]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/netdevice.h
efi/arm: Fix boot crash with CONFIG_CPUMASK_OFFSTACK=y
[mirror_ubuntu-artful-kernel.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 #include <uapi/linux/if_bonding.h>
54 #include <uapi/linux/pkt_cls.h>
55 #include <linux/hashtable.h>
56
57 struct netpoll_info;
58 struct device;
59 struct phy_device;
60 /* 802.11 specific */
61 struct wireless_dev;
62 /* 802.15.4 specific */
63 struct wpan_dev;
64 struct mpls_dev;
65 /* UDP Tunnel offloads */
66 struct udp_tunnel_info;
67 struct bpf_prog;
68
69 void netdev_set_default_ethtool_ops(struct net_device *dev,
70 const struct ethtool_ops *ops);
71
72 /* Backlog congestion levels */
73 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
74 #define NET_RX_DROP 1 /* packet dropped */
75
76 /*
77 * Transmit return codes: transmit return codes originate from three different
78 * namespaces:
79 *
80 * - qdisc return codes
81 * - driver transmit return codes
82 * - errno values
83 *
84 * Drivers are allowed to return any one of those in their hard_start_xmit()
85 * function. Real network devices commonly used with qdiscs should only return
86 * the driver transmit return codes though - when qdiscs are used, the actual
87 * transmission happens asynchronously, so the value is not propagated to
88 * higher layers. Virtual network devices transmit synchronously; in this case
89 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
90 * others are propagated to higher layers.
91 */
92
93 /* qdisc ->enqueue() return codes. */
94 #define NET_XMIT_SUCCESS 0x00
95 #define NET_XMIT_DROP 0x01 /* skb dropped */
96 #define NET_XMIT_CN 0x02 /* congestion notification */
97 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
98
99 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
100 * indicates that the device will soon be dropping packets, or already drops
101 * some packets of the same priority; prompting us to send less aggressively. */
102 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
103 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
104
105 /* Driver transmit return codes */
106 #define NETDEV_TX_MASK 0xf0
107
108 enum netdev_tx {
109 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
110 NETDEV_TX_OK = 0x00, /* driver took care of packet */
111 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
112 };
113 typedef enum netdev_tx netdev_tx_t;
114
115 /*
116 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
117 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
118 */
119 static inline bool dev_xmit_complete(int rc)
120 {
121 /*
122 * Positive cases with an skb consumed by a driver:
123 * - successful transmission (rc == NETDEV_TX_OK)
124 * - error while transmitting (rc < 0)
125 * - error while queueing to a different device (rc & NET_XMIT_MASK)
126 */
127 if (likely(rc < NET_XMIT_MASK))
128 return true;
129
130 return false;
131 }
132
133 /*
134 * Compute the worst-case header length according to the protocols
135 * used.
136 */
137
138 #if defined(CONFIG_HYPERV_NET)
139 # define LL_MAX_HEADER 128
140 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
141 # if defined(CONFIG_MAC80211_MESH)
142 # define LL_MAX_HEADER 128
143 # else
144 # define LL_MAX_HEADER 96
145 # endif
146 #else
147 # define LL_MAX_HEADER 32
148 #endif
149
150 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
151 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
152 #define MAX_HEADER LL_MAX_HEADER
153 #else
154 #define MAX_HEADER (LL_MAX_HEADER + 48)
155 #endif
156
157 /*
158 * Old network device statistics. Fields are native words
159 * (unsigned long) so they can be read and written atomically.
160 */
161
162 struct net_device_stats {
163 unsigned long rx_packets;
164 unsigned long tx_packets;
165 unsigned long rx_bytes;
166 unsigned long tx_bytes;
167 unsigned long rx_errors;
168 unsigned long tx_errors;
169 unsigned long rx_dropped;
170 unsigned long tx_dropped;
171 unsigned long multicast;
172 unsigned long collisions;
173 unsigned long rx_length_errors;
174 unsigned long rx_over_errors;
175 unsigned long rx_crc_errors;
176 unsigned long rx_frame_errors;
177 unsigned long rx_fifo_errors;
178 unsigned long rx_missed_errors;
179 unsigned long tx_aborted_errors;
180 unsigned long tx_carrier_errors;
181 unsigned long tx_fifo_errors;
182 unsigned long tx_heartbeat_errors;
183 unsigned long tx_window_errors;
184 unsigned long rx_compressed;
185 unsigned long tx_compressed;
186 };
187
188
189 #include <linux/cache.h>
190 #include <linux/skbuff.h>
191
192 #ifdef CONFIG_RPS
193 #include <linux/static_key.h>
194 extern struct static_key rps_needed;
195 extern struct static_key rfs_needed;
196 #endif
197
198 struct neighbour;
199 struct neigh_parms;
200 struct sk_buff;
201
202 struct netdev_hw_addr {
203 struct list_head list;
204 unsigned char addr[MAX_ADDR_LEN];
205 unsigned char type;
206 #define NETDEV_HW_ADDR_T_LAN 1
207 #define NETDEV_HW_ADDR_T_SAN 2
208 #define NETDEV_HW_ADDR_T_SLAVE 3
209 #define NETDEV_HW_ADDR_T_UNICAST 4
210 #define NETDEV_HW_ADDR_T_MULTICAST 5
211 bool global_use;
212 int sync_cnt;
213 int refcount;
214 int synced;
215 struct rcu_head rcu_head;
216 };
217
218 struct netdev_hw_addr_list {
219 struct list_head list;
220 int count;
221 };
222
223 #define netdev_hw_addr_list_count(l) ((l)->count)
224 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
225 #define netdev_hw_addr_list_for_each(ha, l) \
226 list_for_each_entry(ha, &(l)->list, list)
227
228 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
229 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
230 #define netdev_for_each_uc_addr(ha, dev) \
231 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
232
233 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
234 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
235 #define netdev_for_each_mc_addr(ha, dev) \
236 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
237
238 struct hh_cache {
239 u16 hh_len;
240 u16 __pad;
241 seqlock_t hh_lock;
242
243 /* cached hardware header; allow for machine alignment needs. */
244 #define HH_DATA_MOD 16
245 #define HH_DATA_OFF(__len) \
246 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
247 #define HH_DATA_ALIGN(__len) \
248 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
249 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
250 };
251
252 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
253 * Alternative is:
254 * dev->hard_header_len ? (dev->hard_header_len +
255 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
256 *
257 * We could use other alignment values, but we must maintain the
258 * relationship HH alignment <= LL alignment.
259 */
260 #define LL_RESERVED_SPACE(dev) \
261 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
263 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264
265 struct header_ops {
266 int (*create) (struct sk_buff *skb, struct net_device *dev,
267 unsigned short type, const void *daddr,
268 const void *saddr, unsigned int len);
269 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
270 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
271 void (*cache_update)(struct hh_cache *hh,
272 const struct net_device *dev,
273 const unsigned char *haddr);
274 bool (*validate)(const char *ll_header, unsigned int len);
275 };
276
277 /* These flag bits are private to the generic network queueing
278 * layer; they may not be explicitly referenced by any other
279 * code.
280 */
281
282 enum netdev_state_t {
283 __LINK_STATE_START,
284 __LINK_STATE_PRESENT,
285 __LINK_STATE_NOCARRIER,
286 __LINK_STATE_LINKWATCH_PENDING,
287 __LINK_STATE_DORMANT,
288 };
289
290
291 /*
292 * This structure holds boot-time configured netdevice settings. They
293 * are then used in the device probing.
294 */
295 struct netdev_boot_setup {
296 char name[IFNAMSIZ];
297 struct ifmap map;
298 };
299 #define NETDEV_BOOT_SETUP_MAX 8
300
301 int __init netdev_boot_setup(char *str);
302
303 /*
304 * Structure for NAPI scheduling similar to tasklet but with weighting
305 */
306 struct napi_struct {
307 /* The poll_list must only be managed by the entity which
308 * changes the state of the NAPI_STATE_SCHED bit. This means
309 * whoever atomically sets that bit can add this napi_struct
310 * to the per-CPU poll_list, and whoever clears that bit
311 * can remove from the list right before clearing the bit.
312 */
313 struct list_head poll_list;
314
315 unsigned long state;
316 int weight;
317 unsigned int gro_count;
318 int (*poll)(struct napi_struct *, int);
319 #ifdef CONFIG_NETPOLL
320 int poll_owner;
321 #endif
322 struct net_device *dev;
323 struct sk_buff *gro_list;
324 struct sk_buff *skb;
325 struct hrtimer timer;
326 struct list_head dev_list;
327 struct hlist_node napi_hash_node;
328 unsigned int napi_id;
329 };
330
331 enum {
332 NAPI_STATE_SCHED, /* Poll is scheduled */
333 NAPI_STATE_DISABLE, /* Disable pending */
334 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
335 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */
336 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
337 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
338 };
339
340 enum {
341 NAPIF_STATE_SCHED = (1UL << NAPI_STATE_SCHED),
342 NAPIF_STATE_DISABLE = (1UL << NAPI_STATE_DISABLE),
343 NAPIF_STATE_NPSVC = (1UL << NAPI_STATE_NPSVC),
344 NAPIF_STATE_HASHED = (1UL << NAPI_STATE_HASHED),
345 NAPIF_STATE_NO_BUSY_POLL = (1UL << NAPI_STATE_NO_BUSY_POLL),
346 NAPIF_STATE_IN_BUSY_POLL = (1UL << NAPI_STATE_IN_BUSY_POLL),
347 };
348
349 enum gro_result {
350 GRO_MERGED,
351 GRO_MERGED_FREE,
352 GRO_HELD,
353 GRO_NORMAL,
354 GRO_DROP,
355 GRO_CONSUMED,
356 };
357 typedef enum gro_result gro_result_t;
358
359 /*
360 * enum rx_handler_result - Possible return values for rx_handlers.
361 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
362 * further.
363 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
364 * case skb->dev was changed by rx_handler.
365 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
366 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
367 *
368 * rx_handlers are functions called from inside __netif_receive_skb(), to do
369 * special processing of the skb, prior to delivery to protocol handlers.
370 *
371 * Currently, a net_device can only have a single rx_handler registered. Trying
372 * to register a second rx_handler will return -EBUSY.
373 *
374 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
375 * To unregister a rx_handler on a net_device, use
376 * netdev_rx_handler_unregister().
377 *
378 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
379 * do with the skb.
380 *
381 * If the rx_handler consumed the skb in some way, it should return
382 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
383 * the skb to be delivered in some other way.
384 *
385 * If the rx_handler changed skb->dev, to divert the skb to another
386 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
387 * new device will be called if it exists.
388 *
389 * If the rx_handler decides the skb should be ignored, it should return
390 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
391 * are registered on exact device (ptype->dev == skb->dev).
392 *
393 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
394 * delivered, it should return RX_HANDLER_PASS.
395 *
396 * A device without a registered rx_handler will behave as if rx_handler
397 * returned RX_HANDLER_PASS.
398 */
399
400 enum rx_handler_result {
401 RX_HANDLER_CONSUMED,
402 RX_HANDLER_ANOTHER,
403 RX_HANDLER_EXACT,
404 RX_HANDLER_PASS,
405 };
406 typedef enum rx_handler_result rx_handler_result_t;
407 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
408
409 void __napi_schedule(struct napi_struct *n);
410 void __napi_schedule_irqoff(struct napi_struct *n);
411
412 static inline bool napi_disable_pending(struct napi_struct *n)
413 {
414 return test_bit(NAPI_STATE_DISABLE, &n->state);
415 }
416
417 /**
418 * napi_schedule_prep - check if NAPI can be scheduled
419 * @n: NAPI context
420 *
421 * Test if NAPI routine is already running, and if not mark
422 * it as running. This is used as a condition variable to
423 * insure only one NAPI poll instance runs. We also make
424 * sure there is no pending NAPI disable.
425 */
426 static inline bool napi_schedule_prep(struct napi_struct *n)
427 {
428 return !napi_disable_pending(n) &&
429 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
430 }
431
432 /**
433 * napi_schedule - schedule NAPI poll
434 * @n: NAPI context
435 *
436 * Schedule NAPI poll routine to be called if it is not already
437 * running.
438 */
439 static inline void napi_schedule(struct napi_struct *n)
440 {
441 if (napi_schedule_prep(n))
442 __napi_schedule(n);
443 }
444
445 /**
446 * napi_schedule_irqoff - schedule NAPI poll
447 * @n: NAPI context
448 *
449 * Variant of napi_schedule(), assuming hard irqs are masked.
450 */
451 static inline void napi_schedule_irqoff(struct napi_struct *n)
452 {
453 if (napi_schedule_prep(n))
454 __napi_schedule_irqoff(n);
455 }
456
457 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
458 static inline bool napi_reschedule(struct napi_struct *napi)
459 {
460 if (napi_schedule_prep(napi)) {
461 __napi_schedule(napi);
462 return true;
463 }
464 return false;
465 }
466
467 bool napi_complete_done(struct napi_struct *n, int work_done);
468 /**
469 * napi_complete - NAPI processing complete
470 * @n: NAPI context
471 *
472 * Mark NAPI processing as complete.
473 * Consider using napi_complete_done() instead.
474 * Return false if device should avoid rearming interrupts.
475 */
476 static inline bool napi_complete(struct napi_struct *n)
477 {
478 return napi_complete_done(n, 0);
479 }
480
481 /**
482 * napi_hash_del - remove a NAPI from global table
483 * @napi: NAPI context
484 *
485 * Warning: caller must observe RCU grace period
486 * before freeing memory containing @napi, if
487 * this function returns true.
488 * Note: core networking stack automatically calls it
489 * from netif_napi_del().
490 * Drivers might want to call this helper to combine all
491 * the needed RCU grace periods into a single one.
492 */
493 bool napi_hash_del(struct napi_struct *napi);
494
495 /**
496 * napi_disable - prevent NAPI from scheduling
497 * @n: NAPI context
498 *
499 * Stop NAPI from being scheduled on this context.
500 * Waits till any outstanding processing completes.
501 */
502 void napi_disable(struct napi_struct *n);
503
504 /**
505 * napi_enable - enable NAPI scheduling
506 * @n: NAPI context
507 *
508 * Resume NAPI from being scheduled on this context.
509 * Must be paired with napi_disable.
510 */
511 static inline void napi_enable(struct napi_struct *n)
512 {
513 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
514 smp_mb__before_atomic();
515 clear_bit(NAPI_STATE_SCHED, &n->state);
516 clear_bit(NAPI_STATE_NPSVC, &n->state);
517 }
518
519 /**
520 * napi_synchronize - wait until NAPI is not running
521 * @n: NAPI context
522 *
523 * Wait until NAPI is done being scheduled on this context.
524 * Waits till any outstanding processing completes but
525 * does not disable future activations.
526 */
527 static inline void napi_synchronize(const struct napi_struct *n)
528 {
529 if (IS_ENABLED(CONFIG_SMP))
530 while (test_bit(NAPI_STATE_SCHED, &n->state))
531 msleep(1);
532 else
533 barrier();
534 }
535
536 enum netdev_queue_state_t {
537 __QUEUE_STATE_DRV_XOFF,
538 __QUEUE_STATE_STACK_XOFF,
539 __QUEUE_STATE_FROZEN,
540 };
541
542 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
543 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
544 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
545
546 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
547 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
548 QUEUE_STATE_FROZEN)
549 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
550 QUEUE_STATE_FROZEN)
551
552 /*
553 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
554 * netif_tx_* functions below are used to manipulate this flag. The
555 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
556 * queue independently. The netif_xmit_*stopped functions below are called
557 * to check if the queue has been stopped by the driver or stack (either
558 * of the XOFF bits are set in the state). Drivers should not need to call
559 * netif_xmit*stopped functions, they should only be using netif_tx_*.
560 */
561
562 struct netdev_queue {
563 /*
564 * read-mostly part
565 */
566 struct net_device *dev;
567 struct Qdisc __rcu *qdisc;
568 struct Qdisc *qdisc_sleeping;
569 #ifdef CONFIG_SYSFS
570 struct kobject kobj;
571 #endif
572 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
573 int numa_node;
574 #endif
575 unsigned long tx_maxrate;
576 /*
577 * Number of TX timeouts for this queue
578 * (/sys/class/net/DEV/Q/trans_timeout)
579 */
580 unsigned long trans_timeout;
581 /*
582 * write-mostly part
583 */
584 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
585 int xmit_lock_owner;
586 /*
587 * Time (in jiffies) of last Tx
588 */
589 unsigned long trans_start;
590
591 unsigned long state;
592
593 #ifdef CONFIG_BQL
594 struct dql dql;
595 #endif
596 } ____cacheline_aligned_in_smp;
597
598 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
599 {
600 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
601 return q->numa_node;
602 #else
603 return NUMA_NO_NODE;
604 #endif
605 }
606
607 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
608 {
609 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
610 q->numa_node = node;
611 #endif
612 }
613
614 #ifdef CONFIG_RPS
615 /*
616 * This structure holds an RPS map which can be of variable length. The
617 * map is an array of CPUs.
618 */
619 struct rps_map {
620 unsigned int len;
621 struct rcu_head rcu;
622 u16 cpus[0];
623 };
624 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
625
626 /*
627 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
628 * tail pointer for that CPU's input queue at the time of last enqueue, and
629 * a hardware filter index.
630 */
631 struct rps_dev_flow {
632 u16 cpu;
633 u16 filter;
634 unsigned int last_qtail;
635 };
636 #define RPS_NO_FILTER 0xffff
637
638 /*
639 * The rps_dev_flow_table structure contains a table of flow mappings.
640 */
641 struct rps_dev_flow_table {
642 unsigned int mask;
643 struct rcu_head rcu;
644 struct rps_dev_flow flows[0];
645 };
646 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
647 ((_num) * sizeof(struct rps_dev_flow)))
648
649 /*
650 * The rps_sock_flow_table contains mappings of flows to the last CPU
651 * on which they were processed by the application (set in recvmsg).
652 * Each entry is a 32bit value. Upper part is the high-order bits
653 * of flow hash, lower part is CPU number.
654 * rps_cpu_mask is used to partition the space, depending on number of
655 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
656 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
657 * meaning we use 32-6=26 bits for the hash.
658 */
659 struct rps_sock_flow_table {
660 u32 mask;
661
662 u32 ents[0] ____cacheline_aligned_in_smp;
663 };
664 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
665
666 #define RPS_NO_CPU 0xffff
667
668 extern u32 rps_cpu_mask;
669 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
670
671 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
672 u32 hash)
673 {
674 if (table && hash) {
675 unsigned int index = hash & table->mask;
676 u32 val = hash & ~rps_cpu_mask;
677
678 /* We only give a hint, preemption can change CPU under us */
679 val |= raw_smp_processor_id();
680
681 if (table->ents[index] != val)
682 table->ents[index] = val;
683 }
684 }
685
686 #ifdef CONFIG_RFS_ACCEL
687 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
688 u16 filter_id);
689 #endif
690 #endif /* CONFIG_RPS */
691
692 /* This structure contains an instance of an RX queue. */
693 struct netdev_rx_queue {
694 #ifdef CONFIG_RPS
695 struct rps_map __rcu *rps_map;
696 struct rps_dev_flow_table __rcu *rps_flow_table;
697 #endif
698 struct kobject kobj;
699 struct net_device *dev;
700 } ____cacheline_aligned_in_smp;
701
702 /*
703 * RX queue sysfs structures and functions.
704 */
705 struct rx_queue_attribute {
706 struct attribute attr;
707 ssize_t (*show)(struct netdev_rx_queue *queue,
708 struct rx_queue_attribute *attr, char *buf);
709 ssize_t (*store)(struct netdev_rx_queue *queue,
710 struct rx_queue_attribute *attr, const char *buf, size_t len);
711 };
712
713 #ifdef CONFIG_XPS
714 /*
715 * This structure holds an XPS map which can be of variable length. The
716 * map is an array of queues.
717 */
718 struct xps_map {
719 unsigned int len;
720 unsigned int alloc_len;
721 struct rcu_head rcu;
722 u16 queues[0];
723 };
724 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
725 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
726 - sizeof(struct xps_map)) / sizeof(u16))
727
728 /*
729 * This structure holds all XPS maps for device. Maps are indexed by CPU.
730 */
731 struct xps_dev_maps {
732 struct rcu_head rcu;
733 struct xps_map __rcu *cpu_map[0];
734 };
735 #define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \
736 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
737 #endif /* CONFIG_XPS */
738
739 #define TC_MAX_QUEUE 16
740 #define TC_BITMASK 15
741 /* HW offloaded queuing disciplines txq count and offset maps */
742 struct netdev_tc_txq {
743 u16 count;
744 u16 offset;
745 };
746
747 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
748 /*
749 * This structure is to hold information about the device
750 * configured to run FCoE protocol stack.
751 */
752 struct netdev_fcoe_hbainfo {
753 char manufacturer[64];
754 char serial_number[64];
755 char hardware_version[64];
756 char driver_version[64];
757 char optionrom_version[64];
758 char firmware_version[64];
759 char model[256];
760 char model_description[256];
761 };
762 #endif
763
764 #define MAX_PHYS_ITEM_ID_LEN 32
765
766 /* This structure holds a unique identifier to identify some
767 * physical item (port for example) used by a netdevice.
768 */
769 struct netdev_phys_item_id {
770 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
771 unsigned char id_len;
772 };
773
774 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
775 struct netdev_phys_item_id *b)
776 {
777 return a->id_len == b->id_len &&
778 memcmp(a->id, b->id, a->id_len) == 0;
779 }
780
781 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
782 struct sk_buff *skb);
783
784 /* These structures hold the attributes of qdisc and classifiers
785 * that are being passed to the netdevice through the setup_tc op.
786 */
787 enum {
788 TC_SETUP_MQPRIO,
789 TC_SETUP_CLSU32,
790 TC_SETUP_CLSFLOWER,
791 TC_SETUP_MATCHALL,
792 TC_SETUP_CLSBPF,
793 };
794
795 struct tc_cls_u32_offload;
796
797 struct tc_to_netdev {
798 unsigned int type;
799 union {
800 u8 tc;
801 struct tc_cls_u32_offload *cls_u32;
802 struct tc_cls_flower_offload *cls_flower;
803 struct tc_cls_matchall_offload *cls_mall;
804 struct tc_cls_bpf_offload *cls_bpf;
805 };
806 bool egress_dev;
807 };
808
809 /* These structures hold the attributes of xdp state that are being passed
810 * to the netdevice through the xdp op.
811 */
812 enum xdp_netdev_command {
813 /* Set or clear a bpf program used in the earliest stages of packet
814 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
815 * is responsible for calling bpf_prog_put on any old progs that are
816 * stored. In case of error, the callee need not release the new prog
817 * reference, but on success it takes ownership and must bpf_prog_put
818 * when it is no longer used.
819 */
820 XDP_SETUP_PROG,
821 /* Check if a bpf program is set on the device. The callee should
822 * return true if a program is currently attached and running.
823 */
824 XDP_QUERY_PROG,
825 };
826
827 struct netdev_xdp {
828 enum xdp_netdev_command command;
829 union {
830 /* XDP_SETUP_PROG */
831 struct bpf_prog *prog;
832 /* XDP_QUERY_PROG */
833 bool prog_attached;
834 };
835 };
836
837 /*
838 * This structure defines the management hooks for network devices.
839 * The following hooks can be defined; unless noted otherwise, they are
840 * optional and can be filled with a null pointer.
841 *
842 * int (*ndo_init)(struct net_device *dev);
843 * This function is called once when a network device is registered.
844 * The network device can use this for any late stage initialization
845 * or semantic validation. It can fail with an error code which will
846 * be propagated back to register_netdev.
847 *
848 * void (*ndo_uninit)(struct net_device *dev);
849 * This function is called when device is unregistered or when registration
850 * fails. It is not called if init fails.
851 *
852 * int (*ndo_open)(struct net_device *dev);
853 * This function is called when a network device transitions to the up
854 * state.
855 *
856 * int (*ndo_stop)(struct net_device *dev);
857 * This function is called when a network device transitions to the down
858 * state.
859 *
860 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
861 * struct net_device *dev);
862 * Called when a packet needs to be transmitted.
863 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
864 * the queue before that can happen; it's for obsolete devices and weird
865 * corner cases, but the stack really does a non-trivial amount
866 * of useless work if you return NETDEV_TX_BUSY.
867 * Required; cannot be NULL.
868 *
869 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
870 * struct net_device *dev
871 * netdev_features_t features);
872 * Called by core transmit path to determine if device is capable of
873 * performing offload operations on a given packet. This is to give
874 * the device an opportunity to implement any restrictions that cannot
875 * be otherwise expressed by feature flags. The check is called with
876 * the set of features that the stack has calculated and it returns
877 * those the driver believes to be appropriate.
878 *
879 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
880 * void *accel_priv, select_queue_fallback_t fallback);
881 * Called to decide which queue to use when device supports multiple
882 * transmit queues.
883 *
884 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
885 * This function is called to allow device receiver to make
886 * changes to configuration when multicast or promiscuous is enabled.
887 *
888 * void (*ndo_set_rx_mode)(struct net_device *dev);
889 * This function is called device changes address list filtering.
890 * If driver handles unicast address filtering, it should set
891 * IFF_UNICAST_FLT in its priv_flags.
892 *
893 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
894 * This function is called when the Media Access Control address
895 * needs to be changed. If this interface is not defined, the
896 * MAC address can not be changed.
897 *
898 * int (*ndo_validate_addr)(struct net_device *dev);
899 * Test if Media Access Control address is valid for the device.
900 *
901 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
902 * Called when a user requests an ioctl which can't be handled by
903 * the generic interface code. If not defined ioctls return
904 * not supported error code.
905 *
906 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
907 * Used to set network devices bus interface parameters. This interface
908 * is retained for legacy reasons; new devices should use the bus
909 * interface (PCI) for low level management.
910 *
911 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
912 * Called when a user wants to change the Maximum Transfer Unit
913 * of a device. If not defined, any request to change MTU will
914 * will return an error.
915 *
916 * void (*ndo_tx_timeout)(struct net_device *dev);
917 * Callback used when the transmitter has not made any progress
918 * for dev->watchdog ticks.
919 *
920 * void (*ndo_get_stats64)(struct net_device *dev,
921 * struct rtnl_link_stats64 *storage);
922 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
923 * Called when a user wants to get the network device usage
924 * statistics. Drivers must do one of the following:
925 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
926 * rtnl_link_stats64 structure passed by the caller.
927 * 2. Define @ndo_get_stats to update a net_device_stats structure
928 * (which should normally be dev->stats) and return a pointer to
929 * it. The structure may be changed asynchronously only if each
930 * field is written atomically.
931 * 3. Update dev->stats asynchronously and atomically, and define
932 * neither operation.
933 *
934 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
935 * Return true if this device supports offload stats of this attr_id.
936 *
937 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
938 * void *attr_data)
939 * Get statistics for offload operations by attr_id. Write it into the
940 * attr_data pointer.
941 *
942 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
943 * If device supports VLAN filtering this function is called when a
944 * VLAN id is registered.
945 *
946 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
947 * If device supports VLAN filtering this function is called when a
948 * VLAN id is unregistered.
949 *
950 * void (*ndo_poll_controller)(struct net_device *dev);
951 *
952 * SR-IOV management functions.
953 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
954 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
955 * u8 qos, __be16 proto);
956 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
957 * int max_tx_rate);
958 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
959 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
960 * int (*ndo_get_vf_config)(struct net_device *dev,
961 * int vf, struct ifla_vf_info *ivf);
962 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
963 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
964 * struct nlattr *port[]);
965 *
966 * Enable or disable the VF ability to query its RSS Redirection Table and
967 * Hash Key. This is needed since on some devices VF share this information
968 * with PF and querying it may introduce a theoretical security risk.
969 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
970 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
971 * int (*ndo_setup_tc)(struct net_device *dev, u32 handle,
972 * __be16 protocol, struct tc_to_netdev *tc);
973 * Called to setup any 'tc' scheduler, classifier or action on @dev.
974 * This is always called from the stack with the rtnl lock held and netif
975 * tx queues stopped. This allows the netdevice to perform queue
976 * management safely.
977 *
978 * Fiber Channel over Ethernet (FCoE) offload functions.
979 * int (*ndo_fcoe_enable)(struct net_device *dev);
980 * Called when the FCoE protocol stack wants to start using LLD for FCoE
981 * so the underlying device can perform whatever needed configuration or
982 * initialization to support acceleration of FCoE traffic.
983 *
984 * int (*ndo_fcoe_disable)(struct net_device *dev);
985 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
986 * so the underlying device can perform whatever needed clean-ups to
987 * stop supporting acceleration of FCoE traffic.
988 *
989 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
990 * struct scatterlist *sgl, unsigned int sgc);
991 * Called when the FCoE Initiator wants to initialize an I/O that
992 * is a possible candidate for Direct Data Placement (DDP). The LLD can
993 * perform necessary setup and returns 1 to indicate the device is set up
994 * successfully to perform DDP on this I/O, otherwise this returns 0.
995 *
996 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
997 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
998 * indicated by the FC exchange id 'xid', so the underlying device can
999 * clean up and reuse resources for later DDP requests.
1000 *
1001 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1002 * struct scatterlist *sgl, unsigned int sgc);
1003 * Called when the FCoE Target wants to initialize an I/O that
1004 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1005 * perform necessary setup and returns 1 to indicate the device is set up
1006 * successfully to perform DDP on this I/O, otherwise this returns 0.
1007 *
1008 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1009 * struct netdev_fcoe_hbainfo *hbainfo);
1010 * Called when the FCoE Protocol stack wants information on the underlying
1011 * device. This information is utilized by the FCoE protocol stack to
1012 * register attributes with Fiber Channel management service as per the
1013 * FC-GS Fabric Device Management Information(FDMI) specification.
1014 *
1015 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1016 * Called when the underlying device wants to override default World Wide
1017 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1018 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1019 * protocol stack to use.
1020 *
1021 * RFS acceleration.
1022 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1023 * u16 rxq_index, u32 flow_id);
1024 * Set hardware filter for RFS. rxq_index is the target queue index;
1025 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1026 * Return the filter ID on success, or a negative error code.
1027 *
1028 * Slave management functions (for bridge, bonding, etc).
1029 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1030 * Called to make another netdev an underling.
1031 *
1032 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1033 * Called to release previously enslaved netdev.
1034 *
1035 * Feature/offload setting functions.
1036 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1037 * netdev_features_t features);
1038 * Adjusts the requested feature flags according to device-specific
1039 * constraints, and returns the resulting flags. Must not modify
1040 * the device state.
1041 *
1042 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1043 * Called to update device configuration to new features. Passed
1044 * feature set might be less than what was returned by ndo_fix_features()).
1045 * Must return >0 or -errno if it changed dev->features itself.
1046 *
1047 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1048 * struct net_device *dev,
1049 * const unsigned char *addr, u16 vid, u16 flags)
1050 * Adds an FDB entry to dev for addr.
1051 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1052 * struct net_device *dev,
1053 * const unsigned char *addr, u16 vid)
1054 * Deletes the FDB entry from dev coresponding to addr.
1055 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1056 * struct net_device *dev, struct net_device *filter_dev,
1057 * int *idx)
1058 * Used to add FDB entries to dump requests. Implementers should add
1059 * entries to skb and update idx with the number of entries.
1060 *
1061 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1062 * u16 flags)
1063 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1064 * struct net_device *dev, u32 filter_mask,
1065 * int nlflags)
1066 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1067 * u16 flags);
1068 *
1069 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1070 * Called to change device carrier. Soft-devices (like dummy, team, etc)
1071 * which do not represent real hardware may define this to allow their
1072 * userspace components to manage their virtual carrier state. Devices
1073 * that determine carrier state from physical hardware properties (eg
1074 * network cables) or protocol-dependent mechanisms (eg
1075 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1076 *
1077 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1078 * struct netdev_phys_item_id *ppid);
1079 * Called to get ID of physical port of this device. If driver does
1080 * not implement this, it is assumed that the hw is not able to have
1081 * multiple net devices on single physical port.
1082 *
1083 * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1084 * struct udp_tunnel_info *ti);
1085 * Called by UDP tunnel to notify a driver about the UDP port and socket
1086 * address family that a UDP tunnel is listnening to. It is called only
1087 * when a new port starts listening. The operation is protected by the
1088 * RTNL.
1089 *
1090 * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1091 * struct udp_tunnel_info *ti);
1092 * Called by UDP tunnel to notify the driver about a UDP port and socket
1093 * address family that the UDP tunnel is not listening to anymore. The
1094 * operation is protected by the RTNL.
1095 *
1096 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1097 * struct net_device *dev)
1098 * Called by upper layer devices to accelerate switching or other
1099 * station functionality into hardware. 'pdev is the lowerdev
1100 * to use for the offload and 'dev' is the net device that will
1101 * back the offload. Returns a pointer to the private structure
1102 * the upper layer will maintain.
1103 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1104 * Called by upper layer device to delete the station created
1105 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1106 * the station and priv is the structure returned by the add
1107 * operation.
1108 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1109 * struct net_device *dev,
1110 * void *priv);
1111 * Callback to use for xmit over the accelerated station. This
1112 * is used in place of ndo_start_xmit on accelerated net
1113 * devices.
1114 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1115 * int queue_index, u32 maxrate);
1116 * Called when a user wants to set a max-rate limitation of specific
1117 * TX queue.
1118 * int (*ndo_get_iflink)(const struct net_device *dev);
1119 * Called to get the iflink value of this device.
1120 * void (*ndo_change_proto_down)(struct net_device *dev,
1121 * bool proto_down);
1122 * This function is used to pass protocol port error state information
1123 * to the switch driver. The switch driver can react to the proto_down
1124 * by doing a phys down on the associated switch port.
1125 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1126 * This function is used to get egress tunnel information for given skb.
1127 * This is useful for retrieving outer tunnel header parameters while
1128 * sampling packet.
1129 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1130 * This function is used to specify the headroom that the skb must
1131 * consider when allocation skb during packet reception. Setting
1132 * appropriate rx headroom value allows avoiding skb head copy on
1133 * forward. Setting a negative value resets the rx headroom to the
1134 * default value.
1135 * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp);
1136 * This function is used to set or query state related to XDP on the
1137 * netdevice. See definition of enum xdp_netdev_command for details.
1138 *
1139 */
1140 struct net_device_ops {
1141 int (*ndo_init)(struct net_device *dev);
1142 void (*ndo_uninit)(struct net_device *dev);
1143 int (*ndo_open)(struct net_device *dev);
1144 int (*ndo_stop)(struct net_device *dev);
1145 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1146 struct net_device *dev);
1147 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1148 struct net_device *dev,
1149 netdev_features_t features);
1150 u16 (*ndo_select_queue)(struct net_device *dev,
1151 struct sk_buff *skb,
1152 void *accel_priv,
1153 select_queue_fallback_t fallback);
1154 void (*ndo_change_rx_flags)(struct net_device *dev,
1155 int flags);
1156 void (*ndo_set_rx_mode)(struct net_device *dev);
1157 int (*ndo_set_mac_address)(struct net_device *dev,
1158 void *addr);
1159 int (*ndo_validate_addr)(struct net_device *dev);
1160 int (*ndo_do_ioctl)(struct net_device *dev,
1161 struct ifreq *ifr, int cmd);
1162 int (*ndo_set_config)(struct net_device *dev,
1163 struct ifmap *map);
1164 int (*ndo_change_mtu)(struct net_device *dev,
1165 int new_mtu);
1166 int (*ndo_neigh_setup)(struct net_device *dev,
1167 struct neigh_parms *);
1168 void (*ndo_tx_timeout) (struct net_device *dev);
1169
1170 void (*ndo_get_stats64)(struct net_device *dev,
1171 struct rtnl_link_stats64 *storage);
1172 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1173 int (*ndo_get_offload_stats)(int attr_id,
1174 const struct net_device *dev,
1175 void *attr_data);
1176 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1177
1178 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1179 __be16 proto, u16 vid);
1180 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1181 __be16 proto, u16 vid);
1182 #ifdef CONFIG_NET_POLL_CONTROLLER
1183 void (*ndo_poll_controller)(struct net_device *dev);
1184 int (*ndo_netpoll_setup)(struct net_device *dev,
1185 struct netpoll_info *info);
1186 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1187 #endif
1188 int (*ndo_set_vf_mac)(struct net_device *dev,
1189 int queue, u8 *mac);
1190 int (*ndo_set_vf_vlan)(struct net_device *dev,
1191 int queue, u16 vlan,
1192 u8 qos, __be16 proto);
1193 int (*ndo_set_vf_rate)(struct net_device *dev,
1194 int vf, int min_tx_rate,
1195 int max_tx_rate);
1196 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1197 int vf, bool setting);
1198 int (*ndo_set_vf_trust)(struct net_device *dev,
1199 int vf, bool setting);
1200 int (*ndo_get_vf_config)(struct net_device *dev,
1201 int vf,
1202 struct ifla_vf_info *ivf);
1203 int (*ndo_set_vf_link_state)(struct net_device *dev,
1204 int vf, int link_state);
1205 int (*ndo_get_vf_stats)(struct net_device *dev,
1206 int vf,
1207 struct ifla_vf_stats
1208 *vf_stats);
1209 int (*ndo_set_vf_port)(struct net_device *dev,
1210 int vf,
1211 struct nlattr *port[]);
1212 int (*ndo_get_vf_port)(struct net_device *dev,
1213 int vf, struct sk_buff *skb);
1214 int (*ndo_set_vf_guid)(struct net_device *dev,
1215 int vf, u64 guid,
1216 int guid_type);
1217 int (*ndo_set_vf_rss_query_en)(
1218 struct net_device *dev,
1219 int vf, bool setting);
1220 int (*ndo_setup_tc)(struct net_device *dev,
1221 u32 handle,
1222 __be16 protocol,
1223 struct tc_to_netdev *tc);
1224 #if IS_ENABLED(CONFIG_FCOE)
1225 int (*ndo_fcoe_enable)(struct net_device *dev);
1226 int (*ndo_fcoe_disable)(struct net_device *dev);
1227 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1228 u16 xid,
1229 struct scatterlist *sgl,
1230 unsigned int sgc);
1231 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1232 u16 xid);
1233 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1234 u16 xid,
1235 struct scatterlist *sgl,
1236 unsigned int sgc);
1237 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1238 struct netdev_fcoe_hbainfo *hbainfo);
1239 #endif
1240
1241 #if IS_ENABLED(CONFIG_LIBFCOE)
1242 #define NETDEV_FCOE_WWNN 0
1243 #define NETDEV_FCOE_WWPN 1
1244 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1245 u64 *wwn, int type);
1246 #endif
1247
1248 #ifdef CONFIG_RFS_ACCEL
1249 int (*ndo_rx_flow_steer)(struct net_device *dev,
1250 const struct sk_buff *skb,
1251 u16 rxq_index,
1252 u32 flow_id);
1253 #endif
1254 int (*ndo_add_slave)(struct net_device *dev,
1255 struct net_device *slave_dev);
1256 int (*ndo_del_slave)(struct net_device *dev,
1257 struct net_device *slave_dev);
1258 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1259 netdev_features_t features);
1260 int (*ndo_set_features)(struct net_device *dev,
1261 netdev_features_t features);
1262 int (*ndo_neigh_construct)(struct net_device *dev,
1263 struct neighbour *n);
1264 void (*ndo_neigh_destroy)(struct net_device *dev,
1265 struct neighbour *n);
1266
1267 int (*ndo_fdb_add)(struct ndmsg *ndm,
1268 struct nlattr *tb[],
1269 struct net_device *dev,
1270 const unsigned char *addr,
1271 u16 vid,
1272 u16 flags);
1273 int (*ndo_fdb_del)(struct ndmsg *ndm,
1274 struct nlattr *tb[],
1275 struct net_device *dev,
1276 const unsigned char *addr,
1277 u16 vid);
1278 int (*ndo_fdb_dump)(struct sk_buff *skb,
1279 struct netlink_callback *cb,
1280 struct net_device *dev,
1281 struct net_device *filter_dev,
1282 int *idx);
1283
1284 int (*ndo_bridge_setlink)(struct net_device *dev,
1285 struct nlmsghdr *nlh,
1286 u16 flags);
1287 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1288 u32 pid, u32 seq,
1289 struct net_device *dev,
1290 u32 filter_mask,
1291 int nlflags);
1292 int (*ndo_bridge_dellink)(struct net_device *dev,
1293 struct nlmsghdr *nlh,
1294 u16 flags);
1295 int (*ndo_change_carrier)(struct net_device *dev,
1296 bool new_carrier);
1297 int (*ndo_get_phys_port_id)(struct net_device *dev,
1298 struct netdev_phys_item_id *ppid);
1299 int (*ndo_get_phys_port_name)(struct net_device *dev,
1300 char *name, size_t len);
1301 void (*ndo_udp_tunnel_add)(struct net_device *dev,
1302 struct udp_tunnel_info *ti);
1303 void (*ndo_udp_tunnel_del)(struct net_device *dev,
1304 struct udp_tunnel_info *ti);
1305 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1306 struct net_device *dev);
1307 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1308 void *priv);
1309
1310 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1311 struct net_device *dev,
1312 void *priv);
1313 int (*ndo_get_lock_subclass)(struct net_device *dev);
1314 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1315 int queue_index,
1316 u32 maxrate);
1317 int (*ndo_get_iflink)(const struct net_device *dev);
1318 int (*ndo_change_proto_down)(struct net_device *dev,
1319 bool proto_down);
1320 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1321 struct sk_buff *skb);
1322 void (*ndo_set_rx_headroom)(struct net_device *dev,
1323 int needed_headroom);
1324 int (*ndo_xdp)(struct net_device *dev,
1325 struct netdev_xdp *xdp);
1326 };
1327
1328 /**
1329 * enum net_device_priv_flags - &struct net_device priv_flags
1330 *
1331 * These are the &struct net_device, they are only set internally
1332 * by drivers and used in the kernel. These flags are invisible to
1333 * userspace; this means that the order of these flags can change
1334 * during any kernel release.
1335 *
1336 * You should have a pretty good reason to be extending these flags.
1337 *
1338 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1339 * @IFF_EBRIDGE: Ethernet bridging device
1340 * @IFF_BONDING: bonding master or slave
1341 * @IFF_ISATAP: ISATAP interface (RFC4214)
1342 * @IFF_WAN_HDLC: WAN HDLC device
1343 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1344 * release skb->dst
1345 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1346 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1347 * @IFF_MACVLAN_PORT: device used as macvlan port
1348 * @IFF_BRIDGE_PORT: device used as bridge port
1349 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1350 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1351 * @IFF_UNICAST_FLT: Supports unicast filtering
1352 * @IFF_TEAM_PORT: device used as team port
1353 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1354 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1355 * change when it's running
1356 * @IFF_MACVLAN: Macvlan device
1357 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1358 * underlying stacked devices
1359 * @IFF_IPVLAN_MASTER: IPvlan master device
1360 * @IFF_IPVLAN_SLAVE: IPvlan slave device
1361 * @IFF_L3MDEV_MASTER: device is an L3 master device
1362 * @IFF_NO_QUEUE: device can run without qdisc attached
1363 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1364 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1365 * @IFF_TEAM: device is a team device
1366 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1367 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1368 * entity (i.e. the master device for bridged veth)
1369 * @IFF_MACSEC: device is a MACsec device
1370 */
1371 enum netdev_priv_flags {
1372 IFF_802_1Q_VLAN = 1<<0,
1373 IFF_EBRIDGE = 1<<1,
1374 IFF_BONDING = 1<<2,
1375 IFF_ISATAP = 1<<3,
1376 IFF_WAN_HDLC = 1<<4,
1377 IFF_XMIT_DST_RELEASE = 1<<5,
1378 IFF_DONT_BRIDGE = 1<<6,
1379 IFF_DISABLE_NETPOLL = 1<<7,
1380 IFF_MACVLAN_PORT = 1<<8,
1381 IFF_BRIDGE_PORT = 1<<9,
1382 IFF_OVS_DATAPATH = 1<<10,
1383 IFF_TX_SKB_SHARING = 1<<11,
1384 IFF_UNICAST_FLT = 1<<12,
1385 IFF_TEAM_PORT = 1<<13,
1386 IFF_SUPP_NOFCS = 1<<14,
1387 IFF_LIVE_ADDR_CHANGE = 1<<15,
1388 IFF_MACVLAN = 1<<16,
1389 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1390 IFF_IPVLAN_MASTER = 1<<18,
1391 IFF_IPVLAN_SLAVE = 1<<19,
1392 IFF_L3MDEV_MASTER = 1<<20,
1393 IFF_NO_QUEUE = 1<<21,
1394 IFF_OPENVSWITCH = 1<<22,
1395 IFF_L3MDEV_SLAVE = 1<<23,
1396 IFF_TEAM = 1<<24,
1397 IFF_RXFH_CONFIGURED = 1<<25,
1398 IFF_PHONY_HEADROOM = 1<<26,
1399 IFF_MACSEC = 1<<27,
1400 };
1401
1402 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1403 #define IFF_EBRIDGE IFF_EBRIDGE
1404 #define IFF_BONDING IFF_BONDING
1405 #define IFF_ISATAP IFF_ISATAP
1406 #define IFF_WAN_HDLC IFF_WAN_HDLC
1407 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1408 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1409 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1410 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1411 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1412 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1413 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1414 #define IFF_UNICAST_FLT IFF_UNICAST_FLT
1415 #define IFF_TEAM_PORT IFF_TEAM_PORT
1416 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1417 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1418 #define IFF_MACVLAN IFF_MACVLAN
1419 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1420 #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER
1421 #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE
1422 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1423 #define IFF_NO_QUEUE IFF_NO_QUEUE
1424 #define IFF_OPENVSWITCH IFF_OPENVSWITCH
1425 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1426 #define IFF_TEAM IFF_TEAM
1427 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED
1428 #define IFF_MACSEC IFF_MACSEC
1429
1430 /**
1431 * struct net_device - The DEVICE structure.
1432 * Actually, this whole structure is a big mistake. It mixes I/O
1433 * data with strictly "high-level" data, and it has to know about
1434 * almost every data structure used in the INET module.
1435 *
1436 * @name: This is the first field of the "visible" part of this structure
1437 * (i.e. as seen by users in the "Space.c" file). It is the name
1438 * of the interface.
1439 *
1440 * @name_hlist: Device name hash chain, please keep it close to name[]
1441 * @ifalias: SNMP alias
1442 * @mem_end: Shared memory end
1443 * @mem_start: Shared memory start
1444 * @base_addr: Device I/O address
1445 * @irq: Device IRQ number
1446 *
1447 * @carrier_changes: Stats to monitor carrier on<->off transitions
1448 *
1449 * @state: Generic network queuing layer state, see netdev_state_t
1450 * @dev_list: The global list of network devices
1451 * @napi_list: List entry used for polling NAPI devices
1452 * @unreg_list: List entry when we are unregistering the
1453 * device; see the function unregister_netdev
1454 * @close_list: List entry used when we are closing the device
1455 * @ptype_all: Device-specific packet handlers for all protocols
1456 * @ptype_specific: Device-specific, protocol-specific packet handlers
1457 *
1458 * @adj_list: Directly linked devices, like slaves for bonding
1459 * @features: Currently active device features
1460 * @hw_features: User-changeable features
1461 *
1462 * @wanted_features: User-requested features
1463 * @vlan_features: Mask of features inheritable by VLAN devices
1464 *
1465 * @hw_enc_features: Mask of features inherited by encapsulating devices
1466 * This field indicates what encapsulation
1467 * offloads the hardware is capable of doing,
1468 * and drivers will need to set them appropriately.
1469 *
1470 * @mpls_features: Mask of features inheritable by MPLS
1471 *
1472 * @ifindex: interface index
1473 * @group: The group the device belongs to
1474 *
1475 * @stats: Statistics struct, which was left as a legacy, use
1476 * rtnl_link_stats64 instead
1477 *
1478 * @rx_dropped: Dropped packets by core network,
1479 * do not use this in drivers
1480 * @tx_dropped: Dropped packets by core network,
1481 * do not use this in drivers
1482 * @rx_nohandler: nohandler dropped packets by core network on
1483 * inactive devices, do not use this in drivers
1484 *
1485 * @wireless_handlers: List of functions to handle Wireless Extensions,
1486 * instead of ioctl,
1487 * see <net/iw_handler.h> for details.
1488 * @wireless_data: Instance data managed by the core of wireless extensions
1489 *
1490 * @netdev_ops: Includes several pointers to callbacks,
1491 * if one wants to override the ndo_*() functions
1492 * @ethtool_ops: Management operations
1493 * @ndisc_ops: Includes callbacks for different IPv6 neighbour
1494 * discovery handling. Necessary for e.g. 6LoWPAN.
1495 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1496 * of Layer 2 headers.
1497 *
1498 * @flags: Interface flags (a la BSD)
1499 * @priv_flags: Like 'flags' but invisible to userspace,
1500 * see if.h for the definitions
1501 * @gflags: Global flags ( kept as legacy )
1502 * @padded: How much padding added by alloc_netdev()
1503 * @operstate: RFC2863 operstate
1504 * @link_mode: Mapping policy to operstate
1505 * @if_port: Selectable AUI, TP, ...
1506 * @dma: DMA channel
1507 * @mtu: Interface MTU value
1508 * @min_mtu: Interface Minimum MTU value
1509 * @max_mtu: Interface Maximum MTU value
1510 * @type: Interface hardware type
1511 * @hard_header_len: Maximum hardware header length.
1512 * @min_header_len: Minimum hardware header length
1513 *
1514 * @needed_headroom: Extra headroom the hardware may need, but not in all
1515 * cases can this be guaranteed
1516 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1517 * cases can this be guaranteed. Some cases also use
1518 * LL_MAX_HEADER instead to allocate the skb
1519 *
1520 * interface address info:
1521 *
1522 * @perm_addr: Permanent hw address
1523 * @addr_assign_type: Hw address assignment type
1524 * @addr_len: Hardware address length
1525 * @neigh_priv_len: Used in neigh_alloc()
1526 * @dev_id: Used to differentiate devices that share
1527 * the same link layer address
1528 * @dev_port: Used to differentiate devices that share
1529 * the same function
1530 * @addr_list_lock: XXX: need comments on this one
1531 * @uc_promisc: Counter that indicates promiscuous mode
1532 * has been enabled due to the need to listen to
1533 * additional unicast addresses in a device that
1534 * does not implement ndo_set_rx_mode()
1535 * @uc: unicast mac addresses
1536 * @mc: multicast mac addresses
1537 * @dev_addrs: list of device hw addresses
1538 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1539 * @promiscuity: Number of times the NIC is told to work in
1540 * promiscuous mode; if it becomes 0 the NIC will
1541 * exit promiscuous mode
1542 * @allmulti: Counter, enables or disables allmulticast mode
1543 *
1544 * @vlan_info: VLAN info
1545 * @dsa_ptr: dsa specific data
1546 * @tipc_ptr: TIPC specific data
1547 * @atalk_ptr: AppleTalk link
1548 * @ip_ptr: IPv4 specific data
1549 * @dn_ptr: DECnet specific data
1550 * @ip6_ptr: IPv6 specific data
1551 * @ax25_ptr: AX.25 specific data
1552 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1553 *
1554 * @dev_addr: Hw address (before bcast,
1555 * because most packets are unicast)
1556 *
1557 * @_rx: Array of RX queues
1558 * @num_rx_queues: Number of RX queues
1559 * allocated at register_netdev() time
1560 * @real_num_rx_queues: Number of RX queues currently active in device
1561 *
1562 * @rx_handler: handler for received packets
1563 * @rx_handler_data: XXX: need comments on this one
1564 * @ingress_queue: XXX: need comments on this one
1565 * @broadcast: hw bcast address
1566 *
1567 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1568 * indexed by RX queue number. Assigned by driver.
1569 * This must only be set if the ndo_rx_flow_steer
1570 * operation is defined
1571 * @index_hlist: Device index hash chain
1572 *
1573 * @_tx: Array of TX queues
1574 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1575 * @real_num_tx_queues: Number of TX queues currently active in device
1576 * @qdisc: Root qdisc from userspace point of view
1577 * @tx_queue_len: Max frames per queue allowed
1578 * @tx_global_lock: XXX: need comments on this one
1579 *
1580 * @xps_maps: XXX: need comments on this one
1581 *
1582 * @watchdog_timeo: Represents the timeout that is used by
1583 * the watchdog (see dev_watchdog())
1584 * @watchdog_timer: List of timers
1585 *
1586 * @pcpu_refcnt: Number of references to this device
1587 * @todo_list: Delayed register/unregister
1588 * @link_watch_list: XXX: need comments on this one
1589 *
1590 * @reg_state: Register/unregister state machine
1591 * @dismantle: Device is going to be freed
1592 * @rtnl_link_state: This enum represents the phases of creating
1593 * a new link
1594 *
1595 * @destructor: Called from unregister,
1596 * can be used to call free_netdev
1597 * @npinfo: XXX: need comments on this one
1598 * @nd_net: Network namespace this network device is inside
1599 *
1600 * @ml_priv: Mid-layer private
1601 * @lstats: Loopback statistics
1602 * @tstats: Tunnel statistics
1603 * @dstats: Dummy statistics
1604 * @vstats: Virtual ethernet statistics
1605 *
1606 * @garp_port: GARP
1607 * @mrp_port: MRP
1608 *
1609 * @dev: Class/net/name entry
1610 * @sysfs_groups: Space for optional device, statistics and wireless
1611 * sysfs groups
1612 *
1613 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1614 * @rtnl_link_ops: Rtnl_link_ops
1615 *
1616 * @gso_max_size: Maximum size of generic segmentation offload
1617 * @gso_max_segs: Maximum number of segments that can be passed to the
1618 * NIC for GSO
1619 *
1620 * @dcbnl_ops: Data Center Bridging netlink ops
1621 * @num_tc: Number of traffic classes in the net device
1622 * @tc_to_txq: XXX: need comments on this one
1623 * @prio_tc_map: XXX: need comments on this one
1624 *
1625 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1626 *
1627 * @priomap: XXX: need comments on this one
1628 * @phydev: Physical device may attach itself
1629 * for hardware timestamping
1630 *
1631 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1632 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1633 *
1634 * @proto_down: protocol port state information can be sent to the
1635 * switch driver and used to set the phys state of the
1636 * switch port.
1637 *
1638 * FIXME: cleanup struct net_device such that network protocol info
1639 * moves out.
1640 */
1641
1642 struct net_device {
1643 char name[IFNAMSIZ];
1644 struct hlist_node name_hlist;
1645 char *ifalias;
1646 /*
1647 * I/O specific fields
1648 * FIXME: Merge these and struct ifmap into one
1649 */
1650 unsigned long mem_end;
1651 unsigned long mem_start;
1652 unsigned long base_addr;
1653 int irq;
1654
1655 atomic_t carrier_changes;
1656
1657 /*
1658 * Some hardware also needs these fields (state,dev_list,
1659 * napi_list,unreg_list,close_list) but they are not
1660 * part of the usual set specified in Space.c.
1661 */
1662
1663 unsigned long state;
1664
1665 struct list_head dev_list;
1666 struct list_head napi_list;
1667 struct list_head unreg_list;
1668 struct list_head close_list;
1669 struct list_head ptype_all;
1670 struct list_head ptype_specific;
1671
1672 struct {
1673 struct list_head upper;
1674 struct list_head lower;
1675 } adj_list;
1676
1677 netdev_features_t features;
1678 netdev_features_t hw_features;
1679 netdev_features_t wanted_features;
1680 netdev_features_t vlan_features;
1681 netdev_features_t hw_enc_features;
1682 netdev_features_t mpls_features;
1683 netdev_features_t gso_partial_features;
1684
1685 int ifindex;
1686 int group;
1687
1688 struct net_device_stats stats;
1689
1690 atomic_long_t rx_dropped;
1691 atomic_long_t tx_dropped;
1692 atomic_long_t rx_nohandler;
1693
1694 #ifdef CONFIG_WIRELESS_EXT
1695 const struct iw_handler_def *wireless_handlers;
1696 struct iw_public_data *wireless_data;
1697 #endif
1698 const struct net_device_ops *netdev_ops;
1699 const struct ethtool_ops *ethtool_ops;
1700 #ifdef CONFIG_NET_SWITCHDEV
1701 const struct switchdev_ops *switchdev_ops;
1702 #endif
1703 #ifdef CONFIG_NET_L3_MASTER_DEV
1704 const struct l3mdev_ops *l3mdev_ops;
1705 #endif
1706 #if IS_ENABLED(CONFIG_IPV6)
1707 const struct ndisc_ops *ndisc_ops;
1708 #endif
1709
1710 const struct header_ops *header_ops;
1711
1712 unsigned int flags;
1713 unsigned int priv_flags;
1714
1715 unsigned short gflags;
1716 unsigned short padded;
1717
1718 unsigned char operstate;
1719 unsigned char link_mode;
1720
1721 unsigned char if_port;
1722 unsigned char dma;
1723
1724 unsigned int mtu;
1725 unsigned int min_mtu;
1726 unsigned int max_mtu;
1727 unsigned short type;
1728 unsigned short hard_header_len;
1729 unsigned short min_header_len;
1730
1731 unsigned short needed_headroom;
1732 unsigned short needed_tailroom;
1733
1734 /* Interface address info. */
1735 unsigned char perm_addr[MAX_ADDR_LEN];
1736 unsigned char addr_assign_type;
1737 unsigned char addr_len;
1738 unsigned short neigh_priv_len;
1739 unsigned short dev_id;
1740 unsigned short dev_port;
1741 spinlock_t addr_list_lock;
1742 unsigned char name_assign_type;
1743 bool uc_promisc;
1744 struct netdev_hw_addr_list uc;
1745 struct netdev_hw_addr_list mc;
1746 struct netdev_hw_addr_list dev_addrs;
1747
1748 #ifdef CONFIG_SYSFS
1749 struct kset *queues_kset;
1750 #endif
1751 unsigned int promiscuity;
1752 unsigned int allmulti;
1753
1754
1755 /* Protocol-specific pointers */
1756
1757 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1758 struct vlan_info __rcu *vlan_info;
1759 #endif
1760 #if IS_ENABLED(CONFIG_NET_DSA)
1761 struct dsa_switch_tree *dsa_ptr;
1762 #endif
1763 #if IS_ENABLED(CONFIG_TIPC)
1764 struct tipc_bearer __rcu *tipc_ptr;
1765 #endif
1766 void *atalk_ptr;
1767 struct in_device __rcu *ip_ptr;
1768 struct dn_dev __rcu *dn_ptr;
1769 struct inet6_dev __rcu *ip6_ptr;
1770 void *ax25_ptr;
1771 struct wireless_dev *ieee80211_ptr;
1772 struct wpan_dev *ieee802154_ptr;
1773 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1774 struct mpls_dev __rcu *mpls_ptr;
1775 #endif
1776
1777 /*
1778 * Cache lines mostly used on receive path (including eth_type_trans())
1779 */
1780 /* Interface address info used in eth_type_trans() */
1781 unsigned char *dev_addr;
1782
1783 #ifdef CONFIG_SYSFS
1784 struct netdev_rx_queue *_rx;
1785
1786 unsigned int num_rx_queues;
1787 unsigned int real_num_rx_queues;
1788 #endif
1789
1790 unsigned long gro_flush_timeout;
1791 rx_handler_func_t __rcu *rx_handler;
1792 void __rcu *rx_handler_data;
1793
1794 #ifdef CONFIG_NET_CLS_ACT
1795 struct tcf_proto __rcu *ingress_cl_list;
1796 #endif
1797 struct netdev_queue __rcu *ingress_queue;
1798 #ifdef CONFIG_NETFILTER_INGRESS
1799 struct nf_hook_entry __rcu *nf_hooks_ingress;
1800 #endif
1801
1802 unsigned char broadcast[MAX_ADDR_LEN];
1803 #ifdef CONFIG_RFS_ACCEL
1804 struct cpu_rmap *rx_cpu_rmap;
1805 #endif
1806 struct hlist_node index_hlist;
1807
1808 /*
1809 * Cache lines mostly used on transmit path
1810 */
1811 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1812 unsigned int num_tx_queues;
1813 unsigned int real_num_tx_queues;
1814 struct Qdisc *qdisc;
1815 #ifdef CONFIG_NET_SCHED
1816 DECLARE_HASHTABLE (qdisc_hash, 4);
1817 #endif
1818 unsigned long tx_queue_len;
1819 spinlock_t tx_global_lock;
1820 int watchdog_timeo;
1821
1822 #ifdef CONFIG_XPS
1823 struct xps_dev_maps __rcu *xps_maps;
1824 #endif
1825 #ifdef CONFIG_NET_CLS_ACT
1826 struct tcf_proto __rcu *egress_cl_list;
1827 #endif
1828
1829 /* These may be needed for future network-power-down code. */
1830 struct timer_list watchdog_timer;
1831
1832 int __percpu *pcpu_refcnt;
1833 struct list_head todo_list;
1834
1835 struct list_head link_watch_list;
1836
1837 enum { NETREG_UNINITIALIZED=0,
1838 NETREG_REGISTERED, /* completed register_netdevice */
1839 NETREG_UNREGISTERING, /* called unregister_netdevice */
1840 NETREG_UNREGISTERED, /* completed unregister todo */
1841 NETREG_RELEASED, /* called free_netdev */
1842 NETREG_DUMMY, /* dummy device for NAPI poll */
1843 } reg_state:8;
1844
1845 bool dismantle;
1846
1847 enum {
1848 RTNL_LINK_INITIALIZED,
1849 RTNL_LINK_INITIALIZING,
1850 } rtnl_link_state:16;
1851
1852 void (*destructor)(struct net_device *dev);
1853
1854 #ifdef CONFIG_NETPOLL
1855 struct netpoll_info __rcu *npinfo;
1856 #endif
1857
1858 possible_net_t nd_net;
1859
1860 /* mid-layer private */
1861 union {
1862 void *ml_priv;
1863 struct pcpu_lstats __percpu *lstats;
1864 struct pcpu_sw_netstats __percpu *tstats;
1865 struct pcpu_dstats __percpu *dstats;
1866 struct pcpu_vstats __percpu *vstats;
1867 };
1868
1869 #if IS_ENABLED(CONFIG_GARP)
1870 struct garp_port __rcu *garp_port;
1871 #endif
1872 #if IS_ENABLED(CONFIG_MRP)
1873 struct mrp_port __rcu *mrp_port;
1874 #endif
1875
1876 struct device dev;
1877 const struct attribute_group *sysfs_groups[4];
1878 const struct attribute_group *sysfs_rx_queue_group;
1879
1880 const struct rtnl_link_ops *rtnl_link_ops;
1881
1882 /* for setting kernel sock attribute on TCP connection setup */
1883 #define GSO_MAX_SIZE 65536
1884 unsigned int gso_max_size;
1885 #define GSO_MAX_SEGS 65535
1886 u16 gso_max_segs;
1887
1888 #ifdef CONFIG_DCB
1889 const struct dcbnl_rtnl_ops *dcbnl_ops;
1890 #endif
1891 u8 num_tc;
1892 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1893 u8 prio_tc_map[TC_BITMASK + 1];
1894
1895 #if IS_ENABLED(CONFIG_FCOE)
1896 unsigned int fcoe_ddp_xid;
1897 #endif
1898 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1899 struct netprio_map __rcu *priomap;
1900 #endif
1901 struct phy_device *phydev;
1902 struct lock_class_key *qdisc_tx_busylock;
1903 struct lock_class_key *qdisc_running_key;
1904 bool proto_down;
1905 };
1906 #define to_net_dev(d) container_of(d, struct net_device, dev)
1907
1908 #define NETDEV_ALIGN 32
1909
1910 static inline
1911 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1912 {
1913 return dev->prio_tc_map[prio & TC_BITMASK];
1914 }
1915
1916 static inline
1917 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1918 {
1919 if (tc >= dev->num_tc)
1920 return -EINVAL;
1921
1922 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1923 return 0;
1924 }
1925
1926 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
1927 void netdev_reset_tc(struct net_device *dev);
1928 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
1929 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
1930
1931 static inline
1932 int netdev_get_num_tc(struct net_device *dev)
1933 {
1934 return dev->num_tc;
1935 }
1936
1937 static inline
1938 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1939 unsigned int index)
1940 {
1941 return &dev->_tx[index];
1942 }
1943
1944 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1945 const struct sk_buff *skb)
1946 {
1947 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1948 }
1949
1950 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1951 void (*f)(struct net_device *,
1952 struct netdev_queue *,
1953 void *),
1954 void *arg)
1955 {
1956 unsigned int i;
1957
1958 for (i = 0; i < dev->num_tx_queues; i++)
1959 f(dev, &dev->_tx[i], arg);
1960 }
1961
1962 #define netdev_lockdep_set_classes(dev) \
1963 { \
1964 static struct lock_class_key qdisc_tx_busylock_key; \
1965 static struct lock_class_key qdisc_running_key; \
1966 static struct lock_class_key qdisc_xmit_lock_key; \
1967 static struct lock_class_key dev_addr_list_lock_key; \
1968 unsigned int i; \
1969 \
1970 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \
1971 (dev)->qdisc_running_key = &qdisc_running_key; \
1972 lockdep_set_class(&(dev)->addr_list_lock, \
1973 &dev_addr_list_lock_key); \
1974 for (i = 0; i < (dev)->num_tx_queues; i++) \
1975 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \
1976 &qdisc_xmit_lock_key); \
1977 }
1978
1979 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1980 struct sk_buff *skb,
1981 void *accel_priv);
1982
1983 /* returns the headroom that the master device needs to take in account
1984 * when forwarding to this dev
1985 */
1986 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
1987 {
1988 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
1989 }
1990
1991 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
1992 {
1993 if (dev->netdev_ops->ndo_set_rx_headroom)
1994 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
1995 }
1996
1997 /* set the device rx headroom to the dev's default */
1998 static inline void netdev_reset_rx_headroom(struct net_device *dev)
1999 {
2000 netdev_set_rx_headroom(dev, -1);
2001 }
2002
2003 /*
2004 * Net namespace inlines
2005 */
2006 static inline
2007 struct net *dev_net(const struct net_device *dev)
2008 {
2009 return read_pnet(&dev->nd_net);
2010 }
2011
2012 static inline
2013 void dev_net_set(struct net_device *dev, struct net *net)
2014 {
2015 write_pnet(&dev->nd_net, net);
2016 }
2017
2018 static inline bool netdev_uses_dsa(struct net_device *dev)
2019 {
2020 #if IS_ENABLED(CONFIG_NET_DSA)
2021 if (dev->dsa_ptr != NULL)
2022 return dsa_uses_tagged_protocol(dev->dsa_ptr);
2023 #endif
2024 return false;
2025 }
2026
2027 /**
2028 * netdev_priv - access network device private data
2029 * @dev: network device
2030 *
2031 * Get network device private data
2032 */
2033 static inline void *netdev_priv(const struct net_device *dev)
2034 {
2035 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2036 }
2037
2038 /* Set the sysfs physical device reference for the network logical device
2039 * if set prior to registration will cause a symlink during initialization.
2040 */
2041 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
2042
2043 /* Set the sysfs device type for the network logical device to allow
2044 * fine-grained identification of different network device types. For
2045 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2046 */
2047 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
2048
2049 /* Default NAPI poll() weight
2050 * Device drivers are strongly advised to not use bigger value
2051 */
2052 #define NAPI_POLL_WEIGHT 64
2053
2054 /**
2055 * netif_napi_add - initialize a NAPI context
2056 * @dev: network device
2057 * @napi: NAPI context
2058 * @poll: polling function
2059 * @weight: default weight
2060 *
2061 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2062 * *any* of the other NAPI-related functions.
2063 */
2064 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2065 int (*poll)(struct napi_struct *, int), int weight);
2066
2067 /**
2068 * netif_tx_napi_add - initialize a NAPI context
2069 * @dev: network device
2070 * @napi: NAPI context
2071 * @poll: polling function
2072 * @weight: default weight
2073 *
2074 * This variant of netif_napi_add() should be used from drivers using NAPI
2075 * to exclusively poll a TX queue.
2076 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2077 */
2078 static inline void netif_tx_napi_add(struct net_device *dev,
2079 struct napi_struct *napi,
2080 int (*poll)(struct napi_struct *, int),
2081 int weight)
2082 {
2083 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2084 netif_napi_add(dev, napi, poll, weight);
2085 }
2086
2087 /**
2088 * netif_napi_del - remove a NAPI context
2089 * @napi: NAPI context
2090 *
2091 * netif_napi_del() removes a NAPI context from the network device NAPI list
2092 */
2093 void netif_napi_del(struct napi_struct *napi);
2094
2095 struct napi_gro_cb {
2096 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2097 void *frag0;
2098
2099 /* Length of frag0. */
2100 unsigned int frag0_len;
2101
2102 /* This indicates where we are processing relative to skb->data. */
2103 int data_offset;
2104
2105 /* This is non-zero if the packet cannot be merged with the new skb. */
2106 u16 flush;
2107
2108 /* Save the IP ID here and check when we get to the transport layer */
2109 u16 flush_id;
2110
2111 /* Number of segments aggregated. */
2112 u16 count;
2113
2114 /* Start offset for remote checksum offload */
2115 u16 gro_remcsum_start;
2116
2117 /* jiffies when first packet was created/queued */
2118 unsigned long age;
2119
2120 /* Used in ipv6_gro_receive() and foo-over-udp */
2121 u16 proto;
2122
2123 /* This is non-zero if the packet may be of the same flow. */
2124 u8 same_flow:1;
2125
2126 /* Used in tunnel GRO receive */
2127 u8 encap_mark:1;
2128
2129 /* GRO checksum is valid */
2130 u8 csum_valid:1;
2131
2132 /* Number of checksums via CHECKSUM_UNNECESSARY */
2133 u8 csum_cnt:3;
2134
2135 /* Free the skb? */
2136 u8 free:2;
2137 #define NAPI_GRO_FREE 1
2138 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2139
2140 /* Used in foo-over-udp, set in udp[46]_gro_receive */
2141 u8 is_ipv6:1;
2142
2143 /* Used in GRE, set in fou/gue_gro_receive */
2144 u8 is_fou:1;
2145
2146 /* Used to determine if flush_id can be ignored */
2147 u8 is_atomic:1;
2148
2149 /* Number of gro_receive callbacks this packet already went through */
2150 u8 recursion_counter:4;
2151
2152 /* 1 bit hole */
2153
2154 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2155 __wsum csum;
2156
2157 /* used in skb_gro_receive() slow path */
2158 struct sk_buff *last;
2159 };
2160
2161 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2162
2163 #define GRO_RECURSION_LIMIT 15
2164 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2165 {
2166 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2167 }
2168
2169 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *);
2170 static inline struct sk_buff **call_gro_receive(gro_receive_t cb,
2171 struct sk_buff **head,
2172 struct sk_buff *skb)
2173 {
2174 if (unlikely(gro_recursion_inc_test(skb))) {
2175 NAPI_GRO_CB(skb)->flush |= 1;
2176 return NULL;
2177 }
2178
2179 return cb(head, skb);
2180 }
2181
2182 typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **,
2183 struct sk_buff *);
2184 static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb,
2185 struct sock *sk,
2186 struct sk_buff **head,
2187 struct sk_buff *skb)
2188 {
2189 if (unlikely(gro_recursion_inc_test(skb))) {
2190 NAPI_GRO_CB(skb)->flush |= 1;
2191 return NULL;
2192 }
2193
2194 return cb(sk, head, skb);
2195 }
2196
2197 struct packet_type {
2198 __be16 type; /* This is really htons(ether_type). */
2199 struct net_device *dev; /* NULL is wildcarded here */
2200 int (*func) (struct sk_buff *,
2201 struct net_device *,
2202 struct packet_type *,
2203 struct net_device *);
2204 bool (*id_match)(struct packet_type *ptype,
2205 struct sock *sk);
2206 void *af_packet_priv;
2207 struct list_head list;
2208 };
2209
2210 struct offload_callbacks {
2211 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2212 netdev_features_t features);
2213 struct sk_buff **(*gro_receive)(struct sk_buff **head,
2214 struct sk_buff *skb);
2215 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2216 };
2217
2218 struct packet_offload {
2219 __be16 type; /* This is really htons(ether_type). */
2220 u16 priority;
2221 struct offload_callbacks callbacks;
2222 struct list_head list;
2223 };
2224
2225 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2226 struct pcpu_sw_netstats {
2227 u64 rx_packets;
2228 u64 rx_bytes;
2229 u64 tx_packets;
2230 u64 tx_bytes;
2231 struct u64_stats_sync syncp;
2232 };
2233
2234 #define __netdev_alloc_pcpu_stats(type, gfp) \
2235 ({ \
2236 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2237 if (pcpu_stats) { \
2238 int __cpu; \
2239 for_each_possible_cpu(__cpu) { \
2240 typeof(type) *stat; \
2241 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2242 u64_stats_init(&stat->syncp); \
2243 } \
2244 } \
2245 pcpu_stats; \
2246 })
2247
2248 #define netdev_alloc_pcpu_stats(type) \
2249 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2250
2251 enum netdev_lag_tx_type {
2252 NETDEV_LAG_TX_TYPE_UNKNOWN,
2253 NETDEV_LAG_TX_TYPE_RANDOM,
2254 NETDEV_LAG_TX_TYPE_BROADCAST,
2255 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2256 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2257 NETDEV_LAG_TX_TYPE_HASH,
2258 };
2259
2260 struct netdev_lag_upper_info {
2261 enum netdev_lag_tx_type tx_type;
2262 };
2263
2264 struct netdev_lag_lower_state_info {
2265 u8 link_up : 1,
2266 tx_enabled : 1;
2267 };
2268
2269 #include <linux/notifier.h>
2270
2271 /* netdevice notifier chain. Please remember to update the rtnetlink
2272 * notification exclusion list in rtnetlink_event() when adding new
2273 * types.
2274 */
2275 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
2276 #define NETDEV_DOWN 0x0002
2277 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
2278 detected a hardware crash and restarted
2279 - we can use this eg to kick tcp sessions
2280 once done */
2281 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
2282 #define NETDEV_REGISTER 0x0005
2283 #define NETDEV_UNREGISTER 0x0006
2284 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */
2285 #define NETDEV_CHANGEADDR 0x0008
2286 #define NETDEV_GOING_DOWN 0x0009
2287 #define NETDEV_CHANGENAME 0x000A
2288 #define NETDEV_FEAT_CHANGE 0x000B
2289 #define NETDEV_BONDING_FAILOVER 0x000C
2290 #define NETDEV_PRE_UP 0x000D
2291 #define NETDEV_PRE_TYPE_CHANGE 0x000E
2292 #define NETDEV_POST_TYPE_CHANGE 0x000F
2293 #define NETDEV_POST_INIT 0x0010
2294 #define NETDEV_UNREGISTER_FINAL 0x0011
2295 #define NETDEV_RELEASE 0x0012
2296 #define NETDEV_NOTIFY_PEERS 0x0013
2297 #define NETDEV_JOIN 0x0014
2298 #define NETDEV_CHANGEUPPER 0x0015
2299 #define NETDEV_RESEND_IGMP 0x0016
2300 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */
2301 #define NETDEV_CHANGEINFODATA 0x0018
2302 #define NETDEV_BONDING_INFO 0x0019
2303 #define NETDEV_PRECHANGEUPPER 0x001A
2304 #define NETDEV_CHANGELOWERSTATE 0x001B
2305 #define NETDEV_UDP_TUNNEL_PUSH_INFO 0x001C
2306 #define NETDEV_CHANGE_TX_QUEUE_LEN 0x001E
2307
2308 int register_netdevice_notifier(struct notifier_block *nb);
2309 int unregister_netdevice_notifier(struct notifier_block *nb);
2310
2311 struct netdev_notifier_info {
2312 struct net_device *dev;
2313 };
2314
2315 struct netdev_notifier_change_info {
2316 struct netdev_notifier_info info; /* must be first */
2317 unsigned int flags_changed;
2318 };
2319
2320 struct netdev_notifier_changeupper_info {
2321 struct netdev_notifier_info info; /* must be first */
2322 struct net_device *upper_dev; /* new upper dev */
2323 bool master; /* is upper dev master */
2324 bool linking; /* is the notification for link or unlink */
2325 void *upper_info; /* upper dev info */
2326 };
2327
2328 struct netdev_notifier_changelowerstate_info {
2329 struct netdev_notifier_info info; /* must be first */
2330 void *lower_state_info; /* is lower dev state */
2331 };
2332
2333 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2334 struct net_device *dev)
2335 {
2336 info->dev = dev;
2337 }
2338
2339 static inline struct net_device *
2340 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2341 {
2342 return info->dev;
2343 }
2344
2345 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2346
2347
2348 extern rwlock_t dev_base_lock; /* Device list lock */
2349
2350 #define for_each_netdev(net, d) \
2351 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2352 #define for_each_netdev_reverse(net, d) \
2353 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2354 #define for_each_netdev_rcu(net, d) \
2355 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2356 #define for_each_netdev_safe(net, d, n) \
2357 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2358 #define for_each_netdev_continue(net, d) \
2359 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2360 #define for_each_netdev_continue_rcu(net, d) \
2361 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2362 #define for_each_netdev_in_bond_rcu(bond, slave) \
2363 for_each_netdev_rcu(&init_net, slave) \
2364 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2365 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2366
2367 static inline struct net_device *next_net_device(struct net_device *dev)
2368 {
2369 struct list_head *lh;
2370 struct net *net;
2371
2372 net = dev_net(dev);
2373 lh = dev->dev_list.next;
2374 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2375 }
2376
2377 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2378 {
2379 struct list_head *lh;
2380 struct net *net;
2381
2382 net = dev_net(dev);
2383 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2384 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2385 }
2386
2387 static inline struct net_device *first_net_device(struct net *net)
2388 {
2389 return list_empty(&net->dev_base_head) ? NULL :
2390 net_device_entry(net->dev_base_head.next);
2391 }
2392
2393 static inline struct net_device *first_net_device_rcu(struct net *net)
2394 {
2395 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2396
2397 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2398 }
2399
2400 int netdev_boot_setup_check(struct net_device *dev);
2401 unsigned long netdev_boot_base(const char *prefix, int unit);
2402 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2403 const char *hwaddr);
2404 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2405 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2406 void dev_add_pack(struct packet_type *pt);
2407 void dev_remove_pack(struct packet_type *pt);
2408 void __dev_remove_pack(struct packet_type *pt);
2409 void dev_add_offload(struct packet_offload *po);
2410 void dev_remove_offload(struct packet_offload *po);
2411
2412 int dev_get_iflink(const struct net_device *dev);
2413 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2414 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2415 unsigned short mask);
2416 struct net_device *dev_get_by_name(struct net *net, const char *name);
2417 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2418 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2419 int dev_alloc_name(struct net_device *dev, const char *name);
2420 int dev_open(struct net_device *dev);
2421 int dev_close(struct net_device *dev);
2422 int dev_close_many(struct list_head *head, bool unlink);
2423 void dev_disable_lro(struct net_device *dev);
2424 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2425 int dev_queue_xmit(struct sk_buff *skb);
2426 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2427 int register_netdevice(struct net_device *dev);
2428 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2429 void unregister_netdevice_many(struct list_head *head);
2430 static inline void unregister_netdevice(struct net_device *dev)
2431 {
2432 unregister_netdevice_queue(dev, NULL);
2433 }
2434
2435 int netdev_refcnt_read(const struct net_device *dev);
2436 void free_netdev(struct net_device *dev);
2437 void netdev_freemem(struct net_device *dev);
2438 void synchronize_net(void);
2439 int init_dummy_netdev(struct net_device *dev);
2440
2441 DECLARE_PER_CPU(int, xmit_recursion);
2442 #define XMIT_RECURSION_LIMIT 10
2443
2444 static inline int dev_recursion_level(void)
2445 {
2446 return this_cpu_read(xmit_recursion);
2447 }
2448
2449 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2450 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2451 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2452 int netdev_get_name(struct net *net, char *name, int ifindex);
2453 int dev_restart(struct net_device *dev);
2454 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2455
2456 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2457 {
2458 return NAPI_GRO_CB(skb)->data_offset;
2459 }
2460
2461 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2462 {
2463 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2464 }
2465
2466 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2467 {
2468 NAPI_GRO_CB(skb)->data_offset += len;
2469 }
2470
2471 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2472 unsigned int offset)
2473 {
2474 return NAPI_GRO_CB(skb)->frag0 + offset;
2475 }
2476
2477 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2478 {
2479 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2480 }
2481
2482 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2483 {
2484 NAPI_GRO_CB(skb)->frag0 = NULL;
2485 NAPI_GRO_CB(skb)->frag0_len = 0;
2486 }
2487
2488 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2489 unsigned int offset)
2490 {
2491 if (!pskb_may_pull(skb, hlen))
2492 return NULL;
2493
2494 skb_gro_frag0_invalidate(skb);
2495 return skb->data + offset;
2496 }
2497
2498 static inline void *skb_gro_network_header(struct sk_buff *skb)
2499 {
2500 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2501 skb_network_offset(skb);
2502 }
2503
2504 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2505 const void *start, unsigned int len)
2506 {
2507 if (NAPI_GRO_CB(skb)->csum_valid)
2508 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2509 csum_partial(start, len, 0));
2510 }
2511
2512 /* GRO checksum functions. These are logical equivalents of the normal
2513 * checksum functions (in skbuff.h) except that they operate on the GRO
2514 * offsets and fields in sk_buff.
2515 */
2516
2517 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2518
2519 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2520 {
2521 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2522 }
2523
2524 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2525 bool zero_okay,
2526 __sum16 check)
2527 {
2528 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2529 skb_checksum_start_offset(skb) <
2530 skb_gro_offset(skb)) &&
2531 !skb_at_gro_remcsum_start(skb) &&
2532 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2533 (!zero_okay || check));
2534 }
2535
2536 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2537 __wsum psum)
2538 {
2539 if (NAPI_GRO_CB(skb)->csum_valid &&
2540 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2541 return 0;
2542
2543 NAPI_GRO_CB(skb)->csum = psum;
2544
2545 return __skb_gro_checksum_complete(skb);
2546 }
2547
2548 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2549 {
2550 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2551 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2552 NAPI_GRO_CB(skb)->csum_cnt--;
2553 } else {
2554 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2555 * verified a new top level checksum or an encapsulated one
2556 * during GRO. This saves work if we fallback to normal path.
2557 */
2558 __skb_incr_checksum_unnecessary(skb);
2559 }
2560 }
2561
2562 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2563 compute_pseudo) \
2564 ({ \
2565 __sum16 __ret = 0; \
2566 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2567 __ret = __skb_gro_checksum_validate_complete(skb, \
2568 compute_pseudo(skb, proto)); \
2569 if (__ret) \
2570 __skb_mark_checksum_bad(skb); \
2571 else \
2572 skb_gro_incr_csum_unnecessary(skb); \
2573 __ret; \
2574 })
2575
2576 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2577 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2578
2579 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2580 compute_pseudo) \
2581 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2582
2583 #define skb_gro_checksum_simple_validate(skb) \
2584 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2585
2586 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2587 {
2588 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2589 !NAPI_GRO_CB(skb)->csum_valid);
2590 }
2591
2592 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2593 __sum16 check, __wsum pseudo)
2594 {
2595 NAPI_GRO_CB(skb)->csum = ~pseudo;
2596 NAPI_GRO_CB(skb)->csum_valid = 1;
2597 }
2598
2599 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2600 do { \
2601 if (__skb_gro_checksum_convert_check(skb)) \
2602 __skb_gro_checksum_convert(skb, check, \
2603 compute_pseudo(skb, proto)); \
2604 } while (0)
2605
2606 struct gro_remcsum {
2607 int offset;
2608 __wsum delta;
2609 };
2610
2611 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2612 {
2613 grc->offset = 0;
2614 grc->delta = 0;
2615 }
2616
2617 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2618 unsigned int off, size_t hdrlen,
2619 int start, int offset,
2620 struct gro_remcsum *grc,
2621 bool nopartial)
2622 {
2623 __wsum delta;
2624 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2625
2626 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2627
2628 if (!nopartial) {
2629 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2630 return ptr;
2631 }
2632
2633 ptr = skb_gro_header_fast(skb, off);
2634 if (skb_gro_header_hard(skb, off + plen)) {
2635 ptr = skb_gro_header_slow(skb, off + plen, off);
2636 if (!ptr)
2637 return NULL;
2638 }
2639
2640 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2641 start, offset);
2642
2643 /* Adjust skb->csum since we changed the packet */
2644 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2645
2646 grc->offset = off + hdrlen + offset;
2647 grc->delta = delta;
2648
2649 return ptr;
2650 }
2651
2652 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2653 struct gro_remcsum *grc)
2654 {
2655 void *ptr;
2656 size_t plen = grc->offset + sizeof(u16);
2657
2658 if (!grc->delta)
2659 return;
2660
2661 ptr = skb_gro_header_fast(skb, grc->offset);
2662 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2663 ptr = skb_gro_header_slow(skb, plen, grc->offset);
2664 if (!ptr)
2665 return;
2666 }
2667
2668 remcsum_unadjust((__sum16 *)ptr, grc->delta);
2669 }
2670
2671 #ifdef CONFIG_XFRM_OFFLOAD
2672 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2673 {
2674 if (PTR_ERR(pp) != -EINPROGRESS)
2675 NAPI_GRO_CB(skb)->flush |= flush;
2676 }
2677 #else
2678 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2679 {
2680 NAPI_GRO_CB(skb)->flush |= flush;
2681 }
2682 #endif
2683
2684 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2685 unsigned short type,
2686 const void *daddr, const void *saddr,
2687 unsigned int len)
2688 {
2689 if (!dev->header_ops || !dev->header_ops->create)
2690 return 0;
2691
2692 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2693 }
2694
2695 static inline int dev_parse_header(const struct sk_buff *skb,
2696 unsigned char *haddr)
2697 {
2698 const struct net_device *dev = skb->dev;
2699
2700 if (!dev->header_ops || !dev->header_ops->parse)
2701 return 0;
2702 return dev->header_ops->parse(skb, haddr);
2703 }
2704
2705 /* ll_header must have at least hard_header_len allocated */
2706 static inline bool dev_validate_header(const struct net_device *dev,
2707 char *ll_header, int len)
2708 {
2709 if (likely(len >= dev->hard_header_len))
2710 return true;
2711 if (len < dev->min_header_len)
2712 return false;
2713
2714 if (capable(CAP_SYS_RAWIO)) {
2715 memset(ll_header + len, 0, dev->hard_header_len - len);
2716 return true;
2717 }
2718
2719 if (dev->header_ops && dev->header_ops->validate)
2720 return dev->header_ops->validate(ll_header, len);
2721
2722 return false;
2723 }
2724
2725 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2726 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2727 static inline int unregister_gifconf(unsigned int family)
2728 {
2729 return register_gifconf(family, NULL);
2730 }
2731
2732 #ifdef CONFIG_NET_FLOW_LIMIT
2733 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
2734 struct sd_flow_limit {
2735 u64 count;
2736 unsigned int num_buckets;
2737 unsigned int history_head;
2738 u16 history[FLOW_LIMIT_HISTORY];
2739 u8 buckets[];
2740 };
2741
2742 extern int netdev_flow_limit_table_len;
2743 #endif /* CONFIG_NET_FLOW_LIMIT */
2744
2745 /*
2746 * Incoming packets are placed on per-CPU queues
2747 */
2748 struct softnet_data {
2749 struct list_head poll_list;
2750 struct sk_buff_head process_queue;
2751
2752 /* stats */
2753 unsigned int processed;
2754 unsigned int time_squeeze;
2755 unsigned int received_rps;
2756 #ifdef CONFIG_RPS
2757 struct softnet_data *rps_ipi_list;
2758 #endif
2759 #ifdef CONFIG_NET_FLOW_LIMIT
2760 struct sd_flow_limit __rcu *flow_limit;
2761 #endif
2762 struct Qdisc *output_queue;
2763 struct Qdisc **output_queue_tailp;
2764 struct sk_buff *completion_queue;
2765
2766 #ifdef CONFIG_RPS
2767 /* input_queue_head should be written by cpu owning this struct,
2768 * and only read by other cpus. Worth using a cache line.
2769 */
2770 unsigned int input_queue_head ____cacheline_aligned_in_smp;
2771
2772 /* Elements below can be accessed between CPUs for RPS/RFS */
2773 struct call_single_data csd ____cacheline_aligned_in_smp;
2774 struct softnet_data *rps_ipi_next;
2775 unsigned int cpu;
2776 unsigned int input_queue_tail;
2777 #endif
2778 unsigned int dropped;
2779 struct sk_buff_head input_pkt_queue;
2780 struct napi_struct backlog;
2781
2782 };
2783
2784 static inline void input_queue_head_incr(struct softnet_data *sd)
2785 {
2786 #ifdef CONFIG_RPS
2787 sd->input_queue_head++;
2788 #endif
2789 }
2790
2791 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2792 unsigned int *qtail)
2793 {
2794 #ifdef CONFIG_RPS
2795 *qtail = ++sd->input_queue_tail;
2796 #endif
2797 }
2798
2799 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2800
2801 void __netif_schedule(struct Qdisc *q);
2802 void netif_schedule_queue(struct netdev_queue *txq);
2803
2804 static inline void netif_tx_schedule_all(struct net_device *dev)
2805 {
2806 unsigned int i;
2807
2808 for (i = 0; i < dev->num_tx_queues; i++)
2809 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2810 }
2811
2812 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2813 {
2814 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2815 }
2816
2817 /**
2818 * netif_start_queue - allow transmit
2819 * @dev: network device
2820 *
2821 * Allow upper layers to call the device hard_start_xmit routine.
2822 */
2823 static inline void netif_start_queue(struct net_device *dev)
2824 {
2825 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2826 }
2827
2828 static inline void netif_tx_start_all_queues(struct net_device *dev)
2829 {
2830 unsigned int i;
2831
2832 for (i = 0; i < dev->num_tx_queues; i++) {
2833 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2834 netif_tx_start_queue(txq);
2835 }
2836 }
2837
2838 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2839
2840 /**
2841 * netif_wake_queue - restart transmit
2842 * @dev: network device
2843 *
2844 * Allow upper layers to call the device hard_start_xmit routine.
2845 * Used for flow control when transmit resources are available.
2846 */
2847 static inline void netif_wake_queue(struct net_device *dev)
2848 {
2849 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2850 }
2851
2852 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2853 {
2854 unsigned int i;
2855
2856 for (i = 0; i < dev->num_tx_queues; i++) {
2857 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2858 netif_tx_wake_queue(txq);
2859 }
2860 }
2861
2862 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2863 {
2864 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2865 }
2866
2867 /**
2868 * netif_stop_queue - stop transmitted packets
2869 * @dev: network device
2870 *
2871 * Stop upper layers calling the device hard_start_xmit routine.
2872 * Used for flow control when transmit resources are unavailable.
2873 */
2874 static inline void netif_stop_queue(struct net_device *dev)
2875 {
2876 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2877 }
2878
2879 void netif_tx_stop_all_queues(struct net_device *dev);
2880
2881 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2882 {
2883 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2884 }
2885
2886 /**
2887 * netif_queue_stopped - test if transmit queue is flowblocked
2888 * @dev: network device
2889 *
2890 * Test if transmit queue on device is currently unable to send.
2891 */
2892 static inline bool netif_queue_stopped(const struct net_device *dev)
2893 {
2894 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2895 }
2896
2897 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2898 {
2899 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2900 }
2901
2902 static inline bool
2903 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2904 {
2905 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2906 }
2907
2908 static inline bool
2909 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2910 {
2911 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2912 }
2913
2914 /**
2915 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2916 * @dev_queue: pointer to transmit queue
2917 *
2918 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2919 * to give appropriate hint to the CPU.
2920 */
2921 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2922 {
2923 #ifdef CONFIG_BQL
2924 prefetchw(&dev_queue->dql.num_queued);
2925 #endif
2926 }
2927
2928 /**
2929 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2930 * @dev_queue: pointer to transmit queue
2931 *
2932 * BQL enabled drivers might use this helper in their TX completion path,
2933 * to give appropriate hint to the CPU.
2934 */
2935 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2936 {
2937 #ifdef CONFIG_BQL
2938 prefetchw(&dev_queue->dql.limit);
2939 #endif
2940 }
2941
2942 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2943 unsigned int bytes)
2944 {
2945 #ifdef CONFIG_BQL
2946 dql_queued(&dev_queue->dql, bytes);
2947
2948 if (likely(dql_avail(&dev_queue->dql) >= 0))
2949 return;
2950
2951 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2952
2953 /*
2954 * The XOFF flag must be set before checking the dql_avail below,
2955 * because in netdev_tx_completed_queue we update the dql_completed
2956 * before checking the XOFF flag.
2957 */
2958 smp_mb();
2959
2960 /* check again in case another CPU has just made room avail */
2961 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2962 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2963 #endif
2964 }
2965
2966 /**
2967 * netdev_sent_queue - report the number of bytes queued to hardware
2968 * @dev: network device
2969 * @bytes: number of bytes queued to the hardware device queue
2970 *
2971 * Report the number of bytes queued for sending/completion to the network
2972 * device hardware queue. @bytes should be a good approximation and should
2973 * exactly match netdev_completed_queue() @bytes
2974 */
2975 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2976 {
2977 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2978 }
2979
2980 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2981 unsigned int pkts, unsigned int bytes)
2982 {
2983 #ifdef CONFIG_BQL
2984 if (unlikely(!bytes))
2985 return;
2986
2987 dql_completed(&dev_queue->dql, bytes);
2988
2989 /*
2990 * Without the memory barrier there is a small possiblity that
2991 * netdev_tx_sent_queue will miss the update and cause the queue to
2992 * be stopped forever
2993 */
2994 smp_mb();
2995
2996 if (dql_avail(&dev_queue->dql) < 0)
2997 return;
2998
2999 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3000 netif_schedule_queue(dev_queue);
3001 #endif
3002 }
3003
3004 /**
3005 * netdev_completed_queue - report bytes and packets completed by device
3006 * @dev: network device
3007 * @pkts: actual number of packets sent over the medium
3008 * @bytes: actual number of bytes sent over the medium
3009 *
3010 * Report the number of bytes and packets transmitted by the network device
3011 * hardware queue over the physical medium, @bytes must exactly match the
3012 * @bytes amount passed to netdev_sent_queue()
3013 */
3014 static inline void netdev_completed_queue(struct net_device *dev,
3015 unsigned int pkts, unsigned int bytes)
3016 {
3017 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3018 }
3019
3020 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3021 {
3022 #ifdef CONFIG_BQL
3023 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3024 dql_reset(&q->dql);
3025 #endif
3026 }
3027
3028 /**
3029 * netdev_reset_queue - reset the packets and bytes count of a network device
3030 * @dev_queue: network device
3031 *
3032 * Reset the bytes and packet count of a network device and clear the
3033 * software flow control OFF bit for this network device
3034 */
3035 static inline void netdev_reset_queue(struct net_device *dev_queue)
3036 {
3037 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3038 }
3039
3040 /**
3041 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
3042 * @dev: network device
3043 * @queue_index: given tx queue index
3044 *
3045 * Returns 0 if given tx queue index >= number of device tx queues,
3046 * otherwise returns the originally passed tx queue index.
3047 */
3048 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3049 {
3050 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3051 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3052 dev->name, queue_index,
3053 dev->real_num_tx_queues);
3054 return 0;
3055 }
3056
3057 return queue_index;
3058 }
3059
3060 /**
3061 * netif_running - test if up
3062 * @dev: network device
3063 *
3064 * Test if the device has been brought up.
3065 */
3066 static inline bool netif_running(const struct net_device *dev)
3067 {
3068 return test_bit(__LINK_STATE_START, &dev->state);
3069 }
3070
3071 /*
3072 * Routines to manage the subqueues on a device. We only need start,
3073 * stop, and a check if it's stopped. All other device management is
3074 * done at the overall netdevice level.
3075 * Also test the device if we're multiqueue.
3076 */
3077
3078 /**
3079 * netif_start_subqueue - allow sending packets on subqueue
3080 * @dev: network device
3081 * @queue_index: sub queue index
3082 *
3083 * Start individual transmit queue of a device with multiple transmit queues.
3084 */
3085 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3086 {
3087 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3088
3089 netif_tx_start_queue(txq);
3090 }
3091
3092 /**
3093 * netif_stop_subqueue - stop sending packets on subqueue
3094 * @dev: network device
3095 * @queue_index: sub queue index
3096 *
3097 * Stop individual transmit queue of a device with multiple transmit queues.
3098 */
3099 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3100 {
3101 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3102 netif_tx_stop_queue(txq);
3103 }
3104
3105 /**
3106 * netif_subqueue_stopped - test status of subqueue
3107 * @dev: network device
3108 * @queue_index: sub queue index
3109 *
3110 * Check individual transmit queue of a device with multiple transmit queues.
3111 */
3112 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3113 u16 queue_index)
3114 {
3115 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3116
3117 return netif_tx_queue_stopped(txq);
3118 }
3119
3120 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3121 struct sk_buff *skb)
3122 {
3123 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3124 }
3125
3126 /**
3127 * netif_wake_subqueue - allow sending packets on subqueue
3128 * @dev: network device
3129 * @queue_index: sub queue index
3130 *
3131 * Resume individual transmit queue of a device with multiple transmit queues.
3132 */
3133 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3134 {
3135 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3136
3137 netif_tx_wake_queue(txq);
3138 }
3139
3140 #ifdef CONFIG_XPS
3141 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3142 u16 index);
3143 #else
3144 static inline int netif_set_xps_queue(struct net_device *dev,
3145 const struct cpumask *mask,
3146 u16 index)
3147 {
3148 return 0;
3149 }
3150 #endif
3151
3152 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3153 unsigned int num_tx_queues);
3154
3155 /*
3156 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3157 * as a distribution range limit for the returned value.
3158 */
3159 static inline u16 skb_tx_hash(const struct net_device *dev,
3160 struct sk_buff *skb)
3161 {
3162 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3163 }
3164
3165 /**
3166 * netif_is_multiqueue - test if device has multiple transmit queues
3167 * @dev: network device
3168 *
3169 * Check if device has multiple transmit queues
3170 */
3171 static inline bool netif_is_multiqueue(const struct net_device *dev)
3172 {
3173 return dev->num_tx_queues > 1;
3174 }
3175
3176 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3177
3178 #ifdef CONFIG_SYSFS
3179 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3180 #else
3181 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3182 unsigned int rxq)
3183 {
3184 return 0;
3185 }
3186 #endif
3187
3188 #ifdef CONFIG_SYSFS
3189 static inline unsigned int get_netdev_rx_queue_index(
3190 struct netdev_rx_queue *queue)
3191 {
3192 struct net_device *dev = queue->dev;
3193 int index = queue - dev->_rx;
3194
3195 BUG_ON(index >= dev->num_rx_queues);
3196 return index;
3197 }
3198 #endif
3199
3200 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
3201 int netif_get_num_default_rss_queues(void);
3202
3203 enum skb_free_reason {
3204 SKB_REASON_CONSUMED,
3205 SKB_REASON_DROPPED,
3206 };
3207
3208 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3209 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3210
3211 /*
3212 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3213 * interrupt context or with hardware interrupts being disabled.
3214 * (in_irq() || irqs_disabled())
3215 *
3216 * We provide four helpers that can be used in following contexts :
3217 *
3218 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3219 * replacing kfree_skb(skb)
3220 *
3221 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3222 * Typically used in place of consume_skb(skb) in TX completion path
3223 *
3224 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3225 * replacing kfree_skb(skb)
3226 *
3227 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3228 * and consumed a packet. Used in place of consume_skb(skb)
3229 */
3230 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3231 {
3232 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3233 }
3234
3235 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3236 {
3237 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3238 }
3239
3240 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3241 {
3242 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3243 }
3244
3245 static inline void dev_consume_skb_any(struct sk_buff *skb)
3246 {
3247 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3248 }
3249
3250 int netif_rx(struct sk_buff *skb);
3251 int netif_rx_ni(struct sk_buff *skb);
3252 int netif_receive_skb(struct sk_buff *skb);
3253 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3254 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3255 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3256 gro_result_t napi_gro_frags(struct napi_struct *napi);
3257 struct packet_offload *gro_find_receive_by_type(__be16 type);
3258 struct packet_offload *gro_find_complete_by_type(__be16 type);
3259
3260 static inline void napi_free_frags(struct napi_struct *napi)
3261 {
3262 kfree_skb(napi->skb);
3263 napi->skb = NULL;
3264 }
3265
3266 bool netdev_is_rx_handler_busy(struct net_device *dev);
3267 int netdev_rx_handler_register(struct net_device *dev,
3268 rx_handler_func_t *rx_handler,
3269 void *rx_handler_data);
3270 void netdev_rx_handler_unregister(struct net_device *dev);
3271
3272 bool dev_valid_name(const char *name);
3273 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3274 int dev_ethtool(struct net *net, struct ifreq *);
3275 unsigned int dev_get_flags(const struct net_device *);
3276 int __dev_change_flags(struct net_device *, unsigned int flags);
3277 int dev_change_flags(struct net_device *, unsigned int);
3278 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3279 unsigned int gchanges);
3280 int dev_change_name(struct net_device *, const char *);
3281 int dev_set_alias(struct net_device *, const char *, size_t);
3282 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3283 int dev_set_mtu(struct net_device *, int);
3284 void dev_set_group(struct net_device *, int);
3285 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3286 int dev_change_carrier(struct net_device *, bool new_carrier);
3287 int dev_get_phys_port_id(struct net_device *dev,
3288 struct netdev_phys_item_id *ppid);
3289 int dev_get_phys_port_name(struct net_device *dev,
3290 char *name, size_t len);
3291 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3292 int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags);
3293 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3294 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3295 struct netdev_queue *txq, int *ret);
3296 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3297 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3298 bool is_skb_forwardable(const struct net_device *dev,
3299 const struct sk_buff *skb);
3300
3301 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3302 struct sk_buff *skb)
3303 {
3304 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3305 unlikely(!is_skb_forwardable(dev, skb))) {
3306 atomic_long_inc(&dev->rx_dropped);
3307 kfree_skb(skb);
3308 return NET_RX_DROP;
3309 }
3310
3311 skb_scrub_packet(skb, true);
3312 skb->priority = 0;
3313 return 0;
3314 }
3315
3316 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3317
3318 extern int netdev_budget;
3319
3320 /* Called by rtnetlink.c:rtnl_unlock() */
3321 void netdev_run_todo(void);
3322
3323 /**
3324 * dev_put - release reference to device
3325 * @dev: network device
3326 *
3327 * Release reference to device to allow it to be freed.
3328 */
3329 static inline void dev_put(struct net_device *dev)
3330 {
3331 this_cpu_dec(*dev->pcpu_refcnt);
3332 }
3333
3334 /**
3335 * dev_hold - get reference to device
3336 * @dev: network device
3337 *
3338 * Hold reference to device to keep it from being freed.
3339 */
3340 static inline void dev_hold(struct net_device *dev)
3341 {
3342 this_cpu_inc(*dev->pcpu_refcnt);
3343 }
3344
3345 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3346 * and _off may be called from IRQ context, but it is caller
3347 * who is responsible for serialization of these calls.
3348 *
3349 * The name carrier is inappropriate, these functions should really be
3350 * called netif_lowerlayer_*() because they represent the state of any
3351 * kind of lower layer not just hardware media.
3352 */
3353
3354 void linkwatch_init_dev(struct net_device *dev);
3355 void linkwatch_fire_event(struct net_device *dev);
3356 void linkwatch_forget_dev(struct net_device *dev);
3357
3358 /**
3359 * netif_carrier_ok - test if carrier present
3360 * @dev: network device
3361 *
3362 * Check if carrier is present on device
3363 */
3364 static inline bool netif_carrier_ok(const struct net_device *dev)
3365 {
3366 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3367 }
3368
3369 unsigned long dev_trans_start(struct net_device *dev);
3370
3371 void __netdev_watchdog_up(struct net_device *dev);
3372
3373 void netif_carrier_on(struct net_device *dev);
3374
3375 void netif_carrier_off(struct net_device *dev);
3376
3377 /**
3378 * netif_dormant_on - mark device as dormant.
3379 * @dev: network device
3380 *
3381 * Mark device as dormant (as per RFC2863).
3382 *
3383 * The dormant state indicates that the relevant interface is not
3384 * actually in a condition to pass packets (i.e., it is not 'up') but is
3385 * in a "pending" state, waiting for some external event. For "on-
3386 * demand" interfaces, this new state identifies the situation where the
3387 * interface is waiting for events to place it in the up state.
3388 */
3389 static inline void netif_dormant_on(struct net_device *dev)
3390 {
3391 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3392 linkwatch_fire_event(dev);
3393 }
3394
3395 /**
3396 * netif_dormant_off - set device as not dormant.
3397 * @dev: network device
3398 *
3399 * Device is not in dormant state.
3400 */
3401 static inline void netif_dormant_off(struct net_device *dev)
3402 {
3403 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3404 linkwatch_fire_event(dev);
3405 }
3406
3407 /**
3408 * netif_dormant - test if carrier present
3409 * @dev: network device
3410 *
3411 * Check if carrier is present on device
3412 */
3413 static inline bool netif_dormant(const struct net_device *dev)
3414 {
3415 return test_bit(__LINK_STATE_DORMANT, &dev->state);
3416 }
3417
3418
3419 /**
3420 * netif_oper_up - test if device is operational
3421 * @dev: network device
3422 *
3423 * Check if carrier is operational
3424 */
3425 static inline bool netif_oper_up(const struct net_device *dev)
3426 {
3427 return (dev->operstate == IF_OPER_UP ||
3428 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3429 }
3430
3431 /**
3432 * netif_device_present - is device available or removed
3433 * @dev: network device
3434 *
3435 * Check if device has not been removed from system.
3436 */
3437 static inline bool netif_device_present(struct net_device *dev)
3438 {
3439 return test_bit(__LINK_STATE_PRESENT, &dev->state);
3440 }
3441
3442 void netif_device_detach(struct net_device *dev);
3443
3444 void netif_device_attach(struct net_device *dev);
3445
3446 /*
3447 * Network interface message level settings
3448 */
3449
3450 enum {
3451 NETIF_MSG_DRV = 0x0001,
3452 NETIF_MSG_PROBE = 0x0002,
3453 NETIF_MSG_LINK = 0x0004,
3454 NETIF_MSG_TIMER = 0x0008,
3455 NETIF_MSG_IFDOWN = 0x0010,
3456 NETIF_MSG_IFUP = 0x0020,
3457 NETIF_MSG_RX_ERR = 0x0040,
3458 NETIF_MSG_TX_ERR = 0x0080,
3459 NETIF_MSG_TX_QUEUED = 0x0100,
3460 NETIF_MSG_INTR = 0x0200,
3461 NETIF_MSG_TX_DONE = 0x0400,
3462 NETIF_MSG_RX_STATUS = 0x0800,
3463 NETIF_MSG_PKTDATA = 0x1000,
3464 NETIF_MSG_HW = 0x2000,
3465 NETIF_MSG_WOL = 0x4000,
3466 };
3467
3468 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
3469 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
3470 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
3471 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
3472 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
3473 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
3474 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
3475 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
3476 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3477 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
3478 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
3479 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3480 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
3481 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
3482 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
3483
3484 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3485 {
3486 /* use default */
3487 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3488 return default_msg_enable_bits;
3489 if (debug_value == 0) /* no output */
3490 return 0;
3491 /* set low N bits */
3492 return (1 << debug_value) - 1;
3493 }
3494
3495 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3496 {
3497 spin_lock(&txq->_xmit_lock);
3498 txq->xmit_lock_owner = cpu;
3499 }
3500
3501 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3502 {
3503 __acquire(&txq->_xmit_lock);
3504 return true;
3505 }
3506
3507 static inline void __netif_tx_release(struct netdev_queue *txq)
3508 {
3509 __release(&txq->_xmit_lock);
3510 }
3511
3512 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3513 {
3514 spin_lock_bh(&txq->_xmit_lock);
3515 txq->xmit_lock_owner = smp_processor_id();
3516 }
3517
3518 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3519 {
3520 bool ok = spin_trylock(&txq->_xmit_lock);
3521 if (likely(ok))
3522 txq->xmit_lock_owner = smp_processor_id();
3523 return ok;
3524 }
3525
3526 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3527 {
3528 txq->xmit_lock_owner = -1;
3529 spin_unlock(&txq->_xmit_lock);
3530 }
3531
3532 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3533 {
3534 txq->xmit_lock_owner = -1;
3535 spin_unlock_bh(&txq->_xmit_lock);
3536 }
3537
3538 static inline void txq_trans_update(struct netdev_queue *txq)
3539 {
3540 if (txq->xmit_lock_owner != -1)
3541 txq->trans_start = jiffies;
3542 }
3543
3544 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3545 static inline void netif_trans_update(struct net_device *dev)
3546 {
3547 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3548
3549 if (txq->trans_start != jiffies)
3550 txq->trans_start = jiffies;
3551 }
3552
3553 /**
3554 * netif_tx_lock - grab network device transmit lock
3555 * @dev: network device
3556 *
3557 * Get network device transmit lock
3558 */
3559 static inline void netif_tx_lock(struct net_device *dev)
3560 {
3561 unsigned int i;
3562 int cpu;
3563
3564 spin_lock(&dev->tx_global_lock);
3565 cpu = smp_processor_id();
3566 for (i = 0; i < dev->num_tx_queues; i++) {
3567 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3568
3569 /* We are the only thread of execution doing a
3570 * freeze, but we have to grab the _xmit_lock in
3571 * order to synchronize with threads which are in
3572 * the ->hard_start_xmit() handler and already
3573 * checked the frozen bit.
3574 */
3575 __netif_tx_lock(txq, cpu);
3576 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3577 __netif_tx_unlock(txq);
3578 }
3579 }
3580
3581 static inline void netif_tx_lock_bh(struct net_device *dev)
3582 {
3583 local_bh_disable();
3584 netif_tx_lock(dev);
3585 }
3586
3587 static inline void netif_tx_unlock(struct net_device *dev)
3588 {
3589 unsigned int i;
3590
3591 for (i = 0; i < dev->num_tx_queues; i++) {
3592 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3593
3594 /* No need to grab the _xmit_lock here. If the
3595 * queue is not stopped for another reason, we
3596 * force a schedule.
3597 */
3598 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3599 netif_schedule_queue(txq);
3600 }
3601 spin_unlock(&dev->tx_global_lock);
3602 }
3603
3604 static inline void netif_tx_unlock_bh(struct net_device *dev)
3605 {
3606 netif_tx_unlock(dev);
3607 local_bh_enable();
3608 }
3609
3610 #define HARD_TX_LOCK(dev, txq, cpu) { \
3611 if ((dev->features & NETIF_F_LLTX) == 0) { \
3612 __netif_tx_lock(txq, cpu); \
3613 } else { \
3614 __netif_tx_acquire(txq); \
3615 } \
3616 }
3617
3618 #define HARD_TX_TRYLOCK(dev, txq) \
3619 (((dev->features & NETIF_F_LLTX) == 0) ? \
3620 __netif_tx_trylock(txq) : \
3621 __netif_tx_acquire(txq))
3622
3623 #define HARD_TX_UNLOCK(dev, txq) { \
3624 if ((dev->features & NETIF_F_LLTX) == 0) { \
3625 __netif_tx_unlock(txq); \
3626 } else { \
3627 __netif_tx_release(txq); \
3628 } \
3629 }
3630
3631 static inline void netif_tx_disable(struct net_device *dev)
3632 {
3633 unsigned int i;
3634 int cpu;
3635
3636 local_bh_disable();
3637 cpu = smp_processor_id();
3638 for (i = 0; i < dev->num_tx_queues; i++) {
3639 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3640
3641 __netif_tx_lock(txq, cpu);
3642 netif_tx_stop_queue(txq);
3643 __netif_tx_unlock(txq);
3644 }
3645 local_bh_enable();
3646 }
3647
3648 static inline void netif_addr_lock(struct net_device *dev)
3649 {
3650 spin_lock(&dev->addr_list_lock);
3651 }
3652
3653 static inline void netif_addr_lock_nested(struct net_device *dev)
3654 {
3655 int subclass = SINGLE_DEPTH_NESTING;
3656
3657 if (dev->netdev_ops->ndo_get_lock_subclass)
3658 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3659
3660 spin_lock_nested(&dev->addr_list_lock, subclass);
3661 }
3662
3663 static inline void netif_addr_lock_bh(struct net_device *dev)
3664 {
3665 spin_lock_bh(&dev->addr_list_lock);
3666 }
3667
3668 static inline void netif_addr_unlock(struct net_device *dev)
3669 {
3670 spin_unlock(&dev->addr_list_lock);
3671 }
3672
3673 static inline void netif_addr_unlock_bh(struct net_device *dev)
3674 {
3675 spin_unlock_bh(&dev->addr_list_lock);
3676 }
3677
3678 /*
3679 * dev_addrs walker. Should be used only for read access. Call with
3680 * rcu_read_lock held.
3681 */
3682 #define for_each_dev_addr(dev, ha) \
3683 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3684
3685 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3686
3687 void ether_setup(struct net_device *dev);
3688
3689 /* Support for loadable net-drivers */
3690 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3691 unsigned char name_assign_type,
3692 void (*setup)(struct net_device *),
3693 unsigned int txqs, unsigned int rxqs);
3694 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3695 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3696
3697 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3698 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3699 count)
3700
3701 int register_netdev(struct net_device *dev);
3702 void unregister_netdev(struct net_device *dev);
3703
3704 /* General hardware address lists handling functions */
3705 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3706 struct netdev_hw_addr_list *from_list, int addr_len);
3707 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3708 struct netdev_hw_addr_list *from_list, int addr_len);
3709 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3710 struct net_device *dev,
3711 int (*sync)(struct net_device *, const unsigned char *),
3712 int (*unsync)(struct net_device *,
3713 const unsigned char *));
3714 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3715 struct net_device *dev,
3716 int (*unsync)(struct net_device *,
3717 const unsigned char *));
3718 void __hw_addr_init(struct netdev_hw_addr_list *list);
3719
3720 /* Functions used for device addresses handling */
3721 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3722 unsigned char addr_type);
3723 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3724 unsigned char addr_type);
3725 void dev_addr_flush(struct net_device *dev);
3726 int dev_addr_init(struct net_device *dev);
3727
3728 /* Functions used for unicast addresses handling */
3729 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3730 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3731 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3732 int dev_uc_sync(struct net_device *to, struct net_device *from);
3733 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3734 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3735 void dev_uc_flush(struct net_device *dev);
3736 void dev_uc_init(struct net_device *dev);
3737
3738 /**
3739 * __dev_uc_sync - Synchonize device's unicast list
3740 * @dev: device to sync
3741 * @sync: function to call if address should be added
3742 * @unsync: function to call if address should be removed
3743 *
3744 * Add newly added addresses to the interface, and release
3745 * addresses that have been deleted.
3746 */
3747 static inline int __dev_uc_sync(struct net_device *dev,
3748 int (*sync)(struct net_device *,
3749 const unsigned char *),
3750 int (*unsync)(struct net_device *,
3751 const unsigned char *))
3752 {
3753 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3754 }
3755
3756 /**
3757 * __dev_uc_unsync - Remove synchronized addresses from device
3758 * @dev: device to sync
3759 * @unsync: function to call if address should be removed
3760 *
3761 * Remove all addresses that were added to the device by dev_uc_sync().
3762 */
3763 static inline void __dev_uc_unsync(struct net_device *dev,
3764 int (*unsync)(struct net_device *,
3765 const unsigned char *))
3766 {
3767 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3768 }
3769
3770 /* Functions used for multicast addresses handling */
3771 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3772 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3773 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3774 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3775 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3776 int dev_mc_sync(struct net_device *to, struct net_device *from);
3777 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3778 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3779 void dev_mc_flush(struct net_device *dev);
3780 void dev_mc_init(struct net_device *dev);
3781
3782 /**
3783 * __dev_mc_sync - Synchonize device's multicast list
3784 * @dev: device to sync
3785 * @sync: function to call if address should be added
3786 * @unsync: function to call if address should be removed
3787 *
3788 * Add newly added addresses to the interface, and release
3789 * addresses that have been deleted.
3790 */
3791 static inline int __dev_mc_sync(struct net_device *dev,
3792 int (*sync)(struct net_device *,
3793 const unsigned char *),
3794 int (*unsync)(struct net_device *,
3795 const unsigned char *))
3796 {
3797 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3798 }
3799
3800 /**
3801 * __dev_mc_unsync - Remove synchronized addresses from device
3802 * @dev: device to sync
3803 * @unsync: function to call if address should be removed
3804 *
3805 * Remove all addresses that were added to the device by dev_mc_sync().
3806 */
3807 static inline void __dev_mc_unsync(struct net_device *dev,
3808 int (*unsync)(struct net_device *,
3809 const unsigned char *))
3810 {
3811 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3812 }
3813
3814 /* Functions used for secondary unicast and multicast support */
3815 void dev_set_rx_mode(struct net_device *dev);
3816 void __dev_set_rx_mode(struct net_device *dev);
3817 int dev_set_promiscuity(struct net_device *dev, int inc);
3818 int dev_set_allmulti(struct net_device *dev, int inc);
3819 void netdev_state_change(struct net_device *dev);
3820 void netdev_notify_peers(struct net_device *dev);
3821 void netdev_features_change(struct net_device *dev);
3822 /* Load a device via the kmod */
3823 void dev_load(struct net *net, const char *name);
3824 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3825 struct rtnl_link_stats64 *storage);
3826 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3827 const struct net_device_stats *netdev_stats);
3828
3829 extern int netdev_max_backlog;
3830 extern int netdev_tstamp_prequeue;
3831 extern int weight_p;
3832 extern int dev_weight_rx_bias;
3833 extern int dev_weight_tx_bias;
3834 extern int dev_rx_weight;
3835 extern int dev_tx_weight;
3836
3837 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3838 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3839 struct list_head **iter);
3840 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3841 struct list_head **iter);
3842
3843 /* iterate through upper list, must be called under RCU read lock */
3844 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3845 for (iter = &(dev)->adj_list.upper, \
3846 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3847 updev; \
3848 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3849
3850 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
3851 int (*fn)(struct net_device *upper_dev,
3852 void *data),
3853 void *data);
3854
3855 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
3856 struct net_device *upper_dev);
3857
3858 void *netdev_lower_get_next_private(struct net_device *dev,
3859 struct list_head **iter);
3860 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3861 struct list_head **iter);
3862
3863 #define netdev_for_each_lower_private(dev, priv, iter) \
3864 for (iter = (dev)->adj_list.lower.next, \
3865 priv = netdev_lower_get_next_private(dev, &(iter)); \
3866 priv; \
3867 priv = netdev_lower_get_next_private(dev, &(iter)))
3868
3869 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3870 for (iter = &(dev)->adj_list.lower, \
3871 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3872 priv; \
3873 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3874
3875 void *netdev_lower_get_next(struct net_device *dev,
3876 struct list_head **iter);
3877
3878 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3879 for (iter = (dev)->adj_list.lower.next, \
3880 ldev = netdev_lower_get_next(dev, &(iter)); \
3881 ldev; \
3882 ldev = netdev_lower_get_next(dev, &(iter)))
3883
3884 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
3885 struct list_head **iter);
3886 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
3887 struct list_head **iter);
3888
3889 int netdev_walk_all_lower_dev(struct net_device *dev,
3890 int (*fn)(struct net_device *lower_dev,
3891 void *data),
3892 void *data);
3893 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
3894 int (*fn)(struct net_device *lower_dev,
3895 void *data),
3896 void *data);
3897
3898 void *netdev_adjacent_get_private(struct list_head *adj_list);
3899 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3900 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3901 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3902 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3903 int netdev_master_upper_dev_link(struct net_device *dev,
3904 struct net_device *upper_dev,
3905 void *upper_priv, void *upper_info);
3906 void netdev_upper_dev_unlink(struct net_device *dev,
3907 struct net_device *upper_dev);
3908 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3909 void *netdev_lower_dev_get_private(struct net_device *dev,
3910 struct net_device *lower_dev);
3911 void netdev_lower_state_changed(struct net_device *lower_dev,
3912 void *lower_state_info);
3913
3914 /* RSS keys are 40 or 52 bytes long */
3915 #define NETDEV_RSS_KEY_LEN 52
3916 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
3917 void netdev_rss_key_fill(void *buffer, size_t len);
3918
3919 int dev_get_nest_level(struct net_device *dev);
3920 int skb_checksum_help(struct sk_buff *skb);
3921 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3922 netdev_features_t features, bool tx_path);
3923 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3924 netdev_features_t features);
3925
3926 struct netdev_bonding_info {
3927 ifslave slave;
3928 ifbond master;
3929 };
3930
3931 struct netdev_notifier_bonding_info {
3932 struct netdev_notifier_info info; /* must be first */
3933 struct netdev_bonding_info bonding_info;
3934 };
3935
3936 void netdev_bonding_info_change(struct net_device *dev,
3937 struct netdev_bonding_info *bonding_info);
3938
3939 static inline
3940 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3941 {
3942 return __skb_gso_segment(skb, features, true);
3943 }
3944 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3945
3946 static inline bool can_checksum_protocol(netdev_features_t features,
3947 __be16 protocol)
3948 {
3949 if (protocol == htons(ETH_P_FCOE))
3950 return !!(features & NETIF_F_FCOE_CRC);
3951
3952 /* Assume this is an IP checksum (not SCTP CRC) */
3953
3954 if (features & NETIF_F_HW_CSUM) {
3955 /* Can checksum everything */
3956 return true;
3957 }
3958
3959 switch (protocol) {
3960 case htons(ETH_P_IP):
3961 return !!(features & NETIF_F_IP_CSUM);
3962 case htons(ETH_P_IPV6):
3963 return !!(features & NETIF_F_IPV6_CSUM);
3964 default:
3965 return false;
3966 }
3967 }
3968
3969 #ifdef CONFIG_BUG
3970 void netdev_rx_csum_fault(struct net_device *dev);
3971 #else
3972 static inline void netdev_rx_csum_fault(struct net_device *dev)
3973 {
3974 }
3975 #endif
3976 /* rx skb timestamps */
3977 void net_enable_timestamp(void);
3978 void net_disable_timestamp(void);
3979
3980 #ifdef CONFIG_PROC_FS
3981 int __init dev_proc_init(void);
3982 #else
3983 #define dev_proc_init() 0
3984 #endif
3985
3986 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3987 struct sk_buff *skb, struct net_device *dev,
3988 bool more)
3989 {
3990 skb->xmit_more = more ? 1 : 0;
3991 return ops->ndo_start_xmit(skb, dev);
3992 }
3993
3994 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3995 struct netdev_queue *txq, bool more)
3996 {
3997 const struct net_device_ops *ops = dev->netdev_ops;
3998 int rc;
3999
4000 rc = __netdev_start_xmit(ops, skb, dev, more);
4001 if (rc == NETDEV_TX_OK)
4002 txq_trans_update(txq);
4003
4004 return rc;
4005 }
4006
4007 int netdev_class_create_file_ns(struct class_attribute *class_attr,
4008 const void *ns);
4009 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
4010 const void *ns);
4011
4012 static inline int netdev_class_create_file(struct class_attribute *class_attr)
4013 {
4014 return netdev_class_create_file_ns(class_attr, NULL);
4015 }
4016
4017 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
4018 {
4019 netdev_class_remove_file_ns(class_attr, NULL);
4020 }
4021
4022 extern struct kobj_ns_type_operations net_ns_type_operations;
4023
4024 const char *netdev_drivername(const struct net_device *dev);
4025
4026 void linkwatch_run_queue(void);
4027
4028 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4029 netdev_features_t f2)
4030 {
4031 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4032 if (f1 & NETIF_F_HW_CSUM)
4033 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4034 else
4035 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4036 }
4037
4038 return f1 & f2;
4039 }
4040
4041 static inline netdev_features_t netdev_get_wanted_features(
4042 struct net_device *dev)
4043 {
4044 return (dev->features & ~dev->hw_features) | dev->wanted_features;
4045 }
4046 netdev_features_t netdev_increment_features(netdev_features_t all,
4047 netdev_features_t one, netdev_features_t mask);
4048
4049 /* Allow TSO being used on stacked device :
4050 * Performing the GSO segmentation before last device
4051 * is a performance improvement.
4052 */
4053 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4054 netdev_features_t mask)
4055 {
4056 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4057 }
4058
4059 int __netdev_update_features(struct net_device *dev);
4060 void netdev_update_features(struct net_device *dev);
4061 void netdev_change_features(struct net_device *dev);
4062
4063 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4064 struct net_device *dev);
4065
4066 netdev_features_t passthru_features_check(struct sk_buff *skb,
4067 struct net_device *dev,
4068 netdev_features_t features);
4069 netdev_features_t netif_skb_features(struct sk_buff *skb);
4070
4071 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4072 {
4073 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4074
4075 /* check flags correspondence */
4076 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4077 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
4078 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4079 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4080 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4081 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4082 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4083 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4084 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4085 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4086 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4087 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4088 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4089 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4090 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4091 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4092
4093 return (features & feature) == feature;
4094 }
4095
4096 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4097 {
4098 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4099 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4100 }
4101
4102 static inline bool netif_needs_gso(struct sk_buff *skb,
4103 netdev_features_t features)
4104 {
4105 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4106 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4107 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4108 }
4109
4110 static inline void netif_set_gso_max_size(struct net_device *dev,
4111 unsigned int size)
4112 {
4113 dev->gso_max_size = size;
4114 }
4115
4116 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4117 int pulled_hlen, u16 mac_offset,
4118 int mac_len)
4119 {
4120 skb->protocol = protocol;
4121 skb->encapsulation = 1;
4122 skb_push(skb, pulled_hlen);
4123 skb_reset_transport_header(skb);
4124 skb->mac_header = mac_offset;
4125 skb->network_header = skb->mac_header + mac_len;
4126 skb->mac_len = mac_len;
4127 }
4128
4129 static inline bool netif_is_macsec(const struct net_device *dev)
4130 {
4131 return dev->priv_flags & IFF_MACSEC;
4132 }
4133
4134 static inline bool netif_is_macvlan(const struct net_device *dev)
4135 {
4136 return dev->priv_flags & IFF_MACVLAN;
4137 }
4138
4139 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4140 {
4141 return dev->priv_flags & IFF_MACVLAN_PORT;
4142 }
4143
4144 static inline bool netif_is_ipvlan(const struct net_device *dev)
4145 {
4146 return dev->priv_flags & IFF_IPVLAN_SLAVE;
4147 }
4148
4149 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
4150 {
4151 return dev->priv_flags & IFF_IPVLAN_MASTER;
4152 }
4153
4154 static inline bool netif_is_bond_master(const struct net_device *dev)
4155 {
4156 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4157 }
4158
4159 static inline bool netif_is_bond_slave(const struct net_device *dev)
4160 {
4161 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4162 }
4163
4164 static inline bool netif_supports_nofcs(struct net_device *dev)
4165 {
4166 return dev->priv_flags & IFF_SUPP_NOFCS;
4167 }
4168
4169 static inline bool netif_is_l3_master(const struct net_device *dev)
4170 {
4171 return dev->priv_flags & IFF_L3MDEV_MASTER;
4172 }
4173
4174 static inline bool netif_is_l3_slave(const struct net_device *dev)
4175 {
4176 return dev->priv_flags & IFF_L3MDEV_SLAVE;
4177 }
4178
4179 static inline bool netif_is_bridge_master(const struct net_device *dev)
4180 {
4181 return dev->priv_flags & IFF_EBRIDGE;
4182 }
4183
4184 static inline bool netif_is_bridge_port(const struct net_device *dev)
4185 {
4186 return dev->priv_flags & IFF_BRIDGE_PORT;
4187 }
4188
4189 static inline bool netif_is_ovs_master(const struct net_device *dev)
4190 {
4191 return dev->priv_flags & IFF_OPENVSWITCH;
4192 }
4193
4194 static inline bool netif_is_team_master(const struct net_device *dev)
4195 {
4196 return dev->priv_flags & IFF_TEAM;
4197 }
4198
4199 static inline bool netif_is_team_port(const struct net_device *dev)
4200 {
4201 return dev->priv_flags & IFF_TEAM_PORT;
4202 }
4203
4204 static inline bool netif_is_lag_master(const struct net_device *dev)
4205 {
4206 return netif_is_bond_master(dev) || netif_is_team_master(dev);
4207 }
4208
4209 static inline bool netif_is_lag_port(const struct net_device *dev)
4210 {
4211 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4212 }
4213
4214 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4215 {
4216 return dev->priv_flags & IFF_RXFH_CONFIGURED;
4217 }
4218
4219 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4220 static inline void netif_keep_dst(struct net_device *dev)
4221 {
4222 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4223 }
4224
4225 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4226 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4227 {
4228 /* TODO: reserve and use an additional IFF bit, if we get more users */
4229 return dev->priv_flags & IFF_MACSEC;
4230 }
4231
4232 extern struct pernet_operations __net_initdata loopback_net_ops;
4233
4234 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4235
4236 /* netdev_printk helpers, similar to dev_printk */
4237
4238 static inline const char *netdev_name(const struct net_device *dev)
4239 {
4240 if (!dev->name[0] || strchr(dev->name, '%'))
4241 return "(unnamed net_device)";
4242 return dev->name;
4243 }
4244
4245 static inline const char *netdev_reg_state(const struct net_device *dev)
4246 {
4247 switch (dev->reg_state) {
4248 case NETREG_UNINITIALIZED: return " (uninitialized)";
4249 case NETREG_REGISTERED: return "";
4250 case NETREG_UNREGISTERING: return " (unregistering)";
4251 case NETREG_UNREGISTERED: return " (unregistered)";
4252 case NETREG_RELEASED: return " (released)";
4253 case NETREG_DUMMY: return " (dummy)";
4254 }
4255
4256 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4257 return " (unknown)";
4258 }
4259
4260 __printf(3, 4)
4261 void netdev_printk(const char *level, const struct net_device *dev,
4262 const char *format, ...);
4263 __printf(2, 3)
4264 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4265 __printf(2, 3)
4266 void netdev_alert(const struct net_device *dev, const char *format, ...);
4267 __printf(2, 3)
4268 void netdev_crit(const struct net_device *dev, const char *format, ...);
4269 __printf(2, 3)
4270 void netdev_err(const struct net_device *dev, const char *format, ...);
4271 __printf(2, 3)
4272 void netdev_warn(const struct net_device *dev, const char *format, ...);
4273 __printf(2, 3)
4274 void netdev_notice(const struct net_device *dev, const char *format, ...);
4275 __printf(2, 3)
4276 void netdev_info(const struct net_device *dev, const char *format, ...);
4277
4278 #define MODULE_ALIAS_NETDEV(device) \
4279 MODULE_ALIAS("netdev-" device)
4280
4281 #if defined(CONFIG_DYNAMIC_DEBUG)
4282 #define netdev_dbg(__dev, format, args...) \
4283 do { \
4284 dynamic_netdev_dbg(__dev, format, ##args); \
4285 } while (0)
4286 #elif defined(DEBUG)
4287 #define netdev_dbg(__dev, format, args...) \
4288 netdev_printk(KERN_DEBUG, __dev, format, ##args)
4289 #else
4290 #define netdev_dbg(__dev, format, args...) \
4291 ({ \
4292 if (0) \
4293 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4294 })
4295 #endif
4296
4297 #if defined(VERBOSE_DEBUG)
4298 #define netdev_vdbg netdev_dbg
4299 #else
4300
4301 #define netdev_vdbg(dev, format, args...) \
4302 ({ \
4303 if (0) \
4304 netdev_printk(KERN_DEBUG, dev, format, ##args); \
4305 0; \
4306 })
4307 #endif
4308
4309 /*
4310 * netdev_WARN() acts like dev_printk(), but with the key difference
4311 * of using a WARN/WARN_ON to get the message out, including the
4312 * file/line information and a backtrace.
4313 */
4314 #define netdev_WARN(dev, format, args...) \
4315 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \
4316 netdev_reg_state(dev), ##args)
4317
4318 /* netif printk helpers, similar to netdev_printk */
4319
4320 #define netif_printk(priv, type, level, dev, fmt, args...) \
4321 do { \
4322 if (netif_msg_##type(priv)) \
4323 netdev_printk(level, (dev), fmt, ##args); \
4324 } while (0)
4325
4326 #define netif_level(level, priv, type, dev, fmt, args...) \
4327 do { \
4328 if (netif_msg_##type(priv)) \
4329 netdev_##level(dev, fmt, ##args); \
4330 } while (0)
4331
4332 #define netif_emerg(priv, type, dev, fmt, args...) \
4333 netif_level(emerg, priv, type, dev, fmt, ##args)
4334 #define netif_alert(priv, type, dev, fmt, args...) \
4335 netif_level(alert, priv, type, dev, fmt, ##args)
4336 #define netif_crit(priv, type, dev, fmt, args...) \
4337 netif_level(crit, priv, type, dev, fmt, ##args)
4338 #define netif_err(priv, type, dev, fmt, args...) \
4339 netif_level(err, priv, type, dev, fmt, ##args)
4340 #define netif_warn(priv, type, dev, fmt, args...) \
4341 netif_level(warn, priv, type, dev, fmt, ##args)
4342 #define netif_notice(priv, type, dev, fmt, args...) \
4343 netif_level(notice, priv, type, dev, fmt, ##args)
4344 #define netif_info(priv, type, dev, fmt, args...) \
4345 netif_level(info, priv, type, dev, fmt, ##args)
4346
4347 #if defined(CONFIG_DYNAMIC_DEBUG)
4348 #define netif_dbg(priv, type, netdev, format, args...) \
4349 do { \
4350 if (netif_msg_##type(priv)) \
4351 dynamic_netdev_dbg(netdev, format, ##args); \
4352 } while (0)
4353 #elif defined(DEBUG)
4354 #define netif_dbg(priv, type, dev, format, args...) \
4355 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4356 #else
4357 #define netif_dbg(priv, type, dev, format, args...) \
4358 ({ \
4359 if (0) \
4360 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4361 0; \
4362 })
4363 #endif
4364
4365 /* if @cond then downgrade to debug, else print at @level */
4366 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \
4367 do { \
4368 if (cond) \
4369 netif_dbg(priv, type, netdev, fmt, ##args); \
4370 else \
4371 netif_ ## level(priv, type, netdev, fmt, ##args); \
4372 } while (0)
4373
4374 #if defined(VERBOSE_DEBUG)
4375 #define netif_vdbg netif_dbg
4376 #else
4377 #define netif_vdbg(priv, type, dev, format, args...) \
4378 ({ \
4379 if (0) \
4380 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4381 0; \
4382 })
4383 #endif
4384
4385 /*
4386 * The list of packet types we will receive (as opposed to discard)
4387 * and the routines to invoke.
4388 *
4389 * Why 16. Because with 16 the only overlap we get on a hash of the
4390 * low nibble of the protocol value is RARP/SNAP/X.25.
4391 *
4392 * NOTE: That is no longer true with the addition of VLAN tags. Not
4393 * sure which should go first, but I bet it won't make much
4394 * difference if we are running VLANs. The good news is that
4395 * this protocol won't be in the list unless compiled in, so
4396 * the average user (w/out VLANs) will not be adversely affected.
4397 * --BLG
4398 *
4399 * 0800 IP
4400 * 8100 802.1Q VLAN
4401 * 0001 802.3
4402 * 0002 AX.25
4403 * 0004 802.2
4404 * 8035 RARP
4405 * 0005 SNAP
4406 * 0805 X.25
4407 * 0806 ARP
4408 * 8137 IPX
4409 * 0009 Localtalk
4410 * 86DD IPv6
4411 */
4412 #define PTYPE_HASH_SIZE (16)
4413 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4414
4415 #endif /* _LINUX_NETDEVICE_H */