]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/netdevice.h
Merge tag 'stable/for-linus-3.8-rc0-bugfix-tag' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-artful-kernel.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/pm_qos.h>
29 #include <linux/timer.h>
30 #include <linux/bug.h>
31 #include <linux/delay.h>
32 #include <linux/atomic.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53
54 struct netpoll_info;
55 struct device;
56 struct phy_device;
57 /* 802.11 specific */
58 struct wireless_dev;
59 /* source back-compat hooks */
60 #define SET_ETHTOOL_OPS(netdev,ops) \
61 ( (netdev)->ethtool_ops = (ops) )
62
63 /* hardware address assignment types */
64 #define NET_ADDR_PERM 0 /* address is permanent (default) */
65 #define NET_ADDR_RANDOM 1 /* address is generated randomly */
66 #define NET_ADDR_STOLEN 2 /* address is stolen from other device */
67
68 /* Backlog congestion levels */
69 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
70 #define NET_RX_DROP 1 /* packet dropped */
71
72 /*
73 * Transmit return codes: transmit return codes originate from three different
74 * namespaces:
75 *
76 * - qdisc return codes
77 * - driver transmit return codes
78 * - errno values
79 *
80 * Drivers are allowed to return any one of those in their hard_start_xmit()
81 * function. Real network devices commonly used with qdiscs should only return
82 * the driver transmit return codes though - when qdiscs are used, the actual
83 * transmission happens asynchronously, so the value is not propagated to
84 * higher layers. Virtual network devices transmit synchronously, in this case
85 * the driver transmit return codes are consumed by dev_queue_xmit(), all
86 * others are propagated to higher layers.
87 */
88
89 /* qdisc ->enqueue() return codes. */
90 #define NET_XMIT_SUCCESS 0x00
91 #define NET_XMIT_DROP 0x01 /* skb dropped */
92 #define NET_XMIT_CN 0x02 /* congestion notification */
93 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
94 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
95
96 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
97 * indicates that the device will soon be dropping packets, or already drops
98 * some packets of the same priority; prompting us to send less aggressively. */
99 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
100 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
101
102 /* Driver transmit return codes */
103 #define NETDEV_TX_MASK 0xf0
104
105 enum netdev_tx {
106 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
107 NETDEV_TX_OK = 0x00, /* driver took care of packet */
108 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
109 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
110 };
111 typedef enum netdev_tx netdev_tx_t;
112
113 /*
114 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
115 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
116 */
117 static inline bool dev_xmit_complete(int rc)
118 {
119 /*
120 * Positive cases with an skb consumed by a driver:
121 * - successful transmission (rc == NETDEV_TX_OK)
122 * - error while transmitting (rc < 0)
123 * - error while queueing to a different device (rc & NET_XMIT_MASK)
124 */
125 if (likely(rc < NET_XMIT_MASK))
126 return true;
127
128 return false;
129 }
130
131 /*
132 * Compute the worst case header length according to the protocols
133 * used.
134 */
135
136 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
137 # if defined(CONFIG_MAC80211_MESH)
138 # define LL_MAX_HEADER 128
139 # else
140 # define LL_MAX_HEADER 96
141 # endif
142 #elif IS_ENABLED(CONFIG_TR)
143 # define LL_MAX_HEADER 48
144 #else
145 # define LL_MAX_HEADER 32
146 #endif
147
148 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
149 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
150 #define MAX_HEADER LL_MAX_HEADER
151 #else
152 #define MAX_HEADER (LL_MAX_HEADER + 48)
153 #endif
154
155 /*
156 * Old network device statistics. Fields are native words
157 * (unsigned long) so they can be read and written atomically.
158 */
159
160 struct net_device_stats {
161 unsigned long rx_packets;
162 unsigned long tx_packets;
163 unsigned long rx_bytes;
164 unsigned long tx_bytes;
165 unsigned long rx_errors;
166 unsigned long tx_errors;
167 unsigned long rx_dropped;
168 unsigned long tx_dropped;
169 unsigned long multicast;
170 unsigned long collisions;
171 unsigned long rx_length_errors;
172 unsigned long rx_over_errors;
173 unsigned long rx_crc_errors;
174 unsigned long rx_frame_errors;
175 unsigned long rx_fifo_errors;
176 unsigned long rx_missed_errors;
177 unsigned long tx_aborted_errors;
178 unsigned long tx_carrier_errors;
179 unsigned long tx_fifo_errors;
180 unsigned long tx_heartbeat_errors;
181 unsigned long tx_window_errors;
182 unsigned long rx_compressed;
183 unsigned long tx_compressed;
184 };
185
186
187 #include <linux/cache.h>
188 #include <linux/skbuff.h>
189
190 #ifdef CONFIG_RPS
191 #include <linux/static_key.h>
192 extern struct static_key rps_needed;
193 #endif
194
195 struct neighbour;
196 struct neigh_parms;
197 struct sk_buff;
198
199 struct netdev_hw_addr {
200 struct list_head list;
201 unsigned char addr[MAX_ADDR_LEN];
202 unsigned char type;
203 #define NETDEV_HW_ADDR_T_LAN 1
204 #define NETDEV_HW_ADDR_T_SAN 2
205 #define NETDEV_HW_ADDR_T_SLAVE 3
206 #define NETDEV_HW_ADDR_T_UNICAST 4
207 #define NETDEV_HW_ADDR_T_MULTICAST 5
208 bool synced;
209 bool global_use;
210 int refcount;
211 struct rcu_head rcu_head;
212 };
213
214 struct netdev_hw_addr_list {
215 struct list_head list;
216 int count;
217 };
218
219 #define netdev_hw_addr_list_count(l) ((l)->count)
220 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
221 #define netdev_hw_addr_list_for_each(ha, l) \
222 list_for_each_entry(ha, &(l)->list, list)
223
224 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
225 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
226 #define netdev_for_each_uc_addr(ha, dev) \
227 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
228
229 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
230 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
231 #define netdev_for_each_mc_addr(ha, dev) \
232 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
233
234 struct hh_cache {
235 u16 hh_len;
236 u16 __pad;
237 seqlock_t hh_lock;
238
239 /* cached hardware header; allow for machine alignment needs. */
240 #define HH_DATA_MOD 16
241 #define HH_DATA_OFF(__len) \
242 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
243 #define HH_DATA_ALIGN(__len) \
244 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
245 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
246 };
247
248 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
249 * Alternative is:
250 * dev->hard_header_len ? (dev->hard_header_len +
251 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
252 *
253 * We could use other alignment values, but we must maintain the
254 * relationship HH alignment <= LL alignment.
255 */
256 #define LL_RESERVED_SPACE(dev) \
257 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
258 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
259 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
260
261 struct header_ops {
262 int (*create) (struct sk_buff *skb, struct net_device *dev,
263 unsigned short type, const void *daddr,
264 const void *saddr, unsigned int len);
265 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
266 int (*rebuild)(struct sk_buff *skb);
267 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
268 void (*cache_update)(struct hh_cache *hh,
269 const struct net_device *dev,
270 const unsigned char *haddr);
271 };
272
273 /* These flag bits are private to the generic network queueing
274 * layer, they may not be explicitly referenced by any other
275 * code.
276 */
277
278 enum netdev_state_t {
279 __LINK_STATE_START,
280 __LINK_STATE_PRESENT,
281 __LINK_STATE_NOCARRIER,
282 __LINK_STATE_LINKWATCH_PENDING,
283 __LINK_STATE_DORMANT,
284 };
285
286
287 /*
288 * This structure holds at boot time configured netdevice settings. They
289 * are then used in the device probing.
290 */
291 struct netdev_boot_setup {
292 char name[IFNAMSIZ];
293 struct ifmap map;
294 };
295 #define NETDEV_BOOT_SETUP_MAX 8
296
297 extern int __init netdev_boot_setup(char *str);
298
299 /*
300 * Structure for NAPI scheduling similar to tasklet but with weighting
301 */
302 struct napi_struct {
303 /* The poll_list must only be managed by the entity which
304 * changes the state of the NAPI_STATE_SCHED bit. This means
305 * whoever atomically sets that bit can add this napi_struct
306 * to the per-cpu poll_list, and whoever clears that bit
307 * can remove from the list right before clearing the bit.
308 */
309 struct list_head poll_list;
310
311 unsigned long state;
312 int weight;
313 unsigned int gro_count;
314 int (*poll)(struct napi_struct *, int);
315 #ifdef CONFIG_NETPOLL
316 spinlock_t poll_lock;
317 int poll_owner;
318 #endif
319 struct net_device *dev;
320 struct sk_buff *gro_list;
321 struct sk_buff *skb;
322 struct list_head dev_list;
323 };
324
325 enum {
326 NAPI_STATE_SCHED, /* Poll is scheduled */
327 NAPI_STATE_DISABLE, /* Disable pending */
328 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
329 };
330
331 enum gro_result {
332 GRO_MERGED,
333 GRO_MERGED_FREE,
334 GRO_HELD,
335 GRO_NORMAL,
336 GRO_DROP,
337 };
338 typedef enum gro_result gro_result_t;
339
340 /*
341 * enum rx_handler_result - Possible return values for rx_handlers.
342 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
343 * further.
344 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
345 * case skb->dev was changed by rx_handler.
346 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
347 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
348 *
349 * rx_handlers are functions called from inside __netif_receive_skb(), to do
350 * special processing of the skb, prior to delivery to protocol handlers.
351 *
352 * Currently, a net_device can only have a single rx_handler registered. Trying
353 * to register a second rx_handler will return -EBUSY.
354 *
355 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
356 * To unregister a rx_handler on a net_device, use
357 * netdev_rx_handler_unregister().
358 *
359 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
360 * do with the skb.
361 *
362 * If the rx_handler consumed to skb in some way, it should return
363 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
364 * the skb to be delivered in some other ways.
365 *
366 * If the rx_handler changed skb->dev, to divert the skb to another
367 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
368 * new device will be called if it exists.
369 *
370 * If the rx_handler consider the skb should be ignored, it should return
371 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
372 * are registered on exact device (ptype->dev == skb->dev).
373 *
374 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
375 * delivered, it should return RX_HANDLER_PASS.
376 *
377 * A device without a registered rx_handler will behave as if rx_handler
378 * returned RX_HANDLER_PASS.
379 */
380
381 enum rx_handler_result {
382 RX_HANDLER_CONSUMED,
383 RX_HANDLER_ANOTHER,
384 RX_HANDLER_EXACT,
385 RX_HANDLER_PASS,
386 };
387 typedef enum rx_handler_result rx_handler_result_t;
388 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
389
390 extern void __napi_schedule(struct napi_struct *n);
391
392 static inline bool napi_disable_pending(struct napi_struct *n)
393 {
394 return test_bit(NAPI_STATE_DISABLE, &n->state);
395 }
396
397 /**
398 * napi_schedule_prep - check if napi can be scheduled
399 * @n: napi context
400 *
401 * Test if NAPI routine is already running, and if not mark
402 * it as running. This is used as a condition variable
403 * insure only one NAPI poll instance runs. We also make
404 * sure there is no pending NAPI disable.
405 */
406 static inline bool napi_schedule_prep(struct napi_struct *n)
407 {
408 return !napi_disable_pending(n) &&
409 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
410 }
411
412 /**
413 * napi_schedule - schedule NAPI poll
414 * @n: napi context
415 *
416 * Schedule NAPI poll routine to be called if it is not already
417 * running.
418 */
419 static inline void napi_schedule(struct napi_struct *n)
420 {
421 if (napi_schedule_prep(n))
422 __napi_schedule(n);
423 }
424
425 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
426 static inline bool napi_reschedule(struct napi_struct *napi)
427 {
428 if (napi_schedule_prep(napi)) {
429 __napi_schedule(napi);
430 return true;
431 }
432 return false;
433 }
434
435 /**
436 * napi_complete - NAPI processing complete
437 * @n: napi context
438 *
439 * Mark NAPI processing as complete.
440 */
441 extern void __napi_complete(struct napi_struct *n);
442 extern void napi_complete(struct napi_struct *n);
443
444 /**
445 * napi_disable - prevent NAPI from scheduling
446 * @n: napi context
447 *
448 * Stop NAPI from being scheduled on this context.
449 * Waits till any outstanding processing completes.
450 */
451 static inline void napi_disable(struct napi_struct *n)
452 {
453 set_bit(NAPI_STATE_DISABLE, &n->state);
454 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
455 msleep(1);
456 clear_bit(NAPI_STATE_DISABLE, &n->state);
457 }
458
459 /**
460 * napi_enable - enable NAPI scheduling
461 * @n: napi context
462 *
463 * Resume NAPI from being scheduled on this context.
464 * Must be paired with napi_disable.
465 */
466 static inline void napi_enable(struct napi_struct *n)
467 {
468 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
469 smp_mb__before_clear_bit();
470 clear_bit(NAPI_STATE_SCHED, &n->state);
471 }
472
473 #ifdef CONFIG_SMP
474 /**
475 * napi_synchronize - wait until NAPI is not running
476 * @n: napi context
477 *
478 * Wait until NAPI is done being scheduled on this context.
479 * Waits till any outstanding processing completes but
480 * does not disable future activations.
481 */
482 static inline void napi_synchronize(const struct napi_struct *n)
483 {
484 while (test_bit(NAPI_STATE_SCHED, &n->state))
485 msleep(1);
486 }
487 #else
488 # define napi_synchronize(n) barrier()
489 #endif
490
491 enum netdev_queue_state_t {
492 __QUEUE_STATE_DRV_XOFF,
493 __QUEUE_STATE_STACK_XOFF,
494 __QUEUE_STATE_FROZEN,
495 #define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF) | \
496 (1 << __QUEUE_STATE_STACK_XOFF))
497 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
498 (1 << __QUEUE_STATE_FROZEN))
499 };
500 /*
501 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
502 * netif_tx_* functions below are used to manipulate this flag. The
503 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
504 * queue independently. The netif_xmit_*stopped functions below are called
505 * to check if the queue has been stopped by the driver or stack (either
506 * of the XOFF bits are set in the state). Drivers should not need to call
507 * netif_xmit*stopped functions, they should only be using netif_tx_*.
508 */
509
510 struct netdev_queue {
511 /*
512 * read mostly part
513 */
514 struct net_device *dev;
515 struct Qdisc *qdisc;
516 struct Qdisc *qdisc_sleeping;
517 #ifdef CONFIG_SYSFS
518 struct kobject kobj;
519 #endif
520 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
521 int numa_node;
522 #endif
523 /*
524 * write mostly part
525 */
526 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
527 int xmit_lock_owner;
528 /*
529 * please use this field instead of dev->trans_start
530 */
531 unsigned long trans_start;
532
533 /*
534 * Number of TX timeouts for this queue
535 * (/sys/class/net/DEV/Q/trans_timeout)
536 */
537 unsigned long trans_timeout;
538
539 unsigned long state;
540
541 #ifdef CONFIG_BQL
542 struct dql dql;
543 #endif
544 } ____cacheline_aligned_in_smp;
545
546 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
547 {
548 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
549 return q->numa_node;
550 #else
551 return NUMA_NO_NODE;
552 #endif
553 }
554
555 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
556 {
557 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
558 q->numa_node = node;
559 #endif
560 }
561
562 #ifdef CONFIG_RPS
563 /*
564 * This structure holds an RPS map which can be of variable length. The
565 * map is an array of CPUs.
566 */
567 struct rps_map {
568 unsigned int len;
569 struct rcu_head rcu;
570 u16 cpus[0];
571 };
572 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
573
574 /*
575 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
576 * tail pointer for that CPU's input queue at the time of last enqueue, and
577 * a hardware filter index.
578 */
579 struct rps_dev_flow {
580 u16 cpu;
581 u16 filter;
582 unsigned int last_qtail;
583 };
584 #define RPS_NO_FILTER 0xffff
585
586 /*
587 * The rps_dev_flow_table structure contains a table of flow mappings.
588 */
589 struct rps_dev_flow_table {
590 unsigned int mask;
591 struct rcu_head rcu;
592 struct work_struct free_work;
593 struct rps_dev_flow flows[0];
594 };
595 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
596 ((_num) * sizeof(struct rps_dev_flow)))
597
598 /*
599 * The rps_sock_flow_table contains mappings of flows to the last CPU
600 * on which they were processed by the application (set in recvmsg).
601 */
602 struct rps_sock_flow_table {
603 unsigned int mask;
604 u16 ents[0];
605 };
606 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
607 ((_num) * sizeof(u16)))
608
609 #define RPS_NO_CPU 0xffff
610
611 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
612 u32 hash)
613 {
614 if (table && hash) {
615 unsigned int cpu, index = hash & table->mask;
616
617 /* We only give a hint, preemption can change cpu under us */
618 cpu = raw_smp_processor_id();
619
620 if (table->ents[index] != cpu)
621 table->ents[index] = cpu;
622 }
623 }
624
625 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
626 u32 hash)
627 {
628 if (table && hash)
629 table->ents[hash & table->mask] = RPS_NO_CPU;
630 }
631
632 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
633
634 #ifdef CONFIG_RFS_ACCEL
635 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
636 u32 flow_id, u16 filter_id);
637 #endif
638
639 /* This structure contains an instance of an RX queue. */
640 struct netdev_rx_queue {
641 struct rps_map __rcu *rps_map;
642 struct rps_dev_flow_table __rcu *rps_flow_table;
643 struct kobject kobj;
644 struct net_device *dev;
645 } ____cacheline_aligned_in_smp;
646 #endif /* CONFIG_RPS */
647
648 #ifdef CONFIG_XPS
649 /*
650 * This structure holds an XPS map which can be of variable length. The
651 * map is an array of queues.
652 */
653 struct xps_map {
654 unsigned int len;
655 unsigned int alloc_len;
656 struct rcu_head rcu;
657 u16 queues[0];
658 };
659 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
660 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
661 / sizeof(u16))
662
663 /*
664 * This structure holds all XPS maps for device. Maps are indexed by CPU.
665 */
666 struct xps_dev_maps {
667 struct rcu_head rcu;
668 struct xps_map __rcu *cpu_map[0];
669 };
670 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
671 (nr_cpu_ids * sizeof(struct xps_map *)))
672 #endif /* CONFIG_XPS */
673
674 #define TC_MAX_QUEUE 16
675 #define TC_BITMASK 15
676 /* HW offloaded queuing disciplines txq count and offset maps */
677 struct netdev_tc_txq {
678 u16 count;
679 u16 offset;
680 };
681
682 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
683 /*
684 * This structure is to hold information about the device
685 * configured to run FCoE protocol stack.
686 */
687 struct netdev_fcoe_hbainfo {
688 char manufacturer[64];
689 char serial_number[64];
690 char hardware_version[64];
691 char driver_version[64];
692 char optionrom_version[64];
693 char firmware_version[64];
694 char model[256];
695 char model_description[256];
696 };
697 #endif
698
699 /*
700 * This structure defines the management hooks for network devices.
701 * The following hooks can be defined; unless noted otherwise, they are
702 * optional and can be filled with a null pointer.
703 *
704 * int (*ndo_init)(struct net_device *dev);
705 * This function is called once when network device is registered.
706 * The network device can use this to any late stage initializaton
707 * or semantic validattion. It can fail with an error code which will
708 * be propogated back to register_netdev
709 *
710 * void (*ndo_uninit)(struct net_device *dev);
711 * This function is called when device is unregistered or when registration
712 * fails. It is not called if init fails.
713 *
714 * int (*ndo_open)(struct net_device *dev);
715 * This function is called when network device transistions to the up
716 * state.
717 *
718 * int (*ndo_stop)(struct net_device *dev);
719 * This function is called when network device transistions to the down
720 * state.
721 *
722 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
723 * struct net_device *dev);
724 * Called when a packet needs to be transmitted.
725 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
726 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
727 * Required can not be NULL.
728 *
729 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
730 * Called to decide which queue to when device supports multiple
731 * transmit queues.
732 *
733 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
734 * This function is called to allow device receiver to make
735 * changes to configuration when multicast or promiscious is enabled.
736 *
737 * void (*ndo_set_rx_mode)(struct net_device *dev);
738 * This function is called device changes address list filtering.
739 * If driver handles unicast address filtering, it should set
740 * IFF_UNICAST_FLT to its priv_flags.
741 *
742 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
743 * This function is called when the Media Access Control address
744 * needs to be changed. If this interface is not defined, the
745 * mac address can not be changed.
746 *
747 * int (*ndo_validate_addr)(struct net_device *dev);
748 * Test if Media Access Control address is valid for the device.
749 *
750 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
751 * Called when a user request an ioctl which can't be handled by
752 * the generic interface code. If not defined ioctl's return
753 * not supported error code.
754 *
755 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
756 * Used to set network devices bus interface parameters. This interface
757 * is retained for legacy reason, new devices should use the bus
758 * interface (PCI) for low level management.
759 *
760 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
761 * Called when a user wants to change the Maximum Transfer Unit
762 * of a device. If not defined, any request to change MTU will
763 * will return an error.
764 *
765 * void (*ndo_tx_timeout)(struct net_device *dev);
766 * Callback uses when the transmitter has not made any progress
767 * for dev->watchdog ticks.
768 *
769 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
770 * struct rtnl_link_stats64 *storage);
771 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
772 * Called when a user wants to get the network device usage
773 * statistics. Drivers must do one of the following:
774 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
775 * rtnl_link_stats64 structure passed by the caller.
776 * 2. Define @ndo_get_stats to update a net_device_stats structure
777 * (which should normally be dev->stats) and return a pointer to
778 * it. The structure may be changed asynchronously only if each
779 * field is written atomically.
780 * 3. Update dev->stats asynchronously and atomically, and define
781 * neither operation.
782 *
783 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
784 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
785 * this function is called when a VLAN id is registered.
786 *
787 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
788 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
789 * this function is called when a VLAN id is unregistered.
790 *
791 * void (*ndo_poll_controller)(struct net_device *dev);
792 *
793 * SR-IOV management functions.
794 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
795 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
796 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
797 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
798 * int (*ndo_get_vf_config)(struct net_device *dev,
799 * int vf, struct ifla_vf_info *ivf);
800 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
801 * struct nlattr *port[]);
802 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
803 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
804 * Called to setup 'tc' number of traffic classes in the net device. This
805 * is always called from the stack with the rtnl lock held and netif tx
806 * queues stopped. This allows the netdevice to perform queue management
807 * safely.
808 *
809 * Fiber Channel over Ethernet (FCoE) offload functions.
810 * int (*ndo_fcoe_enable)(struct net_device *dev);
811 * Called when the FCoE protocol stack wants to start using LLD for FCoE
812 * so the underlying device can perform whatever needed configuration or
813 * initialization to support acceleration of FCoE traffic.
814 *
815 * int (*ndo_fcoe_disable)(struct net_device *dev);
816 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
817 * so the underlying device can perform whatever needed clean-ups to
818 * stop supporting acceleration of FCoE traffic.
819 *
820 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
821 * struct scatterlist *sgl, unsigned int sgc);
822 * Called when the FCoE Initiator wants to initialize an I/O that
823 * is a possible candidate for Direct Data Placement (DDP). The LLD can
824 * perform necessary setup and returns 1 to indicate the device is set up
825 * successfully to perform DDP on this I/O, otherwise this returns 0.
826 *
827 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
828 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
829 * indicated by the FC exchange id 'xid', so the underlying device can
830 * clean up and reuse resources for later DDP requests.
831 *
832 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
833 * struct scatterlist *sgl, unsigned int sgc);
834 * Called when the FCoE Target wants to initialize an I/O that
835 * is a possible candidate for Direct Data Placement (DDP). The LLD can
836 * perform necessary setup and returns 1 to indicate the device is set up
837 * successfully to perform DDP on this I/O, otherwise this returns 0.
838 *
839 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
840 * struct netdev_fcoe_hbainfo *hbainfo);
841 * Called when the FCoE Protocol stack wants information on the underlying
842 * device. This information is utilized by the FCoE protocol stack to
843 * register attributes with Fiber Channel management service as per the
844 * FC-GS Fabric Device Management Information(FDMI) specification.
845 *
846 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
847 * Called when the underlying device wants to override default World Wide
848 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
849 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
850 * protocol stack to use.
851 *
852 * RFS acceleration.
853 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
854 * u16 rxq_index, u32 flow_id);
855 * Set hardware filter for RFS. rxq_index is the target queue index;
856 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
857 * Return the filter ID on success, or a negative error code.
858 *
859 * Slave management functions (for bridge, bonding, etc). User should
860 * call netdev_set_master() to set dev->master properly.
861 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
862 * Called to make another netdev an underling.
863 *
864 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
865 * Called to release previously enslaved netdev.
866 *
867 * Feature/offload setting functions.
868 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
869 * netdev_features_t features);
870 * Adjusts the requested feature flags according to device-specific
871 * constraints, and returns the resulting flags. Must not modify
872 * the device state.
873 *
874 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
875 * Called to update device configuration to new features. Passed
876 * feature set might be less than what was returned by ndo_fix_features()).
877 * Must return >0 or -errno if it changed dev->features itself.
878 *
879 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
880 * struct net_device *dev,
881 * const unsigned char *addr, u16 flags)
882 * Adds an FDB entry to dev for addr.
883 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct net_device *dev,
884 * const unsigned char *addr)
885 * Deletes the FDB entry from dev coresponding to addr.
886 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
887 * struct net_device *dev, int idx)
888 * Used to add FDB entries to dump requests. Implementers should add
889 * entries to skb and update idx with the number of entries.
890 *
891 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh)
892 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
893 * struct net_device *dev)
894 */
895 struct net_device_ops {
896 int (*ndo_init)(struct net_device *dev);
897 void (*ndo_uninit)(struct net_device *dev);
898 int (*ndo_open)(struct net_device *dev);
899 int (*ndo_stop)(struct net_device *dev);
900 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
901 struct net_device *dev);
902 u16 (*ndo_select_queue)(struct net_device *dev,
903 struct sk_buff *skb);
904 void (*ndo_change_rx_flags)(struct net_device *dev,
905 int flags);
906 void (*ndo_set_rx_mode)(struct net_device *dev);
907 int (*ndo_set_mac_address)(struct net_device *dev,
908 void *addr);
909 int (*ndo_validate_addr)(struct net_device *dev);
910 int (*ndo_do_ioctl)(struct net_device *dev,
911 struct ifreq *ifr, int cmd);
912 int (*ndo_set_config)(struct net_device *dev,
913 struct ifmap *map);
914 int (*ndo_change_mtu)(struct net_device *dev,
915 int new_mtu);
916 int (*ndo_neigh_setup)(struct net_device *dev,
917 struct neigh_parms *);
918 void (*ndo_tx_timeout) (struct net_device *dev);
919
920 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
921 struct rtnl_link_stats64 *storage);
922 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
923
924 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
925 unsigned short vid);
926 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
927 unsigned short vid);
928 #ifdef CONFIG_NET_POLL_CONTROLLER
929 void (*ndo_poll_controller)(struct net_device *dev);
930 int (*ndo_netpoll_setup)(struct net_device *dev,
931 struct netpoll_info *info,
932 gfp_t gfp);
933 void (*ndo_netpoll_cleanup)(struct net_device *dev);
934 #endif
935 int (*ndo_set_vf_mac)(struct net_device *dev,
936 int queue, u8 *mac);
937 int (*ndo_set_vf_vlan)(struct net_device *dev,
938 int queue, u16 vlan, u8 qos);
939 int (*ndo_set_vf_tx_rate)(struct net_device *dev,
940 int vf, int rate);
941 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
942 int vf, bool setting);
943 int (*ndo_get_vf_config)(struct net_device *dev,
944 int vf,
945 struct ifla_vf_info *ivf);
946 int (*ndo_set_vf_port)(struct net_device *dev,
947 int vf,
948 struct nlattr *port[]);
949 int (*ndo_get_vf_port)(struct net_device *dev,
950 int vf, struct sk_buff *skb);
951 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
952 #if IS_ENABLED(CONFIG_FCOE)
953 int (*ndo_fcoe_enable)(struct net_device *dev);
954 int (*ndo_fcoe_disable)(struct net_device *dev);
955 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
956 u16 xid,
957 struct scatterlist *sgl,
958 unsigned int sgc);
959 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
960 u16 xid);
961 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
962 u16 xid,
963 struct scatterlist *sgl,
964 unsigned int sgc);
965 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
966 struct netdev_fcoe_hbainfo *hbainfo);
967 #endif
968
969 #if IS_ENABLED(CONFIG_LIBFCOE)
970 #define NETDEV_FCOE_WWNN 0
971 #define NETDEV_FCOE_WWPN 1
972 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
973 u64 *wwn, int type);
974 #endif
975
976 #ifdef CONFIG_RFS_ACCEL
977 int (*ndo_rx_flow_steer)(struct net_device *dev,
978 const struct sk_buff *skb,
979 u16 rxq_index,
980 u32 flow_id);
981 #endif
982 int (*ndo_add_slave)(struct net_device *dev,
983 struct net_device *slave_dev);
984 int (*ndo_del_slave)(struct net_device *dev,
985 struct net_device *slave_dev);
986 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
987 netdev_features_t features);
988 int (*ndo_set_features)(struct net_device *dev,
989 netdev_features_t features);
990 int (*ndo_neigh_construct)(struct neighbour *n);
991 void (*ndo_neigh_destroy)(struct neighbour *n);
992
993 int (*ndo_fdb_add)(struct ndmsg *ndm,
994 struct nlattr *tb[],
995 struct net_device *dev,
996 const unsigned char *addr,
997 u16 flags);
998 int (*ndo_fdb_del)(struct ndmsg *ndm,
999 struct net_device *dev,
1000 const unsigned char *addr);
1001 int (*ndo_fdb_dump)(struct sk_buff *skb,
1002 struct netlink_callback *cb,
1003 struct net_device *dev,
1004 int idx);
1005
1006 int (*ndo_bridge_setlink)(struct net_device *dev,
1007 struct nlmsghdr *nlh);
1008 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1009 u32 pid, u32 seq,
1010 struct net_device *dev);
1011 };
1012
1013 /*
1014 * The DEVICE structure.
1015 * Actually, this whole structure is a big mistake. It mixes I/O
1016 * data with strictly "high-level" data, and it has to know about
1017 * almost every data structure used in the INET module.
1018 *
1019 * FIXME: cleanup struct net_device such that network protocol info
1020 * moves out.
1021 */
1022
1023 struct net_device {
1024
1025 /*
1026 * This is the first field of the "visible" part of this structure
1027 * (i.e. as seen by users in the "Space.c" file). It is the name
1028 * of the interface.
1029 */
1030 char name[IFNAMSIZ];
1031
1032 /* device name hash chain, please keep it close to name[] */
1033 struct hlist_node name_hlist;
1034
1035 /* snmp alias */
1036 char *ifalias;
1037
1038 /*
1039 * I/O specific fields
1040 * FIXME: Merge these and struct ifmap into one
1041 */
1042 unsigned long mem_end; /* shared mem end */
1043 unsigned long mem_start; /* shared mem start */
1044 unsigned long base_addr; /* device I/O address */
1045 unsigned int irq; /* device IRQ number */
1046
1047 /*
1048 * Some hardware also needs these fields, but they are not
1049 * part of the usual set specified in Space.c.
1050 */
1051
1052 unsigned long state;
1053
1054 struct list_head dev_list;
1055 struct list_head napi_list;
1056 struct list_head unreg_list;
1057
1058 /* currently active device features */
1059 netdev_features_t features;
1060 /* user-changeable features */
1061 netdev_features_t hw_features;
1062 /* user-requested features */
1063 netdev_features_t wanted_features;
1064 /* mask of features inheritable by VLAN devices */
1065 netdev_features_t vlan_features;
1066 /* mask of features inherited by encapsulating devices
1067 * This field indicates what encapsulation offloads
1068 * the hardware is capable of doing, and drivers will
1069 * need to set them appropriately.
1070 */
1071 netdev_features_t hw_enc_features;
1072
1073 /* Interface index. Unique device identifier */
1074 int ifindex;
1075 int iflink;
1076
1077 struct net_device_stats stats;
1078 atomic_long_t rx_dropped; /* dropped packets by core network
1079 * Do not use this in drivers.
1080 */
1081
1082 #ifdef CONFIG_WIRELESS_EXT
1083 /* List of functions to handle Wireless Extensions (instead of ioctl).
1084 * See <net/iw_handler.h> for details. Jean II */
1085 const struct iw_handler_def * wireless_handlers;
1086 /* Instance data managed by the core of Wireless Extensions. */
1087 struct iw_public_data * wireless_data;
1088 #endif
1089 /* Management operations */
1090 const struct net_device_ops *netdev_ops;
1091 const struct ethtool_ops *ethtool_ops;
1092
1093 /* Hardware header description */
1094 const struct header_ops *header_ops;
1095
1096 unsigned int flags; /* interface flags (a la BSD) */
1097 unsigned int priv_flags; /* Like 'flags' but invisible to userspace.
1098 * See if.h for definitions. */
1099 unsigned short gflags;
1100 unsigned short padded; /* How much padding added by alloc_netdev() */
1101
1102 unsigned char operstate; /* RFC2863 operstate */
1103 unsigned char link_mode; /* mapping policy to operstate */
1104
1105 unsigned char if_port; /* Selectable AUI, TP,..*/
1106 unsigned char dma; /* DMA channel */
1107
1108 unsigned int mtu; /* interface MTU value */
1109 unsigned short type; /* interface hardware type */
1110 unsigned short hard_header_len; /* hardware hdr length */
1111
1112 /* extra head- and tailroom the hardware may need, but not in all cases
1113 * can this be guaranteed, especially tailroom. Some cases also use
1114 * LL_MAX_HEADER instead to allocate the skb.
1115 */
1116 unsigned short needed_headroom;
1117 unsigned short needed_tailroom;
1118
1119 /* Interface address info. */
1120 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1121 unsigned char addr_assign_type; /* hw address assignment type */
1122 unsigned char addr_len; /* hardware address length */
1123 unsigned char neigh_priv_len;
1124 unsigned short dev_id; /* for shared network cards */
1125
1126 spinlock_t addr_list_lock;
1127 struct netdev_hw_addr_list uc; /* Unicast mac addresses */
1128 struct netdev_hw_addr_list mc; /* Multicast mac addresses */
1129 bool uc_promisc;
1130 unsigned int promiscuity;
1131 unsigned int allmulti;
1132
1133
1134 /* Protocol specific pointers */
1135
1136 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1137 struct vlan_info __rcu *vlan_info; /* VLAN info */
1138 #endif
1139 #if IS_ENABLED(CONFIG_NET_DSA)
1140 struct dsa_switch_tree *dsa_ptr; /* dsa specific data */
1141 #endif
1142 void *atalk_ptr; /* AppleTalk link */
1143 struct in_device __rcu *ip_ptr; /* IPv4 specific data */
1144 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */
1145 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */
1146 void *ax25_ptr; /* AX.25 specific data */
1147 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data,
1148 assign before registering */
1149
1150 /*
1151 * Cache lines mostly used on receive path (including eth_type_trans())
1152 */
1153 unsigned long last_rx; /* Time of last Rx
1154 * This should not be set in
1155 * drivers, unless really needed,
1156 * because network stack (bonding)
1157 * use it if/when necessary, to
1158 * avoid dirtying this cache line.
1159 */
1160
1161 struct net_device *master; /* Pointer to master device of a group,
1162 * which this device is member of.
1163 */
1164
1165 /* Interface address info used in eth_type_trans() */
1166 unsigned char *dev_addr; /* hw address, (before bcast
1167 because most packets are
1168 unicast) */
1169
1170 struct netdev_hw_addr_list dev_addrs; /* list of device
1171 hw addresses */
1172
1173 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */
1174
1175 #ifdef CONFIG_SYSFS
1176 struct kset *queues_kset;
1177 #endif
1178
1179 #ifdef CONFIG_RPS
1180 struct netdev_rx_queue *_rx;
1181
1182 /* Number of RX queues allocated at register_netdev() time */
1183 unsigned int num_rx_queues;
1184
1185 /* Number of RX queues currently active in device */
1186 unsigned int real_num_rx_queues;
1187
1188 #ifdef CONFIG_RFS_ACCEL
1189 /* CPU reverse-mapping for RX completion interrupts, indexed
1190 * by RX queue number. Assigned by driver. This must only be
1191 * set if the ndo_rx_flow_steer operation is defined. */
1192 struct cpu_rmap *rx_cpu_rmap;
1193 #endif
1194 #endif
1195
1196 rx_handler_func_t __rcu *rx_handler;
1197 void __rcu *rx_handler_data;
1198
1199 struct netdev_queue __rcu *ingress_queue;
1200
1201 /*
1202 * Cache lines mostly used on transmit path
1203 */
1204 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1205
1206 /* Number of TX queues allocated at alloc_netdev_mq() time */
1207 unsigned int num_tx_queues;
1208
1209 /* Number of TX queues currently active in device */
1210 unsigned int real_num_tx_queues;
1211
1212 /* root qdisc from userspace point of view */
1213 struct Qdisc *qdisc;
1214
1215 unsigned long tx_queue_len; /* Max frames per queue allowed */
1216 spinlock_t tx_global_lock;
1217
1218 #ifdef CONFIG_XPS
1219 struct xps_dev_maps __rcu *xps_maps;
1220 #endif
1221
1222 /* These may be needed for future network-power-down code. */
1223
1224 /*
1225 * trans_start here is expensive for high speed devices on SMP,
1226 * please use netdev_queue->trans_start instead.
1227 */
1228 unsigned long trans_start; /* Time (in jiffies) of last Tx */
1229
1230 int watchdog_timeo; /* used by dev_watchdog() */
1231 struct timer_list watchdog_timer;
1232
1233 /* Number of references to this device */
1234 int __percpu *pcpu_refcnt;
1235
1236 /* delayed register/unregister */
1237 struct list_head todo_list;
1238 /* device index hash chain */
1239 struct hlist_node index_hlist;
1240
1241 struct list_head link_watch_list;
1242
1243 /* register/unregister state machine */
1244 enum { NETREG_UNINITIALIZED=0,
1245 NETREG_REGISTERED, /* completed register_netdevice */
1246 NETREG_UNREGISTERING, /* called unregister_netdevice */
1247 NETREG_UNREGISTERED, /* completed unregister todo */
1248 NETREG_RELEASED, /* called free_netdev */
1249 NETREG_DUMMY, /* dummy device for NAPI poll */
1250 } reg_state:8;
1251
1252 bool dismantle; /* device is going do be freed */
1253
1254 enum {
1255 RTNL_LINK_INITIALIZED,
1256 RTNL_LINK_INITIALIZING,
1257 } rtnl_link_state:16;
1258
1259 /* Called from unregister, can be used to call free_netdev */
1260 void (*destructor)(struct net_device *dev);
1261
1262 #ifdef CONFIG_NETPOLL
1263 struct netpoll_info *npinfo;
1264 #endif
1265
1266 #ifdef CONFIG_NET_NS
1267 /* Network namespace this network device is inside */
1268 struct net *nd_net;
1269 #endif
1270
1271 /* mid-layer private */
1272 union {
1273 void *ml_priv;
1274 struct pcpu_lstats __percpu *lstats; /* loopback stats */
1275 struct pcpu_tstats __percpu *tstats; /* tunnel stats */
1276 struct pcpu_dstats __percpu *dstats; /* dummy stats */
1277 };
1278 /* GARP */
1279 struct garp_port __rcu *garp_port;
1280
1281 /* class/net/name entry */
1282 struct device dev;
1283 /* space for optional device, statistics, and wireless sysfs groups */
1284 const struct attribute_group *sysfs_groups[4];
1285
1286 /* rtnetlink link ops */
1287 const struct rtnl_link_ops *rtnl_link_ops;
1288
1289 /* for setting kernel sock attribute on TCP connection setup */
1290 #define GSO_MAX_SIZE 65536
1291 unsigned int gso_max_size;
1292 #define GSO_MAX_SEGS 65535
1293 u16 gso_max_segs;
1294
1295 #ifdef CONFIG_DCB
1296 /* Data Center Bridging netlink ops */
1297 const struct dcbnl_rtnl_ops *dcbnl_ops;
1298 #endif
1299 u8 num_tc;
1300 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1301 u8 prio_tc_map[TC_BITMASK + 1];
1302
1303 #if IS_ENABLED(CONFIG_FCOE)
1304 /* max exchange id for FCoE LRO by ddp */
1305 unsigned int fcoe_ddp_xid;
1306 #endif
1307 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1308 struct netprio_map __rcu *priomap;
1309 #endif
1310 /* phy device may attach itself for hardware timestamping */
1311 struct phy_device *phydev;
1312
1313 struct lock_class_key *qdisc_tx_busylock;
1314
1315 /* group the device belongs to */
1316 int group;
1317
1318 struct pm_qos_request pm_qos_req;
1319 };
1320 #define to_net_dev(d) container_of(d, struct net_device, dev)
1321
1322 #define NETDEV_ALIGN 32
1323
1324 static inline
1325 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1326 {
1327 return dev->prio_tc_map[prio & TC_BITMASK];
1328 }
1329
1330 static inline
1331 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1332 {
1333 if (tc >= dev->num_tc)
1334 return -EINVAL;
1335
1336 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1337 return 0;
1338 }
1339
1340 static inline
1341 void netdev_reset_tc(struct net_device *dev)
1342 {
1343 dev->num_tc = 0;
1344 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1345 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1346 }
1347
1348 static inline
1349 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1350 {
1351 if (tc >= dev->num_tc)
1352 return -EINVAL;
1353
1354 dev->tc_to_txq[tc].count = count;
1355 dev->tc_to_txq[tc].offset = offset;
1356 return 0;
1357 }
1358
1359 static inline
1360 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1361 {
1362 if (num_tc > TC_MAX_QUEUE)
1363 return -EINVAL;
1364
1365 dev->num_tc = num_tc;
1366 return 0;
1367 }
1368
1369 static inline
1370 int netdev_get_num_tc(struct net_device *dev)
1371 {
1372 return dev->num_tc;
1373 }
1374
1375 static inline
1376 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1377 unsigned int index)
1378 {
1379 return &dev->_tx[index];
1380 }
1381
1382 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1383 void (*f)(struct net_device *,
1384 struct netdev_queue *,
1385 void *),
1386 void *arg)
1387 {
1388 unsigned int i;
1389
1390 for (i = 0; i < dev->num_tx_queues; i++)
1391 f(dev, &dev->_tx[i], arg);
1392 }
1393
1394 extern struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1395 struct sk_buff *skb);
1396
1397 /*
1398 * Net namespace inlines
1399 */
1400 static inline
1401 struct net *dev_net(const struct net_device *dev)
1402 {
1403 return read_pnet(&dev->nd_net);
1404 }
1405
1406 static inline
1407 void dev_net_set(struct net_device *dev, struct net *net)
1408 {
1409 #ifdef CONFIG_NET_NS
1410 release_net(dev->nd_net);
1411 dev->nd_net = hold_net(net);
1412 #endif
1413 }
1414
1415 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1416 {
1417 #ifdef CONFIG_NET_DSA_TAG_DSA
1418 if (dev->dsa_ptr != NULL)
1419 return dsa_uses_dsa_tags(dev->dsa_ptr);
1420 #endif
1421
1422 return 0;
1423 }
1424
1425 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1426 {
1427 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1428 if (dev->dsa_ptr != NULL)
1429 return dsa_uses_trailer_tags(dev->dsa_ptr);
1430 #endif
1431
1432 return 0;
1433 }
1434
1435 /**
1436 * netdev_priv - access network device private data
1437 * @dev: network device
1438 *
1439 * Get network device private data
1440 */
1441 static inline void *netdev_priv(const struct net_device *dev)
1442 {
1443 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1444 }
1445
1446 /* Set the sysfs physical device reference for the network logical device
1447 * if set prior to registration will cause a symlink during initialization.
1448 */
1449 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1450
1451 /* Set the sysfs device type for the network logical device to allow
1452 * fin grained indentification of different network device types. For
1453 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1454 */
1455 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1456
1457 /**
1458 * netif_napi_add - initialize a napi context
1459 * @dev: network device
1460 * @napi: napi context
1461 * @poll: polling function
1462 * @weight: default weight
1463 *
1464 * netif_napi_add() must be used to initialize a napi context prior to calling
1465 * *any* of the other napi related functions.
1466 */
1467 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1468 int (*poll)(struct napi_struct *, int), int weight);
1469
1470 /**
1471 * netif_napi_del - remove a napi context
1472 * @napi: napi context
1473 *
1474 * netif_napi_del() removes a napi context from the network device napi list
1475 */
1476 void netif_napi_del(struct napi_struct *napi);
1477
1478 struct napi_gro_cb {
1479 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1480 void *frag0;
1481
1482 /* Length of frag0. */
1483 unsigned int frag0_len;
1484
1485 /* This indicates where we are processing relative to skb->data. */
1486 int data_offset;
1487
1488 /* This is non-zero if the packet cannot be merged with the new skb. */
1489 int flush;
1490
1491 /* Number of segments aggregated. */
1492 u16 count;
1493
1494 /* This is non-zero if the packet may be of the same flow. */
1495 u8 same_flow;
1496
1497 /* Free the skb? */
1498 u8 free;
1499 #define NAPI_GRO_FREE 1
1500 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1501
1502 /* jiffies when first packet was created/queued */
1503 unsigned long age;
1504
1505 /* Used in ipv6_gro_receive() */
1506 int proto;
1507
1508 /* used in skb_gro_receive() slow path */
1509 struct sk_buff *last;
1510 };
1511
1512 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1513
1514 struct packet_type {
1515 __be16 type; /* This is really htons(ether_type). */
1516 struct net_device *dev; /* NULL is wildcarded here */
1517 int (*func) (struct sk_buff *,
1518 struct net_device *,
1519 struct packet_type *,
1520 struct net_device *);
1521 bool (*id_match)(struct packet_type *ptype,
1522 struct sock *sk);
1523 void *af_packet_priv;
1524 struct list_head list;
1525 };
1526
1527 struct offload_callbacks {
1528 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1529 netdev_features_t features);
1530 int (*gso_send_check)(struct sk_buff *skb);
1531 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1532 struct sk_buff *skb);
1533 int (*gro_complete)(struct sk_buff *skb);
1534 };
1535
1536 struct packet_offload {
1537 __be16 type; /* This is really htons(ether_type). */
1538 struct offload_callbacks callbacks;
1539 struct list_head list;
1540 };
1541
1542 #include <linux/notifier.h>
1543
1544 /* netdevice notifier chain. Please remember to update the rtnetlink
1545 * notification exclusion list in rtnetlink_event() when adding new
1546 * types.
1547 */
1548 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
1549 #define NETDEV_DOWN 0x0002
1550 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
1551 detected a hardware crash and restarted
1552 - we can use this eg to kick tcp sessions
1553 once done */
1554 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
1555 #define NETDEV_REGISTER 0x0005
1556 #define NETDEV_UNREGISTER 0x0006
1557 #define NETDEV_CHANGEMTU 0x0007
1558 #define NETDEV_CHANGEADDR 0x0008
1559 #define NETDEV_GOING_DOWN 0x0009
1560 #define NETDEV_CHANGENAME 0x000A
1561 #define NETDEV_FEAT_CHANGE 0x000B
1562 #define NETDEV_BONDING_FAILOVER 0x000C
1563 #define NETDEV_PRE_UP 0x000D
1564 #define NETDEV_PRE_TYPE_CHANGE 0x000E
1565 #define NETDEV_POST_TYPE_CHANGE 0x000F
1566 #define NETDEV_POST_INIT 0x0010
1567 #define NETDEV_UNREGISTER_FINAL 0x0011
1568 #define NETDEV_RELEASE 0x0012
1569 #define NETDEV_NOTIFY_PEERS 0x0013
1570 #define NETDEV_JOIN 0x0014
1571
1572 extern int register_netdevice_notifier(struct notifier_block *nb);
1573 extern int unregister_netdevice_notifier(struct notifier_block *nb);
1574 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1575
1576
1577 extern rwlock_t dev_base_lock; /* Device list lock */
1578
1579 extern seqlock_t devnet_rename_seq; /* Device rename lock */
1580
1581
1582 #define for_each_netdev(net, d) \
1583 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1584 #define for_each_netdev_reverse(net, d) \
1585 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1586 #define for_each_netdev_rcu(net, d) \
1587 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1588 #define for_each_netdev_safe(net, d, n) \
1589 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1590 #define for_each_netdev_continue(net, d) \
1591 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1592 #define for_each_netdev_continue_rcu(net, d) \
1593 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1594 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
1595
1596 static inline struct net_device *next_net_device(struct net_device *dev)
1597 {
1598 struct list_head *lh;
1599 struct net *net;
1600
1601 net = dev_net(dev);
1602 lh = dev->dev_list.next;
1603 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1604 }
1605
1606 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1607 {
1608 struct list_head *lh;
1609 struct net *net;
1610
1611 net = dev_net(dev);
1612 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1613 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1614 }
1615
1616 static inline struct net_device *first_net_device(struct net *net)
1617 {
1618 return list_empty(&net->dev_base_head) ? NULL :
1619 net_device_entry(net->dev_base_head.next);
1620 }
1621
1622 static inline struct net_device *first_net_device_rcu(struct net *net)
1623 {
1624 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1625
1626 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1627 }
1628
1629 extern int netdev_boot_setup_check(struct net_device *dev);
1630 extern unsigned long netdev_boot_base(const char *prefix, int unit);
1631 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1632 const char *hwaddr);
1633 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1634 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1635 extern void dev_add_pack(struct packet_type *pt);
1636 extern void dev_remove_pack(struct packet_type *pt);
1637 extern void __dev_remove_pack(struct packet_type *pt);
1638 extern void dev_add_offload(struct packet_offload *po);
1639 extern void dev_remove_offload(struct packet_offload *po);
1640 extern void __dev_remove_offload(struct packet_offload *po);
1641
1642 extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1643 unsigned short mask);
1644 extern struct net_device *dev_get_by_name(struct net *net, const char *name);
1645 extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1646 extern struct net_device *__dev_get_by_name(struct net *net, const char *name);
1647 extern int dev_alloc_name(struct net_device *dev, const char *name);
1648 extern int dev_open(struct net_device *dev);
1649 extern int dev_close(struct net_device *dev);
1650 extern void dev_disable_lro(struct net_device *dev);
1651 extern int dev_loopback_xmit(struct sk_buff *newskb);
1652 extern int dev_queue_xmit(struct sk_buff *skb);
1653 extern int register_netdevice(struct net_device *dev);
1654 extern void unregister_netdevice_queue(struct net_device *dev,
1655 struct list_head *head);
1656 extern void unregister_netdevice_many(struct list_head *head);
1657 static inline void unregister_netdevice(struct net_device *dev)
1658 {
1659 unregister_netdevice_queue(dev, NULL);
1660 }
1661
1662 extern int netdev_refcnt_read(const struct net_device *dev);
1663 extern void free_netdev(struct net_device *dev);
1664 extern void synchronize_net(void);
1665 extern int init_dummy_netdev(struct net_device *dev);
1666 extern void netdev_resync_ops(struct net_device *dev);
1667
1668 extern struct net_device *dev_get_by_index(struct net *net, int ifindex);
1669 extern struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1670 extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1671 extern int dev_restart(struct net_device *dev);
1672 #ifdef CONFIG_NETPOLL_TRAP
1673 extern int netpoll_trap(void);
1674 #endif
1675 extern int skb_gro_receive(struct sk_buff **head,
1676 struct sk_buff *skb);
1677
1678 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1679 {
1680 return NAPI_GRO_CB(skb)->data_offset;
1681 }
1682
1683 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1684 {
1685 return skb->len - NAPI_GRO_CB(skb)->data_offset;
1686 }
1687
1688 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1689 {
1690 NAPI_GRO_CB(skb)->data_offset += len;
1691 }
1692
1693 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1694 unsigned int offset)
1695 {
1696 return NAPI_GRO_CB(skb)->frag0 + offset;
1697 }
1698
1699 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1700 {
1701 return NAPI_GRO_CB(skb)->frag0_len < hlen;
1702 }
1703
1704 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1705 unsigned int offset)
1706 {
1707 if (!pskb_may_pull(skb, hlen))
1708 return NULL;
1709
1710 NAPI_GRO_CB(skb)->frag0 = NULL;
1711 NAPI_GRO_CB(skb)->frag0_len = 0;
1712 return skb->data + offset;
1713 }
1714
1715 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1716 {
1717 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1718 }
1719
1720 static inline void *skb_gro_network_header(struct sk_buff *skb)
1721 {
1722 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1723 skb_network_offset(skb);
1724 }
1725
1726 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1727 unsigned short type,
1728 const void *daddr, const void *saddr,
1729 unsigned int len)
1730 {
1731 if (!dev->header_ops || !dev->header_ops->create)
1732 return 0;
1733
1734 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1735 }
1736
1737 static inline int dev_parse_header(const struct sk_buff *skb,
1738 unsigned char *haddr)
1739 {
1740 const struct net_device *dev = skb->dev;
1741
1742 if (!dev->header_ops || !dev->header_ops->parse)
1743 return 0;
1744 return dev->header_ops->parse(skb, haddr);
1745 }
1746
1747 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1748 extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1749 static inline int unregister_gifconf(unsigned int family)
1750 {
1751 return register_gifconf(family, NULL);
1752 }
1753
1754 /*
1755 * Incoming packets are placed on per-cpu queues
1756 */
1757 struct softnet_data {
1758 struct Qdisc *output_queue;
1759 struct Qdisc **output_queue_tailp;
1760 struct list_head poll_list;
1761 struct sk_buff *completion_queue;
1762 struct sk_buff_head process_queue;
1763
1764 /* stats */
1765 unsigned int processed;
1766 unsigned int time_squeeze;
1767 unsigned int cpu_collision;
1768 unsigned int received_rps;
1769
1770 #ifdef CONFIG_RPS
1771 struct softnet_data *rps_ipi_list;
1772
1773 /* Elements below can be accessed between CPUs for RPS */
1774 struct call_single_data csd ____cacheline_aligned_in_smp;
1775 struct softnet_data *rps_ipi_next;
1776 unsigned int cpu;
1777 unsigned int input_queue_head;
1778 unsigned int input_queue_tail;
1779 #endif
1780 unsigned int dropped;
1781 struct sk_buff_head input_pkt_queue;
1782 struct napi_struct backlog;
1783 };
1784
1785 static inline void input_queue_head_incr(struct softnet_data *sd)
1786 {
1787 #ifdef CONFIG_RPS
1788 sd->input_queue_head++;
1789 #endif
1790 }
1791
1792 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1793 unsigned int *qtail)
1794 {
1795 #ifdef CONFIG_RPS
1796 *qtail = ++sd->input_queue_tail;
1797 #endif
1798 }
1799
1800 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1801
1802 extern void __netif_schedule(struct Qdisc *q);
1803
1804 static inline void netif_schedule_queue(struct netdev_queue *txq)
1805 {
1806 if (!(txq->state & QUEUE_STATE_ANY_XOFF))
1807 __netif_schedule(txq->qdisc);
1808 }
1809
1810 static inline void netif_tx_schedule_all(struct net_device *dev)
1811 {
1812 unsigned int i;
1813
1814 for (i = 0; i < dev->num_tx_queues; i++)
1815 netif_schedule_queue(netdev_get_tx_queue(dev, i));
1816 }
1817
1818 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1819 {
1820 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1821 }
1822
1823 /**
1824 * netif_start_queue - allow transmit
1825 * @dev: network device
1826 *
1827 * Allow upper layers to call the device hard_start_xmit routine.
1828 */
1829 static inline void netif_start_queue(struct net_device *dev)
1830 {
1831 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1832 }
1833
1834 static inline void netif_tx_start_all_queues(struct net_device *dev)
1835 {
1836 unsigned int i;
1837
1838 for (i = 0; i < dev->num_tx_queues; i++) {
1839 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1840 netif_tx_start_queue(txq);
1841 }
1842 }
1843
1844 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1845 {
1846 #ifdef CONFIG_NETPOLL_TRAP
1847 if (netpoll_trap()) {
1848 netif_tx_start_queue(dev_queue);
1849 return;
1850 }
1851 #endif
1852 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
1853 __netif_schedule(dev_queue->qdisc);
1854 }
1855
1856 /**
1857 * netif_wake_queue - restart transmit
1858 * @dev: network device
1859 *
1860 * Allow upper layers to call the device hard_start_xmit routine.
1861 * Used for flow control when transmit resources are available.
1862 */
1863 static inline void netif_wake_queue(struct net_device *dev)
1864 {
1865 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1866 }
1867
1868 static inline void netif_tx_wake_all_queues(struct net_device *dev)
1869 {
1870 unsigned int i;
1871
1872 for (i = 0; i < dev->num_tx_queues; i++) {
1873 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1874 netif_tx_wake_queue(txq);
1875 }
1876 }
1877
1878 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1879 {
1880 if (WARN_ON(!dev_queue)) {
1881 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
1882 return;
1883 }
1884 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1885 }
1886
1887 /**
1888 * netif_stop_queue - stop transmitted packets
1889 * @dev: network device
1890 *
1891 * Stop upper layers calling the device hard_start_xmit routine.
1892 * Used for flow control when transmit resources are unavailable.
1893 */
1894 static inline void netif_stop_queue(struct net_device *dev)
1895 {
1896 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1897 }
1898
1899 static inline void netif_tx_stop_all_queues(struct net_device *dev)
1900 {
1901 unsigned int i;
1902
1903 for (i = 0; i < dev->num_tx_queues; i++) {
1904 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1905 netif_tx_stop_queue(txq);
1906 }
1907 }
1908
1909 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1910 {
1911 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1912 }
1913
1914 /**
1915 * netif_queue_stopped - test if transmit queue is flowblocked
1916 * @dev: network device
1917 *
1918 * Test if transmit queue on device is currently unable to send.
1919 */
1920 static inline bool netif_queue_stopped(const struct net_device *dev)
1921 {
1922 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1923 }
1924
1925 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
1926 {
1927 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
1928 }
1929
1930 static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
1931 {
1932 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
1933 }
1934
1935 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
1936 unsigned int bytes)
1937 {
1938 #ifdef CONFIG_BQL
1939 dql_queued(&dev_queue->dql, bytes);
1940
1941 if (likely(dql_avail(&dev_queue->dql) >= 0))
1942 return;
1943
1944 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1945
1946 /*
1947 * The XOFF flag must be set before checking the dql_avail below,
1948 * because in netdev_tx_completed_queue we update the dql_completed
1949 * before checking the XOFF flag.
1950 */
1951 smp_mb();
1952
1953 /* check again in case another CPU has just made room avail */
1954 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
1955 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1956 #endif
1957 }
1958
1959 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
1960 {
1961 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
1962 }
1963
1964 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
1965 unsigned int pkts, unsigned int bytes)
1966 {
1967 #ifdef CONFIG_BQL
1968 if (unlikely(!bytes))
1969 return;
1970
1971 dql_completed(&dev_queue->dql, bytes);
1972
1973 /*
1974 * Without the memory barrier there is a small possiblity that
1975 * netdev_tx_sent_queue will miss the update and cause the queue to
1976 * be stopped forever
1977 */
1978 smp_mb();
1979
1980 if (dql_avail(&dev_queue->dql) < 0)
1981 return;
1982
1983 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
1984 netif_schedule_queue(dev_queue);
1985 #endif
1986 }
1987
1988 static inline void netdev_completed_queue(struct net_device *dev,
1989 unsigned int pkts, unsigned int bytes)
1990 {
1991 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
1992 }
1993
1994 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
1995 {
1996 #ifdef CONFIG_BQL
1997 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
1998 dql_reset(&q->dql);
1999 #endif
2000 }
2001
2002 static inline void netdev_reset_queue(struct net_device *dev_queue)
2003 {
2004 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2005 }
2006
2007 /**
2008 * netif_running - test if up
2009 * @dev: network device
2010 *
2011 * Test if the device has been brought up.
2012 */
2013 static inline bool netif_running(const struct net_device *dev)
2014 {
2015 return test_bit(__LINK_STATE_START, &dev->state);
2016 }
2017
2018 /*
2019 * Routines to manage the subqueues on a device. We only need start
2020 * stop, and a check if it's stopped. All other device management is
2021 * done at the overall netdevice level.
2022 * Also test the device if we're multiqueue.
2023 */
2024
2025 /**
2026 * netif_start_subqueue - allow sending packets on subqueue
2027 * @dev: network device
2028 * @queue_index: sub queue index
2029 *
2030 * Start individual transmit queue of a device with multiple transmit queues.
2031 */
2032 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2033 {
2034 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2035
2036 netif_tx_start_queue(txq);
2037 }
2038
2039 /**
2040 * netif_stop_subqueue - stop sending packets on subqueue
2041 * @dev: network device
2042 * @queue_index: sub queue index
2043 *
2044 * Stop individual transmit queue of a device with multiple transmit queues.
2045 */
2046 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2047 {
2048 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2049 #ifdef CONFIG_NETPOLL_TRAP
2050 if (netpoll_trap())
2051 return;
2052 #endif
2053 netif_tx_stop_queue(txq);
2054 }
2055
2056 /**
2057 * netif_subqueue_stopped - test status of subqueue
2058 * @dev: network device
2059 * @queue_index: sub queue index
2060 *
2061 * Check individual transmit queue of a device with multiple transmit queues.
2062 */
2063 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2064 u16 queue_index)
2065 {
2066 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2067
2068 return netif_tx_queue_stopped(txq);
2069 }
2070
2071 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2072 struct sk_buff *skb)
2073 {
2074 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2075 }
2076
2077 /**
2078 * netif_wake_subqueue - allow sending packets on subqueue
2079 * @dev: network device
2080 * @queue_index: sub queue index
2081 *
2082 * Resume individual transmit queue of a device with multiple transmit queues.
2083 */
2084 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2085 {
2086 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2087 #ifdef CONFIG_NETPOLL_TRAP
2088 if (netpoll_trap())
2089 return;
2090 #endif
2091 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2092 __netif_schedule(txq->qdisc);
2093 }
2094
2095 /*
2096 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2097 * as a distribution range limit for the returned value.
2098 */
2099 static inline u16 skb_tx_hash(const struct net_device *dev,
2100 const struct sk_buff *skb)
2101 {
2102 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2103 }
2104
2105 /**
2106 * netif_is_multiqueue - test if device has multiple transmit queues
2107 * @dev: network device
2108 *
2109 * Check if device has multiple transmit queues
2110 */
2111 static inline bool netif_is_multiqueue(const struct net_device *dev)
2112 {
2113 return dev->num_tx_queues > 1;
2114 }
2115
2116 extern int netif_set_real_num_tx_queues(struct net_device *dev,
2117 unsigned int txq);
2118
2119 #ifdef CONFIG_RPS
2120 extern int netif_set_real_num_rx_queues(struct net_device *dev,
2121 unsigned int rxq);
2122 #else
2123 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2124 unsigned int rxq)
2125 {
2126 return 0;
2127 }
2128 #endif
2129
2130 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2131 const struct net_device *from_dev)
2132 {
2133 int err;
2134
2135 err = netif_set_real_num_tx_queues(to_dev,
2136 from_dev->real_num_tx_queues);
2137 if (err)
2138 return err;
2139 #ifdef CONFIG_RPS
2140 return netif_set_real_num_rx_queues(to_dev,
2141 from_dev->real_num_rx_queues);
2142 #else
2143 return 0;
2144 #endif
2145 }
2146
2147 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
2148 extern int netif_get_num_default_rss_queues(void);
2149
2150 /* Use this variant when it is known for sure that it
2151 * is executing from hardware interrupt context or with hardware interrupts
2152 * disabled.
2153 */
2154 extern void dev_kfree_skb_irq(struct sk_buff *skb);
2155
2156 /* Use this variant in places where it could be invoked
2157 * from either hardware interrupt or other context, with hardware interrupts
2158 * either disabled or enabled.
2159 */
2160 extern void dev_kfree_skb_any(struct sk_buff *skb);
2161
2162 extern int netif_rx(struct sk_buff *skb);
2163 extern int netif_rx_ni(struct sk_buff *skb);
2164 extern int netif_receive_skb(struct sk_buff *skb);
2165 extern gro_result_t napi_gro_receive(struct napi_struct *napi,
2166 struct sk_buff *skb);
2167 extern void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2168 extern struct sk_buff * napi_get_frags(struct napi_struct *napi);
2169 extern gro_result_t napi_gro_frags(struct napi_struct *napi);
2170
2171 static inline void napi_free_frags(struct napi_struct *napi)
2172 {
2173 kfree_skb(napi->skb);
2174 napi->skb = NULL;
2175 }
2176
2177 extern int netdev_rx_handler_register(struct net_device *dev,
2178 rx_handler_func_t *rx_handler,
2179 void *rx_handler_data);
2180 extern void netdev_rx_handler_unregister(struct net_device *dev);
2181
2182 extern bool dev_valid_name(const char *name);
2183 extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2184 extern int dev_ethtool(struct net *net, struct ifreq *);
2185 extern unsigned int dev_get_flags(const struct net_device *);
2186 extern int __dev_change_flags(struct net_device *, unsigned int flags);
2187 extern int dev_change_flags(struct net_device *, unsigned int);
2188 extern void __dev_notify_flags(struct net_device *, unsigned int old_flags);
2189 extern int dev_change_name(struct net_device *, const char *);
2190 extern int dev_set_alias(struct net_device *, const char *, size_t);
2191 extern int dev_change_net_namespace(struct net_device *,
2192 struct net *, const char *);
2193 extern int dev_set_mtu(struct net_device *, int);
2194 extern void dev_set_group(struct net_device *, int);
2195 extern int dev_set_mac_address(struct net_device *,
2196 struct sockaddr *);
2197 extern int dev_hard_start_xmit(struct sk_buff *skb,
2198 struct net_device *dev,
2199 struct netdev_queue *txq);
2200 extern int dev_forward_skb(struct net_device *dev,
2201 struct sk_buff *skb);
2202
2203 extern int netdev_budget;
2204
2205 /* Called by rtnetlink.c:rtnl_unlock() */
2206 extern void netdev_run_todo(void);
2207
2208 /**
2209 * dev_put - release reference to device
2210 * @dev: network device
2211 *
2212 * Release reference to device to allow it to be freed.
2213 */
2214 static inline void dev_put(struct net_device *dev)
2215 {
2216 this_cpu_dec(*dev->pcpu_refcnt);
2217 }
2218
2219 /**
2220 * dev_hold - get reference to device
2221 * @dev: network device
2222 *
2223 * Hold reference to device to keep it from being freed.
2224 */
2225 static inline void dev_hold(struct net_device *dev)
2226 {
2227 this_cpu_inc(*dev->pcpu_refcnt);
2228 }
2229
2230 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2231 * and _off may be called from IRQ context, but it is caller
2232 * who is responsible for serialization of these calls.
2233 *
2234 * The name carrier is inappropriate, these functions should really be
2235 * called netif_lowerlayer_*() because they represent the state of any
2236 * kind of lower layer not just hardware media.
2237 */
2238
2239 extern void linkwatch_init_dev(struct net_device *dev);
2240 extern void linkwatch_fire_event(struct net_device *dev);
2241 extern void linkwatch_forget_dev(struct net_device *dev);
2242
2243 /**
2244 * netif_carrier_ok - test if carrier present
2245 * @dev: network device
2246 *
2247 * Check if carrier is present on device
2248 */
2249 static inline bool netif_carrier_ok(const struct net_device *dev)
2250 {
2251 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2252 }
2253
2254 extern unsigned long dev_trans_start(struct net_device *dev);
2255
2256 extern void __netdev_watchdog_up(struct net_device *dev);
2257
2258 extern void netif_carrier_on(struct net_device *dev);
2259
2260 extern void netif_carrier_off(struct net_device *dev);
2261
2262 /**
2263 * netif_dormant_on - mark device as dormant.
2264 * @dev: network device
2265 *
2266 * Mark device as dormant (as per RFC2863).
2267 *
2268 * The dormant state indicates that the relevant interface is not
2269 * actually in a condition to pass packets (i.e., it is not 'up') but is
2270 * in a "pending" state, waiting for some external event. For "on-
2271 * demand" interfaces, this new state identifies the situation where the
2272 * interface is waiting for events to place it in the up state.
2273 *
2274 */
2275 static inline void netif_dormant_on(struct net_device *dev)
2276 {
2277 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2278 linkwatch_fire_event(dev);
2279 }
2280
2281 /**
2282 * netif_dormant_off - set device as not dormant.
2283 * @dev: network device
2284 *
2285 * Device is not in dormant state.
2286 */
2287 static inline void netif_dormant_off(struct net_device *dev)
2288 {
2289 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2290 linkwatch_fire_event(dev);
2291 }
2292
2293 /**
2294 * netif_dormant - test if carrier present
2295 * @dev: network device
2296 *
2297 * Check if carrier is present on device
2298 */
2299 static inline bool netif_dormant(const struct net_device *dev)
2300 {
2301 return test_bit(__LINK_STATE_DORMANT, &dev->state);
2302 }
2303
2304
2305 /**
2306 * netif_oper_up - test if device is operational
2307 * @dev: network device
2308 *
2309 * Check if carrier is operational
2310 */
2311 static inline bool netif_oper_up(const struct net_device *dev)
2312 {
2313 return (dev->operstate == IF_OPER_UP ||
2314 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2315 }
2316
2317 /**
2318 * netif_device_present - is device available or removed
2319 * @dev: network device
2320 *
2321 * Check if device has not been removed from system.
2322 */
2323 static inline bool netif_device_present(struct net_device *dev)
2324 {
2325 return test_bit(__LINK_STATE_PRESENT, &dev->state);
2326 }
2327
2328 extern void netif_device_detach(struct net_device *dev);
2329
2330 extern void netif_device_attach(struct net_device *dev);
2331
2332 /*
2333 * Network interface message level settings
2334 */
2335
2336 enum {
2337 NETIF_MSG_DRV = 0x0001,
2338 NETIF_MSG_PROBE = 0x0002,
2339 NETIF_MSG_LINK = 0x0004,
2340 NETIF_MSG_TIMER = 0x0008,
2341 NETIF_MSG_IFDOWN = 0x0010,
2342 NETIF_MSG_IFUP = 0x0020,
2343 NETIF_MSG_RX_ERR = 0x0040,
2344 NETIF_MSG_TX_ERR = 0x0080,
2345 NETIF_MSG_TX_QUEUED = 0x0100,
2346 NETIF_MSG_INTR = 0x0200,
2347 NETIF_MSG_TX_DONE = 0x0400,
2348 NETIF_MSG_RX_STATUS = 0x0800,
2349 NETIF_MSG_PKTDATA = 0x1000,
2350 NETIF_MSG_HW = 0x2000,
2351 NETIF_MSG_WOL = 0x4000,
2352 };
2353
2354 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
2355 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
2356 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
2357 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
2358 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
2359 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
2360 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
2361 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
2362 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2363 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
2364 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
2365 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
2366 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
2367 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
2368 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
2369
2370 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2371 {
2372 /* use default */
2373 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2374 return default_msg_enable_bits;
2375 if (debug_value == 0) /* no output */
2376 return 0;
2377 /* set low N bits */
2378 return (1 << debug_value) - 1;
2379 }
2380
2381 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2382 {
2383 spin_lock(&txq->_xmit_lock);
2384 txq->xmit_lock_owner = cpu;
2385 }
2386
2387 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2388 {
2389 spin_lock_bh(&txq->_xmit_lock);
2390 txq->xmit_lock_owner = smp_processor_id();
2391 }
2392
2393 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
2394 {
2395 bool ok = spin_trylock(&txq->_xmit_lock);
2396 if (likely(ok))
2397 txq->xmit_lock_owner = smp_processor_id();
2398 return ok;
2399 }
2400
2401 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2402 {
2403 txq->xmit_lock_owner = -1;
2404 spin_unlock(&txq->_xmit_lock);
2405 }
2406
2407 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2408 {
2409 txq->xmit_lock_owner = -1;
2410 spin_unlock_bh(&txq->_xmit_lock);
2411 }
2412
2413 static inline void txq_trans_update(struct netdev_queue *txq)
2414 {
2415 if (txq->xmit_lock_owner != -1)
2416 txq->trans_start = jiffies;
2417 }
2418
2419 /**
2420 * netif_tx_lock - grab network device transmit lock
2421 * @dev: network device
2422 *
2423 * Get network device transmit lock
2424 */
2425 static inline void netif_tx_lock(struct net_device *dev)
2426 {
2427 unsigned int i;
2428 int cpu;
2429
2430 spin_lock(&dev->tx_global_lock);
2431 cpu = smp_processor_id();
2432 for (i = 0; i < dev->num_tx_queues; i++) {
2433 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2434
2435 /* We are the only thread of execution doing a
2436 * freeze, but we have to grab the _xmit_lock in
2437 * order to synchronize with threads which are in
2438 * the ->hard_start_xmit() handler and already
2439 * checked the frozen bit.
2440 */
2441 __netif_tx_lock(txq, cpu);
2442 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2443 __netif_tx_unlock(txq);
2444 }
2445 }
2446
2447 static inline void netif_tx_lock_bh(struct net_device *dev)
2448 {
2449 local_bh_disable();
2450 netif_tx_lock(dev);
2451 }
2452
2453 static inline void netif_tx_unlock(struct net_device *dev)
2454 {
2455 unsigned int i;
2456
2457 for (i = 0; i < dev->num_tx_queues; i++) {
2458 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2459
2460 /* No need to grab the _xmit_lock here. If the
2461 * queue is not stopped for another reason, we
2462 * force a schedule.
2463 */
2464 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2465 netif_schedule_queue(txq);
2466 }
2467 spin_unlock(&dev->tx_global_lock);
2468 }
2469
2470 static inline void netif_tx_unlock_bh(struct net_device *dev)
2471 {
2472 netif_tx_unlock(dev);
2473 local_bh_enable();
2474 }
2475
2476 #define HARD_TX_LOCK(dev, txq, cpu) { \
2477 if ((dev->features & NETIF_F_LLTX) == 0) { \
2478 __netif_tx_lock(txq, cpu); \
2479 } \
2480 }
2481
2482 #define HARD_TX_UNLOCK(dev, txq) { \
2483 if ((dev->features & NETIF_F_LLTX) == 0) { \
2484 __netif_tx_unlock(txq); \
2485 } \
2486 }
2487
2488 static inline void netif_tx_disable(struct net_device *dev)
2489 {
2490 unsigned int i;
2491 int cpu;
2492
2493 local_bh_disable();
2494 cpu = smp_processor_id();
2495 for (i = 0; i < dev->num_tx_queues; i++) {
2496 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2497
2498 __netif_tx_lock(txq, cpu);
2499 netif_tx_stop_queue(txq);
2500 __netif_tx_unlock(txq);
2501 }
2502 local_bh_enable();
2503 }
2504
2505 static inline void netif_addr_lock(struct net_device *dev)
2506 {
2507 spin_lock(&dev->addr_list_lock);
2508 }
2509
2510 static inline void netif_addr_lock_nested(struct net_device *dev)
2511 {
2512 spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING);
2513 }
2514
2515 static inline void netif_addr_lock_bh(struct net_device *dev)
2516 {
2517 spin_lock_bh(&dev->addr_list_lock);
2518 }
2519
2520 static inline void netif_addr_unlock(struct net_device *dev)
2521 {
2522 spin_unlock(&dev->addr_list_lock);
2523 }
2524
2525 static inline void netif_addr_unlock_bh(struct net_device *dev)
2526 {
2527 spin_unlock_bh(&dev->addr_list_lock);
2528 }
2529
2530 /*
2531 * dev_addrs walker. Should be used only for read access. Call with
2532 * rcu_read_lock held.
2533 */
2534 #define for_each_dev_addr(dev, ha) \
2535 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2536
2537 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2538
2539 extern void ether_setup(struct net_device *dev);
2540
2541 /* Support for loadable net-drivers */
2542 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2543 void (*setup)(struct net_device *),
2544 unsigned int txqs, unsigned int rxqs);
2545 #define alloc_netdev(sizeof_priv, name, setup) \
2546 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2547
2548 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2549 alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2550
2551 extern int register_netdev(struct net_device *dev);
2552 extern void unregister_netdev(struct net_device *dev);
2553
2554 /* General hardware address lists handling functions */
2555 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2556 struct netdev_hw_addr_list *from_list,
2557 int addr_len, unsigned char addr_type);
2558 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2559 struct netdev_hw_addr_list *from_list,
2560 int addr_len, unsigned char addr_type);
2561 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2562 struct netdev_hw_addr_list *from_list,
2563 int addr_len);
2564 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2565 struct netdev_hw_addr_list *from_list,
2566 int addr_len);
2567 extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2568 extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2569
2570 /* Functions used for device addresses handling */
2571 extern int dev_addr_add(struct net_device *dev, const unsigned char *addr,
2572 unsigned char addr_type);
2573 extern int dev_addr_del(struct net_device *dev, const unsigned char *addr,
2574 unsigned char addr_type);
2575 extern int dev_addr_add_multiple(struct net_device *to_dev,
2576 struct net_device *from_dev,
2577 unsigned char addr_type);
2578 extern int dev_addr_del_multiple(struct net_device *to_dev,
2579 struct net_device *from_dev,
2580 unsigned char addr_type);
2581 extern void dev_addr_flush(struct net_device *dev);
2582 extern int dev_addr_init(struct net_device *dev);
2583
2584 /* Functions used for unicast addresses handling */
2585 extern int dev_uc_add(struct net_device *dev, const unsigned char *addr);
2586 extern int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
2587 extern int dev_uc_del(struct net_device *dev, const unsigned char *addr);
2588 extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2589 extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2590 extern void dev_uc_flush(struct net_device *dev);
2591 extern void dev_uc_init(struct net_device *dev);
2592
2593 /* Functions used for multicast addresses handling */
2594 extern int dev_mc_add(struct net_device *dev, const unsigned char *addr);
2595 extern int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
2596 extern int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
2597 extern int dev_mc_del(struct net_device *dev, const unsigned char *addr);
2598 extern int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
2599 extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2600 extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2601 extern void dev_mc_flush(struct net_device *dev);
2602 extern void dev_mc_init(struct net_device *dev);
2603
2604 /* Functions used for secondary unicast and multicast support */
2605 extern void dev_set_rx_mode(struct net_device *dev);
2606 extern void __dev_set_rx_mode(struct net_device *dev);
2607 extern int dev_set_promiscuity(struct net_device *dev, int inc);
2608 extern int dev_set_allmulti(struct net_device *dev, int inc);
2609 extern void netdev_state_change(struct net_device *dev);
2610 extern void netdev_notify_peers(struct net_device *dev);
2611 extern void netdev_features_change(struct net_device *dev);
2612 /* Load a device via the kmod */
2613 extern void dev_load(struct net *net, const char *name);
2614 extern void dev_mcast_init(void);
2615 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2616 struct rtnl_link_stats64 *storage);
2617 extern void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
2618 const struct net_device_stats *netdev_stats);
2619
2620 extern int netdev_max_backlog;
2621 extern int netdev_tstamp_prequeue;
2622 extern int weight_p;
2623 extern int bpf_jit_enable;
2624 extern int netdev_set_master(struct net_device *dev, struct net_device *master);
2625 extern int netdev_set_bond_master(struct net_device *dev,
2626 struct net_device *master);
2627 extern int skb_checksum_help(struct sk_buff *skb);
2628 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb,
2629 netdev_features_t features);
2630 #ifdef CONFIG_BUG
2631 extern void netdev_rx_csum_fault(struct net_device *dev);
2632 #else
2633 static inline void netdev_rx_csum_fault(struct net_device *dev)
2634 {
2635 }
2636 #endif
2637 /* rx skb timestamps */
2638 extern void net_enable_timestamp(void);
2639 extern void net_disable_timestamp(void);
2640
2641 #ifdef CONFIG_PROC_FS
2642 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
2643 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2644 extern void dev_seq_stop(struct seq_file *seq, void *v);
2645 #endif
2646
2647 extern int netdev_class_create_file(struct class_attribute *class_attr);
2648 extern void netdev_class_remove_file(struct class_attribute *class_attr);
2649
2650 extern struct kobj_ns_type_operations net_ns_type_operations;
2651
2652 extern const char *netdev_drivername(const struct net_device *dev);
2653
2654 extern void linkwatch_run_queue(void);
2655
2656 static inline netdev_features_t netdev_get_wanted_features(
2657 struct net_device *dev)
2658 {
2659 return (dev->features & ~dev->hw_features) | dev->wanted_features;
2660 }
2661 netdev_features_t netdev_increment_features(netdev_features_t all,
2662 netdev_features_t one, netdev_features_t mask);
2663 int __netdev_update_features(struct net_device *dev);
2664 void netdev_update_features(struct net_device *dev);
2665 void netdev_change_features(struct net_device *dev);
2666
2667 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2668 struct net_device *dev);
2669
2670 netdev_features_t netif_skb_features(struct sk_buff *skb);
2671
2672 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
2673 {
2674 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
2675
2676 /* check flags correspondence */
2677 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
2678 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
2679 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
2680 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
2681 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
2682 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
2683
2684 return (features & feature) == feature;
2685 }
2686
2687 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
2688 {
2689 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2690 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2691 }
2692
2693 static inline bool netif_needs_gso(struct sk_buff *skb,
2694 netdev_features_t features)
2695 {
2696 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2697 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
2698 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
2699 }
2700
2701 static inline void netif_set_gso_max_size(struct net_device *dev,
2702 unsigned int size)
2703 {
2704 dev->gso_max_size = size;
2705 }
2706
2707 static inline bool netif_is_bond_slave(struct net_device *dev)
2708 {
2709 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2710 }
2711
2712 static inline bool netif_supports_nofcs(struct net_device *dev)
2713 {
2714 return dev->priv_flags & IFF_SUPP_NOFCS;
2715 }
2716
2717 extern struct pernet_operations __net_initdata loopback_net_ops;
2718
2719 /* Logging, debugging and troubleshooting/diagnostic helpers. */
2720
2721 /* netdev_printk helpers, similar to dev_printk */
2722
2723 static inline const char *netdev_name(const struct net_device *dev)
2724 {
2725 if (dev->reg_state != NETREG_REGISTERED)
2726 return "(unregistered net_device)";
2727 return dev->name;
2728 }
2729
2730 extern __printf(3, 4)
2731 int netdev_printk(const char *level, const struct net_device *dev,
2732 const char *format, ...);
2733 extern __printf(2, 3)
2734 int netdev_emerg(const struct net_device *dev, const char *format, ...);
2735 extern __printf(2, 3)
2736 int netdev_alert(const struct net_device *dev, const char *format, ...);
2737 extern __printf(2, 3)
2738 int netdev_crit(const struct net_device *dev, const char *format, ...);
2739 extern __printf(2, 3)
2740 int netdev_err(const struct net_device *dev, const char *format, ...);
2741 extern __printf(2, 3)
2742 int netdev_warn(const struct net_device *dev, const char *format, ...);
2743 extern __printf(2, 3)
2744 int netdev_notice(const struct net_device *dev, const char *format, ...);
2745 extern __printf(2, 3)
2746 int netdev_info(const struct net_device *dev, const char *format, ...);
2747
2748 #define MODULE_ALIAS_NETDEV(device) \
2749 MODULE_ALIAS("netdev-" device)
2750
2751 #if defined(CONFIG_DYNAMIC_DEBUG)
2752 #define netdev_dbg(__dev, format, args...) \
2753 do { \
2754 dynamic_netdev_dbg(__dev, format, ##args); \
2755 } while (0)
2756 #elif defined(DEBUG)
2757 #define netdev_dbg(__dev, format, args...) \
2758 netdev_printk(KERN_DEBUG, __dev, format, ##args)
2759 #else
2760 #define netdev_dbg(__dev, format, args...) \
2761 ({ \
2762 if (0) \
2763 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2764 0; \
2765 })
2766 #endif
2767
2768 #if defined(VERBOSE_DEBUG)
2769 #define netdev_vdbg netdev_dbg
2770 #else
2771
2772 #define netdev_vdbg(dev, format, args...) \
2773 ({ \
2774 if (0) \
2775 netdev_printk(KERN_DEBUG, dev, format, ##args); \
2776 0; \
2777 })
2778 #endif
2779
2780 /*
2781 * netdev_WARN() acts like dev_printk(), but with the key difference
2782 * of using a WARN/WARN_ON to get the message out, including the
2783 * file/line information and a backtrace.
2784 */
2785 #define netdev_WARN(dev, format, args...) \
2786 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2787
2788 /* netif printk helpers, similar to netdev_printk */
2789
2790 #define netif_printk(priv, type, level, dev, fmt, args...) \
2791 do { \
2792 if (netif_msg_##type(priv)) \
2793 netdev_printk(level, (dev), fmt, ##args); \
2794 } while (0)
2795
2796 #define netif_level(level, priv, type, dev, fmt, args...) \
2797 do { \
2798 if (netif_msg_##type(priv)) \
2799 netdev_##level(dev, fmt, ##args); \
2800 } while (0)
2801
2802 #define netif_emerg(priv, type, dev, fmt, args...) \
2803 netif_level(emerg, priv, type, dev, fmt, ##args)
2804 #define netif_alert(priv, type, dev, fmt, args...) \
2805 netif_level(alert, priv, type, dev, fmt, ##args)
2806 #define netif_crit(priv, type, dev, fmt, args...) \
2807 netif_level(crit, priv, type, dev, fmt, ##args)
2808 #define netif_err(priv, type, dev, fmt, args...) \
2809 netif_level(err, priv, type, dev, fmt, ##args)
2810 #define netif_warn(priv, type, dev, fmt, args...) \
2811 netif_level(warn, priv, type, dev, fmt, ##args)
2812 #define netif_notice(priv, type, dev, fmt, args...) \
2813 netif_level(notice, priv, type, dev, fmt, ##args)
2814 #define netif_info(priv, type, dev, fmt, args...) \
2815 netif_level(info, priv, type, dev, fmt, ##args)
2816
2817 #if defined(CONFIG_DYNAMIC_DEBUG)
2818 #define netif_dbg(priv, type, netdev, format, args...) \
2819 do { \
2820 if (netif_msg_##type(priv)) \
2821 dynamic_netdev_dbg(netdev, format, ##args); \
2822 } while (0)
2823 #elif defined(DEBUG)
2824 #define netif_dbg(priv, type, dev, format, args...) \
2825 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2826 #else
2827 #define netif_dbg(priv, type, dev, format, args...) \
2828 ({ \
2829 if (0) \
2830 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2831 0; \
2832 })
2833 #endif
2834
2835 #if defined(VERBOSE_DEBUG)
2836 #define netif_vdbg netif_dbg
2837 #else
2838 #define netif_vdbg(priv, type, dev, format, args...) \
2839 ({ \
2840 if (0) \
2841 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2842 0; \
2843 })
2844 #endif
2845
2846 #endif /* _LINUX_NETDEVICE_H */