]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/linux/netdevice.h
Merge tag 'kernel.sys.v5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner...
[mirror_ubuntu-jammy-kernel.git] / include / linux / netdevice.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the Interfaces handler.
8 *
9 * Version: @(#)dev.h 1.0.10 08/12/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
16 * Bjorn Ekwall. <bj0rn@blox.se>
17 * Pekka Riikonen <priikone@poseidon.pspt.fi>
18 *
19 * Moved to /usr/include/linux for NET3
20 */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36
37 #include <net/net_namespace.h>
38 #ifdef CONFIG_DCB
39 #include <net/dcbnl.h>
40 #endif
41 #include <net/netprio_cgroup.h>
42 #include <net/xdp.h>
43
44 #include <linux/netdev_features.h>
45 #include <linux/neighbour.h>
46 #include <uapi/linux/netdevice.h>
47 #include <uapi/linux/if_bonding.h>
48 #include <uapi/linux/pkt_cls.h>
49 #include <linux/hashtable.h>
50
51 struct netpoll_info;
52 struct device;
53 struct ethtool_ops;
54 struct phy_device;
55 struct dsa_port;
56 struct ip_tunnel_parm;
57 struct macsec_context;
58 struct macsec_ops;
59
60 struct sfp_bus;
61 /* 802.11 specific */
62 struct wireless_dev;
63 /* 802.15.4 specific */
64 struct wpan_dev;
65 struct mpls_dev;
66 /* UDP Tunnel offloads */
67 struct udp_tunnel_info;
68 struct udp_tunnel_nic_info;
69 struct udp_tunnel_nic;
70 struct bpf_prog;
71 struct xdp_buff;
72
73 void synchronize_net(void);
74 void netdev_set_default_ethtool_ops(struct net_device *dev,
75 const struct ethtool_ops *ops);
76
77 /* Backlog congestion levels */
78 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
79 #define NET_RX_DROP 1 /* packet dropped */
80
81 #define MAX_NEST_DEV 8
82
83 /*
84 * Transmit return codes: transmit return codes originate from three different
85 * namespaces:
86 *
87 * - qdisc return codes
88 * - driver transmit return codes
89 * - errno values
90 *
91 * Drivers are allowed to return any one of those in their hard_start_xmit()
92 * function. Real network devices commonly used with qdiscs should only return
93 * the driver transmit return codes though - when qdiscs are used, the actual
94 * transmission happens asynchronously, so the value is not propagated to
95 * higher layers. Virtual network devices transmit synchronously; in this case
96 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
97 * others are propagated to higher layers.
98 */
99
100 /* qdisc ->enqueue() return codes. */
101 #define NET_XMIT_SUCCESS 0x00
102 #define NET_XMIT_DROP 0x01 /* skb dropped */
103 #define NET_XMIT_CN 0x02 /* congestion notification */
104 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
105
106 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
107 * indicates that the device will soon be dropping packets, or already drops
108 * some packets of the same priority; prompting us to send less aggressively. */
109 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
110 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
111
112 /* Driver transmit return codes */
113 #define NETDEV_TX_MASK 0xf0
114
115 enum netdev_tx {
116 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
117 NETDEV_TX_OK = 0x00, /* driver took care of packet */
118 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
119 };
120 typedef enum netdev_tx netdev_tx_t;
121
122 /*
123 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
124 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
125 */
126 static inline bool dev_xmit_complete(int rc)
127 {
128 /*
129 * Positive cases with an skb consumed by a driver:
130 * - successful transmission (rc == NETDEV_TX_OK)
131 * - error while transmitting (rc < 0)
132 * - error while queueing to a different device (rc & NET_XMIT_MASK)
133 */
134 if (likely(rc < NET_XMIT_MASK))
135 return true;
136
137 return false;
138 }
139
140 /*
141 * Compute the worst-case header length according to the protocols
142 * used.
143 */
144
145 #if defined(CONFIG_HYPERV_NET)
146 # define LL_MAX_HEADER 128
147 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
148 # if defined(CONFIG_MAC80211_MESH)
149 # define LL_MAX_HEADER 128
150 # else
151 # define LL_MAX_HEADER 96
152 # endif
153 #else
154 # define LL_MAX_HEADER 32
155 #endif
156
157 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
158 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
159 #define MAX_HEADER LL_MAX_HEADER
160 #else
161 #define MAX_HEADER (LL_MAX_HEADER + 48)
162 #endif
163
164 /*
165 * Old network device statistics. Fields are native words
166 * (unsigned long) so they can be read and written atomically.
167 */
168
169 struct net_device_stats {
170 unsigned long rx_packets;
171 unsigned long tx_packets;
172 unsigned long rx_bytes;
173 unsigned long tx_bytes;
174 unsigned long rx_errors;
175 unsigned long tx_errors;
176 unsigned long rx_dropped;
177 unsigned long tx_dropped;
178 unsigned long multicast;
179 unsigned long collisions;
180 unsigned long rx_length_errors;
181 unsigned long rx_over_errors;
182 unsigned long rx_crc_errors;
183 unsigned long rx_frame_errors;
184 unsigned long rx_fifo_errors;
185 unsigned long rx_missed_errors;
186 unsigned long tx_aborted_errors;
187 unsigned long tx_carrier_errors;
188 unsigned long tx_fifo_errors;
189 unsigned long tx_heartbeat_errors;
190 unsigned long tx_window_errors;
191 unsigned long rx_compressed;
192 unsigned long tx_compressed;
193 };
194
195
196 #include <linux/cache.h>
197 #include <linux/skbuff.h>
198
199 #ifdef CONFIG_RPS
200 #include <linux/static_key.h>
201 extern struct static_key_false rps_needed;
202 extern struct static_key_false rfs_needed;
203 #endif
204
205 struct neighbour;
206 struct neigh_parms;
207 struct sk_buff;
208
209 struct netdev_hw_addr {
210 struct list_head list;
211 unsigned char addr[MAX_ADDR_LEN];
212 unsigned char type;
213 #define NETDEV_HW_ADDR_T_LAN 1
214 #define NETDEV_HW_ADDR_T_SAN 2
215 #define NETDEV_HW_ADDR_T_UNICAST 3
216 #define NETDEV_HW_ADDR_T_MULTICAST 4
217 bool global_use;
218 int sync_cnt;
219 int refcount;
220 int synced;
221 struct rcu_head rcu_head;
222 };
223
224 struct netdev_hw_addr_list {
225 struct list_head list;
226 int count;
227 };
228
229 #define netdev_hw_addr_list_count(l) ((l)->count)
230 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
231 #define netdev_hw_addr_list_for_each(ha, l) \
232 list_for_each_entry(ha, &(l)->list, list)
233
234 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
235 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
236 #define netdev_for_each_uc_addr(ha, dev) \
237 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
238
239 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
240 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
241 #define netdev_for_each_mc_addr(ha, dev) \
242 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
243
244 struct hh_cache {
245 unsigned int hh_len;
246 seqlock_t hh_lock;
247
248 /* cached hardware header; allow for machine alignment needs. */
249 #define HH_DATA_MOD 16
250 #define HH_DATA_OFF(__len) \
251 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
252 #define HH_DATA_ALIGN(__len) \
253 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
254 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
255 };
256
257 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
258 * Alternative is:
259 * dev->hard_header_len ? (dev->hard_header_len +
260 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
261 *
262 * We could use other alignment values, but we must maintain the
263 * relationship HH alignment <= LL alignment.
264 */
265 #define LL_RESERVED_SPACE(dev) \
266 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
267 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
268 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
269
270 struct header_ops {
271 int (*create) (struct sk_buff *skb, struct net_device *dev,
272 unsigned short type, const void *daddr,
273 const void *saddr, unsigned int len);
274 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
275 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
276 void (*cache_update)(struct hh_cache *hh,
277 const struct net_device *dev,
278 const unsigned char *haddr);
279 bool (*validate)(const char *ll_header, unsigned int len);
280 __be16 (*parse_protocol)(const struct sk_buff *skb);
281 };
282
283 /* These flag bits are private to the generic network queueing
284 * layer; they may not be explicitly referenced by any other
285 * code.
286 */
287
288 enum netdev_state_t {
289 __LINK_STATE_START,
290 __LINK_STATE_PRESENT,
291 __LINK_STATE_NOCARRIER,
292 __LINK_STATE_LINKWATCH_PENDING,
293 __LINK_STATE_DORMANT,
294 __LINK_STATE_TESTING,
295 };
296
297
298 /*
299 * This structure holds boot-time configured netdevice settings. They
300 * are then used in the device probing.
301 */
302 struct netdev_boot_setup {
303 char name[IFNAMSIZ];
304 struct ifmap map;
305 };
306 #define NETDEV_BOOT_SETUP_MAX 8
307
308 int __init netdev_boot_setup(char *str);
309
310 struct gro_list {
311 struct list_head list;
312 int count;
313 };
314
315 /*
316 * size of gro hash buckets, must less than bit number of
317 * napi_struct::gro_bitmask
318 */
319 #define GRO_HASH_BUCKETS 8
320
321 /*
322 * Structure for NAPI scheduling similar to tasklet but with weighting
323 */
324 struct napi_struct {
325 /* The poll_list must only be managed by the entity which
326 * changes the state of the NAPI_STATE_SCHED bit. This means
327 * whoever atomically sets that bit can add this napi_struct
328 * to the per-CPU poll_list, and whoever clears that bit
329 * can remove from the list right before clearing the bit.
330 */
331 struct list_head poll_list;
332
333 unsigned long state;
334 int weight;
335 int defer_hard_irqs_count;
336 unsigned long gro_bitmask;
337 int (*poll)(struct napi_struct *, int);
338 #ifdef CONFIG_NETPOLL
339 int poll_owner;
340 #endif
341 struct net_device *dev;
342 struct gro_list gro_hash[GRO_HASH_BUCKETS];
343 struct sk_buff *skb;
344 struct list_head rx_list; /* Pending GRO_NORMAL skbs */
345 int rx_count; /* length of rx_list */
346 struct hrtimer timer;
347 struct list_head dev_list;
348 struct hlist_node napi_hash_node;
349 unsigned int napi_id;
350 struct task_struct *thread;
351 };
352
353 enum {
354 NAPI_STATE_SCHED, /* Poll is scheduled */
355 NAPI_STATE_MISSED, /* reschedule a napi */
356 NAPI_STATE_DISABLE, /* Disable pending */
357 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
358 NAPI_STATE_LISTED, /* NAPI added to system lists */
359 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */
360 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */
361 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/
362 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/
363 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */
364 };
365
366 enum {
367 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED),
368 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED),
369 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE),
370 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC),
371 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED),
372 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
373 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
374 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL),
375 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED),
376 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED),
377 };
378
379 enum gro_result {
380 GRO_MERGED,
381 GRO_MERGED_FREE,
382 GRO_HELD,
383 GRO_NORMAL,
384 GRO_CONSUMED,
385 };
386 typedef enum gro_result gro_result_t;
387
388 /*
389 * enum rx_handler_result - Possible return values for rx_handlers.
390 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
391 * further.
392 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
393 * case skb->dev was changed by rx_handler.
394 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
395 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
396 *
397 * rx_handlers are functions called from inside __netif_receive_skb(), to do
398 * special processing of the skb, prior to delivery to protocol handlers.
399 *
400 * Currently, a net_device can only have a single rx_handler registered. Trying
401 * to register a second rx_handler will return -EBUSY.
402 *
403 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
404 * To unregister a rx_handler on a net_device, use
405 * netdev_rx_handler_unregister().
406 *
407 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
408 * do with the skb.
409 *
410 * If the rx_handler consumed the skb in some way, it should return
411 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
412 * the skb to be delivered in some other way.
413 *
414 * If the rx_handler changed skb->dev, to divert the skb to another
415 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
416 * new device will be called if it exists.
417 *
418 * If the rx_handler decides the skb should be ignored, it should return
419 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
420 * are registered on exact device (ptype->dev == skb->dev).
421 *
422 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
423 * delivered, it should return RX_HANDLER_PASS.
424 *
425 * A device without a registered rx_handler will behave as if rx_handler
426 * returned RX_HANDLER_PASS.
427 */
428
429 enum rx_handler_result {
430 RX_HANDLER_CONSUMED,
431 RX_HANDLER_ANOTHER,
432 RX_HANDLER_EXACT,
433 RX_HANDLER_PASS,
434 };
435 typedef enum rx_handler_result rx_handler_result_t;
436 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
437
438 void __napi_schedule(struct napi_struct *n);
439 void __napi_schedule_irqoff(struct napi_struct *n);
440
441 static inline bool napi_disable_pending(struct napi_struct *n)
442 {
443 return test_bit(NAPI_STATE_DISABLE, &n->state);
444 }
445
446 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
447 {
448 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
449 }
450
451 bool napi_schedule_prep(struct napi_struct *n);
452
453 /**
454 * napi_schedule - schedule NAPI poll
455 * @n: NAPI context
456 *
457 * Schedule NAPI poll routine to be called if it is not already
458 * running.
459 */
460 static inline void napi_schedule(struct napi_struct *n)
461 {
462 if (napi_schedule_prep(n))
463 __napi_schedule(n);
464 }
465
466 /**
467 * napi_schedule_irqoff - schedule NAPI poll
468 * @n: NAPI context
469 *
470 * Variant of napi_schedule(), assuming hard irqs are masked.
471 */
472 static inline void napi_schedule_irqoff(struct napi_struct *n)
473 {
474 if (napi_schedule_prep(n))
475 __napi_schedule_irqoff(n);
476 }
477
478 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
479 static inline bool napi_reschedule(struct napi_struct *napi)
480 {
481 if (napi_schedule_prep(napi)) {
482 __napi_schedule(napi);
483 return true;
484 }
485 return false;
486 }
487
488 bool napi_complete_done(struct napi_struct *n, int work_done);
489 /**
490 * napi_complete - NAPI processing complete
491 * @n: NAPI context
492 *
493 * Mark NAPI processing as complete.
494 * Consider using napi_complete_done() instead.
495 * Return false if device should avoid rearming interrupts.
496 */
497 static inline bool napi_complete(struct napi_struct *n)
498 {
499 return napi_complete_done(n, 0);
500 }
501
502 int dev_set_threaded(struct net_device *dev, bool threaded);
503
504 /**
505 * napi_disable - prevent NAPI from scheduling
506 * @n: NAPI context
507 *
508 * Stop NAPI from being scheduled on this context.
509 * Waits till any outstanding processing completes.
510 */
511 void napi_disable(struct napi_struct *n);
512
513 void napi_enable(struct napi_struct *n);
514
515 /**
516 * napi_synchronize - wait until NAPI is not running
517 * @n: NAPI context
518 *
519 * Wait until NAPI is done being scheduled on this context.
520 * Waits till any outstanding processing completes but
521 * does not disable future activations.
522 */
523 static inline void napi_synchronize(const struct napi_struct *n)
524 {
525 if (IS_ENABLED(CONFIG_SMP))
526 while (test_bit(NAPI_STATE_SCHED, &n->state))
527 msleep(1);
528 else
529 barrier();
530 }
531
532 /**
533 * napi_if_scheduled_mark_missed - if napi is running, set the
534 * NAPIF_STATE_MISSED
535 * @n: NAPI context
536 *
537 * If napi is running, set the NAPIF_STATE_MISSED, and return true if
538 * NAPI is scheduled.
539 **/
540 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
541 {
542 unsigned long val, new;
543
544 do {
545 val = READ_ONCE(n->state);
546 if (val & NAPIF_STATE_DISABLE)
547 return true;
548
549 if (!(val & NAPIF_STATE_SCHED))
550 return false;
551
552 new = val | NAPIF_STATE_MISSED;
553 } while (cmpxchg(&n->state, val, new) != val);
554
555 return true;
556 }
557
558 enum netdev_queue_state_t {
559 __QUEUE_STATE_DRV_XOFF,
560 __QUEUE_STATE_STACK_XOFF,
561 __QUEUE_STATE_FROZEN,
562 };
563
564 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
565 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
566 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
567
568 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
569 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
570 QUEUE_STATE_FROZEN)
571 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
572 QUEUE_STATE_FROZEN)
573
574 /*
575 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
576 * netif_tx_* functions below are used to manipulate this flag. The
577 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
578 * queue independently. The netif_xmit_*stopped functions below are called
579 * to check if the queue has been stopped by the driver or stack (either
580 * of the XOFF bits are set in the state). Drivers should not need to call
581 * netif_xmit*stopped functions, they should only be using netif_tx_*.
582 */
583
584 struct netdev_queue {
585 /*
586 * read-mostly part
587 */
588 struct net_device *dev;
589 struct Qdisc __rcu *qdisc;
590 struct Qdisc *qdisc_sleeping;
591 #ifdef CONFIG_SYSFS
592 struct kobject kobj;
593 #endif
594 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
595 int numa_node;
596 #endif
597 unsigned long tx_maxrate;
598 /*
599 * Number of TX timeouts for this queue
600 * (/sys/class/net/DEV/Q/trans_timeout)
601 */
602 unsigned long trans_timeout;
603
604 /* Subordinate device that the queue has been assigned to */
605 struct net_device *sb_dev;
606 #ifdef CONFIG_XDP_SOCKETS
607 struct xsk_buff_pool *pool;
608 #endif
609 /*
610 * write-mostly part
611 */
612 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
613 int xmit_lock_owner;
614 /*
615 * Time (in jiffies) of last Tx
616 */
617 unsigned long trans_start;
618
619 unsigned long state;
620
621 #ifdef CONFIG_BQL
622 struct dql dql;
623 #endif
624 } ____cacheline_aligned_in_smp;
625
626 extern int sysctl_fb_tunnels_only_for_init_net;
627 extern int sysctl_devconf_inherit_init_net;
628
629 /*
630 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
631 * == 1 : For initns only
632 * == 2 : For none.
633 */
634 static inline bool net_has_fallback_tunnels(const struct net *net)
635 {
636 return !IS_ENABLED(CONFIG_SYSCTL) ||
637 !sysctl_fb_tunnels_only_for_init_net ||
638 (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1);
639 }
640
641 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
642 {
643 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
644 return q->numa_node;
645 #else
646 return NUMA_NO_NODE;
647 #endif
648 }
649
650 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
651 {
652 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
653 q->numa_node = node;
654 #endif
655 }
656
657 #ifdef CONFIG_RPS
658 /*
659 * This structure holds an RPS map which can be of variable length. The
660 * map is an array of CPUs.
661 */
662 struct rps_map {
663 unsigned int len;
664 struct rcu_head rcu;
665 u16 cpus[];
666 };
667 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
668
669 /*
670 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
671 * tail pointer for that CPU's input queue at the time of last enqueue, and
672 * a hardware filter index.
673 */
674 struct rps_dev_flow {
675 u16 cpu;
676 u16 filter;
677 unsigned int last_qtail;
678 };
679 #define RPS_NO_FILTER 0xffff
680
681 /*
682 * The rps_dev_flow_table structure contains a table of flow mappings.
683 */
684 struct rps_dev_flow_table {
685 unsigned int mask;
686 struct rcu_head rcu;
687 struct rps_dev_flow flows[];
688 };
689 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
690 ((_num) * sizeof(struct rps_dev_flow)))
691
692 /*
693 * The rps_sock_flow_table contains mappings of flows to the last CPU
694 * on which they were processed by the application (set in recvmsg).
695 * Each entry is a 32bit value. Upper part is the high-order bits
696 * of flow hash, lower part is CPU number.
697 * rps_cpu_mask is used to partition the space, depending on number of
698 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
699 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
700 * meaning we use 32-6=26 bits for the hash.
701 */
702 struct rps_sock_flow_table {
703 u32 mask;
704
705 u32 ents[] ____cacheline_aligned_in_smp;
706 };
707 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
708
709 #define RPS_NO_CPU 0xffff
710
711 extern u32 rps_cpu_mask;
712 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
713
714 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
715 u32 hash)
716 {
717 if (table && hash) {
718 unsigned int index = hash & table->mask;
719 u32 val = hash & ~rps_cpu_mask;
720
721 /* We only give a hint, preemption can change CPU under us */
722 val |= raw_smp_processor_id();
723
724 if (table->ents[index] != val)
725 table->ents[index] = val;
726 }
727 }
728
729 #ifdef CONFIG_RFS_ACCEL
730 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
731 u16 filter_id);
732 #endif
733 #endif /* CONFIG_RPS */
734
735 /* This structure contains an instance of an RX queue. */
736 struct netdev_rx_queue {
737 #ifdef CONFIG_RPS
738 struct rps_map __rcu *rps_map;
739 struct rps_dev_flow_table __rcu *rps_flow_table;
740 #endif
741 struct kobject kobj;
742 struct net_device *dev;
743 struct xdp_rxq_info xdp_rxq;
744 #ifdef CONFIG_XDP_SOCKETS
745 struct xsk_buff_pool *pool;
746 #endif
747 } ____cacheline_aligned_in_smp;
748
749 /*
750 * RX queue sysfs structures and functions.
751 */
752 struct rx_queue_attribute {
753 struct attribute attr;
754 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
755 ssize_t (*store)(struct netdev_rx_queue *queue,
756 const char *buf, size_t len);
757 };
758
759 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
760 enum xps_map_type {
761 XPS_CPUS = 0,
762 XPS_RXQS,
763 XPS_MAPS_MAX,
764 };
765
766 #ifdef CONFIG_XPS
767 /*
768 * This structure holds an XPS map which can be of variable length. The
769 * map is an array of queues.
770 */
771 struct xps_map {
772 unsigned int len;
773 unsigned int alloc_len;
774 struct rcu_head rcu;
775 u16 queues[];
776 };
777 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
778 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
779 - sizeof(struct xps_map)) / sizeof(u16))
780
781 /*
782 * This structure holds all XPS maps for device. Maps are indexed by CPU.
783 *
784 * We keep track of the number of cpus/rxqs used when the struct is allocated,
785 * in nr_ids. This will help not accessing out-of-bound memory.
786 *
787 * We keep track of the number of traffic classes used when the struct is
788 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
789 * not crossing its upper bound, as the original dev->num_tc can be updated in
790 * the meantime.
791 */
792 struct xps_dev_maps {
793 struct rcu_head rcu;
794 unsigned int nr_ids;
795 s16 num_tc;
796 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
797 };
798
799 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \
800 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
801
802 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
803 (_rxqs * (_tcs) * sizeof(struct xps_map *)))
804
805 #endif /* CONFIG_XPS */
806
807 #define TC_MAX_QUEUE 16
808 #define TC_BITMASK 15
809 /* HW offloaded queuing disciplines txq count and offset maps */
810 struct netdev_tc_txq {
811 u16 count;
812 u16 offset;
813 };
814
815 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
816 /*
817 * This structure is to hold information about the device
818 * configured to run FCoE protocol stack.
819 */
820 struct netdev_fcoe_hbainfo {
821 char manufacturer[64];
822 char serial_number[64];
823 char hardware_version[64];
824 char driver_version[64];
825 char optionrom_version[64];
826 char firmware_version[64];
827 char model[256];
828 char model_description[256];
829 };
830 #endif
831
832 #define MAX_PHYS_ITEM_ID_LEN 32
833
834 /* This structure holds a unique identifier to identify some
835 * physical item (port for example) used by a netdevice.
836 */
837 struct netdev_phys_item_id {
838 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
839 unsigned char id_len;
840 };
841
842 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
843 struct netdev_phys_item_id *b)
844 {
845 return a->id_len == b->id_len &&
846 memcmp(a->id, b->id, a->id_len) == 0;
847 }
848
849 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
850 struct sk_buff *skb,
851 struct net_device *sb_dev);
852
853 enum net_device_path_type {
854 DEV_PATH_ETHERNET = 0,
855 DEV_PATH_VLAN,
856 DEV_PATH_BRIDGE,
857 DEV_PATH_PPPOE,
858 DEV_PATH_DSA,
859 };
860
861 struct net_device_path {
862 enum net_device_path_type type;
863 const struct net_device *dev;
864 union {
865 struct {
866 u16 id;
867 __be16 proto;
868 u8 h_dest[ETH_ALEN];
869 } encap;
870 struct {
871 enum {
872 DEV_PATH_BR_VLAN_KEEP,
873 DEV_PATH_BR_VLAN_TAG,
874 DEV_PATH_BR_VLAN_UNTAG,
875 DEV_PATH_BR_VLAN_UNTAG_HW,
876 } vlan_mode;
877 u16 vlan_id;
878 __be16 vlan_proto;
879 } bridge;
880 struct {
881 int port;
882 u16 proto;
883 } dsa;
884 };
885 };
886
887 #define NET_DEVICE_PATH_STACK_MAX 5
888 #define NET_DEVICE_PATH_VLAN_MAX 2
889
890 struct net_device_path_stack {
891 int num_paths;
892 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX];
893 };
894
895 struct net_device_path_ctx {
896 const struct net_device *dev;
897 const u8 *daddr;
898
899 int num_vlans;
900 struct {
901 u16 id;
902 __be16 proto;
903 } vlan[NET_DEVICE_PATH_VLAN_MAX];
904 };
905
906 enum tc_setup_type {
907 TC_SETUP_QDISC_MQPRIO,
908 TC_SETUP_CLSU32,
909 TC_SETUP_CLSFLOWER,
910 TC_SETUP_CLSMATCHALL,
911 TC_SETUP_CLSBPF,
912 TC_SETUP_BLOCK,
913 TC_SETUP_QDISC_CBS,
914 TC_SETUP_QDISC_RED,
915 TC_SETUP_QDISC_PRIO,
916 TC_SETUP_QDISC_MQ,
917 TC_SETUP_QDISC_ETF,
918 TC_SETUP_ROOT_QDISC,
919 TC_SETUP_QDISC_GRED,
920 TC_SETUP_QDISC_TAPRIO,
921 TC_SETUP_FT,
922 TC_SETUP_QDISC_ETS,
923 TC_SETUP_QDISC_TBF,
924 TC_SETUP_QDISC_FIFO,
925 TC_SETUP_QDISC_HTB,
926 };
927
928 /* These structures hold the attributes of bpf state that are being passed
929 * to the netdevice through the bpf op.
930 */
931 enum bpf_netdev_command {
932 /* Set or clear a bpf program used in the earliest stages of packet
933 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
934 * is responsible for calling bpf_prog_put on any old progs that are
935 * stored. In case of error, the callee need not release the new prog
936 * reference, but on success it takes ownership and must bpf_prog_put
937 * when it is no longer used.
938 */
939 XDP_SETUP_PROG,
940 XDP_SETUP_PROG_HW,
941 /* BPF program for offload callbacks, invoked at program load time. */
942 BPF_OFFLOAD_MAP_ALLOC,
943 BPF_OFFLOAD_MAP_FREE,
944 XDP_SETUP_XSK_POOL,
945 };
946
947 struct bpf_prog_offload_ops;
948 struct netlink_ext_ack;
949 struct xdp_umem;
950 struct xdp_dev_bulk_queue;
951 struct bpf_xdp_link;
952
953 enum bpf_xdp_mode {
954 XDP_MODE_SKB = 0,
955 XDP_MODE_DRV = 1,
956 XDP_MODE_HW = 2,
957 __MAX_XDP_MODE
958 };
959
960 struct bpf_xdp_entity {
961 struct bpf_prog *prog;
962 struct bpf_xdp_link *link;
963 };
964
965 struct netdev_bpf {
966 enum bpf_netdev_command command;
967 union {
968 /* XDP_SETUP_PROG */
969 struct {
970 u32 flags;
971 struct bpf_prog *prog;
972 struct netlink_ext_ack *extack;
973 };
974 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
975 struct {
976 struct bpf_offloaded_map *offmap;
977 };
978 /* XDP_SETUP_XSK_POOL */
979 struct {
980 struct xsk_buff_pool *pool;
981 u16 queue_id;
982 } xsk;
983 };
984 };
985
986 /* Flags for ndo_xsk_wakeup. */
987 #define XDP_WAKEUP_RX (1 << 0)
988 #define XDP_WAKEUP_TX (1 << 1)
989
990 #ifdef CONFIG_XFRM_OFFLOAD
991 struct xfrmdev_ops {
992 int (*xdo_dev_state_add) (struct xfrm_state *x);
993 void (*xdo_dev_state_delete) (struct xfrm_state *x);
994 void (*xdo_dev_state_free) (struct xfrm_state *x);
995 bool (*xdo_dev_offload_ok) (struct sk_buff *skb,
996 struct xfrm_state *x);
997 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x);
998 };
999 #endif
1000
1001 struct dev_ifalias {
1002 struct rcu_head rcuhead;
1003 char ifalias[];
1004 };
1005
1006 struct devlink;
1007 struct tlsdev_ops;
1008
1009 struct netdev_name_node {
1010 struct hlist_node hlist;
1011 struct list_head list;
1012 struct net_device *dev;
1013 const char *name;
1014 };
1015
1016 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
1017 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
1018
1019 struct netdev_net_notifier {
1020 struct list_head list;
1021 struct notifier_block *nb;
1022 };
1023
1024 /*
1025 * This structure defines the management hooks for network devices.
1026 * The following hooks can be defined; unless noted otherwise, they are
1027 * optional and can be filled with a null pointer.
1028 *
1029 * int (*ndo_init)(struct net_device *dev);
1030 * This function is called once when a network device is registered.
1031 * The network device can use this for any late stage initialization
1032 * or semantic validation. It can fail with an error code which will
1033 * be propagated back to register_netdev.
1034 *
1035 * void (*ndo_uninit)(struct net_device *dev);
1036 * This function is called when device is unregistered or when registration
1037 * fails. It is not called if init fails.
1038 *
1039 * int (*ndo_open)(struct net_device *dev);
1040 * This function is called when a network device transitions to the up
1041 * state.
1042 *
1043 * int (*ndo_stop)(struct net_device *dev);
1044 * This function is called when a network device transitions to the down
1045 * state.
1046 *
1047 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1048 * struct net_device *dev);
1049 * Called when a packet needs to be transmitted.
1050 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
1051 * the queue before that can happen; it's for obsolete devices and weird
1052 * corner cases, but the stack really does a non-trivial amount
1053 * of useless work if you return NETDEV_TX_BUSY.
1054 * Required; cannot be NULL.
1055 *
1056 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1057 * struct net_device *dev
1058 * netdev_features_t features);
1059 * Called by core transmit path to determine if device is capable of
1060 * performing offload operations on a given packet. This is to give
1061 * the device an opportunity to implement any restrictions that cannot
1062 * be otherwise expressed by feature flags. The check is called with
1063 * the set of features that the stack has calculated and it returns
1064 * those the driver believes to be appropriate.
1065 *
1066 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1067 * struct net_device *sb_dev);
1068 * Called to decide which queue to use when device supports multiple
1069 * transmit queues.
1070 *
1071 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1072 * This function is called to allow device receiver to make
1073 * changes to configuration when multicast or promiscuous is enabled.
1074 *
1075 * void (*ndo_set_rx_mode)(struct net_device *dev);
1076 * This function is called device changes address list filtering.
1077 * If driver handles unicast address filtering, it should set
1078 * IFF_UNICAST_FLT in its priv_flags.
1079 *
1080 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1081 * This function is called when the Media Access Control address
1082 * needs to be changed. If this interface is not defined, the
1083 * MAC address can not be changed.
1084 *
1085 * int (*ndo_validate_addr)(struct net_device *dev);
1086 * Test if Media Access Control address is valid for the device.
1087 *
1088 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1089 * Called when a user requests an ioctl which can't be handled by
1090 * the generic interface code. If not defined ioctls return
1091 * not supported error code.
1092 *
1093 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1094 * Used to set network devices bus interface parameters. This interface
1095 * is retained for legacy reasons; new devices should use the bus
1096 * interface (PCI) for low level management.
1097 *
1098 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1099 * Called when a user wants to change the Maximum Transfer Unit
1100 * of a device.
1101 *
1102 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1103 * Callback used when the transmitter has not made any progress
1104 * for dev->watchdog ticks.
1105 *
1106 * void (*ndo_get_stats64)(struct net_device *dev,
1107 * struct rtnl_link_stats64 *storage);
1108 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1109 * Called when a user wants to get the network device usage
1110 * statistics. Drivers must do one of the following:
1111 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
1112 * rtnl_link_stats64 structure passed by the caller.
1113 * 2. Define @ndo_get_stats to update a net_device_stats structure
1114 * (which should normally be dev->stats) and return a pointer to
1115 * it. The structure may be changed asynchronously only if each
1116 * field is written atomically.
1117 * 3. Update dev->stats asynchronously and atomically, and define
1118 * neither operation.
1119 *
1120 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1121 * Return true if this device supports offload stats of this attr_id.
1122 *
1123 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1124 * void *attr_data)
1125 * Get statistics for offload operations by attr_id. Write it into the
1126 * attr_data pointer.
1127 *
1128 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1129 * If device supports VLAN filtering this function is called when a
1130 * VLAN id is registered.
1131 *
1132 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1133 * If device supports VLAN filtering this function is called when a
1134 * VLAN id is unregistered.
1135 *
1136 * void (*ndo_poll_controller)(struct net_device *dev);
1137 *
1138 * SR-IOV management functions.
1139 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1140 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1141 * u8 qos, __be16 proto);
1142 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1143 * int max_tx_rate);
1144 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1145 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1146 * int (*ndo_get_vf_config)(struct net_device *dev,
1147 * int vf, struct ifla_vf_info *ivf);
1148 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1149 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1150 * struct nlattr *port[]);
1151 *
1152 * Enable or disable the VF ability to query its RSS Redirection Table and
1153 * Hash Key. This is needed since on some devices VF share this information
1154 * with PF and querying it may introduce a theoretical security risk.
1155 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1156 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1157 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1158 * void *type_data);
1159 * Called to setup any 'tc' scheduler, classifier or action on @dev.
1160 * This is always called from the stack with the rtnl lock held and netif
1161 * tx queues stopped. This allows the netdevice to perform queue
1162 * management safely.
1163 *
1164 * Fiber Channel over Ethernet (FCoE) offload functions.
1165 * int (*ndo_fcoe_enable)(struct net_device *dev);
1166 * Called when the FCoE protocol stack wants to start using LLD for FCoE
1167 * so the underlying device can perform whatever needed configuration or
1168 * initialization to support acceleration of FCoE traffic.
1169 *
1170 * int (*ndo_fcoe_disable)(struct net_device *dev);
1171 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
1172 * so the underlying device can perform whatever needed clean-ups to
1173 * stop supporting acceleration of FCoE traffic.
1174 *
1175 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1176 * struct scatterlist *sgl, unsigned int sgc);
1177 * Called when the FCoE Initiator wants to initialize an I/O that
1178 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1179 * perform necessary setup and returns 1 to indicate the device is set up
1180 * successfully to perform DDP on this I/O, otherwise this returns 0.
1181 *
1182 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
1183 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
1184 * indicated by the FC exchange id 'xid', so the underlying device can
1185 * clean up and reuse resources for later DDP requests.
1186 *
1187 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1188 * struct scatterlist *sgl, unsigned int sgc);
1189 * Called when the FCoE Target wants to initialize an I/O that
1190 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1191 * perform necessary setup and returns 1 to indicate the device is set up
1192 * successfully to perform DDP on this I/O, otherwise this returns 0.
1193 *
1194 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1195 * struct netdev_fcoe_hbainfo *hbainfo);
1196 * Called when the FCoE Protocol stack wants information on the underlying
1197 * device. This information is utilized by the FCoE protocol stack to
1198 * register attributes with Fiber Channel management service as per the
1199 * FC-GS Fabric Device Management Information(FDMI) specification.
1200 *
1201 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1202 * Called when the underlying device wants to override default World Wide
1203 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1204 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1205 * protocol stack to use.
1206 *
1207 * RFS acceleration.
1208 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1209 * u16 rxq_index, u32 flow_id);
1210 * Set hardware filter for RFS. rxq_index is the target queue index;
1211 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1212 * Return the filter ID on success, or a negative error code.
1213 *
1214 * Slave management functions (for bridge, bonding, etc).
1215 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1216 * Called to make another netdev an underling.
1217 *
1218 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1219 * Called to release previously enslaved netdev.
1220 *
1221 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1222 * struct sk_buff *skb,
1223 * bool all_slaves);
1224 * Get the xmit slave of master device. If all_slaves is true, function
1225 * assume all the slaves can transmit.
1226 *
1227 * Feature/offload setting functions.
1228 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1229 * netdev_features_t features);
1230 * Adjusts the requested feature flags according to device-specific
1231 * constraints, and returns the resulting flags. Must not modify
1232 * the device state.
1233 *
1234 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1235 * Called to update device configuration to new features. Passed
1236 * feature set might be less than what was returned by ndo_fix_features()).
1237 * Must return >0 or -errno if it changed dev->features itself.
1238 *
1239 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1240 * struct net_device *dev,
1241 * const unsigned char *addr, u16 vid, u16 flags,
1242 * struct netlink_ext_ack *extack);
1243 * Adds an FDB entry to dev for addr.
1244 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1245 * struct net_device *dev,
1246 * const unsigned char *addr, u16 vid)
1247 * Deletes the FDB entry from dev coresponding to addr.
1248 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1249 * struct net_device *dev, struct net_device *filter_dev,
1250 * int *idx)
1251 * Used to add FDB entries to dump requests. Implementers should add
1252 * entries to skb and update idx with the number of entries.
1253 *
1254 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1255 * u16 flags, struct netlink_ext_ack *extack)
1256 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1257 * struct net_device *dev, u32 filter_mask,
1258 * int nlflags)
1259 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1260 * u16 flags);
1261 *
1262 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1263 * Called to change device carrier. Soft-devices (like dummy, team, etc)
1264 * which do not represent real hardware may define this to allow their
1265 * userspace components to manage their virtual carrier state. Devices
1266 * that determine carrier state from physical hardware properties (eg
1267 * network cables) or protocol-dependent mechanisms (eg
1268 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1269 *
1270 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1271 * struct netdev_phys_item_id *ppid);
1272 * Called to get ID of physical port of this device. If driver does
1273 * not implement this, it is assumed that the hw is not able to have
1274 * multiple net devices on single physical port.
1275 *
1276 * int (*ndo_get_port_parent_id)(struct net_device *dev,
1277 * struct netdev_phys_item_id *ppid)
1278 * Called to get the parent ID of the physical port of this device.
1279 *
1280 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1281 * struct net_device *dev)
1282 * Called by upper layer devices to accelerate switching or other
1283 * station functionality into hardware. 'pdev is the lowerdev
1284 * to use for the offload and 'dev' is the net device that will
1285 * back the offload. Returns a pointer to the private structure
1286 * the upper layer will maintain.
1287 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1288 * Called by upper layer device to delete the station created
1289 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1290 * the station and priv is the structure returned by the add
1291 * operation.
1292 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1293 * int queue_index, u32 maxrate);
1294 * Called when a user wants to set a max-rate limitation of specific
1295 * TX queue.
1296 * int (*ndo_get_iflink)(const struct net_device *dev);
1297 * Called to get the iflink value of this device.
1298 * void (*ndo_change_proto_down)(struct net_device *dev,
1299 * bool proto_down);
1300 * This function is used to pass protocol port error state information
1301 * to the switch driver. The switch driver can react to the proto_down
1302 * by doing a phys down on the associated switch port.
1303 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1304 * This function is used to get egress tunnel information for given skb.
1305 * This is useful for retrieving outer tunnel header parameters while
1306 * sampling packet.
1307 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1308 * This function is used to specify the headroom that the skb must
1309 * consider when allocation skb during packet reception. Setting
1310 * appropriate rx headroom value allows avoiding skb head copy on
1311 * forward. Setting a negative value resets the rx headroom to the
1312 * default value.
1313 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1314 * This function is used to set or query state related to XDP on the
1315 * netdevice and manage BPF offload. See definition of
1316 * enum bpf_netdev_command for details.
1317 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1318 * u32 flags);
1319 * This function is used to submit @n XDP packets for transmit on a
1320 * netdevice. Returns number of frames successfully transmitted, frames
1321 * that got dropped are freed/returned via xdp_return_frame().
1322 * Returns negative number, means general error invoking ndo, meaning
1323 * no frames were xmit'ed and core-caller will free all frames.
1324 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1325 * This function is used to wake up the softirq, ksoftirqd or kthread
1326 * responsible for sending and/or receiving packets on a specific
1327 * queue id bound to an AF_XDP socket. The flags field specifies if
1328 * only RX, only Tx, or both should be woken up using the flags
1329 * XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1330 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1331 * Get devlink port instance associated with a given netdev.
1332 * Called with a reference on the netdevice and devlink locks only,
1333 * rtnl_lock is not held.
1334 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1335 * int cmd);
1336 * Add, change, delete or get information on an IPv4 tunnel.
1337 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1338 * If a device is paired with a peer device, return the peer instance.
1339 * The caller must be under RCU read context.
1340 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1341 * Get the forwarding path to reach the real device from the HW destination address
1342 */
1343 struct net_device_ops {
1344 int (*ndo_init)(struct net_device *dev);
1345 void (*ndo_uninit)(struct net_device *dev);
1346 int (*ndo_open)(struct net_device *dev);
1347 int (*ndo_stop)(struct net_device *dev);
1348 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1349 struct net_device *dev);
1350 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1351 struct net_device *dev,
1352 netdev_features_t features);
1353 u16 (*ndo_select_queue)(struct net_device *dev,
1354 struct sk_buff *skb,
1355 struct net_device *sb_dev);
1356 void (*ndo_change_rx_flags)(struct net_device *dev,
1357 int flags);
1358 void (*ndo_set_rx_mode)(struct net_device *dev);
1359 int (*ndo_set_mac_address)(struct net_device *dev,
1360 void *addr);
1361 int (*ndo_validate_addr)(struct net_device *dev);
1362 int (*ndo_do_ioctl)(struct net_device *dev,
1363 struct ifreq *ifr, int cmd);
1364 int (*ndo_set_config)(struct net_device *dev,
1365 struct ifmap *map);
1366 int (*ndo_change_mtu)(struct net_device *dev,
1367 int new_mtu);
1368 int (*ndo_neigh_setup)(struct net_device *dev,
1369 struct neigh_parms *);
1370 void (*ndo_tx_timeout) (struct net_device *dev,
1371 unsigned int txqueue);
1372
1373 void (*ndo_get_stats64)(struct net_device *dev,
1374 struct rtnl_link_stats64 *storage);
1375 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1376 int (*ndo_get_offload_stats)(int attr_id,
1377 const struct net_device *dev,
1378 void *attr_data);
1379 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1380
1381 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1382 __be16 proto, u16 vid);
1383 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1384 __be16 proto, u16 vid);
1385 #ifdef CONFIG_NET_POLL_CONTROLLER
1386 void (*ndo_poll_controller)(struct net_device *dev);
1387 int (*ndo_netpoll_setup)(struct net_device *dev,
1388 struct netpoll_info *info);
1389 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1390 #endif
1391 int (*ndo_set_vf_mac)(struct net_device *dev,
1392 int queue, u8 *mac);
1393 int (*ndo_set_vf_vlan)(struct net_device *dev,
1394 int queue, u16 vlan,
1395 u8 qos, __be16 proto);
1396 int (*ndo_set_vf_rate)(struct net_device *dev,
1397 int vf, int min_tx_rate,
1398 int max_tx_rate);
1399 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1400 int vf, bool setting);
1401 int (*ndo_set_vf_trust)(struct net_device *dev,
1402 int vf, bool setting);
1403 int (*ndo_get_vf_config)(struct net_device *dev,
1404 int vf,
1405 struct ifla_vf_info *ivf);
1406 int (*ndo_set_vf_link_state)(struct net_device *dev,
1407 int vf, int link_state);
1408 int (*ndo_get_vf_stats)(struct net_device *dev,
1409 int vf,
1410 struct ifla_vf_stats
1411 *vf_stats);
1412 int (*ndo_set_vf_port)(struct net_device *dev,
1413 int vf,
1414 struct nlattr *port[]);
1415 int (*ndo_get_vf_port)(struct net_device *dev,
1416 int vf, struct sk_buff *skb);
1417 int (*ndo_get_vf_guid)(struct net_device *dev,
1418 int vf,
1419 struct ifla_vf_guid *node_guid,
1420 struct ifla_vf_guid *port_guid);
1421 int (*ndo_set_vf_guid)(struct net_device *dev,
1422 int vf, u64 guid,
1423 int guid_type);
1424 int (*ndo_set_vf_rss_query_en)(
1425 struct net_device *dev,
1426 int vf, bool setting);
1427 int (*ndo_setup_tc)(struct net_device *dev,
1428 enum tc_setup_type type,
1429 void *type_data);
1430 #if IS_ENABLED(CONFIG_FCOE)
1431 int (*ndo_fcoe_enable)(struct net_device *dev);
1432 int (*ndo_fcoe_disable)(struct net_device *dev);
1433 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1434 u16 xid,
1435 struct scatterlist *sgl,
1436 unsigned int sgc);
1437 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1438 u16 xid);
1439 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1440 u16 xid,
1441 struct scatterlist *sgl,
1442 unsigned int sgc);
1443 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1444 struct netdev_fcoe_hbainfo *hbainfo);
1445 #endif
1446
1447 #if IS_ENABLED(CONFIG_LIBFCOE)
1448 #define NETDEV_FCOE_WWNN 0
1449 #define NETDEV_FCOE_WWPN 1
1450 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1451 u64 *wwn, int type);
1452 #endif
1453
1454 #ifdef CONFIG_RFS_ACCEL
1455 int (*ndo_rx_flow_steer)(struct net_device *dev,
1456 const struct sk_buff *skb,
1457 u16 rxq_index,
1458 u32 flow_id);
1459 #endif
1460 int (*ndo_add_slave)(struct net_device *dev,
1461 struct net_device *slave_dev,
1462 struct netlink_ext_ack *extack);
1463 int (*ndo_del_slave)(struct net_device *dev,
1464 struct net_device *slave_dev);
1465 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev,
1466 struct sk_buff *skb,
1467 bool all_slaves);
1468 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev,
1469 struct sock *sk);
1470 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1471 netdev_features_t features);
1472 int (*ndo_set_features)(struct net_device *dev,
1473 netdev_features_t features);
1474 int (*ndo_neigh_construct)(struct net_device *dev,
1475 struct neighbour *n);
1476 void (*ndo_neigh_destroy)(struct net_device *dev,
1477 struct neighbour *n);
1478
1479 int (*ndo_fdb_add)(struct ndmsg *ndm,
1480 struct nlattr *tb[],
1481 struct net_device *dev,
1482 const unsigned char *addr,
1483 u16 vid,
1484 u16 flags,
1485 struct netlink_ext_ack *extack);
1486 int (*ndo_fdb_del)(struct ndmsg *ndm,
1487 struct nlattr *tb[],
1488 struct net_device *dev,
1489 const unsigned char *addr,
1490 u16 vid);
1491 int (*ndo_fdb_dump)(struct sk_buff *skb,
1492 struct netlink_callback *cb,
1493 struct net_device *dev,
1494 struct net_device *filter_dev,
1495 int *idx);
1496 int (*ndo_fdb_get)(struct sk_buff *skb,
1497 struct nlattr *tb[],
1498 struct net_device *dev,
1499 const unsigned char *addr,
1500 u16 vid, u32 portid, u32 seq,
1501 struct netlink_ext_ack *extack);
1502 int (*ndo_bridge_setlink)(struct net_device *dev,
1503 struct nlmsghdr *nlh,
1504 u16 flags,
1505 struct netlink_ext_ack *extack);
1506 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1507 u32 pid, u32 seq,
1508 struct net_device *dev,
1509 u32 filter_mask,
1510 int nlflags);
1511 int (*ndo_bridge_dellink)(struct net_device *dev,
1512 struct nlmsghdr *nlh,
1513 u16 flags);
1514 int (*ndo_change_carrier)(struct net_device *dev,
1515 bool new_carrier);
1516 int (*ndo_get_phys_port_id)(struct net_device *dev,
1517 struct netdev_phys_item_id *ppid);
1518 int (*ndo_get_port_parent_id)(struct net_device *dev,
1519 struct netdev_phys_item_id *ppid);
1520 int (*ndo_get_phys_port_name)(struct net_device *dev,
1521 char *name, size_t len);
1522 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1523 struct net_device *dev);
1524 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1525 void *priv);
1526
1527 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1528 int queue_index,
1529 u32 maxrate);
1530 int (*ndo_get_iflink)(const struct net_device *dev);
1531 int (*ndo_change_proto_down)(struct net_device *dev,
1532 bool proto_down);
1533 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1534 struct sk_buff *skb);
1535 void (*ndo_set_rx_headroom)(struct net_device *dev,
1536 int needed_headroom);
1537 int (*ndo_bpf)(struct net_device *dev,
1538 struct netdev_bpf *bpf);
1539 int (*ndo_xdp_xmit)(struct net_device *dev, int n,
1540 struct xdp_frame **xdp,
1541 u32 flags);
1542 int (*ndo_xsk_wakeup)(struct net_device *dev,
1543 u32 queue_id, u32 flags);
1544 struct devlink_port * (*ndo_get_devlink_port)(struct net_device *dev);
1545 int (*ndo_tunnel_ctl)(struct net_device *dev,
1546 struct ip_tunnel_parm *p, int cmd);
1547 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev);
1548 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1549 struct net_device_path *path);
1550 };
1551
1552 /**
1553 * enum netdev_priv_flags - &struct net_device priv_flags
1554 *
1555 * These are the &struct net_device, they are only set internally
1556 * by drivers and used in the kernel. These flags are invisible to
1557 * userspace; this means that the order of these flags can change
1558 * during any kernel release.
1559 *
1560 * You should have a pretty good reason to be extending these flags.
1561 *
1562 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1563 * @IFF_EBRIDGE: Ethernet bridging device
1564 * @IFF_BONDING: bonding master or slave
1565 * @IFF_ISATAP: ISATAP interface (RFC4214)
1566 * @IFF_WAN_HDLC: WAN HDLC device
1567 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1568 * release skb->dst
1569 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1570 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1571 * @IFF_MACVLAN_PORT: device used as macvlan port
1572 * @IFF_BRIDGE_PORT: device used as bridge port
1573 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1574 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1575 * @IFF_UNICAST_FLT: Supports unicast filtering
1576 * @IFF_TEAM_PORT: device used as team port
1577 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1578 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1579 * change when it's running
1580 * @IFF_MACVLAN: Macvlan device
1581 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1582 * underlying stacked devices
1583 * @IFF_L3MDEV_MASTER: device is an L3 master device
1584 * @IFF_NO_QUEUE: device can run without qdisc attached
1585 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1586 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1587 * @IFF_TEAM: device is a team device
1588 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1589 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1590 * entity (i.e. the master device for bridged veth)
1591 * @IFF_MACSEC: device is a MACsec device
1592 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1593 * @IFF_FAILOVER: device is a failover master device
1594 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1595 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1596 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1597 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1598 * skb_headlen(skb) == 0 (data starts from frag0)
1599 */
1600 enum netdev_priv_flags {
1601 IFF_802_1Q_VLAN = 1<<0,
1602 IFF_EBRIDGE = 1<<1,
1603 IFF_BONDING = 1<<2,
1604 IFF_ISATAP = 1<<3,
1605 IFF_WAN_HDLC = 1<<4,
1606 IFF_XMIT_DST_RELEASE = 1<<5,
1607 IFF_DONT_BRIDGE = 1<<6,
1608 IFF_DISABLE_NETPOLL = 1<<7,
1609 IFF_MACVLAN_PORT = 1<<8,
1610 IFF_BRIDGE_PORT = 1<<9,
1611 IFF_OVS_DATAPATH = 1<<10,
1612 IFF_TX_SKB_SHARING = 1<<11,
1613 IFF_UNICAST_FLT = 1<<12,
1614 IFF_TEAM_PORT = 1<<13,
1615 IFF_SUPP_NOFCS = 1<<14,
1616 IFF_LIVE_ADDR_CHANGE = 1<<15,
1617 IFF_MACVLAN = 1<<16,
1618 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1619 IFF_L3MDEV_MASTER = 1<<18,
1620 IFF_NO_QUEUE = 1<<19,
1621 IFF_OPENVSWITCH = 1<<20,
1622 IFF_L3MDEV_SLAVE = 1<<21,
1623 IFF_TEAM = 1<<22,
1624 IFF_RXFH_CONFIGURED = 1<<23,
1625 IFF_PHONY_HEADROOM = 1<<24,
1626 IFF_MACSEC = 1<<25,
1627 IFF_NO_RX_HANDLER = 1<<26,
1628 IFF_FAILOVER = 1<<27,
1629 IFF_FAILOVER_SLAVE = 1<<28,
1630 IFF_L3MDEV_RX_HANDLER = 1<<29,
1631 IFF_LIVE_RENAME_OK = 1<<30,
1632 IFF_TX_SKB_NO_LINEAR = 1<<31,
1633 };
1634
1635 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1636 #define IFF_EBRIDGE IFF_EBRIDGE
1637 #define IFF_BONDING IFF_BONDING
1638 #define IFF_ISATAP IFF_ISATAP
1639 #define IFF_WAN_HDLC IFF_WAN_HDLC
1640 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1641 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1642 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1643 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1644 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1645 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1646 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1647 #define IFF_UNICAST_FLT IFF_UNICAST_FLT
1648 #define IFF_TEAM_PORT IFF_TEAM_PORT
1649 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1650 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1651 #define IFF_MACVLAN IFF_MACVLAN
1652 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1653 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1654 #define IFF_NO_QUEUE IFF_NO_QUEUE
1655 #define IFF_OPENVSWITCH IFF_OPENVSWITCH
1656 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1657 #define IFF_TEAM IFF_TEAM
1658 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED
1659 #define IFF_PHONY_HEADROOM IFF_PHONY_HEADROOM
1660 #define IFF_MACSEC IFF_MACSEC
1661 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER
1662 #define IFF_FAILOVER IFF_FAILOVER
1663 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE
1664 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER
1665 #define IFF_LIVE_RENAME_OK IFF_LIVE_RENAME_OK
1666 #define IFF_TX_SKB_NO_LINEAR IFF_TX_SKB_NO_LINEAR
1667
1668 /* Specifies the type of the struct net_device::ml_priv pointer */
1669 enum netdev_ml_priv_type {
1670 ML_PRIV_NONE,
1671 ML_PRIV_CAN,
1672 };
1673
1674 /**
1675 * struct net_device - The DEVICE structure.
1676 *
1677 * Actually, this whole structure is a big mistake. It mixes I/O
1678 * data with strictly "high-level" data, and it has to know about
1679 * almost every data structure used in the INET module.
1680 *
1681 * @name: This is the first field of the "visible" part of this structure
1682 * (i.e. as seen by users in the "Space.c" file). It is the name
1683 * of the interface.
1684 *
1685 * @name_node: Name hashlist node
1686 * @ifalias: SNMP alias
1687 * @mem_end: Shared memory end
1688 * @mem_start: Shared memory start
1689 * @base_addr: Device I/O address
1690 * @irq: Device IRQ number
1691 *
1692 * @state: Generic network queuing layer state, see netdev_state_t
1693 * @dev_list: The global list of network devices
1694 * @napi_list: List entry used for polling NAPI devices
1695 * @unreg_list: List entry when we are unregistering the
1696 * device; see the function unregister_netdev
1697 * @close_list: List entry used when we are closing the device
1698 * @ptype_all: Device-specific packet handlers for all protocols
1699 * @ptype_specific: Device-specific, protocol-specific packet handlers
1700 *
1701 * @adj_list: Directly linked devices, like slaves for bonding
1702 * @features: Currently active device features
1703 * @hw_features: User-changeable features
1704 *
1705 * @wanted_features: User-requested features
1706 * @vlan_features: Mask of features inheritable by VLAN devices
1707 *
1708 * @hw_enc_features: Mask of features inherited by encapsulating devices
1709 * This field indicates what encapsulation
1710 * offloads the hardware is capable of doing,
1711 * and drivers will need to set them appropriately.
1712 *
1713 * @mpls_features: Mask of features inheritable by MPLS
1714 * @gso_partial_features: value(s) from NETIF_F_GSO\*
1715 *
1716 * @ifindex: interface index
1717 * @group: The group the device belongs to
1718 *
1719 * @stats: Statistics struct, which was left as a legacy, use
1720 * rtnl_link_stats64 instead
1721 *
1722 * @rx_dropped: Dropped packets by core network,
1723 * do not use this in drivers
1724 * @tx_dropped: Dropped packets by core network,
1725 * do not use this in drivers
1726 * @rx_nohandler: nohandler dropped packets by core network on
1727 * inactive devices, do not use this in drivers
1728 * @carrier_up_count: Number of times the carrier has been up
1729 * @carrier_down_count: Number of times the carrier has been down
1730 *
1731 * @wireless_handlers: List of functions to handle Wireless Extensions,
1732 * instead of ioctl,
1733 * see <net/iw_handler.h> for details.
1734 * @wireless_data: Instance data managed by the core of wireless extensions
1735 *
1736 * @netdev_ops: Includes several pointers to callbacks,
1737 * if one wants to override the ndo_*() functions
1738 * @ethtool_ops: Management operations
1739 * @l3mdev_ops: Layer 3 master device operations
1740 * @ndisc_ops: Includes callbacks for different IPv6 neighbour
1741 * discovery handling. Necessary for e.g. 6LoWPAN.
1742 * @xfrmdev_ops: Transformation offload operations
1743 * @tlsdev_ops: Transport Layer Security offload operations
1744 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1745 * of Layer 2 headers.
1746 *
1747 * @flags: Interface flags (a la BSD)
1748 * @priv_flags: Like 'flags' but invisible to userspace,
1749 * see if.h for the definitions
1750 * @gflags: Global flags ( kept as legacy )
1751 * @padded: How much padding added by alloc_netdev()
1752 * @operstate: RFC2863 operstate
1753 * @link_mode: Mapping policy to operstate
1754 * @if_port: Selectable AUI, TP, ...
1755 * @dma: DMA channel
1756 * @mtu: Interface MTU value
1757 * @min_mtu: Interface Minimum MTU value
1758 * @max_mtu: Interface Maximum MTU value
1759 * @type: Interface hardware type
1760 * @hard_header_len: Maximum hardware header length.
1761 * @min_header_len: Minimum hardware header length
1762 *
1763 * @needed_headroom: Extra headroom the hardware may need, but not in all
1764 * cases can this be guaranteed
1765 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1766 * cases can this be guaranteed. Some cases also use
1767 * LL_MAX_HEADER instead to allocate the skb
1768 *
1769 * interface address info:
1770 *
1771 * @perm_addr: Permanent hw address
1772 * @addr_assign_type: Hw address assignment type
1773 * @addr_len: Hardware address length
1774 * @upper_level: Maximum depth level of upper devices.
1775 * @lower_level: Maximum depth level of lower devices.
1776 * @neigh_priv_len: Used in neigh_alloc()
1777 * @dev_id: Used to differentiate devices that share
1778 * the same link layer address
1779 * @dev_port: Used to differentiate devices that share
1780 * the same function
1781 * @addr_list_lock: XXX: need comments on this one
1782 * @name_assign_type: network interface name assignment type
1783 * @uc_promisc: Counter that indicates promiscuous mode
1784 * has been enabled due to the need to listen to
1785 * additional unicast addresses in a device that
1786 * does not implement ndo_set_rx_mode()
1787 * @uc: unicast mac addresses
1788 * @mc: multicast mac addresses
1789 * @dev_addrs: list of device hw addresses
1790 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1791 * @promiscuity: Number of times the NIC is told to work in
1792 * promiscuous mode; if it becomes 0 the NIC will
1793 * exit promiscuous mode
1794 * @allmulti: Counter, enables or disables allmulticast mode
1795 *
1796 * @vlan_info: VLAN info
1797 * @dsa_ptr: dsa specific data
1798 * @tipc_ptr: TIPC specific data
1799 * @atalk_ptr: AppleTalk link
1800 * @ip_ptr: IPv4 specific data
1801 * @dn_ptr: DECnet specific data
1802 * @ip6_ptr: IPv6 specific data
1803 * @ax25_ptr: AX.25 specific data
1804 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1805 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1806 * device struct
1807 * @mpls_ptr: mpls_dev struct pointer
1808 *
1809 * @dev_addr: Hw address (before bcast,
1810 * because most packets are unicast)
1811 *
1812 * @_rx: Array of RX queues
1813 * @num_rx_queues: Number of RX queues
1814 * allocated at register_netdev() time
1815 * @real_num_rx_queues: Number of RX queues currently active in device
1816 * @xdp_prog: XDP sockets filter program pointer
1817 * @gro_flush_timeout: timeout for GRO layer in NAPI
1818 * @napi_defer_hard_irqs: If not zero, provides a counter that would
1819 * allow to avoid NIC hard IRQ, on busy queues.
1820 *
1821 * @rx_handler: handler for received packets
1822 * @rx_handler_data: XXX: need comments on this one
1823 * @miniq_ingress: ingress/clsact qdisc specific data for
1824 * ingress processing
1825 * @ingress_queue: XXX: need comments on this one
1826 * @nf_hooks_ingress: netfilter hooks executed for ingress packets
1827 * @broadcast: hw bcast address
1828 *
1829 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1830 * indexed by RX queue number. Assigned by driver.
1831 * This must only be set if the ndo_rx_flow_steer
1832 * operation is defined
1833 * @index_hlist: Device index hash chain
1834 *
1835 * @_tx: Array of TX queues
1836 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1837 * @real_num_tx_queues: Number of TX queues currently active in device
1838 * @qdisc: Root qdisc from userspace point of view
1839 * @tx_queue_len: Max frames per queue allowed
1840 * @tx_global_lock: XXX: need comments on this one
1841 * @xdp_bulkq: XDP device bulk queue
1842 * @xps_maps: all CPUs/RXQs maps for XPS device
1843 *
1844 * @xps_maps: XXX: need comments on this one
1845 * @miniq_egress: clsact qdisc specific data for
1846 * egress processing
1847 * @qdisc_hash: qdisc hash table
1848 * @watchdog_timeo: Represents the timeout that is used by
1849 * the watchdog (see dev_watchdog())
1850 * @watchdog_timer: List of timers
1851 *
1852 * @proto_down_reason: reason a netdev interface is held down
1853 * @pcpu_refcnt: Number of references to this device
1854 * @dev_refcnt: Number of references to this device
1855 * @todo_list: Delayed register/unregister
1856 * @link_watch_list: XXX: need comments on this one
1857 *
1858 * @reg_state: Register/unregister state machine
1859 * @dismantle: Device is going to be freed
1860 * @rtnl_link_state: This enum represents the phases of creating
1861 * a new link
1862 *
1863 * @needs_free_netdev: Should unregister perform free_netdev?
1864 * @priv_destructor: Called from unregister
1865 * @npinfo: XXX: need comments on this one
1866 * @nd_net: Network namespace this network device is inside
1867 *
1868 * @ml_priv: Mid-layer private
1869 * @ml_priv_type: Mid-layer private type
1870 * @lstats: Loopback statistics
1871 * @tstats: Tunnel statistics
1872 * @dstats: Dummy statistics
1873 * @vstats: Virtual ethernet statistics
1874 *
1875 * @garp_port: GARP
1876 * @mrp_port: MRP
1877 *
1878 * @dev: Class/net/name entry
1879 * @sysfs_groups: Space for optional device, statistics and wireless
1880 * sysfs groups
1881 *
1882 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1883 * @rtnl_link_ops: Rtnl_link_ops
1884 *
1885 * @gso_max_size: Maximum size of generic segmentation offload
1886 * @gso_max_segs: Maximum number of segments that can be passed to the
1887 * NIC for GSO
1888 *
1889 * @dcbnl_ops: Data Center Bridging netlink ops
1890 * @num_tc: Number of traffic classes in the net device
1891 * @tc_to_txq: XXX: need comments on this one
1892 * @prio_tc_map: XXX: need comments on this one
1893 *
1894 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1895 *
1896 * @priomap: XXX: need comments on this one
1897 * @phydev: Physical device may attach itself
1898 * for hardware timestamping
1899 * @sfp_bus: attached &struct sfp_bus structure.
1900 *
1901 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1902 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1903 *
1904 * @proto_down: protocol port state information can be sent to the
1905 * switch driver and used to set the phys state of the
1906 * switch port.
1907 *
1908 * @wol_enabled: Wake-on-LAN is enabled
1909 *
1910 * @threaded: napi threaded mode is enabled
1911 *
1912 * @net_notifier_list: List of per-net netdev notifier block
1913 * that follow this device when it is moved
1914 * to another network namespace.
1915 *
1916 * @macsec_ops: MACsec offloading ops
1917 *
1918 * @udp_tunnel_nic_info: static structure describing the UDP tunnel
1919 * offload capabilities of the device
1920 * @udp_tunnel_nic: UDP tunnel offload state
1921 * @xdp_state: stores info on attached XDP BPF programs
1922 *
1923 * @nested_level: Used as as a parameter of spin_lock_nested() of
1924 * dev->addr_list_lock.
1925 * @unlink_list: As netif_addr_lock() can be called recursively,
1926 * keep a list of interfaces to be deleted.
1927 *
1928 * FIXME: cleanup struct net_device such that network protocol info
1929 * moves out.
1930 */
1931
1932 struct net_device {
1933 char name[IFNAMSIZ];
1934 struct netdev_name_node *name_node;
1935 struct dev_ifalias __rcu *ifalias;
1936 /*
1937 * I/O specific fields
1938 * FIXME: Merge these and struct ifmap into one
1939 */
1940 unsigned long mem_end;
1941 unsigned long mem_start;
1942 unsigned long base_addr;
1943
1944 /*
1945 * Some hardware also needs these fields (state,dev_list,
1946 * napi_list,unreg_list,close_list) but they are not
1947 * part of the usual set specified in Space.c.
1948 */
1949
1950 unsigned long state;
1951
1952 struct list_head dev_list;
1953 struct list_head napi_list;
1954 struct list_head unreg_list;
1955 struct list_head close_list;
1956 struct list_head ptype_all;
1957 struct list_head ptype_specific;
1958
1959 struct {
1960 struct list_head upper;
1961 struct list_head lower;
1962 } adj_list;
1963
1964 /* Read-mostly cache-line for fast-path access */
1965 unsigned int flags;
1966 unsigned int priv_flags;
1967 const struct net_device_ops *netdev_ops;
1968 int ifindex;
1969 unsigned short gflags;
1970 unsigned short hard_header_len;
1971
1972 /* Note : dev->mtu is often read without holding a lock.
1973 * Writers usually hold RTNL.
1974 * It is recommended to use READ_ONCE() to annotate the reads,
1975 * and to use WRITE_ONCE() to annotate the writes.
1976 */
1977 unsigned int mtu;
1978 unsigned short needed_headroom;
1979 unsigned short needed_tailroom;
1980
1981 netdev_features_t features;
1982 netdev_features_t hw_features;
1983 netdev_features_t wanted_features;
1984 netdev_features_t vlan_features;
1985 netdev_features_t hw_enc_features;
1986 netdev_features_t mpls_features;
1987 netdev_features_t gso_partial_features;
1988
1989 unsigned int min_mtu;
1990 unsigned int max_mtu;
1991 unsigned short type;
1992 unsigned char min_header_len;
1993 unsigned char name_assign_type;
1994
1995 int group;
1996
1997 struct net_device_stats stats; /* not used by modern drivers */
1998
1999 atomic_long_t rx_dropped;
2000 atomic_long_t tx_dropped;
2001 atomic_long_t rx_nohandler;
2002
2003 /* Stats to monitor link on/off, flapping */
2004 atomic_t carrier_up_count;
2005 atomic_t carrier_down_count;
2006
2007 #ifdef CONFIG_WIRELESS_EXT
2008 const struct iw_handler_def *wireless_handlers;
2009 struct iw_public_data *wireless_data;
2010 #endif
2011 const struct ethtool_ops *ethtool_ops;
2012 #ifdef CONFIG_NET_L3_MASTER_DEV
2013 const struct l3mdev_ops *l3mdev_ops;
2014 #endif
2015 #if IS_ENABLED(CONFIG_IPV6)
2016 const struct ndisc_ops *ndisc_ops;
2017 #endif
2018
2019 #ifdef CONFIG_XFRM_OFFLOAD
2020 const struct xfrmdev_ops *xfrmdev_ops;
2021 #endif
2022
2023 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2024 const struct tlsdev_ops *tlsdev_ops;
2025 #endif
2026
2027 const struct header_ops *header_ops;
2028
2029 unsigned char operstate;
2030 unsigned char link_mode;
2031
2032 unsigned char if_port;
2033 unsigned char dma;
2034
2035 /* Interface address info. */
2036 unsigned char perm_addr[MAX_ADDR_LEN];
2037 unsigned char addr_assign_type;
2038 unsigned char addr_len;
2039 unsigned char upper_level;
2040 unsigned char lower_level;
2041
2042 unsigned short neigh_priv_len;
2043 unsigned short dev_id;
2044 unsigned short dev_port;
2045 unsigned short padded;
2046
2047 spinlock_t addr_list_lock;
2048 int irq;
2049
2050 struct netdev_hw_addr_list uc;
2051 struct netdev_hw_addr_list mc;
2052 struct netdev_hw_addr_list dev_addrs;
2053
2054 #ifdef CONFIG_SYSFS
2055 struct kset *queues_kset;
2056 #endif
2057 #ifdef CONFIG_LOCKDEP
2058 struct list_head unlink_list;
2059 #endif
2060 unsigned int promiscuity;
2061 unsigned int allmulti;
2062 bool uc_promisc;
2063 #ifdef CONFIG_LOCKDEP
2064 unsigned char nested_level;
2065 #endif
2066
2067
2068 /* Protocol-specific pointers */
2069
2070 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2071 struct vlan_info __rcu *vlan_info;
2072 #endif
2073 #if IS_ENABLED(CONFIG_NET_DSA)
2074 struct dsa_port *dsa_ptr;
2075 #endif
2076 #if IS_ENABLED(CONFIG_TIPC)
2077 struct tipc_bearer __rcu *tipc_ptr;
2078 #endif
2079 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
2080 void *atalk_ptr;
2081 #endif
2082 struct in_device __rcu *ip_ptr;
2083 #if IS_ENABLED(CONFIG_DECNET)
2084 struct dn_dev __rcu *dn_ptr;
2085 #endif
2086 struct inet6_dev __rcu *ip6_ptr;
2087 #if IS_ENABLED(CONFIG_AX25)
2088 void *ax25_ptr;
2089 #endif
2090 struct wireless_dev *ieee80211_ptr;
2091 struct wpan_dev *ieee802154_ptr;
2092 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2093 struct mpls_dev __rcu *mpls_ptr;
2094 #endif
2095
2096 /*
2097 * Cache lines mostly used on receive path (including eth_type_trans())
2098 */
2099 /* Interface address info used in eth_type_trans() */
2100 unsigned char *dev_addr;
2101
2102 struct netdev_rx_queue *_rx;
2103 unsigned int num_rx_queues;
2104 unsigned int real_num_rx_queues;
2105
2106 struct bpf_prog __rcu *xdp_prog;
2107 unsigned long gro_flush_timeout;
2108 int napi_defer_hard_irqs;
2109 rx_handler_func_t __rcu *rx_handler;
2110 void __rcu *rx_handler_data;
2111
2112 #ifdef CONFIG_NET_CLS_ACT
2113 struct mini_Qdisc __rcu *miniq_ingress;
2114 #endif
2115 struct netdev_queue __rcu *ingress_queue;
2116 #ifdef CONFIG_NETFILTER_INGRESS
2117 struct nf_hook_entries __rcu *nf_hooks_ingress;
2118 #endif
2119
2120 unsigned char broadcast[MAX_ADDR_LEN];
2121 #ifdef CONFIG_RFS_ACCEL
2122 struct cpu_rmap *rx_cpu_rmap;
2123 #endif
2124 struct hlist_node index_hlist;
2125
2126 /*
2127 * Cache lines mostly used on transmit path
2128 */
2129 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
2130 unsigned int num_tx_queues;
2131 unsigned int real_num_tx_queues;
2132 struct Qdisc *qdisc;
2133 unsigned int tx_queue_len;
2134 spinlock_t tx_global_lock;
2135
2136 struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2137
2138 #ifdef CONFIG_XPS
2139 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2140 #endif
2141 #ifdef CONFIG_NET_CLS_ACT
2142 struct mini_Qdisc __rcu *miniq_egress;
2143 #endif
2144
2145 #ifdef CONFIG_NET_SCHED
2146 DECLARE_HASHTABLE (qdisc_hash, 4);
2147 #endif
2148 /* These may be needed for future network-power-down code. */
2149 struct timer_list watchdog_timer;
2150 int watchdog_timeo;
2151
2152 u32 proto_down_reason;
2153
2154 struct list_head todo_list;
2155
2156 #ifdef CONFIG_PCPU_DEV_REFCNT
2157 int __percpu *pcpu_refcnt;
2158 #else
2159 refcount_t dev_refcnt;
2160 #endif
2161
2162 struct list_head link_watch_list;
2163
2164 enum { NETREG_UNINITIALIZED=0,
2165 NETREG_REGISTERED, /* completed register_netdevice */
2166 NETREG_UNREGISTERING, /* called unregister_netdevice */
2167 NETREG_UNREGISTERED, /* completed unregister todo */
2168 NETREG_RELEASED, /* called free_netdev */
2169 NETREG_DUMMY, /* dummy device for NAPI poll */
2170 } reg_state:8;
2171
2172 bool dismantle;
2173
2174 enum {
2175 RTNL_LINK_INITIALIZED,
2176 RTNL_LINK_INITIALIZING,
2177 } rtnl_link_state:16;
2178
2179 bool needs_free_netdev;
2180 void (*priv_destructor)(struct net_device *dev);
2181
2182 #ifdef CONFIG_NETPOLL
2183 struct netpoll_info __rcu *npinfo;
2184 #endif
2185
2186 possible_net_t nd_net;
2187
2188 /* mid-layer private */
2189 void *ml_priv;
2190 enum netdev_ml_priv_type ml_priv_type;
2191
2192 union {
2193 struct pcpu_lstats __percpu *lstats;
2194 struct pcpu_sw_netstats __percpu *tstats;
2195 struct pcpu_dstats __percpu *dstats;
2196 };
2197
2198 #if IS_ENABLED(CONFIG_GARP)
2199 struct garp_port __rcu *garp_port;
2200 #endif
2201 #if IS_ENABLED(CONFIG_MRP)
2202 struct mrp_port __rcu *mrp_port;
2203 #endif
2204
2205 struct device dev;
2206 const struct attribute_group *sysfs_groups[4];
2207 const struct attribute_group *sysfs_rx_queue_group;
2208
2209 const struct rtnl_link_ops *rtnl_link_ops;
2210
2211 /* for setting kernel sock attribute on TCP connection setup */
2212 #define GSO_MAX_SIZE 65536
2213 unsigned int gso_max_size;
2214 #define GSO_MAX_SEGS 65535
2215 u16 gso_max_segs;
2216
2217 #ifdef CONFIG_DCB
2218 const struct dcbnl_rtnl_ops *dcbnl_ops;
2219 #endif
2220 s16 num_tc;
2221 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
2222 u8 prio_tc_map[TC_BITMASK + 1];
2223
2224 #if IS_ENABLED(CONFIG_FCOE)
2225 unsigned int fcoe_ddp_xid;
2226 #endif
2227 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2228 struct netprio_map __rcu *priomap;
2229 #endif
2230 struct phy_device *phydev;
2231 struct sfp_bus *sfp_bus;
2232 struct lock_class_key *qdisc_tx_busylock;
2233 struct lock_class_key *qdisc_running_key;
2234 bool proto_down;
2235 unsigned wol_enabled:1;
2236 unsigned threaded:1;
2237
2238 struct list_head net_notifier_list;
2239
2240 #if IS_ENABLED(CONFIG_MACSEC)
2241 /* MACsec management functions */
2242 const struct macsec_ops *macsec_ops;
2243 #endif
2244 const struct udp_tunnel_nic_info *udp_tunnel_nic_info;
2245 struct udp_tunnel_nic *udp_tunnel_nic;
2246
2247 /* protected by rtnl_lock */
2248 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE];
2249 };
2250 #define to_net_dev(d) container_of(d, struct net_device, dev)
2251
2252 static inline bool netif_elide_gro(const struct net_device *dev)
2253 {
2254 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2255 return true;
2256 return false;
2257 }
2258
2259 #define NETDEV_ALIGN 32
2260
2261 static inline
2262 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2263 {
2264 return dev->prio_tc_map[prio & TC_BITMASK];
2265 }
2266
2267 static inline
2268 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2269 {
2270 if (tc >= dev->num_tc)
2271 return -EINVAL;
2272
2273 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2274 return 0;
2275 }
2276
2277 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2278 void netdev_reset_tc(struct net_device *dev);
2279 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2280 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2281
2282 static inline
2283 int netdev_get_num_tc(struct net_device *dev)
2284 {
2285 return dev->num_tc;
2286 }
2287
2288 static inline void net_prefetch(void *p)
2289 {
2290 prefetch(p);
2291 #if L1_CACHE_BYTES < 128
2292 prefetch((u8 *)p + L1_CACHE_BYTES);
2293 #endif
2294 }
2295
2296 static inline void net_prefetchw(void *p)
2297 {
2298 prefetchw(p);
2299 #if L1_CACHE_BYTES < 128
2300 prefetchw((u8 *)p + L1_CACHE_BYTES);
2301 #endif
2302 }
2303
2304 void netdev_unbind_sb_channel(struct net_device *dev,
2305 struct net_device *sb_dev);
2306 int netdev_bind_sb_channel_queue(struct net_device *dev,
2307 struct net_device *sb_dev,
2308 u8 tc, u16 count, u16 offset);
2309 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2310 static inline int netdev_get_sb_channel(struct net_device *dev)
2311 {
2312 return max_t(int, -dev->num_tc, 0);
2313 }
2314
2315 static inline
2316 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2317 unsigned int index)
2318 {
2319 return &dev->_tx[index];
2320 }
2321
2322 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2323 const struct sk_buff *skb)
2324 {
2325 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2326 }
2327
2328 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2329 void (*f)(struct net_device *,
2330 struct netdev_queue *,
2331 void *),
2332 void *arg)
2333 {
2334 unsigned int i;
2335
2336 for (i = 0; i < dev->num_tx_queues; i++)
2337 f(dev, &dev->_tx[i], arg);
2338 }
2339
2340 #define netdev_lockdep_set_classes(dev) \
2341 { \
2342 static struct lock_class_key qdisc_tx_busylock_key; \
2343 static struct lock_class_key qdisc_running_key; \
2344 static struct lock_class_key qdisc_xmit_lock_key; \
2345 static struct lock_class_key dev_addr_list_lock_key; \
2346 unsigned int i; \
2347 \
2348 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \
2349 (dev)->qdisc_running_key = &qdisc_running_key; \
2350 lockdep_set_class(&(dev)->addr_list_lock, \
2351 &dev_addr_list_lock_key); \
2352 for (i = 0; i < (dev)->num_tx_queues; i++) \
2353 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \
2354 &qdisc_xmit_lock_key); \
2355 }
2356
2357 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2358 struct net_device *sb_dev);
2359 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2360 struct sk_buff *skb,
2361 struct net_device *sb_dev);
2362
2363 /* returns the headroom that the master device needs to take in account
2364 * when forwarding to this dev
2365 */
2366 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2367 {
2368 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2369 }
2370
2371 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2372 {
2373 if (dev->netdev_ops->ndo_set_rx_headroom)
2374 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2375 }
2376
2377 /* set the device rx headroom to the dev's default */
2378 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2379 {
2380 netdev_set_rx_headroom(dev, -1);
2381 }
2382
2383 static inline void *netdev_get_ml_priv(struct net_device *dev,
2384 enum netdev_ml_priv_type type)
2385 {
2386 if (dev->ml_priv_type != type)
2387 return NULL;
2388
2389 return dev->ml_priv;
2390 }
2391
2392 static inline void netdev_set_ml_priv(struct net_device *dev,
2393 void *ml_priv,
2394 enum netdev_ml_priv_type type)
2395 {
2396 WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2397 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2398 dev->ml_priv_type, type);
2399 WARN(!dev->ml_priv_type && dev->ml_priv,
2400 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2401
2402 dev->ml_priv = ml_priv;
2403 dev->ml_priv_type = type;
2404 }
2405
2406 /*
2407 * Net namespace inlines
2408 */
2409 static inline
2410 struct net *dev_net(const struct net_device *dev)
2411 {
2412 return read_pnet(&dev->nd_net);
2413 }
2414
2415 static inline
2416 void dev_net_set(struct net_device *dev, struct net *net)
2417 {
2418 write_pnet(&dev->nd_net, net);
2419 }
2420
2421 /**
2422 * netdev_priv - access network device private data
2423 * @dev: network device
2424 *
2425 * Get network device private data
2426 */
2427 static inline void *netdev_priv(const struct net_device *dev)
2428 {
2429 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2430 }
2431
2432 /* Set the sysfs physical device reference for the network logical device
2433 * if set prior to registration will cause a symlink during initialization.
2434 */
2435 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
2436
2437 /* Set the sysfs device type for the network logical device to allow
2438 * fine-grained identification of different network device types. For
2439 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2440 */
2441 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
2442
2443 /* Default NAPI poll() weight
2444 * Device drivers are strongly advised to not use bigger value
2445 */
2446 #define NAPI_POLL_WEIGHT 64
2447
2448 /**
2449 * netif_napi_add - initialize a NAPI context
2450 * @dev: network device
2451 * @napi: NAPI context
2452 * @poll: polling function
2453 * @weight: default weight
2454 *
2455 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2456 * *any* of the other NAPI-related functions.
2457 */
2458 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2459 int (*poll)(struct napi_struct *, int), int weight);
2460
2461 /**
2462 * netif_tx_napi_add - initialize a NAPI context
2463 * @dev: network device
2464 * @napi: NAPI context
2465 * @poll: polling function
2466 * @weight: default weight
2467 *
2468 * This variant of netif_napi_add() should be used from drivers using NAPI
2469 * to exclusively poll a TX queue.
2470 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2471 */
2472 static inline void netif_tx_napi_add(struct net_device *dev,
2473 struct napi_struct *napi,
2474 int (*poll)(struct napi_struct *, int),
2475 int weight)
2476 {
2477 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2478 netif_napi_add(dev, napi, poll, weight);
2479 }
2480
2481 /**
2482 * __netif_napi_del - remove a NAPI context
2483 * @napi: NAPI context
2484 *
2485 * Warning: caller must observe RCU grace period before freeing memory
2486 * containing @napi. Drivers might want to call this helper to combine
2487 * all the needed RCU grace periods into a single one.
2488 */
2489 void __netif_napi_del(struct napi_struct *napi);
2490
2491 /**
2492 * netif_napi_del - remove a NAPI context
2493 * @napi: NAPI context
2494 *
2495 * netif_napi_del() removes a NAPI context from the network device NAPI list
2496 */
2497 static inline void netif_napi_del(struct napi_struct *napi)
2498 {
2499 __netif_napi_del(napi);
2500 synchronize_net();
2501 }
2502
2503 struct napi_gro_cb {
2504 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2505 void *frag0;
2506
2507 /* Length of frag0. */
2508 unsigned int frag0_len;
2509
2510 /* This indicates where we are processing relative to skb->data. */
2511 int data_offset;
2512
2513 /* This is non-zero if the packet cannot be merged with the new skb. */
2514 u16 flush;
2515
2516 /* Save the IP ID here and check when we get to the transport layer */
2517 u16 flush_id;
2518
2519 /* Number of segments aggregated. */
2520 u16 count;
2521
2522 /* Start offset for remote checksum offload */
2523 u16 gro_remcsum_start;
2524
2525 /* jiffies when first packet was created/queued */
2526 unsigned long age;
2527
2528 /* Used in ipv6_gro_receive() and foo-over-udp */
2529 u16 proto;
2530
2531 /* This is non-zero if the packet may be of the same flow. */
2532 u8 same_flow:1;
2533
2534 /* Used in tunnel GRO receive */
2535 u8 encap_mark:1;
2536
2537 /* GRO checksum is valid */
2538 u8 csum_valid:1;
2539
2540 /* Number of checksums via CHECKSUM_UNNECESSARY */
2541 u8 csum_cnt:3;
2542
2543 /* Free the skb? */
2544 u8 free:2;
2545 #define NAPI_GRO_FREE 1
2546 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2547
2548 /* Used in foo-over-udp, set in udp[46]_gro_receive */
2549 u8 is_ipv6:1;
2550
2551 /* Used in GRE, set in fou/gue_gro_receive */
2552 u8 is_fou:1;
2553
2554 /* Used to determine if flush_id can be ignored */
2555 u8 is_atomic:1;
2556
2557 /* Number of gro_receive callbacks this packet already went through */
2558 u8 recursion_counter:4;
2559
2560 /* GRO is done by frag_list pointer chaining. */
2561 u8 is_flist:1;
2562
2563 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2564 __wsum csum;
2565
2566 /* used in skb_gro_receive() slow path */
2567 struct sk_buff *last;
2568 };
2569
2570 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2571
2572 #define GRO_RECURSION_LIMIT 15
2573 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2574 {
2575 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2576 }
2577
2578 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2579 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2580 struct list_head *head,
2581 struct sk_buff *skb)
2582 {
2583 if (unlikely(gro_recursion_inc_test(skb))) {
2584 NAPI_GRO_CB(skb)->flush |= 1;
2585 return NULL;
2586 }
2587
2588 return cb(head, skb);
2589 }
2590
2591 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2592 struct sk_buff *);
2593 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2594 struct sock *sk,
2595 struct list_head *head,
2596 struct sk_buff *skb)
2597 {
2598 if (unlikely(gro_recursion_inc_test(skb))) {
2599 NAPI_GRO_CB(skb)->flush |= 1;
2600 return NULL;
2601 }
2602
2603 return cb(sk, head, skb);
2604 }
2605
2606 struct packet_type {
2607 __be16 type; /* This is really htons(ether_type). */
2608 bool ignore_outgoing;
2609 struct net_device *dev; /* NULL is wildcarded here */
2610 int (*func) (struct sk_buff *,
2611 struct net_device *,
2612 struct packet_type *,
2613 struct net_device *);
2614 void (*list_func) (struct list_head *,
2615 struct packet_type *,
2616 struct net_device *);
2617 bool (*id_match)(struct packet_type *ptype,
2618 struct sock *sk);
2619 void *af_packet_priv;
2620 struct list_head list;
2621 };
2622
2623 struct offload_callbacks {
2624 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2625 netdev_features_t features);
2626 struct sk_buff *(*gro_receive)(struct list_head *head,
2627 struct sk_buff *skb);
2628 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2629 };
2630
2631 struct packet_offload {
2632 __be16 type; /* This is really htons(ether_type). */
2633 u16 priority;
2634 struct offload_callbacks callbacks;
2635 struct list_head list;
2636 };
2637
2638 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2639 struct pcpu_sw_netstats {
2640 u64 rx_packets;
2641 u64 rx_bytes;
2642 u64 tx_packets;
2643 u64 tx_bytes;
2644 struct u64_stats_sync syncp;
2645 } __aligned(4 * sizeof(u64));
2646
2647 struct pcpu_lstats {
2648 u64_stats_t packets;
2649 u64_stats_t bytes;
2650 struct u64_stats_sync syncp;
2651 } __aligned(2 * sizeof(u64));
2652
2653 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2654
2655 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2656 {
2657 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2658
2659 u64_stats_update_begin(&tstats->syncp);
2660 tstats->rx_bytes += len;
2661 tstats->rx_packets++;
2662 u64_stats_update_end(&tstats->syncp);
2663 }
2664
2665 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2666 unsigned int packets,
2667 unsigned int len)
2668 {
2669 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2670
2671 u64_stats_update_begin(&tstats->syncp);
2672 tstats->tx_bytes += len;
2673 tstats->tx_packets += packets;
2674 u64_stats_update_end(&tstats->syncp);
2675 }
2676
2677 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2678 {
2679 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2680
2681 u64_stats_update_begin(&lstats->syncp);
2682 u64_stats_add(&lstats->bytes, len);
2683 u64_stats_inc(&lstats->packets);
2684 u64_stats_update_end(&lstats->syncp);
2685 }
2686
2687 #define __netdev_alloc_pcpu_stats(type, gfp) \
2688 ({ \
2689 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2690 if (pcpu_stats) { \
2691 int __cpu; \
2692 for_each_possible_cpu(__cpu) { \
2693 typeof(type) *stat; \
2694 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2695 u64_stats_init(&stat->syncp); \
2696 } \
2697 } \
2698 pcpu_stats; \
2699 })
2700
2701 #define netdev_alloc_pcpu_stats(type) \
2702 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2703
2704 #define devm_netdev_alloc_pcpu_stats(dev, type) \
2705 ({ \
2706 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2707 if (pcpu_stats) { \
2708 int __cpu; \
2709 for_each_possible_cpu(__cpu) { \
2710 typeof(type) *stat; \
2711 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2712 u64_stats_init(&stat->syncp); \
2713 } \
2714 } \
2715 pcpu_stats; \
2716 })
2717
2718 enum netdev_lag_tx_type {
2719 NETDEV_LAG_TX_TYPE_UNKNOWN,
2720 NETDEV_LAG_TX_TYPE_RANDOM,
2721 NETDEV_LAG_TX_TYPE_BROADCAST,
2722 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2723 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2724 NETDEV_LAG_TX_TYPE_HASH,
2725 };
2726
2727 enum netdev_lag_hash {
2728 NETDEV_LAG_HASH_NONE,
2729 NETDEV_LAG_HASH_L2,
2730 NETDEV_LAG_HASH_L34,
2731 NETDEV_LAG_HASH_L23,
2732 NETDEV_LAG_HASH_E23,
2733 NETDEV_LAG_HASH_E34,
2734 NETDEV_LAG_HASH_VLAN_SRCMAC,
2735 NETDEV_LAG_HASH_UNKNOWN,
2736 };
2737
2738 struct netdev_lag_upper_info {
2739 enum netdev_lag_tx_type tx_type;
2740 enum netdev_lag_hash hash_type;
2741 };
2742
2743 struct netdev_lag_lower_state_info {
2744 u8 link_up : 1,
2745 tx_enabled : 1;
2746 };
2747
2748 #include <linux/notifier.h>
2749
2750 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2751 * and the rtnetlink notification exclusion list in rtnetlink_event() when
2752 * adding new types.
2753 */
2754 enum netdev_cmd {
2755 NETDEV_UP = 1, /* For now you can't veto a device up/down */
2756 NETDEV_DOWN,
2757 NETDEV_REBOOT, /* Tell a protocol stack a network interface
2758 detected a hardware crash and restarted
2759 - we can use this eg to kick tcp sessions
2760 once done */
2761 NETDEV_CHANGE, /* Notify device state change */
2762 NETDEV_REGISTER,
2763 NETDEV_UNREGISTER,
2764 NETDEV_CHANGEMTU, /* notify after mtu change happened */
2765 NETDEV_CHANGEADDR, /* notify after the address change */
2766 NETDEV_PRE_CHANGEADDR, /* notify before the address change */
2767 NETDEV_GOING_DOWN,
2768 NETDEV_CHANGENAME,
2769 NETDEV_FEAT_CHANGE,
2770 NETDEV_BONDING_FAILOVER,
2771 NETDEV_PRE_UP,
2772 NETDEV_PRE_TYPE_CHANGE,
2773 NETDEV_POST_TYPE_CHANGE,
2774 NETDEV_POST_INIT,
2775 NETDEV_RELEASE,
2776 NETDEV_NOTIFY_PEERS,
2777 NETDEV_JOIN,
2778 NETDEV_CHANGEUPPER,
2779 NETDEV_RESEND_IGMP,
2780 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */
2781 NETDEV_CHANGEINFODATA,
2782 NETDEV_BONDING_INFO,
2783 NETDEV_PRECHANGEUPPER,
2784 NETDEV_CHANGELOWERSTATE,
2785 NETDEV_UDP_TUNNEL_PUSH_INFO,
2786 NETDEV_UDP_TUNNEL_DROP_INFO,
2787 NETDEV_CHANGE_TX_QUEUE_LEN,
2788 NETDEV_CVLAN_FILTER_PUSH_INFO,
2789 NETDEV_CVLAN_FILTER_DROP_INFO,
2790 NETDEV_SVLAN_FILTER_PUSH_INFO,
2791 NETDEV_SVLAN_FILTER_DROP_INFO,
2792 };
2793 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2794
2795 int register_netdevice_notifier(struct notifier_block *nb);
2796 int unregister_netdevice_notifier(struct notifier_block *nb);
2797 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2798 int unregister_netdevice_notifier_net(struct net *net,
2799 struct notifier_block *nb);
2800 int register_netdevice_notifier_dev_net(struct net_device *dev,
2801 struct notifier_block *nb,
2802 struct netdev_net_notifier *nn);
2803 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2804 struct notifier_block *nb,
2805 struct netdev_net_notifier *nn);
2806
2807 struct netdev_notifier_info {
2808 struct net_device *dev;
2809 struct netlink_ext_ack *extack;
2810 };
2811
2812 struct netdev_notifier_info_ext {
2813 struct netdev_notifier_info info; /* must be first */
2814 union {
2815 u32 mtu;
2816 } ext;
2817 };
2818
2819 struct netdev_notifier_change_info {
2820 struct netdev_notifier_info info; /* must be first */
2821 unsigned int flags_changed;
2822 };
2823
2824 struct netdev_notifier_changeupper_info {
2825 struct netdev_notifier_info info; /* must be first */
2826 struct net_device *upper_dev; /* new upper dev */
2827 bool master; /* is upper dev master */
2828 bool linking; /* is the notification for link or unlink */
2829 void *upper_info; /* upper dev info */
2830 };
2831
2832 struct netdev_notifier_changelowerstate_info {
2833 struct netdev_notifier_info info; /* must be first */
2834 void *lower_state_info; /* is lower dev state */
2835 };
2836
2837 struct netdev_notifier_pre_changeaddr_info {
2838 struct netdev_notifier_info info; /* must be first */
2839 const unsigned char *dev_addr;
2840 };
2841
2842 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2843 struct net_device *dev)
2844 {
2845 info->dev = dev;
2846 info->extack = NULL;
2847 }
2848
2849 static inline struct net_device *
2850 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2851 {
2852 return info->dev;
2853 }
2854
2855 static inline struct netlink_ext_ack *
2856 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2857 {
2858 return info->extack;
2859 }
2860
2861 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2862
2863
2864 extern rwlock_t dev_base_lock; /* Device list lock */
2865
2866 #define for_each_netdev(net, d) \
2867 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2868 #define for_each_netdev_reverse(net, d) \
2869 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2870 #define for_each_netdev_rcu(net, d) \
2871 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2872 #define for_each_netdev_safe(net, d, n) \
2873 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2874 #define for_each_netdev_continue(net, d) \
2875 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2876 #define for_each_netdev_continue_reverse(net, d) \
2877 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2878 dev_list)
2879 #define for_each_netdev_continue_rcu(net, d) \
2880 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2881 #define for_each_netdev_in_bond_rcu(bond, slave) \
2882 for_each_netdev_rcu(&init_net, slave) \
2883 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2884 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2885
2886 static inline struct net_device *next_net_device(struct net_device *dev)
2887 {
2888 struct list_head *lh;
2889 struct net *net;
2890
2891 net = dev_net(dev);
2892 lh = dev->dev_list.next;
2893 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2894 }
2895
2896 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2897 {
2898 struct list_head *lh;
2899 struct net *net;
2900
2901 net = dev_net(dev);
2902 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2903 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2904 }
2905
2906 static inline struct net_device *first_net_device(struct net *net)
2907 {
2908 return list_empty(&net->dev_base_head) ? NULL :
2909 net_device_entry(net->dev_base_head.next);
2910 }
2911
2912 static inline struct net_device *first_net_device_rcu(struct net *net)
2913 {
2914 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2915
2916 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2917 }
2918
2919 int netdev_boot_setup_check(struct net_device *dev);
2920 unsigned long netdev_boot_base(const char *prefix, int unit);
2921 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2922 const char *hwaddr);
2923 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2924 void dev_add_pack(struct packet_type *pt);
2925 void dev_remove_pack(struct packet_type *pt);
2926 void __dev_remove_pack(struct packet_type *pt);
2927 void dev_add_offload(struct packet_offload *po);
2928 void dev_remove_offload(struct packet_offload *po);
2929
2930 int dev_get_iflink(const struct net_device *dev);
2931 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2932 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
2933 struct net_device_path_stack *stack);
2934 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2935 unsigned short mask);
2936 struct net_device *dev_get_by_name(struct net *net, const char *name);
2937 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2938 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2939 int dev_alloc_name(struct net_device *dev, const char *name);
2940 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2941 void dev_close(struct net_device *dev);
2942 void dev_close_many(struct list_head *head, bool unlink);
2943 void dev_disable_lro(struct net_device *dev);
2944 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2945 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2946 struct net_device *sb_dev);
2947 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2948 struct net_device *sb_dev);
2949
2950 int dev_queue_xmit(struct sk_buff *skb);
2951 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2952 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2953
2954 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
2955 {
2956 int ret;
2957
2958 ret = __dev_direct_xmit(skb, queue_id);
2959 if (!dev_xmit_complete(ret))
2960 kfree_skb(skb);
2961 return ret;
2962 }
2963
2964 int register_netdevice(struct net_device *dev);
2965 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2966 void unregister_netdevice_many(struct list_head *head);
2967 static inline void unregister_netdevice(struct net_device *dev)
2968 {
2969 unregister_netdevice_queue(dev, NULL);
2970 }
2971
2972 int netdev_refcnt_read(const struct net_device *dev);
2973 void free_netdev(struct net_device *dev);
2974 void netdev_freemem(struct net_device *dev);
2975 int init_dummy_netdev(struct net_device *dev);
2976
2977 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2978 struct sk_buff *skb,
2979 bool all_slaves);
2980 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
2981 struct sock *sk);
2982 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2983 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2984 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2985 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2986 int netdev_get_name(struct net *net, char *name, int ifindex);
2987 int dev_restart(struct net_device *dev);
2988 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2989 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2990
2991 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2992 {
2993 return NAPI_GRO_CB(skb)->data_offset;
2994 }
2995
2996 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2997 {
2998 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2999 }
3000
3001 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
3002 {
3003 NAPI_GRO_CB(skb)->data_offset += len;
3004 }
3005
3006 static inline void *skb_gro_header_fast(struct sk_buff *skb,
3007 unsigned int offset)
3008 {
3009 return NAPI_GRO_CB(skb)->frag0 + offset;
3010 }
3011
3012 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
3013 {
3014 return NAPI_GRO_CB(skb)->frag0_len < hlen;
3015 }
3016
3017 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
3018 {
3019 NAPI_GRO_CB(skb)->frag0 = NULL;
3020 NAPI_GRO_CB(skb)->frag0_len = 0;
3021 }
3022
3023 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
3024 unsigned int offset)
3025 {
3026 if (!pskb_may_pull(skb, hlen))
3027 return NULL;
3028
3029 skb_gro_frag0_invalidate(skb);
3030 return skb->data + offset;
3031 }
3032
3033 static inline void *skb_gro_network_header(struct sk_buff *skb)
3034 {
3035 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
3036 skb_network_offset(skb);
3037 }
3038
3039 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
3040 const void *start, unsigned int len)
3041 {
3042 if (NAPI_GRO_CB(skb)->csum_valid)
3043 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
3044 csum_partial(start, len, 0));
3045 }
3046
3047 /* GRO checksum functions. These are logical equivalents of the normal
3048 * checksum functions (in skbuff.h) except that they operate on the GRO
3049 * offsets and fields in sk_buff.
3050 */
3051
3052 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
3053
3054 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
3055 {
3056 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
3057 }
3058
3059 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
3060 bool zero_okay,
3061 __sum16 check)
3062 {
3063 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
3064 skb_checksum_start_offset(skb) <
3065 skb_gro_offset(skb)) &&
3066 !skb_at_gro_remcsum_start(skb) &&
3067 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
3068 (!zero_okay || check));
3069 }
3070
3071 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
3072 __wsum psum)
3073 {
3074 if (NAPI_GRO_CB(skb)->csum_valid &&
3075 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
3076 return 0;
3077
3078 NAPI_GRO_CB(skb)->csum = psum;
3079
3080 return __skb_gro_checksum_complete(skb);
3081 }
3082
3083 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
3084 {
3085 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
3086 /* Consume a checksum from CHECKSUM_UNNECESSARY */
3087 NAPI_GRO_CB(skb)->csum_cnt--;
3088 } else {
3089 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
3090 * verified a new top level checksum or an encapsulated one
3091 * during GRO. This saves work if we fallback to normal path.
3092 */
3093 __skb_incr_checksum_unnecessary(skb);
3094 }
3095 }
3096
3097 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
3098 compute_pseudo) \
3099 ({ \
3100 __sum16 __ret = 0; \
3101 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
3102 __ret = __skb_gro_checksum_validate_complete(skb, \
3103 compute_pseudo(skb, proto)); \
3104 if (!__ret) \
3105 skb_gro_incr_csum_unnecessary(skb); \
3106 __ret; \
3107 })
3108
3109 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
3110 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
3111
3112 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \
3113 compute_pseudo) \
3114 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
3115
3116 #define skb_gro_checksum_simple_validate(skb) \
3117 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
3118
3119 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
3120 {
3121 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
3122 !NAPI_GRO_CB(skb)->csum_valid);
3123 }
3124
3125 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
3126 __wsum pseudo)
3127 {
3128 NAPI_GRO_CB(skb)->csum = ~pseudo;
3129 NAPI_GRO_CB(skb)->csum_valid = 1;
3130 }
3131
3132 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo) \
3133 do { \
3134 if (__skb_gro_checksum_convert_check(skb)) \
3135 __skb_gro_checksum_convert(skb, \
3136 compute_pseudo(skb, proto)); \
3137 } while (0)
3138
3139 struct gro_remcsum {
3140 int offset;
3141 __wsum delta;
3142 };
3143
3144 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
3145 {
3146 grc->offset = 0;
3147 grc->delta = 0;
3148 }
3149
3150 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
3151 unsigned int off, size_t hdrlen,
3152 int start, int offset,
3153 struct gro_remcsum *grc,
3154 bool nopartial)
3155 {
3156 __wsum delta;
3157 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
3158
3159 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
3160
3161 if (!nopartial) {
3162 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
3163 return ptr;
3164 }
3165
3166 ptr = skb_gro_header_fast(skb, off);
3167 if (skb_gro_header_hard(skb, off + plen)) {
3168 ptr = skb_gro_header_slow(skb, off + plen, off);
3169 if (!ptr)
3170 return NULL;
3171 }
3172
3173 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
3174 start, offset);
3175
3176 /* Adjust skb->csum since we changed the packet */
3177 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
3178
3179 grc->offset = off + hdrlen + offset;
3180 grc->delta = delta;
3181
3182 return ptr;
3183 }
3184
3185 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
3186 struct gro_remcsum *grc)
3187 {
3188 void *ptr;
3189 size_t plen = grc->offset + sizeof(u16);
3190
3191 if (!grc->delta)
3192 return;
3193
3194 ptr = skb_gro_header_fast(skb, grc->offset);
3195 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
3196 ptr = skb_gro_header_slow(skb, plen, grc->offset);
3197 if (!ptr)
3198 return;
3199 }
3200
3201 remcsum_unadjust((__sum16 *)ptr, grc->delta);
3202 }
3203
3204 #ifdef CONFIG_XFRM_OFFLOAD
3205 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3206 {
3207 if (PTR_ERR(pp) != -EINPROGRESS)
3208 NAPI_GRO_CB(skb)->flush |= flush;
3209 }
3210 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3211 struct sk_buff *pp,
3212 int flush,
3213 struct gro_remcsum *grc)
3214 {
3215 if (PTR_ERR(pp) != -EINPROGRESS) {
3216 NAPI_GRO_CB(skb)->flush |= flush;
3217 skb_gro_remcsum_cleanup(skb, grc);
3218 skb->remcsum_offload = 0;
3219 }
3220 }
3221 #else
3222 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3223 {
3224 NAPI_GRO_CB(skb)->flush |= flush;
3225 }
3226 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3227 struct sk_buff *pp,
3228 int flush,
3229 struct gro_remcsum *grc)
3230 {
3231 NAPI_GRO_CB(skb)->flush |= flush;
3232 skb_gro_remcsum_cleanup(skb, grc);
3233 skb->remcsum_offload = 0;
3234 }
3235 #endif
3236
3237 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3238 unsigned short type,
3239 const void *daddr, const void *saddr,
3240 unsigned int len)
3241 {
3242 if (!dev->header_ops || !dev->header_ops->create)
3243 return 0;
3244
3245 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3246 }
3247
3248 static inline int dev_parse_header(const struct sk_buff *skb,
3249 unsigned char *haddr)
3250 {
3251 const struct net_device *dev = skb->dev;
3252
3253 if (!dev->header_ops || !dev->header_ops->parse)
3254 return 0;
3255 return dev->header_ops->parse(skb, haddr);
3256 }
3257
3258 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3259 {
3260 const struct net_device *dev = skb->dev;
3261
3262 if (!dev->header_ops || !dev->header_ops->parse_protocol)
3263 return 0;
3264 return dev->header_ops->parse_protocol(skb);
3265 }
3266
3267 /* ll_header must have at least hard_header_len allocated */
3268 static inline bool dev_validate_header(const struct net_device *dev,
3269 char *ll_header, int len)
3270 {
3271 if (likely(len >= dev->hard_header_len))
3272 return true;
3273 if (len < dev->min_header_len)
3274 return false;
3275
3276 if (capable(CAP_SYS_RAWIO)) {
3277 memset(ll_header + len, 0, dev->hard_header_len - len);
3278 return true;
3279 }
3280
3281 if (dev->header_ops && dev->header_ops->validate)
3282 return dev->header_ops->validate(ll_header, len);
3283
3284 return false;
3285 }
3286
3287 static inline bool dev_has_header(const struct net_device *dev)
3288 {
3289 return dev->header_ops && dev->header_ops->create;
3290 }
3291
3292 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
3293 int len, int size);
3294 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
3295 static inline int unregister_gifconf(unsigned int family)
3296 {
3297 return register_gifconf(family, NULL);
3298 }
3299
3300 #ifdef CONFIG_NET_FLOW_LIMIT
3301 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
3302 struct sd_flow_limit {
3303 u64 count;
3304 unsigned int num_buckets;
3305 unsigned int history_head;
3306 u16 history[FLOW_LIMIT_HISTORY];
3307 u8 buckets[];
3308 };
3309
3310 extern int netdev_flow_limit_table_len;
3311 #endif /* CONFIG_NET_FLOW_LIMIT */
3312
3313 /*
3314 * Incoming packets are placed on per-CPU queues
3315 */
3316 struct softnet_data {
3317 struct list_head poll_list;
3318 struct sk_buff_head process_queue;
3319
3320 /* stats */
3321 unsigned int processed;
3322 unsigned int time_squeeze;
3323 unsigned int received_rps;
3324 #ifdef CONFIG_RPS
3325 struct softnet_data *rps_ipi_list;
3326 #endif
3327 #ifdef CONFIG_NET_FLOW_LIMIT
3328 struct sd_flow_limit __rcu *flow_limit;
3329 #endif
3330 struct Qdisc *output_queue;
3331 struct Qdisc **output_queue_tailp;
3332 struct sk_buff *completion_queue;
3333 #ifdef CONFIG_XFRM_OFFLOAD
3334 struct sk_buff_head xfrm_backlog;
3335 #endif
3336 /* written and read only by owning cpu: */
3337 struct {
3338 u16 recursion;
3339 u8 more;
3340 } xmit;
3341 #ifdef CONFIG_RPS
3342 /* input_queue_head should be written by cpu owning this struct,
3343 * and only read by other cpus. Worth using a cache line.
3344 */
3345 unsigned int input_queue_head ____cacheline_aligned_in_smp;
3346
3347 /* Elements below can be accessed between CPUs for RPS/RFS */
3348 call_single_data_t csd ____cacheline_aligned_in_smp;
3349 struct softnet_data *rps_ipi_next;
3350 unsigned int cpu;
3351 unsigned int input_queue_tail;
3352 #endif
3353 unsigned int dropped;
3354 struct sk_buff_head input_pkt_queue;
3355 struct napi_struct backlog;
3356
3357 };
3358
3359 static inline void input_queue_head_incr(struct softnet_data *sd)
3360 {
3361 #ifdef CONFIG_RPS
3362 sd->input_queue_head++;
3363 #endif
3364 }
3365
3366 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3367 unsigned int *qtail)
3368 {
3369 #ifdef CONFIG_RPS
3370 *qtail = ++sd->input_queue_tail;
3371 #endif
3372 }
3373
3374 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3375
3376 static inline int dev_recursion_level(void)
3377 {
3378 return this_cpu_read(softnet_data.xmit.recursion);
3379 }
3380
3381 #define XMIT_RECURSION_LIMIT 8
3382 static inline bool dev_xmit_recursion(void)
3383 {
3384 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3385 XMIT_RECURSION_LIMIT);
3386 }
3387
3388 static inline void dev_xmit_recursion_inc(void)
3389 {
3390 __this_cpu_inc(softnet_data.xmit.recursion);
3391 }
3392
3393 static inline void dev_xmit_recursion_dec(void)
3394 {
3395 __this_cpu_dec(softnet_data.xmit.recursion);
3396 }
3397
3398 void __netif_schedule(struct Qdisc *q);
3399 void netif_schedule_queue(struct netdev_queue *txq);
3400
3401 static inline void netif_tx_schedule_all(struct net_device *dev)
3402 {
3403 unsigned int i;
3404
3405 for (i = 0; i < dev->num_tx_queues; i++)
3406 netif_schedule_queue(netdev_get_tx_queue(dev, i));
3407 }
3408
3409 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3410 {
3411 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3412 }
3413
3414 /**
3415 * netif_start_queue - allow transmit
3416 * @dev: network device
3417 *
3418 * Allow upper layers to call the device hard_start_xmit routine.
3419 */
3420 static inline void netif_start_queue(struct net_device *dev)
3421 {
3422 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3423 }
3424
3425 static inline void netif_tx_start_all_queues(struct net_device *dev)
3426 {
3427 unsigned int i;
3428
3429 for (i = 0; i < dev->num_tx_queues; i++) {
3430 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3431 netif_tx_start_queue(txq);
3432 }
3433 }
3434
3435 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3436
3437 /**
3438 * netif_wake_queue - restart transmit
3439 * @dev: network device
3440 *
3441 * Allow upper layers to call the device hard_start_xmit routine.
3442 * Used for flow control when transmit resources are available.
3443 */
3444 static inline void netif_wake_queue(struct net_device *dev)
3445 {
3446 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3447 }
3448
3449 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3450 {
3451 unsigned int i;
3452
3453 for (i = 0; i < dev->num_tx_queues; i++) {
3454 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3455 netif_tx_wake_queue(txq);
3456 }
3457 }
3458
3459 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3460 {
3461 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3462 }
3463
3464 /**
3465 * netif_stop_queue - stop transmitted packets
3466 * @dev: network device
3467 *
3468 * Stop upper layers calling the device hard_start_xmit routine.
3469 * Used for flow control when transmit resources are unavailable.
3470 */
3471 static inline void netif_stop_queue(struct net_device *dev)
3472 {
3473 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3474 }
3475
3476 void netif_tx_stop_all_queues(struct net_device *dev);
3477
3478 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3479 {
3480 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3481 }
3482
3483 /**
3484 * netif_queue_stopped - test if transmit queue is flowblocked
3485 * @dev: network device
3486 *
3487 * Test if transmit queue on device is currently unable to send.
3488 */
3489 static inline bool netif_queue_stopped(const struct net_device *dev)
3490 {
3491 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3492 }
3493
3494 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3495 {
3496 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3497 }
3498
3499 static inline bool
3500 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3501 {
3502 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3503 }
3504
3505 static inline bool
3506 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3507 {
3508 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3509 }
3510
3511 /**
3512 * netdev_queue_set_dql_min_limit - set dql minimum limit
3513 * @dev_queue: pointer to transmit queue
3514 * @min_limit: dql minimum limit
3515 *
3516 * Forces xmit_more() to return true until the minimum threshold
3517 * defined by @min_limit is reached (or until the tx queue is
3518 * empty). Warning: to be use with care, misuse will impact the
3519 * latency.
3520 */
3521 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3522 unsigned int min_limit)
3523 {
3524 #ifdef CONFIG_BQL
3525 dev_queue->dql.min_limit = min_limit;
3526 #endif
3527 }
3528
3529 /**
3530 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3531 * @dev_queue: pointer to transmit queue
3532 *
3533 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3534 * to give appropriate hint to the CPU.
3535 */
3536 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3537 {
3538 #ifdef CONFIG_BQL
3539 prefetchw(&dev_queue->dql.num_queued);
3540 #endif
3541 }
3542
3543 /**
3544 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3545 * @dev_queue: pointer to transmit queue
3546 *
3547 * BQL enabled drivers might use this helper in their TX completion path,
3548 * to give appropriate hint to the CPU.
3549 */
3550 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3551 {
3552 #ifdef CONFIG_BQL
3553 prefetchw(&dev_queue->dql.limit);
3554 #endif
3555 }
3556
3557 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3558 unsigned int bytes)
3559 {
3560 #ifdef CONFIG_BQL
3561 dql_queued(&dev_queue->dql, bytes);
3562
3563 if (likely(dql_avail(&dev_queue->dql) >= 0))
3564 return;
3565
3566 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3567
3568 /*
3569 * The XOFF flag must be set before checking the dql_avail below,
3570 * because in netdev_tx_completed_queue we update the dql_completed
3571 * before checking the XOFF flag.
3572 */
3573 smp_mb();
3574
3575 /* check again in case another CPU has just made room avail */
3576 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3577 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3578 #endif
3579 }
3580
3581 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3582 * that they should not test BQL status themselves.
3583 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3584 * skb of a batch.
3585 * Returns true if the doorbell must be used to kick the NIC.
3586 */
3587 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3588 unsigned int bytes,
3589 bool xmit_more)
3590 {
3591 if (xmit_more) {
3592 #ifdef CONFIG_BQL
3593 dql_queued(&dev_queue->dql, bytes);
3594 #endif
3595 return netif_tx_queue_stopped(dev_queue);
3596 }
3597 netdev_tx_sent_queue(dev_queue, bytes);
3598 return true;
3599 }
3600
3601 /**
3602 * netdev_sent_queue - report the number of bytes queued to hardware
3603 * @dev: network device
3604 * @bytes: number of bytes queued to the hardware device queue
3605 *
3606 * Report the number of bytes queued for sending/completion to the network
3607 * device hardware queue. @bytes should be a good approximation and should
3608 * exactly match netdev_completed_queue() @bytes
3609 */
3610 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3611 {
3612 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3613 }
3614
3615 static inline bool __netdev_sent_queue(struct net_device *dev,
3616 unsigned int bytes,
3617 bool xmit_more)
3618 {
3619 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3620 xmit_more);
3621 }
3622
3623 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3624 unsigned int pkts, unsigned int bytes)
3625 {
3626 #ifdef CONFIG_BQL
3627 if (unlikely(!bytes))
3628 return;
3629
3630 dql_completed(&dev_queue->dql, bytes);
3631
3632 /*
3633 * Without the memory barrier there is a small possiblity that
3634 * netdev_tx_sent_queue will miss the update and cause the queue to
3635 * be stopped forever
3636 */
3637 smp_mb();
3638
3639 if (unlikely(dql_avail(&dev_queue->dql) < 0))
3640 return;
3641
3642 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3643 netif_schedule_queue(dev_queue);
3644 #endif
3645 }
3646
3647 /**
3648 * netdev_completed_queue - report bytes and packets completed by device
3649 * @dev: network device
3650 * @pkts: actual number of packets sent over the medium
3651 * @bytes: actual number of bytes sent over the medium
3652 *
3653 * Report the number of bytes and packets transmitted by the network device
3654 * hardware queue over the physical medium, @bytes must exactly match the
3655 * @bytes amount passed to netdev_sent_queue()
3656 */
3657 static inline void netdev_completed_queue(struct net_device *dev,
3658 unsigned int pkts, unsigned int bytes)
3659 {
3660 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3661 }
3662
3663 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3664 {
3665 #ifdef CONFIG_BQL
3666 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3667 dql_reset(&q->dql);
3668 #endif
3669 }
3670
3671 /**
3672 * netdev_reset_queue - reset the packets and bytes count of a network device
3673 * @dev_queue: network device
3674 *
3675 * Reset the bytes and packet count of a network device and clear the
3676 * software flow control OFF bit for this network device
3677 */
3678 static inline void netdev_reset_queue(struct net_device *dev_queue)
3679 {
3680 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3681 }
3682
3683 /**
3684 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
3685 * @dev: network device
3686 * @queue_index: given tx queue index
3687 *
3688 * Returns 0 if given tx queue index >= number of device tx queues,
3689 * otherwise returns the originally passed tx queue index.
3690 */
3691 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3692 {
3693 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3694 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3695 dev->name, queue_index,
3696 dev->real_num_tx_queues);
3697 return 0;
3698 }
3699
3700 return queue_index;
3701 }
3702
3703 /**
3704 * netif_running - test if up
3705 * @dev: network device
3706 *
3707 * Test if the device has been brought up.
3708 */
3709 static inline bool netif_running(const struct net_device *dev)
3710 {
3711 return test_bit(__LINK_STATE_START, &dev->state);
3712 }
3713
3714 /*
3715 * Routines to manage the subqueues on a device. We only need start,
3716 * stop, and a check if it's stopped. All other device management is
3717 * done at the overall netdevice level.
3718 * Also test the device if we're multiqueue.
3719 */
3720
3721 /**
3722 * netif_start_subqueue - allow sending packets on subqueue
3723 * @dev: network device
3724 * @queue_index: sub queue index
3725 *
3726 * Start individual transmit queue of a device with multiple transmit queues.
3727 */
3728 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3729 {
3730 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3731
3732 netif_tx_start_queue(txq);
3733 }
3734
3735 /**
3736 * netif_stop_subqueue - stop sending packets on subqueue
3737 * @dev: network device
3738 * @queue_index: sub queue index
3739 *
3740 * Stop individual transmit queue of a device with multiple transmit queues.
3741 */
3742 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3743 {
3744 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3745 netif_tx_stop_queue(txq);
3746 }
3747
3748 /**
3749 * __netif_subqueue_stopped - test status of subqueue
3750 * @dev: network device
3751 * @queue_index: sub queue index
3752 *
3753 * Check individual transmit queue of a device with multiple transmit queues.
3754 */
3755 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3756 u16 queue_index)
3757 {
3758 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3759
3760 return netif_tx_queue_stopped(txq);
3761 }
3762
3763 /**
3764 * netif_subqueue_stopped - test status of subqueue
3765 * @dev: network device
3766 * @skb: sub queue buffer pointer
3767 *
3768 * Check individual transmit queue of a device with multiple transmit queues.
3769 */
3770 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3771 struct sk_buff *skb)
3772 {
3773 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3774 }
3775
3776 /**
3777 * netif_wake_subqueue - allow sending packets on subqueue
3778 * @dev: network device
3779 * @queue_index: sub queue index
3780 *
3781 * Resume individual transmit queue of a device with multiple transmit queues.
3782 */
3783 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3784 {
3785 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3786
3787 netif_tx_wake_queue(txq);
3788 }
3789
3790 #ifdef CONFIG_XPS
3791 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3792 u16 index);
3793 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3794 u16 index, enum xps_map_type type);
3795
3796 /**
3797 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3798 * @j: CPU/Rx queue index
3799 * @mask: bitmask of all cpus/rx queues
3800 * @nr_bits: number of bits in the bitmask
3801 *
3802 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3803 */
3804 static inline bool netif_attr_test_mask(unsigned long j,
3805 const unsigned long *mask,
3806 unsigned int nr_bits)
3807 {
3808 cpu_max_bits_warn(j, nr_bits);
3809 return test_bit(j, mask);
3810 }
3811
3812 /**
3813 * netif_attr_test_online - Test for online CPU/Rx queue
3814 * @j: CPU/Rx queue index
3815 * @online_mask: bitmask for CPUs/Rx queues that are online
3816 * @nr_bits: number of bits in the bitmask
3817 *
3818 * Returns true if a CPU/Rx queue is online.
3819 */
3820 static inline bool netif_attr_test_online(unsigned long j,
3821 const unsigned long *online_mask,
3822 unsigned int nr_bits)
3823 {
3824 cpu_max_bits_warn(j, nr_bits);
3825
3826 if (online_mask)
3827 return test_bit(j, online_mask);
3828
3829 return (j < nr_bits);
3830 }
3831
3832 /**
3833 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3834 * @n: CPU/Rx queue index
3835 * @srcp: the cpumask/Rx queue mask pointer
3836 * @nr_bits: number of bits in the bitmask
3837 *
3838 * Returns >= nr_bits if no further CPUs/Rx queues set.
3839 */
3840 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3841 unsigned int nr_bits)
3842 {
3843 /* -1 is a legal arg here. */
3844 if (n != -1)
3845 cpu_max_bits_warn(n, nr_bits);
3846
3847 if (srcp)
3848 return find_next_bit(srcp, nr_bits, n + 1);
3849
3850 return n + 1;
3851 }
3852
3853 /**
3854 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3855 * @n: CPU/Rx queue index
3856 * @src1p: the first CPUs/Rx queues mask pointer
3857 * @src2p: the second CPUs/Rx queues mask pointer
3858 * @nr_bits: number of bits in the bitmask
3859 *
3860 * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3861 */
3862 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3863 const unsigned long *src2p,
3864 unsigned int nr_bits)
3865 {
3866 /* -1 is a legal arg here. */
3867 if (n != -1)
3868 cpu_max_bits_warn(n, nr_bits);
3869
3870 if (src1p && src2p)
3871 return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3872 else if (src1p)
3873 return find_next_bit(src1p, nr_bits, n + 1);
3874 else if (src2p)
3875 return find_next_bit(src2p, nr_bits, n + 1);
3876
3877 return n + 1;
3878 }
3879 #else
3880 static inline int netif_set_xps_queue(struct net_device *dev,
3881 const struct cpumask *mask,
3882 u16 index)
3883 {
3884 return 0;
3885 }
3886
3887 static inline int __netif_set_xps_queue(struct net_device *dev,
3888 const unsigned long *mask,
3889 u16 index, enum xps_map_type type)
3890 {
3891 return 0;
3892 }
3893 #endif
3894
3895 /**
3896 * netif_is_multiqueue - test if device has multiple transmit queues
3897 * @dev: network device
3898 *
3899 * Check if device has multiple transmit queues
3900 */
3901 static inline bool netif_is_multiqueue(const struct net_device *dev)
3902 {
3903 return dev->num_tx_queues > 1;
3904 }
3905
3906 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3907
3908 #ifdef CONFIG_SYSFS
3909 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3910 #else
3911 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3912 unsigned int rxqs)
3913 {
3914 dev->real_num_rx_queues = rxqs;
3915 return 0;
3916 }
3917 #endif
3918
3919 static inline struct netdev_rx_queue *
3920 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3921 {
3922 return dev->_rx + rxq;
3923 }
3924
3925 #ifdef CONFIG_SYSFS
3926 static inline unsigned int get_netdev_rx_queue_index(
3927 struct netdev_rx_queue *queue)
3928 {
3929 struct net_device *dev = queue->dev;
3930 int index = queue - dev->_rx;
3931
3932 BUG_ON(index >= dev->num_rx_queues);
3933 return index;
3934 }
3935 #endif
3936
3937 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
3938 int netif_get_num_default_rss_queues(void);
3939
3940 enum skb_free_reason {
3941 SKB_REASON_CONSUMED,
3942 SKB_REASON_DROPPED,
3943 };
3944
3945 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3946 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3947
3948 /*
3949 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3950 * interrupt context or with hardware interrupts being disabled.
3951 * (in_irq() || irqs_disabled())
3952 *
3953 * We provide four helpers that can be used in following contexts :
3954 *
3955 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3956 * replacing kfree_skb(skb)
3957 *
3958 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3959 * Typically used in place of consume_skb(skb) in TX completion path
3960 *
3961 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3962 * replacing kfree_skb(skb)
3963 *
3964 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3965 * and consumed a packet. Used in place of consume_skb(skb)
3966 */
3967 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3968 {
3969 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3970 }
3971
3972 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3973 {
3974 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3975 }
3976
3977 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3978 {
3979 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3980 }
3981
3982 static inline void dev_consume_skb_any(struct sk_buff *skb)
3983 {
3984 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3985 }
3986
3987 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3988 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3989 int netif_rx(struct sk_buff *skb);
3990 int netif_rx_ni(struct sk_buff *skb);
3991 int netif_rx_any_context(struct sk_buff *skb);
3992 int netif_receive_skb(struct sk_buff *skb);
3993 int netif_receive_skb_core(struct sk_buff *skb);
3994 void netif_receive_skb_list(struct list_head *head);
3995 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3996 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3997 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3998 gro_result_t napi_gro_frags(struct napi_struct *napi);
3999 struct packet_offload *gro_find_receive_by_type(__be16 type);
4000 struct packet_offload *gro_find_complete_by_type(__be16 type);
4001
4002 static inline void napi_free_frags(struct napi_struct *napi)
4003 {
4004 kfree_skb(napi->skb);
4005 napi->skb = NULL;
4006 }
4007
4008 bool netdev_is_rx_handler_busy(struct net_device *dev);
4009 int netdev_rx_handler_register(struct net_device *dev,
4010 rx_handler_func_t *rx_handler,
4011 void *rx_handler_data);
4012 void netdev_rx_handler_unregister(struct net_device *dev);
4013
4014 bool dev_valid_name(const char *name);
4015 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
4016 bool *need_copyout);
4017 int dev_ifconf(struct net *net, struct ifconf *, int);
4018 int dev_ethtool(struct net *net, struct ifreq *);
4019 unsigned int dev_get_flags(const struct net_device *);
4020 int __dev_change_flags(struct net_device *dev, unsigned int flags,
4021 struct netlink_ext_ack *extack);
4022 int dev_change_flags(struct net_device *dev, unsigned int flags,
4023 struct netlink_ext_ack *extack);
4024 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
4025 unsigned int gchanges);
4026 int dev_change_name(struct net_device *, const char *);
4027 int dev_set_alias(struct net_device *, const char *, size_t);
4028 int dev_get_alias(const struct net_device *, char *, size_t);
4029 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
4030 const char *pat, int new_ifindex);
4031 static inline
4032 int dev_change_net_namespace(struct net_device *dev, struct net *net,
4033 const char *pat)
4034 {
4035 return __dev_change_net_namespace(dev, net, pat, 0);
4036 }
4037 int __dev_set_mtu(struct net_device *, int);
4038 int dev_validate_mtu(struct net_device *dev, int mtu,
4039 struct netlink_ext_ack *extack);
4040 int dev_set_mtu_ext(struct net_device *dev, int mtu,
4041 struct netlink_ext_ack *extack);
4042 int dev_set_mtu(struct net_device *, int);
4043 int dev_change_tx_queue_len(struct net_device *, unsigned long);
4044 void dev_set_group(struct net_device *, int);
4045 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
4046 struct netlink_ext_ack *extack);
4047 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
4048 struct netlink_ext_ack *extack);
4049 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
4050 struct netlink_ext_ack *extack);
4051 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
4052 int dev_change_carrier(struct net_device *, bool new_carrier);
4053 int dev_get_phys_port_id(struct net_device *dev,
4054 struct netdev_phys_item_id *ppid);
4055 int dev_get_phys_port_name(struct net_device *dev,
4056 char *name, size_t len);
4057 int dev_get_port_parent_id(struct net_device *dev,
4058 struct netdev_phys_item_id *ppid, bool recurse);
4059 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
4060 int dev_change_proto_down(struct net_device *dev, bool proto_down);
4061 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
4062 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
4063 u32 value);
4064 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
4065 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
4066 struct netdev_queue *txq, int *ret);
4067
4068 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
4069 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
4070 int fd, int expected_fd, u32 flags);
4071 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
4072 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
4073
4074 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4075 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4076 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
4077 bool is_skb_forwardable(const struct net_device *dev,
4078 const struct sk_buff *skb);
4079
4080 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
4081 const struct sk_buff *skb,
4082 const bool check_mtu)
4083 {
4084 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
4085 unsigned int len;
4086
4087 if (!(dev->flags & IFF_UP))
4088 return false;
4089
4090 if (!check_mtu)
4091 return true;
4092
4093 len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
4094 if (skb->len <= len)
4095 return true;
4096
4097 /* if TSO is enabled, we don't care about the length as the packet
4098 * could be forwarded without being segmented before
4099 */
4100 if (skb_is_gso(skb))
4101 return true;
4102
4103 return false;
4104 }
4105
4106 static __always_inline int ____dev_forward_skb(struct net_device *dev,
4107 struct sk_buff *skb,
4108 const bool check_mtu)
4109 {
4110 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
4111 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
4112 atomic_long_inc(&dev->rx_dropped);
4113 kfree_skb(skb);
4114 return NET_RX_DROP;
4115 }
4116
4117 skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
4118 skb->priority = 0;
4119 return 0;
4120 }
4121
4122 bool dev_nit_active(struct net_device *dev);
4123 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4124
4125 extern int netdev_budget;
4126 extern unsigned int netdev_budget_usecs;
4127
4128 /* Called by rtnetlink.c:rtnl_unlock() */
4129 void netdev_run_todo(void);
4130
4131 /**
4132 * dev_put - release reference to device
4133 * @dev: network device
4134 *
4135 * Release reference to device to allow it to be freed.
4136 */
4137 static inline void dev_put(struct net_device *dev)
4138 {
4139 #ifdef CONFIG_PCPU_DEV_REFCNT
4140 this_cpu_dec(*dev->pcpu_refcnt);
4141 #else
4142 refcount_dec(&dev->dev_refcnt);
4143 #endif
4144 }
4145
4146 /**
4147 * dev_hold - get reference to device
4148 * @dev: network device
4149 *
4150 * Hold reference to device to keep it from being freed.
4151 */
4152 static inline void dev_hold(struct net_device *dev)
4153 {
4154 #ifdef CONFIG_PCPU_DEV_REFCNT
4155 this_cpu_inc(*dev->pcpu_refcnt);
4156 #else
4157 refcount_inc(&dev->dev_refcnt);
4158 #endif
4159 }
4160
4161 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4162 * and _off may be called from IRQ context, but it is caller
4163 * who is responsible for serialization of these calls.
4164 *
4165 * The name carrier is inappropriate, these functions should really be
4166 * called netif_lowerlayer_*() because they represent the state of any
4167 * kind of lower layer not just hardware media.
4168 */
4169
4170 void linkwatch_init_dev(struct net_device *dev);
4171 void linkwatch_fire_event(struct net_device *dev);
4172 void linkwatch_forget_dev(struct net_device *dev);
4173
4174 /**
4175 * netif_carrier_ok - test if carrier present
4176 * @dev: network device
4177 *
4178 * Check if carrier is present on device
4179 */
4180 static inline bool netif_carrier_ok(const struct net_device *dev)
4181 {
4182 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4183 }
4184
4185 unsigned long dev_trans_start(struct net_device *dev);
4186
4187 void __netdev_watchdog_up(struct net_device *dev);
4188
4189 void netif_carrier_on(struct net_device *dev);
4190 void netif_carrier_off(struct net_device *dev);
4191 void netif_carrier_event(struct net_device *dev);
4192
4193 /**
4194 * netif_dormant_on - mark device as dormant.
4195 * @dev: network device
4196 *
4197 * Mark device as dormant (as per RFC2863).
4198 *
4199 * The dormant state indicates that the relevant interface is not
4200 * actually in a condition to pass packets (i.e., it is not 'up') but is
4201 * in a "pending" state, waiting for some external event. For "on-
4202 * demand" interfaces, this new state identifies the situation where the
4203 * interface is waiting for events to place it in the up state.
4204 */
4205 static inline void netif_dormant_on(struct net_device *dev)
4206 {
4207 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4208 linkwatch_fire_event(dev);
4209 }
4210
4211 /**
4212 * netif_dormant_off - set device as not dormant.
4213 * @dev: network device
4214 *
4215 * Device is not in dormant state.
4216 */
4217 static inline void netif_dormant_off(struct net_device *dev)
4218 {
4219 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4220 linkwatch_fire_event(dev);
4221 }
4222
4223 /**
4224 * netif_dormant - test if device is dormant
4225 * @dev: network device
4226 *
4227 * Check if device is dormant.
4228 */
4229 static inline bool netif_dormant(const struct net_device *dev)
4230 {
4231 return test_bit(__LINK_STATE_DORMANT, &dev->state);
4232 }
4233
4234
4235 /**
4236 * netif_testing_on - mark device as under test.
4237 * @dev: network device
4238 *
4239 * Mark device as under test (as per RFC2863).
4240 *
4241 * The testing state indicates that some test(s) must be performed on
4242 * the interface. After completion, of the test, the interface state
4243 * will change to up, dormant, or down, as appropriate.
4244 */
4245 static inline void netif_testing_on(struct net_device *dev)
4246 {
4247 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4248 linkwatch_fire_event(dev);
4249 }
4250
4251 /**
4252 * netif_testing_off - set device as not under test.
4253 * @dev: network device
4254 *
4255 * Device is not in testing state.
4256 */
4257 static inline void netif_testing_off(struct net_device *dev)
4258 {
4259 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4260 linkwatch_fire_event(dev);
4261 }
4262
4263 /**
4264 * netif_testing - test if device is under test
4265 * @dev: network device
4266 *
4267 * Check if device is under test
4268 */
4269 static inline bool netif_testing(const struct net_device *dev)
4270 {
4271 return test_bit(__LINK_STATE_TESTING, &dev->state);
4272 }
4273
4274
4275 /**
4276 * netif_oper_up - test if device is operational
4277 * @dev: network device
4278 *
4279 * Check if carrier is operational
4280 */
4281 static inline bool netif_oper_up(const struct net_device *dev)
4282 {
4283 return (dev->operstate == IF_OPER_UP ||
4284 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4285 }
4286
4287 /**
4288 * netif_device_present - is device available or removed
4289 * @dev: network device
4290 *
4291 * Check if device has not been removed from system.
4292 */
4293 static inline bool netif_device_present(const struct net_device *dev)
4294 {
4295 return test_bit(__LINK_STATE_PRESENT, &dev->state);
4296 }
4297
4298 void netif_device_detach(struct net_device *dev);
4299
4300 void netif_device_attach(struct net_device *dev);
4301
4302 /*
4303 * Network interface message level settings
4304 */
4305
4306 enum {
4307 NETIF_MSG_DRV_BIT,
4308 NETIF_MSG_PROBE_BIT,
4309 NETIF_MSG_LINK_BIT,
4310 NETIF_MSG_TIMER_BIT,
4311 NETIF_MSG_IFDOWN_BIT,
4312 NETIF_MSG_IFUP_BIT,
4313 NETIF_MSG_RX_ERR_BIT,
4314 NETIF_MSG_TX_ERR_BIT,
4315 NETIF_MSG_TX_QUEUED_BIT,
4316 NETIF_MSG_INTR_BIT,
4317 NETIF_MSG_TX_DONE_BIT,
4318 NETIF_MSG_RX_STATUS_BIT,
4319 NETIF_MSG_PKTDATA_BIT,
4320 NETIF_MSG_HW_BIT,
4321 NETIF_MSG_WOL_BIT,
4322
4323 /* When you add a new bit above, update netif_msg_class_names array
4324 * in net/ethtool/common.c
4325 */
4326 NETIF_MSG_CLASS_COUNT,
4327 };
4328 /* Both ethtool_ops interface and internal driver implementation use u32 */
4329 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4330
4331 #define __NETIF_MSG_BIT(bit) ((u32)1 << (bit))
4332 #define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4333
4334 #define NETIF_MSG_DRV __NETIF_MSG(DRV)
4335 #define NETIF_MSG_PROBE __NETIF_MSG(PROBE)
4336 #define NETIF_MSG_LINK __NETIF_MSG(LINK)
4337 #define NETIF_MSG_TIMER __NETIF_MSG(TIMER)
4338 #define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN)
4339 #define NETIF_MSG_IFUP __NETIF_MSG(IFUP)
4340 #define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR)
4341 #define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR)
4342 #define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED)
4343 #define NETIF_MSG_INTR __NETIF_MSG(INTR)
4344 #define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE)
4345 #define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS)
4346 #define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA)
4347 #define NETIF_MSG_HW __NETIF_MSG(HW)
4348 #define NETIF_MSG_WOL __NETIF_MSG(WOL)
4349
4350 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
4351 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
4352 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
4353 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
4354 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
4355 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
4356 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
4357 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
4358 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4359 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
4360 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
4361 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
4362 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
4363 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
4364 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
4365
4366 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4367 {
4368 /* use default */
4369 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4370 return default_msg_enable_bits;
4371 if (debug_value == 0) /* no output */
4372 return 0;
4373 /* set low N bits */
4374 return (1U << debug_value) - 1;
4375 }
4376
4377 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4378 {
4379 spin_lock(&txq->_xmit_lock);
4380 txq->xmit_lock_owner = cpu;
4381 }
4382
4383 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4384 {
4385 __acquire(&txq->_xmit_lock);
4386 return true;
4387 }
4388
4389 static inline void __netif_tx_release(struct netdev_queue *txq)
4390 {
4391 __release(&txq->_xmit_lock);
4392 }
4393
4394 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4395 {
4396 spin_lock_bh(&txq->_xmit_lock);
4397 txq->xmit_lock_owner = smp_processor_id();
4398 }
4399
4400 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4401 {
4402 bool ok = spin_trylock(&txq->_xmit_lock);
4403 if (likely(ok))
4404 txq->xmit_lock_owner = smp_processor_id();
4405 return ok;
4406 }
4407
4408 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4409 {
4410 txq->xmit_lock_owner = -1;
4411 spin_unlock(&txq->_xmit_lock);
4412 }
4413
4414 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4415 {
4416 txq->xmit_lock_owner = -1;
4417 spin_unlock_bh(&txq->_xmit_lock);
4418 }
4419
4420 static inline void txq_trans_update(struct netdev_queue *txq)
4421 {
4422 if (txq->xmit_lock_owner != -1)
4423 txq->trans_start = jiffies;
4424 }
4425
4426 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4427 static inline void netif_trans_update(struct net_device *dev)
4428 {
4429 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4430
4431 if (txq->trans_start != jiffies)
4432 txq->trans_start = jiffies;
4433 }
4434
4435 /**
4436 * netif_tx_lock - grab network device transmit lock
4437 * @dev: network device
4438 *
4439 * Get network device transmit lock
4440 */
4441 static inline void netif_tx_lock(struct net_device *dev)
4442 {
4443 unsigned int i;
4444 int cpu;
4445
4446 spin_lock(&dev->tx_global_lock);
4447 cpu = smp_processor_id();
4448 for (i = 0; i < dev->num_tx_queues; i++) {
4449 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4450
4451 /* We are the only thread of execution doing a
4452 * freeze, but we have to grab the _xmit_lock in
4453 * order to synchronize with threads which are in
4454 * the ->hard_start_xmit() handler and already
4455 * checked the frozen bit.
4456 */
4457 __netif_tx_lock(txq, cpu);
4458 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4459 __netif_tx_unlock(txq);
4460 }
4461 }
4462
4463 static inline void netif_tx_lock_bh(struct net_device *dev)
4464 {
4465 local_bh_disable();
4466 netif_tx_lock(dev);
4467 }
4468
4469 static inline void netif_tx_unlock(struct net_device *dev)
4470 {
4471 unsigned int i;
4472
4473 for (i = 0; i < dev->num_tx_queues; i++) {
4474 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4475
4476 /* No need to grab the _xmit_lock here. If the
4477 * queue is not stopped for another reason, we
4478 * force a schedule.
4479 */
4480 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4481 netif_schedule_queue(txq);
4482 }
4483 spin_unlock(&dev->tx_global_lock);
4484 }
4485
4486 static inline void netif_tx_unlock_bh(struct net_device *dev)
4487 {
4488 netif_tx_unlock(dev);
4489 local_bh_enable();
4490 }
4491
4492 #define HARD_TX_LOCK(dev, txq, cpu) { \
4493 if ((dev->features & NETIF_F_LLTX) == 0) { \
4494 __netif_tx_lock(txq, cpu); \
4495 } else { \
4496 __netif_tx_acquire(txq); \
4497 } \
4498 }
4499
4500 #define HARD_TX_TRYLOCK(dev, txq) \
4501 (((dev->features & NETIF_F_LLTX) == 0) ? \
4502 __netif_tx_trylock(txq) : \
4503 __netif_tx_acquire(txq))
4504
4505 #define HARD_TX_UNLOCK(dev, txq) { \
4506 if ((dev->features & NETIF_F_LLTX) == 0) { \
4507 __netif_tx_unlock(txq); \
4508 } else { \
4509 __netif_tx_release(txq); \
4510 } \
4511 }
4512
4513 static inline void netif_tx_disable(struct net_device *dev)
4514 {
4515 unsigned int i;
4516 int cpu;
4517
4518 local_bh_disable();
4519 cpu = smp_processor_id();
4520 spin_lock(&dev->tx_global_lock);
4521 for (i = 0; i < dev->num_tx_queues; i++) {
4522 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4523
4524 __netif_tx_lock(txq, cpu);
4525 netif_tx_stop_queue(txq);
4526 __netif_tx_unlock(txq);
4527 }
4528 spin_unlock(&dev->tx_global_lock);
4529 local_bh_enable();
4530 }
4531
4532 static inline void netif_addr_lock(struct net_device *dev)
4533 {
4534 unsigned char nest_level = 0;
4535
4536 #ifdef CONFIG_LOCKDEP
4537 nest_level = dev->nested_level;
4538 #endif
4539 spin_lock_nested(&dev->addr_list_lock, nest_level);
4540 }
4541
4542 static inline void netif_addr_lock_bh(struct net_device *dev)
4543 {
4544 unsigned char nest_level = 0;
4545
4546 #ifdef CONFIG_LOCKDEP
4547 nest_level = dev->nested_level;
4548 #endif
4549 local_bh_disable();
4550 spin_lock_nested(&dev->addr_list_lock, nest_level);
4551 }
4552
4553 static inline void netif_addr_unlock(struct net_device *dev)
4554 {
4555 spin_unlock(&dev->addr_list_lock);
4556 }
4557
4558 static inline void netif_addr_unlock_bh(struct net_device *dev)
4559 {
4560 spin_unlock_bh(&dev->addr_list_lock);
4561 }
4562
4563 /*
4564 * dev_addrs walker. Should be used only for read access. Call with
4565 * rcu_read_lock held.
4566 */
4567 #define for_each_dev_addr(dev, ha) \
4568 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4569
4570 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4571
4572 void ether_setup(struct net_device *dev);
4573
4574 /* Support for loadable net-drivers */
4575 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4576 unsigned char name_assign_type,
4577 void (*setup)(struct net_device *),
4578 unsigned int txqs, unsigned int rxqs);
4579 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4580 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4581
4582 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4583 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4584 count)
4585
4586 int register_netdev(struct net_device *dev);
4587 void unregister_netdev(struct net_device *dev);
4588
4589 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4590
4591 /* General hardware address lists handling functions */
4592 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4593 struct netdev_hw_addr_list *from_list, int addr_len);
4594 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4595 struct netdev_hw_addr_list *from_list, int addr_len);
4596 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4597 struct net_device *dev,
4598 int (*sync)(struct net_device *, const unsigned char *),
4599 int (*unsync)(struct net_device *,
4600 const unsigned char *));
4601 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4602 struct net_device *dev,
4603 int (*sync)(struct net_device *,
4604 const unsigned char *, int),
4605 int (*unsync)(struct net_device *,
4606 const unsigned char *, int));
4607 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4608 struct net_device *dev,
4609 int (*unsync)(struct net_device *,
4610 const unsigned char *, int));
4611 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4612 struct net_device *dev,
4613 int (*unsync)(struct net_device *,
4614 const unsigned char *));
4615 void __hw_addr_init(struct netdev_hw_addr_list *list);
4616
4617 /* Functions used for device addresses handling */
4618 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4619 unsigned char addr_type);
4620 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4621 unsigned char addr_type);
4622 void dev_addr_flush(struct net_device *dev);
4623 int dev_addr_init(struct net_device *dev);
4624
4625 /* Functions used for unicast addresses handling */
4626 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4627 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4628 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4629 int dev_uc_sync(struct net_device *to, struct net_device *from);
4630 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4631 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4632 void dev_uc_flush(struct net_device *dev);
4633 void dev_uc_init(struct net_device *dev);
4634
4635 /**
4636 * __dev_uc_sync - Synchonize device's unicast list
4637 * @dev: device to sync
4638 * @sync: function to call if address should be added
4639 * @unsync: function to call if address should be removed
4640 *
4641 * Add newly added addresses to the interface, and release
4642 * addresses that have been deleted.
4643 */
4644 static inline int __dev_uc_sync(struct net_device *dev,
4645 int (*sync)(struct net_device *,
4646 const unsigned char *),
4647 int (*unsync)(struct net_device *,
4648 const unsigned char *))
4649 {
4650 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4651 }
4652
4653 /**
4654 * __dev_uc_unsync - Remove synchronized addresses from device
4655 * @dev: device to sync
4656 * @unsync: function to call if address should be removed
4657 *
4658 * Remove all addresses that were added to the device by dev_uc_sync().
4659 */
4660 static inline void __dev_uc_unsync(struct net_device *dev,
4661 int (*unsync)(struct net_device *,
4662 const unsigned char *))
4663 {
4664 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
4665 }
4666
4667 /* Functions used for multicast addresses handling */
4668 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4669 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4670 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4671 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4672 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4673 int dev_mc_sync(struct net_device *to, struct net_device *from);
4674 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4675 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4676 void dev_mc_flush(struct net_device *dev);
4677 void dev_mc_init(struct net_device *dev);
4678
4679 /**
4680 * __dev_mc_sync - Synchonize device's multicast list
4681 * @dev: device to sync
4682 * @sync: function to call if address should be added
4683 * @unsync: function to call if address should be removed
4684 *
4685 * Add newly added addresses to the interface, and release
4686 * addresses that have been deleted.
4687 */
4688 static inline int __dev_mc_sync(struct net_device *dev,
4689 int (*sync)(struct net_device *,
4690 const unsigned char *),
4691 int (*unsync)(struct net_device *,
4692 const unsigned char *))
4693 {
4694 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4695 }
4696
4697 /**
4698 * __dev_mc_unsync - Remove synchronized addresses from device
4699 * @dev: device to sync
4700 * @unsync: function to call if address should be removed
4701 *
4702 * Remove all addresses that were added to the device by dev_mc_sync().
4703 */
4704 static inline void __dev_mc_unsync(struct net_device *dev,
4705 int (*unsync)(struct net_device *,
4706 const unsigned char *))
4707 {
4708 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
4709 }
4710
4711 /* Functions used for secondary unicast and multicast support */
4712 void dev_set_rx_mode(struct net_device *dev);
4713 void __dev_set_rx_mode(struct net_device *dev);
4714 int dev_set_promiscuity(struct net_device *dev, int inc);
4715 int dev_set_allmulti(struct net_device *dev, int inc);
4716 void netdev_state_change(struct net_device *dev);
4717 void __netdev_notify_peers(struct net_device *dev);
4718 void netdev_notify_peers(struct net_device *dev);
4719 void netdev_features_change(struct net_device *dev);
4720 /* Load a device via the kmod */
4721 void dev_load(struct net *net, const char *name);
4722 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4723 struct rtnl_link_stats64 *storage);
4724 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4725 const struct net_device_stats *netdev_stats);
4726 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4727 const struct pcpu_sw_netstats __percpu *netstats);
4728 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4729
4730 extern int netdev_max_backlog;
4731 extern int netdev_tstamp_prequeue;
4732 extern int netdev_unregister_timeout_secs;
4733 extern int weight_p;
4734 extern int dev_weight_rx_bias;
4735 extern int dev_weight_tx_bias;
4736 extern int dev_rx_weight;
4737 extern int dev_tx_weight;
4738 extern int gro_normal_batch;
4739
4740 enum {
4741 NESTED_SYNC_IMM_BIT,
4742 NESTED_SYNC_TODO_BIT,
4743 };
4744
4745 #define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit))
4746 #define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4747
4748 #define NESTED_SYNC_IMM __NESTED_SYNC(IMM)
4749 #define NESTED_SYNC_TODO __NESTED_SYNC(TODO)
4750
4751 struct netdev_nested_priv {
4752 unsigned char flags;
4753 void *data;
4754 };
4755
4756 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4757 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4758 struct list_head **iter);
4759 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4760 struct list_head **iter);
4761
4762 #ifdef CONFIG_LOCKDEP
4763 static LIST_HEAD(net_unlink_list);
4764
4765 static inline void net_unlink_todo(struct net_device *dev)
4766 {
4767 if (list_empty(&dev->unlink_list))
4768 list_add_tail(&dev->unlink_list, &net_unlink_list);
4769 }
4770 #endif
4771
4772 /* iterate through upper list, must be called under RCU read lock */
4773 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4774 for (iter = &(dev)->adj_list.upper, \
4775 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4776 updev; \
4777 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4778
4779 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4780 int (*fn)(struct net_device *upper_dev,
4781 struct netdev_nested_priv *priv),
4782 struct netdev_nested_priv *priv);
4783
4784 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4785 struct net_device *upper_dev);
4786
4787 bool netdev_has_any_upper_dev(struct net_device *dev);
4788
4789 void *netdev_lower_get_next_private(struct net_device *dev,
4790 struct list_head **iter);
4791 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4792 struct list_head **iter);
4793
4794 #define netdev_for_each_lower_private(dev, priv, iter) \
4795 for (iter = (dev)->adj_list.lower.next, \
4796 priv = netdev_lower_get_next_private(dev, &(iter)); \
4797 priv; \
4798 priv = netdev_lower_get_next_private(dev, &(iter)))
4799
4800 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4801 for (iter = &(dev)->adj_list.lower, \
4802 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4803 priv; \
4804 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4805
4806 void *netdev_lower_get_next(struct net_device *dev,
4807 struct list_head **iter);
4808
4809 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4810 for (iter = (dev)->adj_list.lower.next, \
4811 ldev = netdev_lower_get_next(dev, &(iter)); \
4812 ldev; \
4813 ldev = netdev_lower_get_next(dev, &(iter)))
4814
4815 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4816 struct list_head **iter);
4817 int netdev_walk_all_lower_dev(struct net_device *dev,
4818 int (*fn)(struct net_device *lower_dev,
4819 struct netdev_nested_priv *priv),
4820 struct netdev_nested_priv *priv);
4821 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4822 int (*fn)(struct net_device *lower_dev,
4823 struct netdev_nested_priv *priv),
4824 struct netdev_nested_priv *priv);
4825
4826 void *netdev_adjacent_get_private(struct list_head *adj_list);
4827 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4828 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4829 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4830 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4831 struct netlink_ext_ack *extack);
4832 int netdev_master_upper_dev_link(struct net_device *dev,
4833 struct net_device *upper_dev,
4834 void *upper_priv, void *upper_info,
4835 struct netlink_ext_ack *extack);
4836 void netdev_upper_dev_unlink(struct net_device *dev,
4837 struct net_device *upper_dev);
4838 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4839 struct net_device *new_dev,
4840 struct net_device *dev,
4841 struct netlink_ext_ack *extack);
4842 void netdev_adjacent_change_commit(struct net_device *old_dev,
4843 struct net_device *new_dev,
4844 struct net_device *dev);
4845 void netdev_adjacent_change_abort(struct net_device *old_dev,
4846 struct net_device *new_dev,
4847 struct net_device *dev);
4848 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4849 void *netdev_lower_dev_get_private(struct net_device *dev,
4850 struct net_device *lower_dev);
4851 void netdev_lower_state_changed(struct net_device *lower_dev,
4852 void *lower_state_info);
4853
4854 /* RSS keys are 40 or 52 bytes long */
4855 #define NETDEV_RSS_KEY_LEN 52
4856 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4857 void netdev_rss_key_fill(void *buffer, size_t len);
4858
4859 int skb_checksum_help(struct sk_buff *skb);
4860 int skb_crc32c_csum_help(struct sk_buff *skb);
4861 int skb_csum_hwoffload_help(struct sk_buff *skb,
4862 const netdev_features_t features);
4863
4864 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4865 netdev_features_t features, bool tx_path);
4866 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4867 netdev_features_t features);
4868
4869 struct netdev_bonding_info {
4870 ifslave slave;
4871 ifbond master;
4872 };
4873
4874 struct netdev_notifier_bonding_info {
4875 struct netdev_notifier_info info; /* must be first */
4876 struct netdev_bonding_info bonding_info;
4877 };
4878
4879 void netdev_bonding_info_change(struct net_device *dev,
4880 struct netdev_bonding_info *bonding_info);
4881
4882 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4883 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4884 #else
4885 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4886 const void *data)
4887 {
4888 }
4889 #endif
4890
4891 static inline
4892 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4893 {
4894 return __skb_gso_segment(skb, features, true);
4895 }
4896 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4897
4898 static inline bool can_checksum_protocol(netdev_features_t features,
4899 __be16 protocol)
4900 {
4901 if (protocol == htons(ETH_P_FCOE))
4902 return !!(features & NETIF_F_FCOE_CRC);
4903
4904 /* Assume this is an IP checksum (not SCTP CRC) */
4905
4906 if (features & NETIF_F_HW_CSUM) {
4907 /* Can checksum everything */
4908 return true;
4909 }
4910
4911 switch (protocol) {
4912 case htons(ETH_P_IP):
4913 return !!(features & NETIF_F_IP_CSUM);
4914 case htons(ETH_P_IPV6):
4915 return !!(features & NETIF_F_IPV6_CSUM);
4916 default:
4917 return false;
4918 }
4919 }
4920
4921 #ifdef CONFIG_BUG
4922 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4923 #else
4924 static inline void netdev_rx_csum_fault(struct net_device *dev,
4925 struct sk_buff *skb)
4926 {
4927 }
4928 #endif
4929 /* rx skb timestamps */
4930 void net_enable_timestamp(void);
4931 void net_disable_timestamp(void);
4932
4933 #ifdef CONFIG_PROC_FS
4934 int __init dev_proc_init(void);
4935 #else
4936 #define dev_proc_init() 0
4937 #endif
4938
4939 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4940 struct sk_buff *skb, struct net_device *dev,
4941 bool more)
4942 {
4943 __this_cpu_write(softnet_data.xmit.more, more);
4944 return ops->ndo_start_xmit(skb, dev);
4945 }
4946
4947 static inline bool netdev_xmit_more(void)
4948 {
4949 return __this_cpu_read(softnet_data.xmit.more);
4950 }
4951
4952 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4953 struct netdev_queue *txq, bool more)
4954 {
4955 const struct net_device_ops *ops = dev->netdev_ops;
4956 netdev_tx_t rc;
4957
4958 rc = __netdev_start_xmit(ops, skb, dev, more);
4959 if (rc == NETDEV_TX_OK)
4960 txq_trans_update(txq);
4961
4962 return rc;
4963 }
4964
4965 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4966 const void *ns);
4967 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4968 const void *ns);
4969
4970 extern const struct kobj_ns_type_operations net_ns_type_operations;
4971
4972 const char *netdev_drivername(const struct net_device *dev);
4973
4974 void linkwatch_run_queue(void);
4975
4976 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4977 netdev_features_t f2)
4978 {
4979 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4980 if (f1 & NETIF_F_HW_CSUM)
4981 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4982 else
4983 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4984 }
4985
4986 return f1 & f2;
4987 }
4988
4989 static inline netdev_features_t netdev_get_wanted_features(
4990 struct net_device *dev)
4991 {
4992 return (dev->features & ~dev->hw_features) | dev->wanted_features;
4993 }
4994 netdev_features_t netdev_increment_features(netdev_features_t all,
4995 netdev_features_t one, netdev_features_t mask);
4996
4997 /* Allow TSO being used on stacked device :
4998 * Performing the GSO segmentation before last device
4999 * is a performance improvement.
5000 */
5001 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
5002 netdev_features_t mask)
5003 {
5004 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
5005 }
5006
5007 int __netdev_update_features(struct net_device *dev);
5008 void netdev_update_features(struct net_device *dev);
5009 void netdev_change_features(struct net_device *dev);
5010
5011 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5012 struct net_device *dev);
5013
5014 netdev_features_t passthru_features_check(struct sk_buff *skb,
5015 struct net_device *dev,
5016 netdev_features_t features);
5017 netdev_features_t netif_skb_features(struct sk_buff *skb);
5018
5019 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
5020 {
5021 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
5022
5023 /* check flags correspondence */
5024 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
5025 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
5026 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
5027 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
5028 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
5029 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
5030 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
5031 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
5032 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
5033 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
5034 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
5035 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
5036 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
5037 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
5038 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
5039 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
5040 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
5041 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
5042 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
5043
5044 return (features & feature) == feature;
5045 }
5046
5047 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
5048 {
5049 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
5050 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
5051 }
5052
5053 static inline bool netif_needs_gso(struct sk_buff *skb,
5054 netdev_features_t features)
5055 {
5056 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
5057 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
5058 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
5059 }
5060
5061 static inline void netif_set_gso_max_size(struct net_device *dev,
5062 unsigned int size)
5063 {
5064 dev->gso_max_size = size;
5065 }
5066
5067 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
5068 int pulled_hlen, u16 mac_offset,
5069 int mac_len)
5070 {
5071 skb->protocol = protocol;
5072 skb->encapsulation = 1;
5073 skb_push(skb, pulled_hlen);
5074 skb_reset_transport_header(skb);
5075 skb->mac_header = mac_offset;
5076 skb->network_header = skb->mac_header + mac_len;
5077 skb->mac_len = mac_len;
5078 }
5079
5080 static inline bool netif_is_macsec(const struct net_device *dev)
5081 {
5082 return dev->priv_flags & IFF_MACSEC;
5083 }
5084
5085 static inline bool netif_is_macvlan(const struct net_device *dev)
5086 {
5087 return dev->priv_flags & IFF_MACVLAN;
5088 }
5089
5090 static inline bool netif_is_macvlan_port(const struct net_device *dev)
5091 {
5092 return dev->priv_flags & IFF_MACVLAN_PORT;
5093 }
5094
5095 static inline bool netif_is_bond_master(const struct net_device *dev)
5096 {
5097 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5098 }
5099
5100 static inline bool netif_is_bond_slave(const struct net_device *dev)
5101 {
5102 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5103 }
5104
5105 static inline bool netif_supports_nofcs(struct net_device *dev)
5106 {
5107 return dev->priv_flags & IFF_SUPP_NOFCS;
5108 }
5109
5110 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5111 {
5112 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5113 }
5114
5115 static inline bool netif_is_l3_master(const struct net_device *dev)
5116 {
5117 return dev->priv_flags & IFF_L3MDEV_MASTER;
5118 }
5119
5120 static inline bool netif_is_l3_slave(const struct net_device *dev)
5121 {
5122 return dev->priv_flags & IFF_L3MDEV_SLAVE;
5123 }
5124
5125 static inline bool netif_is_bridge_master(const struct net_device *dev)
5126 {
5127 return dev->priv_flags & IFF_EBRIDGE;
5128 }
5129
5130 static inline bool netif_is_bridge_port(const struct net_device *dev)
5131 {
5132 return dev->priv_flags & IFF_BRIDGE_PORT;
5133 }
5134
5135 static inline bool netif_is_ovs_master(const struct net_device *dev)
5136 {
5137 return dev->priv_flags & IFF_OPENVSWITCH;
5138 }
5139
5140 static inline bool netif_is_ovs_port(const struct net_device *dev)
5141 {
5142 return dev->priv_flags & IFF_OVS_DATAPATH;
5143 }
5144
5145 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5146 {
5147 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5148 }
5149
5150 static inline bool netif_is_team_master(const struct net_device *dev)
5151 {
5152 return dev->priv_flags & IFF_TEAM;
5153 }
5154
5155 static inline bool netif_is_team_port(const struct net_device *dev)
5156 {
5157 return dev->priv_flags & IFF_TEAM_PORT;
5158 }
5159
5160 static inline bool netif_is_lag_master(const struct net_device *dev)
5161 {
5162 return netif_is_bond_master(dev) || netif_is_team_master(dev);
5163 }
5164
5165 static inline bool netif_is_lag_port(const struct net_device *dev)
5166 {
5167 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5168 }
5169
5170 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5171 {
5172 return dev->priv_flags & IFF_RXFH_CONFIGURED;
5173 }
5174
5175 static inline bool netif_is_failover(const struct net_device *dev)
5176 {
5177 return dev->priv_flags & IFF_FAILOVER;
5178 }
5179
5180 static inline bool netif_is_failover_slave(const struct net_device *dev)
5181 {
5182 return dev->priv_flags & IFF_FAILOVER_SLAVE;
5183 }
5184
5185 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5186 static inline void netif_keep_dst(struct net_device *dev)
5187 {
5188 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5189 }
5190
5191 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5192 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5193 {
5194 /* TODO: reserve and use an additional IFF bit, if we get more users */
5195 return dev->priv_flags & IFF_MACSEC;
5196 }
5197
5198 extern struct pernet_operations __net_initdata loopback_net_ops;
5199
5200 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5201
5202 /* netdev_printk helpers, similar to dev_printk */
5203
5204 static inline const char *netdev_name(const struct net_device *dev)
5205 {
5206 if (!dev->name[0] || strchr(dev->name, '%'))
5207 return "(unnamed net_device)";
5208 return dev->name;
5209 }
5210
5211 static inline bool netdev_unregistering(const struct net_device *dev)
5212 {
5213 return dev->reg_state == NETREG_UNREGISTERING;
5214 }
5215
5216 static inline const char *netdev_reg_state(const struct net_device *dev)
5217 {
5218 switch (dev->reg_state) {
5219 case NETREG_UNINITIALIZED: return " (uninitialized)";
5220 case NETREG_REGISTERED: return "";
5221 case NETREG_UNREGISTERING: return " (unregistering)";
5222 case NETREG_UNREGISTERED: return " (unregistered)";
5223 case NETREG_RELEASED: return " (released)";
5224 case NETREG_DUMMY: return " (dummy)";
5225 }
5226
5227 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5228 return " (unknown)";
5229 }
5230
5231 __printf(3, 4) __cold
5232 void netdev_printk(const char *level, const struct net_device *dev,
5233 const char *format, ...);
5234 __printf(2, 3) __cold
5235 void netdev_emerg(const struct net_device *dev, const char *format, ...);
5236 __printf(2, 3) __cold
5237 void netdev_alert(const struct net_device *dev, const char *format, ...);
5238 __printf(2, 3) __cold
5239 void netdev_crit(const struct net_device *dev, const char *format, ...);
5240 __printf(2, 3) __cold
5241 void netdev_err(const struct net_device *dev, const char *format, ...);
5242 __printf(2, 3) __cold
5243 void netdev_warn(const struct net_device *dev, const char *format, ...);
5244 __printf(2, 3) __cold
5245 void netdev_notice(const struct net_device *dev, const char *format, ...);
5246 __printf(2, 3) __cold
5247 void netdev_info(const struct net_device *dev, const char *format, ...);
5248
5249 #define netdev_level_once(level, dev, fmt, ...) \
5250 do { \
5251 static bool __print_once __read_mostly; \
5252 \
5253 if (!__print_once) { \
5254 __print_once = true; \
5255 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \
5256 } \
5257 } while (0)
5258
5259 #define netdev_emerg_once(dev, fmt, ...) \
5260 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
5261 #define netdev_alert_once(dev, fmt, ...) \
5262 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
5263 #define netdev_crit_once(dev, fmt, ...) \
5264 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
5265 #define netdev_err_once(dev, fmt, ...) \
5266 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
5267 #define netdev_warn_once(dev, fmt, ...) \
5268 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
5269 #define netdev_notice_once(dev, fmt, ...) \
5270 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
5271 #define netdev_info_once(dev, fmt, ...) \
5272 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
5273
5274 #define MODULE_ALIAS_NETDEV(device) \
5275 MODULE_ALIAS("netdev-" device)
5276
5277 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5278 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5279 #define netdev_dbg(__dev, format, args...) \
5280 do { \
5281 dynamic_netdev_dbg(__dev, format, ##args); \
5282 } while (0)
5283 #elif defined(DEBUG)
5284 #define netdev_dbg(__dev, format, args...) \
5285 netdev_printk(KERN_DEBUG, __dev, format, ##args)
5286 #else
5287 #define netdev_dbg(__dev, format, args...) \
5288 ({ \
5289 if (0) \
5290 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
5291 })
5292 #endif
5293
5294 #if defined(VERBOSE_DEBUG)
5295 #define netdev_vdbg netdev_dbg
5296 #else
5297
5298 #define netdev_vdbg(dev, format, args...) \
5299 ({ \
5300 if (0) \
5301 netdev_printk(KERN_DEBUG, dev, format, ##args); \
5302 0; \
5303 })
5304 #endif
5305
5306 /*
5307 * netdev_WARN() acts like dev_printk(), but with the key difference
5308 * of using a WARN/WARN_ON to get the message out, including the
5309 * file/line information and a backtrace.
5310 */
5311 #define netdev_WARN(dev, format, args...) \
5312 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \
5313 netdev_reg_state(dev), ##args)
5314
5315 #define netdev_WARN_ONCE(dev, format, args...) \
5316 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \
5317 netdev_reg_state(dev), ##args)
5318
5319 /* netif printk helpers, similar to netdev_printk */
5320
5321 #define netif_printk(priv, type, level, dev, fmt, args...) \
5322 do { \
5323 if (netif_msg_##type(priv)) \
5324 netdev_printk(level, (dev), fmt, ##args); \
5325 } while (0)
5326
5327 #define netif_level(level, priv, type, dev, fmt, args...) \
5328 do { \
5329 if (netif_msg_##type(priv)) \
5330 netdev_##level(dev, fmt, ##args); \
5331 } while (0)
5332
5333 #define netif_emerg(priv, type, dev, fmt, args...) \
5334 netif_level(emerg, priv, type, dev, fmt, ##args)
5335 #define netif_alert(priv, type, dev, fmt, args...) \
5336 netif_level(alert, priv, type, dev, fmt, ##args)
5337 #define netif_crit(priv, type, dev, fmt, args...) \
5338 netif_level(crit, priv, type, dev, fmt, ##args)
5339 #define netif_err(priv, type, dev, fmt, args...) \
5340 netif_level(err, priv, type, dev, fmt, ##args)
5341 #define netif_warn(priv, type, dev, fmt, args...) \
5342 netif_level(warn, priv, type, dev, fmt, ##args)
5343 #define netif_notice(priv, type, dev, fmt, args...) \
5344 netif_level(notice, priv, type, dev, fmt, ##args)
5345 #define netif_info(priv, type, dev, fmt, args...) \
5346 netif_level(info, priv, type, dev, fmt, ##args)
5347
5348 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5349 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5350 #define netif_dbg(priv, type, netdev, format, args...) \
5351 do { \
5352 if (netif_msg_##type(priv)) \
5353 dynamic_netdev_dbg(netdev, format, ##args); \
5354 } while (0)
5355 #elif defined(DEBUG)
5356 #define netif_dbg(priv, type, dev, format, args...) \
5357 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5358 #else
5359 #define netif_dbg(priv, type, dev, format, args...) \
5360 ({ \
5361 if (0) \
5362 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5363 0; \
5364 })
5365 #endif
5366
5367 /* if @cond then downgrade to debug, else print at @level */
5368 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \
5369 do { \
5370 if (cond) \
5371 netif_dbg(priv, type, netdev, fmt, ##args); \
5372 else \
5373 netif_ ## level(priv, type, netdev, fmt, ##args); \
5374 } while (0)
5375
5376 #if defined(VERBOSE_DEBUG)
5377 #define netif_vdbg netif_dbg
5378 #else
5379 #define netif_vdbg(priv, type, dev, format, args...) \
5380 ({ \
5381 if (0) \
5382 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5383 0; \
5384 })
5385 #endif
5386
5387 /*
5388 * The list of packet types we will receive (as opposed to discard)
5389 * and the routines to invoke.
5390 *
5391 * Why 16. Because with 16 the only overlap we get on a hash of the
5392 * low nibble of the protocol value is RARP/SNAP/X.25.
5393 *
5394 * 0800 IP
5395 * 0001 802.3
5396 * 0002 AX.25
5397 * 0004 802.2
5398 * 8035 RARP
5399 * 0005 SNAP
5400 * 0805 X.25
5401 * 0806 ARP
5402 * 8137 IPX
5403 * 0009 Localtalk
5404 * 86DD IPv6
5405 */
5406 #define PTYPE_HASH_SIZE (16)
5407 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
5408
5409 extern struct list_head ptype_all __read_mostly;
5410 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5411
5412 extern struct net_device *blackhole_netdev;
5413
5414 #endif /* _LINUX_NETDEVICE_H */