdev_WARN() acts like dev_printk(), but with the key difference
2428 * of using a WARN/WARN_ON to get the message out, including the
2429 * file/line information and a backtrace.
2430 */
2431 #define netdev_WARN(dev, format, args...) \
2432 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2433
2434 /* netif printk helpers, similar to netdev_printk */
2435
2436 #define netif_printk(priv, type, level, dev, fmt, args...) \
2437 do { \
2438 if (netif_msg_##type(priv)) \
2439 netdev_printk(level, (dev), fmt, ##args); \
2440 } while (0)
2441
2442 #define netif_level(level, priv, type, dev, fmt, args...) \
2443 do { \
2444 if (netif_msg_##type(priv)) \
2445 netdev_##level(dev, fmt, ##args); \
2446 } while (0)
2447
2448 #define netif_emerg(priv, type, dev, fmt, args...) \
2449 netif_level(emerg, priv, type, dev, fmt, ##args)
2450 #define netif_alert(priv, type, dev, fmt, args...) \
2451 netif_level(alert, priv, type, dev, fmt, ##args)
2452 #define netif_crit(priv, type, dev, fmt, args...) \
2453 netif_level(crit, priv, type, dev, fmt, ##args)
2454 #define netif_err(priv, type, dev, fmt, args...) \
2455 netif_level(err, priv, type, dev, fmt, ##args)
2456 #define netif_warn(priv, type, dev, fmt, args...) \
2457 netif_level(warn, priv, type, dev, fmt, ##args)
2458 #define netif_notice(priv, type, dev, fmt, args...) \
2459 netif_level(notice, priv, type, dev, fmt, ##args)
2460 #define netif_info(priv, type, dev, fmt, args...) \
2461 netif_level(info, priv, type, dev, fmt, ##args)
2462
2463 #if defined(DEBUG)
2464 #define netif_dbg(priv, type, dev, format, args...) \
2465 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2466 #elif defined(CONFIG_DYNAMIC_DEBUG)
2467 #define netif_dbg(priv, type, netdev, format, args...) \
2468 do { \
2469 if (netif_msg_##type(priv)) \
2470 dynamic_dev_dbg((netdev)->dev.parent, \
2471 "%s: " format, \
2472 netdev_name(netdev), ##args); \
2473 } while (0)
2474 #else
2475 #define netif_dbg(priv, type, dev, format, args...) \
2476 ({ \
2477 if (0) \
2478 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2479 0; \
2480 })
2481 #endif
2482
2483 #if defined(VERBOSE_DEBUG)
2484 #define netif_vdbg netif_dbg
2485 #else
2486 #define netif_vdbg(priv, type, dev, format, args...) \
2487 ({ \
2488 if (0) \
2489 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2490 0; \
2491 })
2492 #endif
2493
2494 #endif /* __KERNEL__ */
2495
2496 #endif /* _LINUX_NETDEVICE_H */