]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/linux/netdevice.h
Merge tag 'dma-mapping-4.14' of git://git.infradead.org/users/hch/dma-mapping
[mirror_ubuntu-jammy-kernel.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/workqueue.h>
39 #include <linux/dynamic_queue_limits.h>
40
41 #include <linux/ethtool.h>
42 #include <net/net_namespace.h>
43 #ifdef CONFIG_DCB
44 #include <net/dcbnl.h>
45 #endif
46 #include <net/netprio_cgroup.h>
47
48 #include <linux/netdev_features.h>
49 #include <linux/neighbour.h>
50 #include <uapi/linux/netdevice.h>
51 #include <uapi/linux/if_bonding.h>
52 #include <uapi/linux/pkt_cls.h>
53 #include <linux/hashtable.h>
54
55 struct netpoll_info;
56 struct device;
57 struct phy_device;
58 struct dsa_switch_tree;
59
60 /* 802.11 specific */
61 struct wireless_dev;
62 /* 802.15.4 specific */
63 struct wpan_dev;
64 struct mpls_dev;
65 /* UDP Tunnel offloads */
66 struct udp_tunnel_info;
67 struct bpf_prog;
68 struct xdp_buff;
69
70 void netdev_set_default_ethtool_ops(struct net_device *dev,
71 const struct ethtool_ops *ops);
72
73 /* Backlog congestion levels */
74 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
75 #define NET_RX_DROP 1 /* packet dropped */
76
77 /*
78 * Transmit return codes: transmit return codes originate from three different
79 * namespaces:
80 *
81 * - qdisc return codes
82 * - driver transmit return codes
83 * - errno values
84 *
85 * Drivers are allowed to return any one of those in their hard_start_xmit()
86 * function. Real network devices commonly used with qdiscs should only return
87 * the driver transmit return codes though - when qdiscs are used, the actual
88 * transmission happens asynchronously, so the value is not propagated to
89 * higher layers. Virtual network devices transmit synchronously; in this case
90 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
91 * others are propagated to higher layers.
92 */
93
94 /* qdisc ->enqueue() return codes. */
95 #define NET_XMIT_SUCCESS 0x00
96 #define NET_XMIT_DROP 0x01 /* skb dropped */
97 #define NET_XMIT_CN 0x02 /* congestion notification */
98 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
99
100 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
101 * indicates that the device will soon be dropping packets, or already drops
102 * some packets of the same priority; prompting us to send less aggressively. */
103 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
104 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
105
106 /* Driver transmit return codes */
107 #define NETDEV_TX_MASK 0xf0
108
109 enum netdev_tx {
110 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
111 NETDEV_TX_OK = 0x00, /* driver took care of packet */
112 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
113 };
114 typedef enum netdev_tx netdev_tx_t;
115
116 /*
117 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
118 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
119 */
120 static inline bool dev_xmit_complete(int rc)
121 {
122 /*
123 * Positive cases with an skb consumed by a driver:
124 * - successful transmission (rc == NETDEV_TX_OK)
125 * - error while transmitting (rc < 0)
126 * - error while queueing to a different device (rc & NET_XMIT_MASK)
127 */
128 if (likely(rc < NET_XMIT_MASK))
129 return true;
130
131 return false;
132 }
133
134 /*
135 * Compute the worst-case header length according to the protocols
136 * used.
137 */
138
139 #if defined(CONFIG_HYPERV_NET)
140 # define LL_MAX_HEADER 128
141 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
142 # if defined(CONFIG_MAC80211_MESH)
143 # define LL_MAX_HEADER 128
144 # else
145 # define LL_MAX_HEADER 96
146 # endif
147 #else
148 # define LL_MAX_HEADER 32
149 #endif
150
151 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
152 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
153 #define MAX_HEADER LL_MAX_HEADER
154 #else
155 #define MAX_HEADER (LL_MAX_HEADER + 48)
156 #endif
157
158 /*
159 * Old network device statistics. Fields are native words
160 * (unsigned long) so they can be read and written atomically.
161 */
162
163 struct net_device_stats {
164 unsigned long rx_packets;
165 unsigned long tx_packets;
166 unsigned long rx_bytes;
167 unsigned long tx_bytes;
168 unsigned long rx_errors;
169 unsigned long tx_errors;
170 unsigned long rx_dropped;
171 unsigned long tx_dropped;
172 unsigned long multicast;
173 unsigned long collisions;
174 unsigned long rx_length_errors;
175 unsigned long rx_over_errors;
176 unsigned long rx_crc_errors;
177 unsigned long rx_frame_errors;
178 unsigned long rx_fifo_errors;
179 unsigned long rx_missed_errors;
180 unsigned long tx_aborted_errors;
181 unsigned long tx_carrier_errors;
182 unsigned long tx_fifo_errors;
183 unsigned long tx_heartbeat_errors;
184 unsigned long tx_window_errors;
185 unsigned long rx_compressed;
186 unsigned long tx_compressed;
187 };
188
189
190 #include <linux/cache.h>
191 #include <linux/skbuff.h>
192
193 #ifdef CONFIG_RPS
194 #include <linux/static_key.h>
195 extern struct static_key rps_needed;
196 extern struct static_key rfs_needed;
197 #endif
198
199 struct neighbour;
200 struct neigh_parms;
201 struct sk_buff;
202
203 struct netdev_hw_addr {
204 struct list_head list;
205 unsigned char addr[MAX_ADDR_LEN];
206 unsigned char type;
207 #define NETDEV_HW_ADDR_T_LAN 1
208 #define NETDEV_HW_ADDR_T_SAN 2
209 #define NETDEV_HW_ADDR_T_SLAVE 3
210 #define NETDEV_HW_ADDR_T_UNICAST 4
211 #define NETDEV_HW_ADDR_T_MULTICAST 5
212 bool global_use;
213 int sync_cnt;
214 int refcount;
215 int synced;
216 struct rcu_head rcu_head;
217 };
218
219 struct netdev_hw_addr_list {
220 struct list_head list;
221 int count;
222 };
223
224 #define netdev_hw_addr_list_count(l) ((l)->count)
225 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
226 #define netdev_hw_addr_list_for_each(ha, l) \
227 list_for_each_entry(ha, &(l)->list, list)
228
229 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
230 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
231 #define netdev_for_each_uc_addr(ha, dev) \
232 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
233
234 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
235 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
236 #define netdev_for_each_mc_addr(ha, dev) \
237 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
238
239 struct hh_cache {
240 unsigned int hh_len;
241 seqlock_t hh_lock;
242
243 /* cached hardware header; allow for machine alignment needs. */
244 #define HH_DATA_MOD 16
245 #define HH_DATA_OFF(__len) \
246 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
247 #define HH_DATA_ALIGN(__len) \
248 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
249 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
250 };
251
252 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
253 * Alternative is:
254 * dev->hard_header_len ? (dev->hard_header_len +
255 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
256 *
257 * We could use other alignment values, but we must maintain the
258 * relationship HH alignment <= LL alignment.
259 */
260 #define LL_RESERVED_SPACE(dev) \
261 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
263 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264
265 struct header_ops {
266 int (*create) (struct sk_buff *skb, struct net_device *dev,
267 unsigned short type, const void *daddr,
268 const void *saddr, unsigned int len);
269 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
270 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
271 void (*cache_update)(struct hh_cache *hh,
272 const struct net_device *dev,
273 const unsigned char *haddr);
274 bool (*validate)(const char *ll_header, unsigned int len);
275 };
276
277 /* These flag bits are private to the generic network queueing
278 * layer; they may not be explicitly referenced by any other
279 * code.
280 */
281
282 enum netdev_state_t {
283 __LINK_STATE_START,
284 __LINK_STATE_PRESENT,
285 __LINK_STATE_NOCARRIER,
286 __LINK_STATE_LINKWATCH_PENDING,
287 __LINK_STATE_DORMANT,
288 };
289
290
291 /*
292 * This structure holds boot-time configured netdevice settings. They
293 * are then used in the device probing.
294 */
295 struct netdev_boot_setup {
296 char name[IFNAMSIZ];
297 struct ifmap map;
298 };
299 #define NETDEV_BOOT_SETUP_MAX 8
300
301 int __init netdev_boot_setup(char *str);
302
303 /*
304 * Structure for NAPI scheduling similar to tasklet but with weighting
305 */
306 struct napi_struct {
307 /* The poll_list must only be managed by the entity which
308 * changes the state of the NAPI_STATE_SCHED bit. This means
309 * whoever atomically sets that bit can add this napi_struct
310 * to the per-CPU poll_list, and whoever clears that bit
311 * can remove from the list right before clearing the bit.
312 */
313 struct list_head poll_list;
314
315 unsigned long state;
316 int weight;
317 unsigned int gro_count;
318 int (*poll)(struct napi_struct *, int);
319 #ifdef CONFIG_NETPOLL
320 int poll_owner;
321 #endif
322 struct net_device *dev;
323 struct sk_buff *gro_list;
324 struct sk_buff *skb;
325 struct hrtimer timer;
326 struct list_head dev_list;
327 struct hlist_node napi_hash_node;
328 unsigned int napi_id;
329 };
330
331 enum {
332 NAPI_STATE_SCHED, /* Poll is scheduled */
333 NAPI_STATE_MISSED, /* reschedule a napi */
334 NAPI_STATE_DISABLE, /* Disable pending */
335 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
336 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */
337 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
338 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
339 };
340
341 enum {
342 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED),
343 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED),
344 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE),
345 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC),
346 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED),
347 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
348 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
349 };
350
351 enum gro_result {
352 GRO_MERGED,
353 GRO_MERGED_FREE,
354 GRO_HELD,
355 GRO_NORMAL,
356 GRO_DROP,
357 GRO_CONSUMED,
358 };
359 typedef enum gro_result gro_result_t;
360
361 /*
362 * enum rx_handler_result - Possible return values for rx_handlers.
363 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
364 * further.
365 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
366 * case skb->dev was changed by rx_handler.
367 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
368 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
369 *
370 * rx_handlers are functions called from inside __netif_receive_skb(), to do
371 * special processing of the skb, prior to delivery to protocol handlers.
372 *
373 * Currently, a net_device can only have a single rx_handler registered. Trying
374 * to register a second rx_handler will return -EBUSY.
375 *
376 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
377 * To unregister a rx_handler on a net_device, use
378 * netdev_rx_handler_unregister().
379 *
380 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
381 * do with the skb.
382 *
383 * If the rx_handler consumed the skb in some way, it should return
384 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
385 * the skb to be delivered in some other way.
386 *
387 * If the rx_handler changed skb->dev, to divert the skb to another
388 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
389 * new device will be called if it exists.
390 *
391 * If the rx_handler decides the skb should be ignored, it should return
392 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
393 * are registered on exact device (ptype->dev == skb->dev).
394 *
395 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
396 * delivered, it should return RX_HANDLER_PASS.
397 *
398 * A device without a registered rx_handler will behave as if rx_handler
399 * returned RX_HANDLER_PASS.
400 */
401
402 enum rx_handler_result {
403 RX_HANDLER_CONSUMED,
404 RX_HANDLER_ANOTHER,
405 RX_HANDLER_EXACT,
406 RX_HANDLER_PASS,
407 };
408 typedef enum rx_handler_result rx_handler_result_t;
409 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
410
411 void __napi_schedule(struct napi_struct *n);
412 void __napi_schedule_irqoff(struct napi_struct *n);
413
414 static inline bool napi_disable_pending(struct napi_struct *n)
415 {
416 return test_bit(NAPI_STATE_DISABLE, &n->state);
417 }
418
419 bool napi_schedule_prep(struct napi_struct *n);
420
421 /**
422 * napi_schedule - schedule NAPI poll
423 * @n: NAPI context
424 *
425 * Schedule NAPI poll routine to be called if it is not already
426 * running.
427 */
428 static inline void napi_schedule(struct napi_struct *n)
429 {
430 if (napi_schedule_prep(n))
431 __napi_schedule(n);
432 }
433
434 /**
435 * napi_schedule_irqoff - schedule NAPI poll
436 * @n: NAPI context
437 *
438 * Variant of napi_schedule(), assuming hard irqs are masked.
439 */
440 static inline void napi_schedule_irqoff(struct napi_struct *n)
441 {
442 if (napi_schedule_prep(n))
443 __napi_schedule_irqoff(n);
444 }
445
446 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
447 static inline bool napi_reschedule(struct napi_struct *napi)
448 {
449 if (napi_schedule_prep(napi)) {
450 __napi_schedule(napi);
451 return true;
452 }
453 return false;
454 }
455
456 bool napi_complete_done(struct napi_struct *n, int work_done);
457 /**
458 * napi_complete - NAPI processing complete
459 * @n: NAPI context
460 *
461 * Mark NAPI processing as complete.
462 * Consider using napi_complete_done() instead.
463 * Return false if device should avoid rearming interrupts.
464 */
465 static inline bool napi_complete(struct napi_struct *n)
466 {
467 return napi_complete_done(n, 0);
468 }
469
470 /**
471 * napi_hash_del - remove a NAPI from global table
472 * @napi: NAPI context
473 *
474 * Warning: caller must observe RCU grace period
475 * before freeing memory containing @napi, if
476 * this function returns true.
477 * Note: core networking stack automatically calls it
478 * from netif_napi_del().
479 * Drivers might want to call this helper to combine all
480 * the needed RCU grace periods into a single one.
481 */
482 bool napi_hash_del(struct napi_struct *napi);
483
484 /**
485 * napi_disable - prevent NAPI from scheduling
486 * @n: NAPI context
487 *
488 * Stop NAPI from being scheduled on this context.
489 * Waits till any outstanding processing completes.
490 */
491 void napi_disable(struct napi_struct *n);
492
493 /**
494 * napi_enable - enable NAPI scheduling
495 * @n: NAPI context
496 *
497 * Resume NAPI from being scheduled on this context.
498 * Must be paired with napi_disable.
499 */
500 static inline void napi_enable(struct napi_struct *n)
501 {
502 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
503 smp_mb__before_atomic();
504 clear_bit(NAPI_STATE_SCHED, &n->state);
505 clear_bit(NAPI_STATE_NPSVC, &n->state);
506 }
507
508 /**
509 * napi_synchronize - wait until NAPI is not running
510 * @n: NAPI context
511 *
512 * Wait until NAPI is done being scheduled on this context.
513 * Waits till any outstanding processing completes but
514 * does not disable future activations.
515 */
516 static inline void napi_synchronize(const struct napi_struct *n)
517 {
518 if (IS_ENABLED(CONFIG_SMP))
519 while (test_bit(NAPI_STATE_SCHED, &n->state))
520 msleep(1);
521 else
522 barrier();
523 }
524
525 enum netdev_queue_state_t {
526 __QUEUE_STATE_DRV_XOFF,
527 __QUEUE_STATE_STACK_XOFF,
528 __QUEUE_STATE_FROZEN,
529 };
530
531 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
532 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
533 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
534
535 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
536 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
537 QUEUE_STATE_FROZEN)
538 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
539 QUEUE_STATE_FROZEN)
540
541 /*
542 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
543 * netif_tx_* functions below are used to manipulate this flag. The
544 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
545 * queue independently. The netif_xmit_*stopped functions below are called
546 * to check if the queue has been stopped by the driver or stack (either
547 * of the XOFF bits are set in the state). Drivers should not need to call
548 * netif_xmit*stopped functions, they should only be using netif_tx_*.
549 */
550
551 struct netdev_queue {
552 /*
553 * read-mostly part
554 */
555 struct net_device *dev;
556 struct Qdisc __rcu *qdisc;
557 struct Qdisc *qdisc_sleeping;
558 #ifdef CONFIG_SYSFS
559 struct kobject kobj;
560 #endif
561 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
562 int numa_node;
563 #endif
564 unsigned long tx_maxrate;
565 /*
566 * Number of TX timeouts for this queue
567 * (/sys/class/net/DEV/Q/trans_timeout)
568 */
569 unsigned long trans_timeout;
570 /*
571 * write-mostly part
572 */
573 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
574 int xmit_lock_owner;
575 /*
576 * Time (in jiffies) of last Tx
577 */
578 unsigned long trans_start;
579
580 unsigned long state;
581
582 #ifdef CONFIG_BQL
583 struct dql dql;
584 #endif
585 } ____cacheline_aligned_in_smp;
586
587 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
588 {
589 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
590 return q->numa_node;
591 #else
592 return NUMA_NO_NODE;
593 #endif
594 }
595
596 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
597 {
598 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
599 q->numa_node = node;
600 #endif
601 }
602
603 #ifdef CONFIG_RPS
604 /*
605 * This structure holds an RPS map which can be of variable length. The
606 * map is an array of CPUs.
607 */
608 struct rps_map {
609 unsigned int len;
610 struct rcu_head rcu;
611 u16 cpus[0];
612 };
613 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
614
615 /*
616 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
617 * tail pointer for that CPU's input queue at the time of last enqueue, and
618 * a hardware filter index.
619 */
620 struct rps_dev_flow {
621 u16 cpu;
622 u16 filter;
623 unsigned int last_qtail;
624 };
625 #define RPS_NO_FILTER 0xffff
626
627 /*
628 * The rps_dev_flow_table structure contains a table of flow mappings.
629 */
630 struct rps_dev_flow_table {
631 unsigned int mask;
632 struct rcu_head rcu;
633 struct rps_dev_flow flows[0];
634 };
635 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
636 ((_num) * sizeof(struct rps_dev_flow)))
637
638 /*
639 * The rps_sock_flow_table contains mappings of flows to the last CPU
640 * on which they were processed by the application (set in recvmsg).
641 * Each entry is a 32bit value. Upper part is the high-order bits
642 * of flow hash, lower part is CPU number.
643 * rps_cpu_mask is used to partition the space, depending on number of
644 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
645 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
646 * meaning we use 32-6=26 bits for the hash.
647 */
648 struct rps_sock_flow_table {
649 u32 mask;
650
651 u32 ents[0] ____cacheline_aligned_in_smp;
652 };
653 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
654
655 #define RPS_NO_CPU 0xffff
656
657 extern u32 rps_cpu_mask;
658 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
659
660 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
661 u32 hash)
662 {
663 if (table && hash) {
664 unsigned int index = hash & table->mask;
665 u32 val = hash & ~rps_cpu_mask;
666
667 /* We only give a hint, preemption can change CPU under us */
668 val |= raw_smp_processor_id();
669
670 if (table->ents[index] != val)
671 table->ents[index] = val;
672 }
673 }
674
675 #ifdef CONFIG_RFS_ACCEL
676 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
677 u16 filter_id);
678 #endif
679 #endif /* CONFIG_RPS */
680
681 /* This structure contains an instance of an RX queue. */
682 struct netdev_rx_queue {
683 #ifdef CONFIG_RPS
684 struct rps_map __rcu *rps_map;
685 struct rps_dev_flow_table __rcu *rps_flow_table;
686 #endif
687 struct kobject kobj;
688 struct net_device *dev;
689 } ____cacheline_aligned_in_smp;
690
691 /*
692 * RX queue sysfs structures and functions.
693 */
694 struct rx_queue_attribute {
695 struct attribute attr;
696 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
697 ssize_t (*store)(struct netdev_rx_queue *queue,
698 const char *buf, size_t len);
699 };
700
701 #ifdef CONFIG_XPS
702 /*
703 * This structure holds an XPS map which can be of variable length. The
704 * map is an array of queues.
705 */
706 struct xps_map {
707 unsigned int len;
708 unsigned int alloc_len;
709 struct rcu_head rcu;
710 u16 queues[0];
711 };
712 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
713 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
714 - sizeof(struct xps_map)) / sizeof(u16))
715
716 /*
717 * This structure holds all XPS maps for device. Maps are indexed by CPU.
718 */
719 struct xps_dev_maps {
720 struct rcu_head rcu;
721 struct xps_map __rcu *cpu_map[0];
722 };
723 #define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \
724 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
725 #endif /* CONFIG_XPS */
726
727 #define TC_MAX_QUEUE 16
728 #define TC_BITMASK 15
729 /* HW offloaded queuing disciplines txq count and offset maps */
730 struct netdev_tc_txq {
731 u16 count;
732 u16 offset;
733 };
734
735 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
736 /*
737 * This structure is to hold information about the device
738 * configured to run FCoE protocol stack.
739 */
740 struct netdev_fcoe_hbainfo {
741 char manufacturer[64];
742 char serial_number[64];
743 char hardware_version[64];
744 char driver_version[64];
745 char optionrom_version[64];
746 char firmware_version[64];
747 char model[256];
748 char model_description[256];
749 };
750 #endif
751
752 #define MAX_PHYS_ITEM_ID_LEN 32
753
754 /* This structure holds a unique identifier to identify some
755 * physical item (port for example) used by a netdevice.
756 */
757 struct netdev_phys_item_id {
758 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
759 unsigned char id_len;
760 };
761
762 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
763 struct netdev_phys_item_id *b)
764 {
765 return a->id_len == b->id_len &&
766 memcmp(a->id, b->id, a->id_len) == 0;
767 }
768
769 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
770 struct sk_buff *skb);
771
772 enum tc_setup_type {
773 TC_SETUP_MQPRIO,
774 TC_SETUP_CLSU32,
775 TC_SETUP_CLSFLOWER,
776 TC_SETUP_CLSMATCHALL,
777 TC_SETUP_CLSBPF,
778 };
779
780 /* These structures hold the attributes of xdp state that are being passed
781 * to the netdevice through the xdp op.
782 */
783 enum xdp_netdev_command {
784 /* Set or clear a bpf program used in the earliest stages of packet
785 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
786 * is responsible for calling bpf_prog_put on any old progs that are
787 * stored. In case of error, the callee need not release the new prog
788 * reference, but on success it takes ownership and must bpf_prog_put
789 * when it is no longer used.
790 */
791 XDP_SETUP_PROG,
792 XDP_SETUP_PROG_HW,
793 /* Check if a bpf program is set on the device. The callee should
794 * set @prog_attached to one of XDP_ATTACHED_* values, note that "true"
795 * is equivalent to XDP_ATTACHED_DRV.
796 */
797 XDP_QUERY_PROG,
798 };
799
800 struct netlink_ext_ack;
801
802 struct netdev_xdp {
803 enum xdp_netdev_command command;
804 union {
805 /* XDP_SETUP_PROG */
806 struct {
807 u32 flags;
808 struct bpf_prog *prog;
809 struct netlink_ext_ack *extack;
810 };
811 /* XDP_QUERY_PROG */
812 struct {
813 u8 prog_attached;
814 u32 prog_id;
815 };
816 };
817 };
818
819 #ifdef CONFIG_XFRM_OFFLOAD
820 struct xfrmdev_ops {
821 int (*xdo_dev_state_add) (struct xfrm_state *x);
822 void (*xdo_dev_state_delete) (struct xfrm_state *x);
823 void (*xdo_dev_state_free) (struct xfrm_state *x);
824 bool (*xdo_dev_offload_ok) (struct sk_buff *skb,
825 struct xfrm_state *x);
826 };
827 #endif
828
829 /*
830 * This structure defines the management hooks for network devices.
831 * The following hooks can be defined; unless noted otherwise, they are
832 * optional and can be filled with a null pointer.
833 *
834 * int (*ndo_init)(struct net_device *dev);
835 * This function is called once when a network device is registered.
836 * The network device can use this for any late stage initialization
837 * or semantic validation. It can fail with an error code which will
838 * be propagated back to register_netdev.
839 *
840 * void (*ndo_uninit)(struct net_device *dev);
841 * This function is called when device is unregistered or when registration
842 * fails. It is not called if init fails.
843 *
844 * int (*ndo_open)(struct net_device *dev);
845 * This function is called when a network device transitions to the up
846 * state.
847 *
848 * int (*ndo_stop)(struct net_device *dev);
849 * This function is called when a network device transitions to the down
850 * state.
851 *
852 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
853 * struct net_device *dev);
854 * Called when a packet needs to be transmitted.
855 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
856 * the queue before that can happen; it's for obsolete devices and weird
857 * corner cases, but the stack really does a non-trivial amount
858 * of useless work if you return NETDEV_TX_BUSY.
859 * Required; cannot be NULL.
860 *
861 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
862 * struct net_device *dev
863 * netdev_features_t features);
864 * Called by core transmit path to determine if device is capable of
865 * performing offload operations on a given packet. This is to give
866 * the device an opportunity to implement any restrictions that cannot
867 * be otherwise expressed by feature flags. The check is called with
868 * the set of features that the stack has calculated and it returns
869 * those the driver believes to be appropriate.
870 *
871 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
872 * void *accel_priv, select_queue_fallback_t fallback);
873 * Called to decide which queue to use when device supports multiple
874 * transmit queues.
875 *
876 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
877 * This function is called to allow device receiver to make
878 * changes to configuration when multicast or promiscuous is enabled.
879 *
880 * void (*ndo_set_rx_mode)(struct net_device *dev);
881 * This function is called device changes address list filtering.
882 * If driver handles unicast address filtering, it should set
883 * IFF_UNICAST_FLT in its priv_flags.
884 *
885 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
886 * This function is called when the Media Access Control address
887 * needs to be changed. If this interface is not defined, the
888 * MAC address can not be changed.
889 *
890 * int (*ndo_validate_addr)(struct net_device *dev);
891 * Test if Media Access Control address is valid for the device.
892 *
893 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
894 * Called when a user requests an ioctl which can't be handled by
895 * the generic interface code. If not defined ioctls return
896 * not supported error code.
897 *
898 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
899 * Used to set network devices bus interface parameters. This interface
900 * is retained for legacy reasons; new devices should use the bus
901 * interface (PCI) for low level management.
902 *
903 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
904 * Called when a user wants to change the Maximum Transfer Unit
905 * of a device.
906 *
907 * void (*ndo_tx_timeout)(struct net_device *dev);
908 * Callback used when the transmitter has not made any progress
909 * for dev->watchdog ticks.
910 *
911 * void (*ndo_get_stats64)(struct net_device *dev,
912 * struct rtnl_link_stats64 *storage);
913 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
914 * Called when a user wants to get the network device usage
915 * statistics. Drivers must do one of the following:
916 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
917 * rtnl_link_stats64 structure passed by the caller.
918 * 2. Define @ndo_get_stats to update a net_device_stats structure
919 * (which should normally be dev->stats) and return a pointer to
920 * it. The structure may be changed asynchronously only if each
921 * field is written atomically.
922 * 3. Update dev->stats asynchronously and atomically, and define
923 * neither operation.
924 *
925 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
926 * Return true if this device supports offload stats of this attr_id.
927 *
928 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
929 * void *attr_data)
930 * Get statistics for offload operations by attr_id. Write it into the
931 * attr_data pointer.
932 *
933 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
934 * If device supports VLAN filtering this function is called when a
935 * VLAN id is registered.
936 *
937 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
938 * If device supports VLAN filtering this function is called when a
939 * VLAN id is unregistered.
940 *
941 * void (*ndo_poll_controller)(struct net_device *dev);
942 *
943 * SR-IOV management functions.
944 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
945 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
946 * u8 qos, __be16 proto);
947 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
948 * int max_tx_rate);
949 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
950 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
951 * int (*ndo_get_vf_config)(struct net_device *dev,
952 * int vf, struct ifla_vf_info *ivf);
953 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
954 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
955 * struct nlattr *port[]);
956 *
957 * Enable or disable the VF ability to query its RSS Redirection Table and
958 * Hash Key. This is needed since on some devices VF share this information
959 * with PF and querying it may introduce a theoretical security risk.
960 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
961 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
962 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
963 * void *type_data);
964 * Called to setup any 'tc' scheduler, classifier or action on @dev.
965 * This is always called from the stack with the rtnl lock held and netif
966 * tx queues stopped. This allows the netdevice to perform queue
967 * management safely.
968 *
969 * Fiber Channel over Ethernet (FCoE) offload functions.
970 * int (*ndo_fcoe_enable)(struct net_device *dev);
971 * Called when the FCoE protocol stack wants to start using LLD for FCoE
972 * so the underlying device can perform whatever needed configuration or
973 * initialization to support acceleration of FCoE traffic.
974 *
975 * int (*ndo_fcoe_disable)(struct net_device *dev);
976 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
977 * so the underlying device can perform whatever needed clean-ups to
978 * stop supporting acceleration of FCoE traffic.
979 *
980 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
981 * struct scatterlist *sgl, unsigned int sgc);
982 * Called when the FCoE Initiator wants to initialize an I/O that
983 * is a possible candidate for Direct Data Placement (DDP). The LLD can
984 * perform necessary setup and returns 1 to indicate the device is set up
985 * successfully to perform DDP on this I/O, otherwise this returns 0.
986 *
987 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
988 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
989 * indicated by the FC exchange id 'xid', so the underlying device can
990 * clean up and reuse resources for later DDP requests.
991 *
992 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
993 * struct scatterlist *sgl, unsigned int sgc);
994 * Called when the FCoE Target wants to initialize an I/O that
995 * is a possible candidate for Direct Data Placement (DDP). The LLD can
996 * perform necessary setup and returns 1 to indicate the device is set up
997 * successfully to perform DDP on this I/O, otherwise this returns 0.
998 *
999 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1000 * struct netdev_fcoe_hbainfo *hbainfo);
1001 * Called when the FCoE Protocol stack wants information on the underlying
1002 * device. This information is utilized by the FCoE protocol stack to
1003 * register attributes with Fiber Channel management service as per the
1004 * FC-GS Fabric Device Management Information(FDMI) specification.
1005 *
1006 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1007 * Called when the underlying device wants to override default World Wide
1008 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1009 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1010 * protocol stack to use.
1011 *
1012 * RFS acceleration.
1013 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1014 * u16 rxq_index, u32 flow_id);
1015 * Set hardware filter for RFS. rxq_index is the target queue index;
1016 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1017 * Return the filter ID on success, or a negative error code.
1018 *
1019 * Slave management functions (for bridge, bonding, etc).
1020 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1021 * Called to make another netdev an underling.
1022 *
1023 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1024 * Called to release previously enslaved netdev.
1025 *
1026 * Feature/offload setting functions.
1027 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1028 * netdev_features_t features);
1029 * Adjusts the requested feature flags according to device-specific
1030 * constraints, and returns the resulting flags. Must not modify
1031 * the device state.
1032 *
1033 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1034 * Called to update device configuration to new features. Passed
1035 * feature set might be less than what was returned by ndo_fix_features()).
1036 * Must return >0 or -errno if it changed dev->features itself.
1037 *
1038 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1039 * struct net_device *dev,
1040 * const unsigned char *addr, u16 vid, u16 flags)
1041 * Adds an FDB entry to dev for addr.
1042 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1043 * struct net_device *dev,
1044 * const unsigned char *addr, u16 vid)
1045 * Deletes the FDB entry from dev coresponding to addr.
1046 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1047 * struct net_device *dev, struct net_device *filter_dev,
1048 * int *idx)
1049 * Used to add FDB entries to dump requests. Implementers should add
1050 * entries to skb and update idx with the number of entries.
1051 *
1052 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1053 * u16 flags)
1054 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1055 * struct net_device *dev, u32 filter_mask,
1056 * int nlflags)
1057 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1058 * u16 flags);
1059 *
1060 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1061 * Called to change device carrier. Soft-devices (like dummy, team, etc)
1062 * which do not represent real hardware may define this to allow their
1063 * userspace components to manage their virtual carrier state. Devices
1064 * that determine carrier state from physical hardware properties (eg
1065 * network cables) or protocol-dependent mechanisms (eg
1066 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1067 *
1068 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1069 * struct netdev_phys_item_id *ppid);
1070 * Called to get ID of physical port of this device. If driver does
1071 * not implement this, it is assumed that the hw is not able to have
1072 * multiple net devices on single physical port.
1073 *
1074 * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1075 * struct udp_tunnel_info *ti);
1076 * Called by UDP tunnel to notify a driver about the UDP port and socket
1077 * address family that a UDP tunnel is listnening to. It is called only
1078 * when a new port starts listening. The operation is protected by the
1079 * RTNL.
1080 *
1081 * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1082 * struct udp_tunnel_info *ti);
1083 * Called by UDP tunnel to notify the driver about a UDP port and socket
1084 * address family that the UDP tunnel is not listening to anymore. The
1085 * operation is protected by the RTNL.
1086 *
1087 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1088 * struct net_device *dev)
1089 * Called by upper layer devices to accelerate switching or other
1090 * station functionality into hardware. 'pdev is the lowerdev
1091 * to use for the offload and 'dev' is the net device that will
1092 * back the offload. Returns a pointer to the private structure
1093 * the upper layer will maintain.
1094 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1095 * Called by upper layer device to delete the station created
1096 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1097 * the station and priv is the structure returned by the add
1098 * operation.
1099 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1100 * int queue_index, u32 maxrate);
1101 * Called when a user wants to set a max-rate limitation of specific
1102 * TX queue.
1103 * int (*ndo_get_iflink)(const struct net_device *dev);
1104 * Called to get the iflink value of this device.
1105 * void (*ndo_change_proto_down)(struct net_device *dev,
1106 * bool proto_down);
1107 * This function is used to pass protocol port error state information
1108 * to the switch driver. The switch driver can react to the proto_down
1109 * by doing a phys down on the associated switch port.
1110 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1111 * This function is used to get egress tunnel information for given skb.
1112 * This is useful for retrieving outer tunnel header parameters while
1113 * sampling packet.
1114 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1115 * This function is used to specify the headroom that the skb must
1116 * consider when allocation skb during packet reception. Setting
1117 * appropriate rx headroom value allows avoiding skb head copy on
1118 * forward. Setting a negative value resets the rx headroom to the
1119 * default value.
1120 * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp);
1121 * This function is used to set or query state related to XDP on the
1122 * netdevice. See definition of enum xdp_netdev_command for details.
1123 * int (*ndo_xdp_xmit)(struct net_device *dev, struct xdp_buff *xdp);
1124 * This function is used to submit a XDP packet for transmit on a
1125 * netdevice.
1126 * void (*ndo_xdp_flush)(struct net_device *dev);
1127 * This function is used to inform the driver to flush a particular
1128 * xdp tx queue. Must be called on same CPU as xdp_xmit.
1129 */
1130 struct net_device_ops {
1131 int (*ndo_init)(struct net_device *dev);
1132 void (*ndo_uninit)(struct net_device *dev);
1133 int (*ndo_open)(struct net_device *dev);
1134 int (*ndo_stop)(struct net_device *dev);
1135 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1136 struct net_device *dev);
1137 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1138 struct net_device *dev,
1139 netdev_features_t features);
1140 u16 (*ndo_select_queue)(struct net_device *dev,
1141 struct sk_buff *skb,
1142 void *accel_priv,
1143 select_queue_fallback_t fallback);
1144 void (*ndo_change_rx_flags)(struct net_device *dev,
1145 int flags);
1146 void (*ndo_set_rx_mode)(struct net_device *dev);
1147 int (*ndo_set_mac_address)(struct net_device *dev,
1148 void *addr);
1149 int (*ndo_validate_addr)(struct net_device *dev);
1150 int (*ndo_do_ioctl)(struct net_device *dev,
1151 struct ifreq *ifr, int cmd);
1152 int (*ndo_set_config)(struct net_device *dev,
1153 struct ifmap *map);
1154 int (*ndo_change_mtu)(struct net_device *dev,
1155 int new_mtu);
1156 int (*ndo_neigh_setup)(struct net_device *dev,
1157 struct neigh_parms *);
1158 void (*ndo_tx_timeout) (struct net_device *dev);
1159
1160 void (*ndo_get_stats64)(struct net_device *dev,
1161 struct rtnl_link_stats64 *storage);
1162 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1163 int (*ndo_get_offload_stats)(int attr_id,
1164 const struct net_device *dev,
1165 void *attr_data);
1166 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1167
1168 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1169 __be16 proto, u16 vid);
1170 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1171 __be16 proto, u16 vid);
1172 #ifdef CONFIG_NET_POLL_CONTROLLER
1173 void (*ndo_poll_controller)(struct net_device *dev);
1174 int (*ndo_netpoll_setup)(struct net_device *dev,
1175 struct netpoll_info *info);
1176 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1177 #endif
1178 int (*ndo_set_vf_mac)(struct net_device *dev,
1179 int queue, u8 *mac);
1180 int (*ndo_set_vf_vlan)(struct net_device *dev,
1181 int queue, u16 vlan,
1182 u8 qos, __be16 proto);
1183 int (*ndo_set_vf_rate)(struct net_device *dev,
1184 int vf, int min_tx_rate,
1185 int max_tx_rate);
1186 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1187 int vf, bool setting);
1188 int (*ndo_set_vf_trust)(struct net_device *dev,
1189 int vf, bool setting);
1190 int (*ndo_get_vf_config)(struct net_device *dev,
1191 int vf,
1192 struct ifla_vf_info *ivf);
1193 int (*ndo_set_vf_link_state)(struct net_device *dev,
1194 int vf, int link_state);
1195 int (*ndo_get_vf_stats)(struct net_device *dev,
1196 int vf,
1197 struct ifla_vf_stats
1198 *vf_stats);
1199 int (*ndo_set_vf_port)(struct net_device *dev,
1200 int vf,
1201 struct nlattr *port[]);
1202 int (*ndo_get_vf_port)(struct net_device *dev,
1203 int vf, struct sk_buff *skb);
1204 int (*ndo_set_vf_guid)(struct net_device *dev,
1205 int vf, u64 guid,
1206 int guid_type);
1207 int (*ndo_set_vf_rss_query_en)(
1208 struct net_device *dev,
1209 int vf, bool setting);
1210 int (*ndo_setup_tc)(struct net_device *dev,
1211 enum tc_setup_type type,
1212 void *type_data);
1213 #if IS_ENABLED(CONFIG_FCOE)
1214 int (*ndo_fcoe_enable)(struct net_device *dev);
1215 int (*ndo_fcoe_disable)(struct net_device *dev);
1216 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1217 u16 xid,
1218 struct scatterlist *sgl,
1219 unsigned int sgc);
1220 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1221 u16 xid);
1222 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1223 u16 xid,
1224 struct scatterlist *sgl,
1225 unsigned int sgc);
1226 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1227 struct netdev_fcoe_hbainfo *hbainfo);
1228 #endif
1229
1230 #if IS_ENABLED(CONFIG_LIBFCOE)
1231 #define NETDEV_FCOE_WWNN 0
1232 #define NETDEV_FCOE_WWPN 1
1233 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1234 u64 *wwn, int type);
1235 #endif
1236
1237 #ifdef CONFIG_RFS_ACCEL
1238 int (*ndo_rx_flow_steer)(struct net_device *dev,
1239 const struct sk_buff *skb,
1240 u16 rxq_index,
1241 u32 flow_id);
1242 #endif
1243 int (*ndo_add_slave)(struct net_device *dev,
1244 struct net_device *slave_dev);
1245 int (*ndo_del_slave)(struct net_device *dev,
1246 struct net_device *slave_dev);
1247 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1248 netdev_features_t features);
1249 int (*ndo_set_features)(struct net_device *dev,
1250 netdev_features_t features);
1251 int (*ndo_neigh_construct)(struct net_device *dev,
1252 struct neighbour *n);
1253 void (*ndo_neigh_destroy)(struct net_device *dev,
1254 struct neighbour *n);
1255
1256 int (*ndo_fdb_add)(struct ndmsg *ndm,
1257 struct nlattr *tb[],
1258 struct net_device *dev,
1259 const unsigned char *addr,
1260 u16 vid,
1261 u16 flags);
1262 int (*ndo_fdb_del)(struct ndmsg *ndm,
1263 struct nlattr *tb[],
1264 struct net_device *dev,
1265 const unsigned char *addr,
1266 u16 vid);
1267 int (*ndo_fdb_dump)(struct sk_buff *skb,
1268 struct netlink_callback *cb,
1269 struct net_device *dev,
1270 struct net_device *filter_dev,
1271 int *idx);
1272
1273 int (*ndo_bridge_setlink)(struct net_device *dev,
1274 struct nlmsghdr *nlh,
1275 u16 flags);
1276 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1277 u32 pid, u32 seq,
1278 struct net_device *dev,
1279 u32 filter_mask,
1280 int nlflags);
1281 int (*ndo_bridge_dellink)(struct net_device *dev,
1282 struct nlmsghdr *nlh,
1283 u16 flags);
1284 int (*ndo_change_carrier)(struct net_device *dev,
1285 bool new_carrier);
1286 int (*ndo_get_phys_port_id)(struct net_device *dev,
1287 struct netdev_phys_item_id *ppid);
1288 int (*ndo_get_phys_port_name)(struct net_device *dev,
1289 char *name, size_t len);
1290 void (*ndo_udp_tunnel_add)(struct net_device *dev,
1291 struct udp_tunnel_info *ti);
1292 void (*ndo_udp_tunnel_del)(struct net_device *dev,
1293 struct udp_tunnel_info *ti);
1294 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1295 struct net_device *dev);
1296 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1297 void *priv);
1298
1299 int (*ndo_get_lock_subclass)(struct net_device *dev);
1300 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1301 int queue_index,
1302 u32 maxrate);
1303 int (*ndo_get_iflink)(const struct net_device *dev);
1304 int (*ndo_change_proto_down)(struct net_device *dev,
1305 bool proto_down);
1306 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1307 struct sk_buff *skb);
1308 void (*ndo_set_rx_headroom)(struct net_device *dev,
1309 int needed_headroom);
1310 int (*ndo_xdp)(struct net_device *dev,
1311 struct netdev_xdp *xdp);
1312 int (*ndo_xdp_xmit)(struct net_device *dev,
1313 struct xdp_buff *xdp);
1314 void (*ndo_xdp_flush)(struct net_device *dev);
1315 };
1316
1317 /**
1318 * enum net_device_priv_flags - &struct net_device priv_flags
1319 *
1320 * These are the &struct net_device, they are only set internally
1321 * by drivers and used in the kernel. These flags are invisible to
1322 * userspace; this means that the order of these flags can change
1323 * during any kernel release.
1324 *
1325 * You should have a pretty good reason to be extending these flags.
1326 *
1327 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1328 * @IFF_EBRIDGE: Ethernet bridging device
1329 * @IFF_BONDING: bonding master or slave
1330 * @IFF_ISATAP: ISATAP interface (RFC4214)
1331 * @IFF_WAN_HDLC: WAN HDLC device
1332 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1333 * release skb->dst
1334 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1335 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1336 * @IFF_MACVLAN_PORT: device used as macvlan port
1337 * @IFF_BRIDGE_PORT: device used as bridge port
1338 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1339 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1340 * @IFF_UNICAST_FLT: Supports unicast filtering
1341 * @IFF_TEAM_PORT: device used as team port
1342 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1343 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1344 * change when it's running
1345 * @IFF_MACVLAN: Macvlan device
1346 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1347 * underlying stacked devices
1348 * @IFF_IPVLAN_MASTER: IPvlan master device
1349 * @IFF_IPVLAN_SLAVE: IPvlan slave device
1350 * @IFF_L3MDEV_MASTER: device is an L3 master device
1351 * @IFF_NO_QUEUE: device can run without qdisc attached
1352 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1353 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1354 * @IFF_TEAM: device is a team device
1355 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1356 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1357 * entity (i.e. the master device for bridged veth)
1358 * @IFF_MACSEC: device is a MACsec device
1359 */
1360 enum netdev_priv_flags {
1361 IFF_802_1Q_VLAN = 1<<0,
1362 IFF_EBRIDGE = 1<<1,
1363 IFF_BONDING = 1<<2,
1364 IFF_ISATAP = 1<<3,
1365 IFF_WAN_HDLC = 1<<4,
1366 IFF_XMIT_DST_RELEASE = 1<<5,
1367 IFF_DONT_BRIDGE = 1<<6,
1368 IFF_DISABLE_NETPOLL = 1<<7,
1369 IFF_MACVLAN_PORT = 1<<8,
1370 IFF_BRIDGE_PORT = 1<<9,
1371 IFF_OVS_DATAPATH = 1<<10,
1372 IFF_TX_SKB_SHARING = 1<<11,
1373 IFF_UNICAST_FLT = 1<<12,
1374 IFF_TEAM_PORT = 1<<13,
1375 IFF_SUPP_NOFCS = 1<<14,
1376 IFF_LIVE_ADDR_CHANGE = 1<<15,
1377 IFF_MACVLAN = 1<<16,
1378 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1379 IFF_IPVLAN_MASTER = 1<<18,
1380 IFF_IPVLAN_SLAVE = 1<<19,
1381 IFF_L3MDEV_MASTER = 1<<20,
1382 IFF_NO_QUEUE = 1<<21,
1383 IFF_OPENVSWITCH = 1<<22,
1384 IFF_L3MDEV_SLAVE = 1<<23,
1385 IFF_TEAM = 1<<24,
1386 IFF_RXFH_CONFIGURED = 1<<25,
1387 IFF_PHONY_HEADROOM = 1<<26,
1388 IFF_MACSEC = 1<<27,
1389 };
1390
1391 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1392 #define IFF_EBRIDGE IFF_EBRIDGE
1393 #define IFF_BONDING IFF_BONDING
1394 #define IFF_ISATAP IFF_ISATAP
1395 #define IFF_WAN_HDLC IFF_WAN_HDLC
1396 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1397 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1398 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1399 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1400 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1401 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1402 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1403 #define IFF_UNICAST_FLT IFF_UNICAST_FLT
1404 #define IFF_TEAM_PORT IFF_TEAM_PORT
1405 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1406 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1407 #define IFF_MACVLAN IFF_MACVLAN
1408 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1409 #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER
1410 #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE
1411 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1412 #define IFF_NO_QUEUE IFF_NO_QUEUE
1413 #define IFF_OPENVSWITCH IFF_OPENVSWITCH
1414 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1415 #define IFF_TEAM IFF_TEAM
1416 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED
1417 #define IFF_MACSEC IFF_MACSEC
1418
1419 /**
1420 * struct net_device - The DEVICE structure.
1421 *
1422 * Actually, this whole structure is a big mistake. It mixes I/O
1423 * data with strictly "high-level" data, and it has to know about
1424 * almost every data structure used in the INET module.
1425 *
1426 * @name: This is the first field of the "visible" part of this structure
1427 * (i.e. as seen by users in the "Space.c" file). It is the name
1428 * of the interface.
1429 *
1430 * @name_hlist: Device name hash chain, please keep it close to name[]
1431 * @ifalias: SNMP alias
1432 * @mem_end: Shared memory end
1433 * @mem_start: Shared memory start
1434 * @base_addr: Device I/O address
1435 * @irq: Device IRQ number
1436 *
1437 * @carrier_changes: Stats to monitor carrier on<->off transitions
1438 *
1439 * @state: Generic network queuing layer state, see netdev_state_t
1440 * @dev_list: The global list of network devices
1441 * @napi_list: List entry used for polling NAPI devices
1442 * @unreg_list: List entry when we are unregistering the
1443 * device; see the function unregister_netdev
1444 * @close_list: List entry used when we are closing the device
1445 * @ptype_all: Device-specific packet handlers for all protocols
1446 * @ptype_specific: Device-specific, protocol-specific packet handlers
1447 *
1448 * @adj_list: Directly linked devices, like slaves for bonding
1449 * @features: Currently active device features
1450 * @hw_features: User-changeable features
1451 *
1452 * @wanted_features: User-requested features
1453 * @vlan_features: Mask of features inheritable by VLAN devices
1454 *
1455 * @hw_enc_features: Mask of features inherited by encapsulating devices
1456 * This field indicates what encapsulation
1457 * offloads the hardware is capable of doing,
1458 * and drivers will need to set them appropriately.
1459 *
1460 * @mpls_features: Mask of features inheritable by MPLS
1461 *
1462 * @ifindex: interface index
1463 * @group: The group the device belongs to
1464 *
1465 * @stats: Statistics struct, which was left as a legacy, use
1466 * rtnl_link_stats64 instead
1467 *
1468 * @rx_dropped: Dropped packets by core network,
1469 * do not use this in drivers
1470 * @tx_dropped: Dropped packets by core network,
1471 * do not use this in drivers
1472 * @rx_nohandler: nohandler dropped packets by core network on
1473 * inactive devices, do not use this in drivers
1474 *
1475 * @wireless_handlers: List of functions to handle Wireless Extensions,
1476 * instead of ioctl,
1477 * see <net/iw_handler.h> for details.
1478 * @wireless_data: Instance data managed by the core of wireless extensions
1479 *
1480 * @netdev_ops: Includes several pointers to callbacks,
1481 * if one wants to override the ndo_*() functions
1482 * @ethtool_ops: Management operations
1483 * @ndisc_ops: Includes callbacks for different IPv6 neighbour
1484 * discovery handling. Necessary for e.g. 6LoWPAN.
1485 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1486 * of Layer 2 headers.
1487 *
1488 * @flags: Interface flags (a la BSD)
1489 * @priv_flags: Like 'flags' but invisible to userspace,
1490 * see if.h for the definitions
1491 * @gflags: Global flags ( kept as legacy )
1492 * @padded: How much padding added by alloc_netdev()
1493 * @operstate: RFC2863 operstate
1494 * @link_mode: Mapping policy to operstate
1495 * @if_port: Selectable AUI, TP, ...
1496 * @dma: DMA channel
1497 * @mtu: Interface MTU value
1498 * @min_mtu: Interface Minimum MTU value
1499 * @max_mtu: Interface Maximum MTU value
1500 * @type: Interface hardware type
1501 * @hard_header_len: Maximum hardware header length.
1502 * @min_header_len: Minimum hardware header length
1503 *
1504 * @needed_headroom: Extra headroom the hardware may need, but not in all
1505 * cases can this be guaranteed
1506 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1507 * cases can this be guaranteed. Some cases also use
1508 * LL_MAX_HEADER instead to allocate the skb
1509 *
1510 * interface address info:
1511 *
1512 * @perm_addr: Permanent hw address
1513 * @addr_assign_type: Hw address assignment type
1514 * @addr_len: Hardware address length
1515 * @neigh_priv_len: Used in neigh_alloc()
1516 * @dev_id: Used to differentiate devices that share
1517 * the same link layer address
1518 * @dev_port: Used to differentiate devices that share
1519 * the same function
1520 * @addr_list_lock: XXX: need comments on this one
1521 * @uc_promisc: Counter that indicates promiscuous mode
1522 * has been enabled due to the need to listen to
1523 * additional unicast addresses in a device that
1524 * does not implement ndo_set_rx_mode()
1525 * @uc: unicast mac addresses
1526 * @mc: multicast mac addresses
1527 * @dev_addrs: list of device hw addresses
1528 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1529 * @promiscuity: Number of times the NIC is told to work in
1530 * promiscuous mode; if it becomes 0 the NIC will
1531 * exit promiscuous mode
1532 * @allmulti: Counter, enables or disables allmulticast mode
1533 *
1534 * @vlan_info: VLAN info
1535 * @dsa_ptr: dsa specific data
1536 * @tipc_ptr: TIPC specific data
1537 * @atalk_ptr: AppleTalk link
1538 * @ip_ptr: IPv4 specific data
1539 * @dn_ptr: DECnet specific data
1540 * @ip6_ptr: IPv6 specific data
1541 * @ax25_ptr: AX.25 specific data
1542 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1543 *
1544 * @dev_addr: Hw address (before bcast,
1545 * because most packets are unicast)
1546 *
1547 * @_rx: Array of RX queues
1548 * @num_rx_queues: Number of RX queues
1549 * allocated at register_netdev() time
1550 * @real_num_rx_queues: Number of RX queues currently active in device
1551 *
1552 * @rx_handler: handler for received packets
1553 * @rx_handler_data: XXX: need comments on this one
1554 * @ingress_queue: XXX: need comments on this one
1555 * @broadcast: hw bcast address
1556 *
1557 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1558 * indexed by RX queue number. Assigned by driver.
1559 * This must only be set if the ndo_rx_flow_steer
1560 * operation is defined
1561 * @index_hlist: Device index hash chain
1562 *
1563 * @_tx: Array of TX queues
1564 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1565 * @real_num_tx_queues: Number of TX queues currently active in device
1566 * @qdisc: Root qdisc from userspace point of view
1567 * @tx_queue_len: Max frames per queue allowed
1568 * @tx_global_lock: XXX: need comments on this one
1569 *
1570 * @xps_maps: XXX: need comments on this one
1571 *
1572 * @watchdog_timeo: Represents the timeout that is used by
1573 * the watchdog (see dev_watchdog())
1574 * @watchdog_timer: List of timers
1575 *
1576 * @pcpu_refcnt: Number of references to this device
1577 * @todo_list: Delayed register/unregister
1578 * @link_watch_list: XXX: need comments on this one
1579 *
1580 * @reg_state: Register/unregister state machine
1581 * @dismantle: Device is going to be freed
1582 * @rtnl_link_state: This enum represents the phases of creating
1583 * a new link
1584 *
1585 * @needs_free_netdev: Should unregister perform free_netdev?
1586 * @priv_destructor: Called from unregister
1587 * @npinfo: XXX: need comments on this one
1588 * @nd_net: Network namespace this network device is inside
1589 *
1590 * @ml_priv: Mid-layer private
1591 * @lstats: Loopback statistics
1592 * @tstats: Tunnel statistics
1593 * @dstats: Dummy statistics
1594 * @vstats: Virtual ethernet statistics
1595 *
1596 * @garp_port: GARP
1597 * @mrp_port: MRP
1598 *
1599 * @dev: Class/net/name entry
1600 * @sysfs_groups: Space for optional device, statistics and wireless
1601 * sysfs groups
1602 *
1603 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1604 * @rtnl_link_ops: Rtnl_link_ops
1605 *
1606 * @gso_max_size: Maximum size of generic segmentation offload
1607 * @gso_max_segs: Maximum number of segments that can be passed to the
1608 * NIC for GSO
1609 *
1610 * @dcbnl_ops: Data Center Bridging netlink ops
1611 * @num_tc: Number of traffic classes in the net device
1612 * @tc_to_txq: XXX: need comments on this one
1613 * @prio_tc_map: XXX: need comments on this one
1614 *
1615 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1616 *
1617 * @priomap: XXX: need comments on this one
1618 * @phydev: Physical device may attach itself
1619 * for hardware timestamping
1620 *
1621 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1622 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1623 *
1624 * @proto_down: protocol port state information can be sent to the
1625 * switch driver and used to set the phys state of the
1626 * switch port.
1627 *
1628 * FIXME: cleanup struct net_device such that network protocol info
1629 * moves out.
1630 */
1631
1632 struct net_device {
1633 char name[IFNAMSIZ];
1634 struct hlist_node name_hlist;
1635 char *ifalias;
1636 /*
1637 * I/O specific fields
1638 * FIXME: Merge these and struct ifmap into one
1639 */
1640 unsigned long mem_end;
1641 unsigned long mem_start;
1642 unsigned long base_addr;
1643 int irq;
1644
1645 atomic_t carrier_changes;
1646
1647 /*
1648 * Some hardware also needs these fields (state,dev_list,
1649 * napi_list,unreg_list,close_list) but they are not
1650 * part of the usual set specified in Space.c.
1651 */
1652
1653 unsigned long state;
1654
1655 struct list_head dev_list;
1656 struct list_head napi_list;
1657 struct list_head unreg_list;
1658 struct list_head close_list;
1659 struct list_head ptype_all;
1660 struct list_head ptype_specific;
1661
1662 struct {
1663 struct list_head upper;
1664 struct list_head lower;
1665 } adj_list;
1666
1667 netdev_features_t features;
1668 netdev_features_t hw_features;
1669 netdev_features_t wanted_features;
1670 netdev_features_t vlan_features;
1671 netdev_features_t hw_enc_features;
1672 netdev_features_t mpls_features;
1673 netdev_features_t gso_partial_features;
1674
1675 int ifindex;
1676 int group;
1677
1678 struct net_device_stats stats;
1679
1680 atomic_long_t rx_dropped;
1681 atomic_long_t tx_dropped;
1682 atomic_long_t rx_nohandler;
1683
1684 #ifdef CONFIG_WIRELESS_EXT
1685 const struct iw_handler_def *wireless_handlers;
1686 struct iw_public_data *wireless_data;
1687 #endif
1688 const struct net_device_ops *netdev_ops;
1689 const struct ethtool_ops *ethtool_ops;
1690 #ifdef CONFIG_NET_SWITCHDEV
1691 const struct switchdev_ops *switchdev_ops;
1692 #endif
1693 #ifdef CONFIG_NET_L3_MASTER_DEV
1694 const struct l3mdev_ops *l3mdev_ops;
1695 #endif
1696 #if IS_ENABLED(CONFIG_IPV6)
1697 const struct ndisc_ops *ndisc_ops;
1698 #endif
1699
1700 #ifdef CONFIG_XFRM
1701 const struct xfrmdev_ops *xfrmdev_ops;
1702 #endif
1703
1704 const struct header_ops *header_ops;
1705
1706 unsigned int flags;
1707 unsigned int priv_flags;
1708
1709 unsigned short gflags;
1710 unsigned short padded;
1711
1712 unsigned char operstate;
1713 unsigned char link_mode;
1714
1715 unsigned char if_port;
1716 unsigned char dma;
1717
1718 unsigned int mtu;
1719 unsigned int min_mtu;
1720 unsigned int max_mtu;
1721 unsigned short type;
1722 unsigned short hard_header_len;
1723 unsigned char min_header_len;
1724
1725 unsigned short needed_headroom;
1726 unsigned short needed_tailroom;
1727
1728 /* Interface address info. */
1729 unsigned char perm_addr[MAX_ADDR_LEN];
1730 unsigned char addr_assign_type;
1731 unsigned char addr_len;
1732 unsigned short neigh_priv_len;
1733 unsigned short dev_id;
1734 unsigned short dev_port;
1735 spinlock_t addr_list_lock;
1736 unsigned char name_assign_type;
1737 bool uc_promisc;
1738 struct netdev_hw_addr_list uc;
1739 struct netdev_hw_addr_list mc;
1740 struct netdev_hw_addr_list dev_addrs;
1741
1742 #ifdef CONFIG_SYSFS
1743 struct kset *queues_kset;
1744 #endif
1745 unsigned int promiscuity;
1746 unsigned int allmulti;
1747
1748
1749 /* Protocol-specific pointers */
1750
1751 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1752 struct vlan_info __rcu *vlan_info;
1753 #endif
1754 #if IS_ENABLED(CONFIG_NET_DSA)
1755 struct dsa_switch_tree *dsa_ptr;
1756 #endif
1757 #if IS_ENABLED(CONFIG_TIPC)
1758 struct tipc_bearer __rcu *tipc_ptr;
1759 #endif
1760 void *atalk_ptr;
1761 struct in_device __rcu *ip_ptr;
1762 struct dn_dev __rcu *dn_ptr;
1763 struct inet6_dev __rcu *ip6_ptr;
1764 void *ax25_ptr;
1765 struct wireless_dev *ieee80211_ptr;
1766 struct wpan_dev *ieee802154_ptr;
1767 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1768 struct mpls_dev __rcu *mpls_ptr;
1769 #endif
1770
1771 /*
1772 * Cache lines mostly used on receive path (including eth_type_trans())
1773 */
1774 /* Interface address info used in eth_type_trans() */
1775 unsigned char *dev_addr;
1776
1777 #ifdef CONFIG_SYSFS
1778 struct netdev_rx_queue *_rx;
1779
1780 unsigned int num_rx_queues;
1781 unsigned int real_num_rx_queues;
1782 #endif
1783
1784 struct bpf_prog __rcu *xdp_prog;
1785 unsigned long gro_flush_timeout;
1786 rx_handler_func_t __rcu *rx_handler;
1787 void __rcu *rx_handler_data;
1788
1789 #ifdef CONFIG_NET_CLS_ACT
1790 struct tcf_proto __rcu *ingress_cl_list;
1791 #endif
1792 struct netdev_queue __rcu *ingress_queue;
1793 #ifdef CONFIG_NETFILTER_INGRESS
1794 struct nf_hook_entries __rcu *nf_hooks_ingress;
1795 #endif
1796
1797 unsigned char broadcast[MAX_ADDR_LEN];
1798 #ifdef CONFIG_RFS_ACCEL
1799 struct cpu_rmap *rx_cpu_rmap;
1800 #endif
1801 struct hlist_node index_hlist;
1802
1803 /*
1804 * Cache lines mostly used on transmit path
1805 */
1806 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1807 unsigned int num_tx_queues;
1808 unsigned int real_num_tx_queues;
1809 struct Qdisc *qdisc;
1810 #ifdef CONFIG_NET_SCHED
1811 DECLARE_HASHTABLE (qdisc_hash, 4);
1812 #endif
1813 unsigned int tx_queue_len;
1814 spinlock_t tx_global_lock;
1815 int watchdog_timeo;
1816
1817 #ifdef CONFIG_XPS
1818 struct xps_dev_maps __rcu *xps_maps;
1819 #endif
1820 #ifdef CONFIG_NET_CLS_ACT
1821 struct tcf_proto __rcu *egress_cl_list;
1822 #endif
1823
1824 /* These may be needed for future network-power-down code. */
1825 struct timer_list watchdog_timer;
1826
1827 int __percpu *pcpu_refcnt;
1828 struct list_head todo_list;
1829
1830 struct list_head link_watch_list;
1831
1832 enum { NETREG_UNINITIALIZED=0,
1833 NETREG_REGISTERED, /* completed register_netdevice */
1834 NETREG_UNREGISTERING, /* called unregister_netdevice */
1835 NETREG_UNREGISTERED, /* completed unregister todo */
1836 NETREG_RELEASED, /* called free_netdev */
1837 NETREG_DUMMY, /* dummy device for NAPI poll */
1838 } reg_state:8;
1839
1840 bool dismantle;
1841
1842 enum {
1843 RTNL_LINK_INITIALIZED,
1844 RTNL_LINK_INITIALIZING,
1845 } rtnl_link_state:16;
1846
1847 bool needs_free_netdev;
1848 void (*priv_destructor)(struct net_device *dev);
1849
1850 #ifdef CONFIG_NETPOLL
1851 struct netpoll_info __rcu *npinfo;
1852 #endif
1853
1854 possible_net_t nd_net;
1855
1856 /* mid-layer private */
1857 union {
1858 void *ml_priv;
1859 struct pcpu_lstats __percpu *lstats;
1860 struct pcpu_sw_netstats __percpu *tstats;
1861 struct pcpu_dstats __percpu *dstats;
1862 struct pcpu_vstats __percpu *vstats;
1863 };
1864
1865 #if IS_ENABLED(CONFIG_GARP)
1866 struct garp_port __rcu *garp_port;
1867 #endif
1868 #if IS_ENABLED(CONFIG_MRP)
1869 struct mrp_port __rcu *mrp_port;
1870 #endif
1871
1872 struct device dev;
1873 const struct attribute_group *sysfs_groups[4];
1874 const struct attribute_group *sysfs_rx_queue_group;
1875
1876 const struct rtnl_link_ops *rtnl_link_ops;
1877
1878 /* for setting kernel sock attribute on TCP connection setup */
1879 #define GSO_MAX_SIZE 65536
1880 unsigned int gso_max_size;
1881 #define GSO_MAX_SEGS 65535
1882 u16 gso_max_segs;
1883
1884 #ifdef CONFIG_DCB
1885 const struct dcbnl_rtnl_ops *dcbnl_ops;
1886 #endif
1887 u8 num_tc;
1888 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1889 u8 prio_tc_map[TC_BITMASK + 1];
1890
1891 #if IS_ENABLED(CONFIG_FCOE)
1892 unsigned int fcoe_ddp_xid;
1893 #endif
1894 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1895 struct netprio_map __rcu *priomap;
1896 #endif
1897 struct phy_device *phydev;
1898 struct lock_class_key *qdisc_tx_busylock;
1899 struct lock_class_key *qdisc_running_key;
1900 bool proto_down;
1901 };
1902 #define to_net_dev(d) container_of(d, struct net_device, dev)
1903
1904 static inline bool netif_elide_gro(const struct net_device *dev)
1905 {
1906 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
1907 return true;
1908 return false;
1909 }
1910
1911 #define NETDEV_ALIGN 32
1912
1913 static inline
1914 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1915 {
1916 return dev->prio_tc_map[prio & TC_BITMASK];
1917 }
1918
1919 static inline
1920 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1921 {
1922 if (tc >= dev->num_tc)
1923 return -EINVAL;
1924
1925 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1926 return 0;
1927 }
1928
1929 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
1930 void netdev_reset_tc(struct net_device *dev);
1931 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
1932 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
1933
1934 static inline
1935 int netdev_get_num_tc(struct net_device *dev)
1936 {
1937 return dev->num_tc;
1938 }
1939
1940 static inline
1941 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1942 unsigned int index)
1943 {
1944 return &dev->_tx[index];
1945 }
1946
1947 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1948 const struct sk_buff *skb)
1949 {
1950 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1951 }
1952
1953 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1954 void (*f)(struct net_device *,
1955 struct netdev_queue *,
1956 void *),
1957 void *arg)
1958 {
1959 unsigned int i;
1960
1961 for (i = 0; i < dev->num_tx_queues; i++)
1962 f(dev, &dev->_tx[i], arg);
1963 }
1964
1965 #define netdev_lockdep_set_classes(dev) \
1966 { \
1967 static struct lock_class_key qdisc_tx_busylock_key; \
1968 static struct lock_class_key qdisc_running_key; \
1969 static struct lock_class_key qdisc_xmit_lock_key; \
1970 static struct lock_class_key dev_addr_list_lock_key; \
1971 unsigned int i; \
1972 \
1973 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \
1974 (dev)->qdisc_running_key = &qdisc_running_key; \
1975 lockdep_set_class(&(dev)->addr_list_lock, \
1976 &dev_addr_list_lock_key); \
1977 for (i = 0; i < (dev)->num_tx_queues; i++) \
1978 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \
1979 &qdisc_xmit_lock_key); \
1980 }
1981
1982 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1983 struct sk_buff *skb,
1984 void *accel_priv);
1985
1986 /* returns the headroom that the master device needs to take in account
1987 * when forwarding to this dev
1988 */
1989 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
1990 {
1991 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
1992 }
1993
1994 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
1995 {
1996 if (dev->netdev_ops->ndo_set_rx_headroom)
1997 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
1998 }
1999
2000 /* set the device rx headroom to the dev's default */
2001 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2002 {
2003 netdev_set_rx_headroom(dev, -1);
2004 }
2005
2006 /*
2007 * Net namespace inlines
2008 */
2009 static inline
2010 struct net *dev_net(const struct net_device *dev)
2011 {
2012 return read_pnet(&dev->nd_net);
2013 }
2014
2015 static inline
2016 void dev_net_set(struct net_device *dev, struct net *net)
2017 {
2018 write_pnet(&dev->nd_net, net);
2019 }
2020
2021 /**
2022 * netdev_priv - access network device private data
2023 * @dev: network device
2024 *
2025 * Get network device private data
2026 */
2027 static inline void *netdev_priv(const struct net_device *dev)
2028 {
2029 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2030 }
2031
2032 /* Set the sysfs physical device reference for the network logical device
2033 * if set prior to registration will cause a symlink during initialization.
2034 */
2035 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
2036
2037 /* Set the sysfs device type for the network logical device to allow
2038 * fine-grained identification of different network device types. For
2039 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2040 */
2041 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
2042
2043 /* Default NAPI poll() weight
2044 * Device drivers are strongly advised to not use bigger value
2045 */
2046 #define NAPI_POLL_WEIGHT 64
2047
2048 /**
2049 * netif_napi_add - initialize a NAPI context
2050 * @dev: network device
2051 * @napi: NAPI context
2052 * @poll: polling function
2053 * @weight: default weight
2054 *
2055 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2056 * *any* of the other NAPI-related functions.
2057 */
2058 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2059 int (*poll)(struct napi_struct *, int), int weight);
2060
2061 /**
2062 * netif_tx_napi_add - initialize a NAPI context
2063 * @dev: network device
2064 * @napi: NAPI context
2065 * @poll: polling function
2066 * @weight: default weight
2067 *
2068 * This variant of netif_napi_add() should be used from drivers using NAPI
2069 * to exclusively poll a TX queue.
2070 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2071 */
2072 static inline void netif_tx_napi_add(struct net_device *dev,
2073 struct napi_struct *napi,
2074 int (*poll)(struct napi_struct *, int),
2075 int weight)
2076 {
2077 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2078 netif_napi_add(dev, napi, poll, weight);
2079 }
2080
2081 /**
2082 * netif_napi_del - remove a NAPI context
2083 * @napi: NAPI context
2084 *
2085 * netif_napi_del() removes a NAPI context from the network device NAPI list
2086 */
2087 void netif_napi_del(struct napi_struct *napi);
2088
2089 struct napi_gro_cb {
2090 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2091 void *frag0;
2092
2093 /* Length of frag0. */
2094 unsigned int frag0_len;
2095
2096 /* This indicates where we are processing relative to skb->data. */
2097 int data_offset;
2098
2099 /* This is non-zero if the packet cannot be merged with the new skb. */
2100 u16 flush;
2101
2102 /* Save the IP ID here and check when we get to the transport layer */
2103 u16 flush_id;
2104
2105 /* Number of segments aggregated. */
2106 u16 count;
2107
2108 /* Start offset for remote checksum offload */
2109 u16 gro_remcsum_start;
2110
2111 /* jiffies when first packet was created/queued */
2112 unsigned long age;
2113
2114 /* Used in ipv6_gro_receive() and foo-over-udp */
2115 u16 proto;
2116
2117 /* This is non-zero if the packet may be of the same flow. */
2118 u8 same_flow:1;
2119
2120 /* Used in tunnel GRO receive */
2121 u8 encap_mark:1;
2122
2123 /* GRO checksum is valid */
2124 u8 csum_valid:1;
2125
2126 /* Number of checksums via CHECKSUM_UNNECESSARY */
2127 u8 csum_cnt:3;
2128
2129 /* Free the skb? */
2130 u8 free:2;
2131 #define NAPI_GRO_FREE 1
2132 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2133
2134 /* Used in foo-over-udp, set in udp[46]_gro_receive */
2135 u8 is_ipv6:1;
2136
2137 /* Used in GRE, set in fou/gue_gro_receive */
2138 u8 is_fou:1;
2139
2140 /* Used to determine if flush_id can be ignored */
2141 u8 is_atomic:1;
2142
2143 /* Number of gro_receive callbacks this packet already went through */
2144 u8 recursion_counter:4;
2145
2146 /* 1 bit hole */
2147
2148 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2149 __wsum csum;
2150
2151 /* used in skb_gro_receive() slow path */
2152 struct sk_buff *last;
2153 };
2154
2155 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2156
2157 #define GRO_RECURSION_LIMIT 15
2158 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2159 {
2160 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2161 }
2162
2163 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *);
2164 static inline struct sk_buff **call_gro_receive(gro_receive_t cb,
2165 struct sk_buff **head,
2166 struct sk_buff *skb)
2167 {
2168 if (unlikely(gro_recursion_inc_test(skb))) {
2169 NAPI_GRO_CB(skb)->flush |= 1;
2170 return NULL;
2171 }
2172
2173 return cb(head, skb);
2174 }
2175
2176 typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **,
2177 struct sk_buff *);
2178 static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb,
2179 struct sock *sk,
2180 struct sk_buff **head,
2181 struct sk_buff *skb)
2182 {
2183 if (unlikely(gro_recursion_inc_test(skb))) {
2184 NAPI_GRO_CB(skb)->flush |= 1;
2185 return NULL;
2186 }
2187
2188 return cb(sk, head, skb);
2189 }
2190
2191 struct packet_type {
2192 __be16 type; /* This is really htons(ether_type). */
2193 struct net_device *dev; /* NULL is wildcarded here */
2194 int (*func) (struct sk_buff *,
2195 struct net_device *,
2196 struct packet_type *,
2197 struct net_device *);
2198 bool (*id_match)(struct packet_type *ptype,
2199 struct sock *sk);
2200 void *af_packet_priv;
2201 struct list_head list;
2202 };
2203
2204 struct offload_callbacks {
2205 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2206 netdev_features_t features);
2207 struct sk_buff **(*gro_receive)(struct sk_buff **head,
2208 struct sk_buff *skb);
2209 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2210 };
2211
2212 struct packet_offload {
2213 __be16 type; /* This is really htons(ether_type). */
2214 u16 priority;
2215 struct offload_callbacks callbacks;
2216 struct list_head list;
2217 };
2218
2219 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2220 struct pcpu_sw_netstats {
2221 u64 rx_packets;
2222 u64 rx_bytes;
2223 u64 tx_packets;
2224 u64 tx_bytes;
2225 struct u64_stats_sync syncp;
2226 };
2227
2228 #define __netdev_alloc_pcpu_stats(type, gfp) \
2229 ({ \
2230 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2231 if (pcpu_stats) { \
2232 int __cpu; \
2233 for_each_possible_cpu(__cpu) { \
2234 typeof(type) *stat; \
2235 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2236 u64_stats_init(&stat->syncp); \
2237 } \
2238 } \
2239 pcpu_stats; \
2240 })
2241
2242 #define netdev_alloc_pcpu_stats(type) \
2243 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2244
2245 enum netdev_lag_tx_type {
2246 NETDEV_LAG_TX_TYPE_UNKNOWN,
2247 NETDEV_LAG_TX_TYPE_RANDOM,
2248 NETDEV_LAG_TX_TYPE_BROADCAST,
2249 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2250 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2251 NETDEV_LAG_TX_TYPE_HASH,
2252 };
2253
2254 struct netdev_lag_upper_info {
2255 enum netdev_lag_tx_type tx_type;
2256 };
2257
2258 struct netdev_lag_lower_state_info {
2259 u8 link_up : 1,
2260 tx_enabled : 1;
2261 };
2262
2263 #include <linux/notifier.h>
2264
2265 /* netdevice notifier chain. Please remember to update the rtnetlink
2266 * notification exclusion list in rtnetlink_event() when adding new
2267 * types.
2268 */
2269 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
2270 #define NETDEV_DOWN 0x0002
2271 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
2272 detected a hardware crash and restarted
2273 - we can use this eg to kick tcp sessions
2274 once done */
2275 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
2276 #define NETDEV_REGISTER 0x0005
2277 #define NETDEV_UNREGISTER 0x0006
2278 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */
2279 #define NETDEV_CHANGEADDR 0x0008
2280 #define NETDEV_GOING_DOWN 0x0009
2281 #define NETDEV_CHANGENAME 0x000A
2282 #define NETDEV_FEAT_CHANGE 0x000B
2283 #define NETDEV_BONDING_FAILOVER 0x000C
2284 #define NETDEV_PRE_UP 0x000D
2285 #define NETDEV_PRE_TYPE_CHANGE 0x000E
2286 #define NETDEV_POST_TYPE_CHANGE 0x000F
2287 #define NETDEV_POST_INIT 0x0010
2288 #define NETDEV_UNREGISTER_FINAL 0x0011
2289 #define NETDEV_RELEASE 0x0012
2290 #define NETDEV_NOTIFY_PEERS 0x0013
2291 #define NETDEV_JOIN 0x0014
2292 #define NETDEV_CHANGEUPPER 0x0015
2293 #define NETDEV_RESEND_IGMP 0x0016
2294 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */
2295 #define NETDEV_CHANGEINFODATA 0x0018
2296 #define NETDEV_BONDING_INFO 0x0019
2297 #define NETDEV_PRECHANGEUPPER 0x001A
2298 #define NETDEV_CHANGELOWERSTATE 0x001B
2299 #define NETDEV_UDP_TUNNEL_PUSH_INFO 0x001C
2300 #define NETDEV_UDP_TUNNEL_DROP_INFO 0x001D
2301 #define NETDEV_CHANGE_TX_QUEUE_LEN 0x001E
2302
2303 int register_netdevice_notifier(struct notifier_block *nb);
2304 int unregister_netdevice_notifier(struct notifier_block *nb);
2305
2306 struct netdev_notifier_info {
2307 struct net_device *dev;
2308 };
2309
2310 struct netdev_notifier_change_info {
2311 struct netdev_notifier_info info; /* must be first */
2312 unsigned int flags_changed;
2313 };
2314
2315 struct netdev_notifier_changeupper_info {
2316 struct netdev_notifier_info info; /* must be first */
2317 struct net_device *upper_dev; /* new upper dev */
2318 bool master; /* is upper dev master */
2319 bool linking; /* is the notification for link or unlink */
2320 void *upper_info; /* upper dev info */
2321 };
2322
2323 struct netdev_notifier_changelowerstate_info {
2324 struct netdev_notifier_info info; /* must be first */
2325 void *lower_state_info; /* is lower dev state */
2326 };
2327
2328 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2329 struct net_device *dev)
2330 {
2331 info->dev = dev;
2332 }
2333
2334 static inline struct net_device *
2335 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2336 {
2337 return info->dev;
2338 }
2339
2340 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2341
2342
2343 extern rwlock_t dev_base_lock; /* Device list lock */
2344
2345 #define for_each_netdev(net, d) \
2346 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2347 #define for_each_netdev_reverse(net, d) \
2348 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2349 #define for_each_netdev_rcu(net, d) \
2350 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2351 #define for_each_netdev_safe(net, d, n) \
2352 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2353 #define for_each_netdev_continue(net, d) \
2354 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2355 #define for_each_netdev_continue_rcu(net, d) \
2356 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2357 #define for_each_netdev_in_bond_rcu(bond, slave) \
2358 for_each_netdev_rcu(&init_net, slave) \
2359 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2360 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2361
2362 static inline struct net_device *next_net_device(struct net_device *dev)
2363 {
2364 struct list_head *lh;
2365 struct net *net;
2366
2367 net = dev_net(dev);
2368 lh = dev->dev_list.next;
2369 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2370 }
2371
2372 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2373 {
2374 struct list_head *lh;
2375 struct net *net;
2376
2377 net = dev_net(dev);
2378 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2379 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2380 }
2381
2382 static inline struct net_device *first_net_device(struct net *net)
2383 {
2384 return list_empty(&net->dev_base_head) ? NULL :
2385 net_device_entry(net->dev_base_head.next);
2386 }
2387
2388 static inline struct net_device *first_net_device_rcu(struct net *net)
2389 {
2390 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2391
2392 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2393 }
2394
2395 int netdev_boot_setup_check(struct net_device *dev);
2396 unsigned long netdev_boot_base(const char *prefix, int unit);
2397 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2398 const char *hwaddr);
2399 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2400 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2401 void dev_add_pack(struct packet_type *pt);
2402 void dev_remove_pack(struct packet_type *pt);
2403 void __dev_remove_pack(struct packet_type *pt);
2404 void dev_add_offload(struct packet_offload *po);
2405 void dev_remove_offload(struct packet_offload *po);
2406
2407 int dev_get_iflink(const struct net_device *dev);
2408 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2409 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2410 unsigned short mask);
2411 struct net_device *dev_get_by_name(struct net *net, const char *name);
2412 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2413 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2414 int dev_alloc_name(struct net_device *dev, const char *name);
2415 int dev_open(struct net_device *dev);
2416 void dev_close(struct net_device *dev);
2417 void dev_close_many(struct list_head *head, bool unlink);
2418 void dev_disable_lro(struct net_device *dev);
2419 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2420 int dev_queue_xmit(struct sk_buff *skb);
2421 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2422 int register_netdevice(struct net_device *dev);
2423 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2424 void unregister_netdevice_many(struct list_head *head);
2425 static inline void unregister_netdevice(struct net_device *dev)
2426 {
2427 unregister_netdevice_queue(dev, NULL);
2428 }
2429
2430 int netdev_refcnt_read(const struct net_device *dev);
2431 void free_netdev(struct net_device *dev);
2432 void netdev_freemem(struct net_device *dev);
2433 void synchronize_net(void);
2434 int init_dummy_netdev(struct net_device *dev);
2435
2436 DECLARE_PER_CPU(int, xmit_recursion);
2437 #define XMIT_RECURSION_LIMIT 10
2438
2439 static inline int dev_recursion_level(void)
2440 {
2441 return this_cpu_read(xmit_recursion);
2442 }
2443
2444 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2445 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2446 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2447 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2448 int netdev_get_name(struct net *net, char *name, int ifindex);
2449 int dev_restart(struct net_device *dev);
2450 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2451
2452 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2453 {
2454 return NAPI_GRO_CB(skb)->data_offset;
2455 }
2456
2457 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2458 {
2459 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2460 }
2461
2462 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2463 {
2464 NAPI_GRO_CB(skb)->data_offset += len;
2465 }
2466
2467 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2468 unsigned int offset)
2469 {
2470 return NAPI_GRO_CB(skb)->frag0 + offset;
2471 }
2472
2473 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2474 {
2475 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2476 }
2477
2478 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2479 {
2480 NAPI_GRO_CB(skb)->frag0 = NULL;
2481 NAPI_GRO_CB(skb)->frag0_len = 0;
2482 }
2483
2484 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2485 unsigned int offset)
2486 {
2487 if (!pskb_may_pull(skb, hlen))
2488 return NULL;
2489
2490 skb_gro_frag0_invalidate(skb);
2491 return skb->data + offset;
2492 }
2493
2494 static inline void *skb_gro_network_header(struct sk_buff *skb)
2495 {
2496 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2497 skb_network_offset(skb);
2498 }
2499
2500 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2501 const void *start, unsigned int len)
2502 {
2503 if (NAPI_GRO_CB(skb)->csum_valid)
2504 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2505 csum_partial(start, len, 0));
2506 }
2507
2508 /* GRO checksum functions. These are logical equivalents of the normal
2509 * checksum functions (in skbuff.h) except that they operate on the GRO
2510 * offsets and fields in sk_buff.
2511 */
2512
2513 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2514
2515 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2516 {
2517 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2518 }
2519
2520 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2521 bool zero_okay,
2522 __sum16 check)
2523 {
2524 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2525 skb_checksum_start_offset(skb) <
2526 skb_gro_offset(skb)) &&
2527 !skb_at_gro_remcsum_start(skb) &&
2528 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2529 (!zero_okay || check));
2530 }
2531
2532 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2533 __wsum psum)
2534 {
2535 if (NAPI_GRO_CB(skb)->csum_valid &&
2536 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2537 return 0;
2538
2539 NAPI_GRO_CB(skb)->csum = psum;
2540
2541 return __skb_gro_checksum_complete(skb);
2542 }
2543
2544 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2545 {
2546 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2547 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2548 NAPI_GRO_CB(skb)->csum_cnt--;
2549 } else {
2550 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2551 * verified a new top level checksum or an encapsulated one
2552 * during GRO. This saves work if we fallback to normal path.
2553 */
2554 __skb_incr_checksum_unnecessary(skb);
2555 }
2556 }
2557
2558 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2559 compute_pseudo) \
2560 ({ \
2561 __sum16 __ret = 0; \
2562 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2563 __ret = __skb_gro_checksum_validate_complete(skb, \
2564 compute_pseudo(skb, proto)); \
2565 if (!__ret) \
2566 skb_gro_incr_csum_unnecessary(skb); \
2567 __ret; \
2568 })
2569
2570 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2571 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2572
2573 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2574 compute_pseudo) \
2575 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2576
2577 #define skb_gro_checksum_simple_validate(skb) \
2578 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2579
2580 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2581 {
2582 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2583 !NAPI_GRO_CB(skb)->csum_valid);
2584 }
2585
2586 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2587 __sum16 check, __wsum pseudo)
2588 {
2589 NAPI_GRO_CB(skb)->csum = ~pseudo;
2590 NAPI_GRO_CB(skb)->csum_valid = 1;
2591 }
2592
2593 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2594 do { \
2595 if (__skb_gro_checksum_convert_check(skb)) \
2596 __skb_gro_checksum_convert(skb, check, \
2597 compute_pseudo(skb, proto)); \
2598 } while (0)
2599
2600 struct gro_remcsum {
2601 int offset;
2602 __wsum delta;
2603 };
2604
2605 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2606 {
2607 grc->offset = 0;
2608 grc->delta = 0;
2609 }
2610
2611 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2612 unsigned int off, size_t hdrlen,
2613 int start, int offset,
2614 struct gro_remcsum *grc,
2615 bool nopartial)
2616 {
2617 __wsum delta;
2618 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2619
2620 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2621
2622 if (!nopartial) {
2623 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2624 return ptr;
2625 }
2626
2627 ptr = skb_gro_header_fast(skb, off);
2628 if (skb_gro_header_hard(skb, off + plen)) {
2629 ptr = skb_gro_header_slow(skb, off + plen, off);
2630 if (!ptr)
2631 return NULL;
2632 }
2633
2634 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2635 start, offset);
2636
2637 /* Adjust skb->csum since we changed the packet */
2638 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2639
2640 grc->offset = off + hdrlen + offset;
2641 grc->delta = delta;
2642
2643 return ptr;
2644 }
2645
2646 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2647 struct gro_remcsum *grc)
2648 {
2649 void *ptr;
2650 size_t plen = grc->offset + sizeof(u16);
2651
2652 if (!grc->delta)
2653 return;
2654
2655 ptr = skb_gro_header_fast(skb, grc->offset);
2656 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2657 ptr = skb_gro_header_slow(skb, plen, grc->offset);
2658 if (!ptr)
2659 return;
2660 }
2661
2662 remcsum_unadjust((__sum16 *)ptr, grc->delta);
2663 }
2664
2665 #ifdef CONFIG_XFRM_OFFLOAD
2666 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2667 {
2668 if (PTR_ERR(pp) != -EINPROGRESS)
2669 NAPI_GRO_CB(skb)->flush |= flush;
2670 }
2671 #else
2672 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2673 {
2674 NAPI_GRO_CB(skb)->flush |= flush;
2675 }
2676 #endif
2677
2678 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2679 unsigned short type,
2680 const void *daddr, const void *saddr,
2681 unsigned int len)
2682 {
2683 if (!dev->header_ops || !dev->header_ops->create)
2684 return 0;
2685
2686 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2687 }
2688
2689 static inline int dev_parse_header(const struct sk_buff *skb,
2690 unsigned char *haddr)
2691 {
2692 const struct net_device *dev = skb->dev;
2693
2694 if (!dev->header_ops || !dev->header_ops->parse)
2695 return 0;
2696 return dev->header_ops->parse(skb, haddr);
2697 }
2698
2699 /* ll_header must have at least hard_header_len allocated */
2700 static inline bool dev_validate_header(const struct net_device *dev,
2701 char *ll_header, int len)
2702 {
2703 if (likely(len >= dev->hard_header_len))
2704 return true;
2705 if (len < dev->min_header_len)
2706 return false;
2707
2708 if (capable(CAP_SYS_RAWIO)) {
2709 memset(ll_header + len, 0, dev->hard_header_len - len);
2710 return true;
2711 }
2712
2713 if (dev->header_ops && dev->header_ops->validate)
2714 return dev->header_ops->validate(ll_header, len);
2715
2716 return false;
2717 }
2718
2719 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2720 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2721 static inline int unregister_gifconf(unsigned int family)
2722 {
2723 return register_gifconf(family, NULL);
2724 }
2725
2726 #ifdef CONFIG_NET_FLOW_LIMIT
2727 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
2728 struct sd_flow_limit {
2729 u64 count;
2730 unsigned int num_buckets;
2731 unsigned int history_head;
2732 u16 history[FLOW_LIMIT_HISTORY];
2733 u8 buckets[];
2734 };
2735
2736 extern int netdev_flow_limit_table_len;
2737 #endif /* CONFIG_NET_FLOW_LIMIT */
2738
2739 /*
2740 * Incoming packets are placed on per-CPU queues
2741 */
2742 struct softnet_data {
2743 struct list_head poll_list;
2744 struct sk_buff_head process_queue;
2745
2746 /* stats */
2747 unsigned int processed;
2748 unsigned int time_squeeze;
2749 unsigned int received_rps;
2750 #ifdef CONFIG_RPS
2751 struct softnet_data *rps_ipi_list;
2752 #endif
2753 #ifdef CONFIG_NET_FLOW_LIMIT
2754 struct sd_flow_limit __rcu *flow_limit;
2755 #endif
2756 struct Qdisc *output_queue;
2757 struct Qdisc **output_queue_tailp;
2758 struct sk_buff *completion_queue;
2759
2760 #ifdef CONFIG_RPS
2761 /* input_queue_head should be written by cpu owning this struct,
2762 * and only read by other cpus. Worth using a cache line.
2763 */
2764 unsigned int input_queue_head ____cacheline_aligned_in_smp;
2765
2766 /* Elements below can be accessed between CPUs for RPS/RFS */
2767 call_single_data_t csd ____cacheline_aligned_in_smp;
2768 struct softnet_data *rps_ipi_next;
2769 unsigned int cpu;
2770 unsigned int input_queue_tail;
2771 #endif
2772 unsigned int dropped;
2773 struct sk_buff_head input_pkt_queue;
2774 struct napi_struct backlog;
2775
2776 };
2777
2778 static inline void input_queue_head_incr(struct softnet_data *sd)
2779 {
2780 #ifdef CONFIG_RPS
2781 sd->input_queue_head++;
2782 #endif
2783 }
2784
2785 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2786 unsigned int *qtail)
2787 {
2788 #ifdef CONFIG_RPS
2789 *qtail = ++sd->input_queue_tail;
2790 #endif
2791 }
2792
2793 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2794
2795 void __netif_schedule(struct Qdisc *q);
2796 void netif_schedule_queue(struct netdev_queue *txq);
2797
2798 static inline void netif_tx_schedule_all(struct net_device *dev)
2799 {
2800 unsigned int i;
2801
2802 for (i = 0; i < dev->num_tx_queues; i++)
2803 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2804 }
2805
2806 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2807 {
2808 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2809 }
2810
2811 /**
2812 * netif_start_queue - allow transmit
2813 * @dev: network device
2814 *
2815 * Allow upper layers to call the device hard_start_xmit routine.
2816 */
2817 static inline void netif_start_queue(struct net_device *dev)
2818 {
2819 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2820 }
2821
2822 static inline void netif_tx_start_all_queues(struct net_device *dev)
2823 {
2824 unsigned int i;
2825
2826 for (i = 0; i < dev->num_tx_queues; i++) {
2827 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2828 netif_tx_start_queue(txq);
2829 }
2830 }
2831
2832 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2833
2834 /**
2835 * netif_wake_queue - restart transmit
2836 * @dev: network device
2837 *
2838 * Allow upper layers to call the device hard_start_xmit routine.
2839 * Used for flow control when transmit resources are available.
2840 */
2841 static inline void netif_wake_queue(struct net_device *dev)
2842 {
2843 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2844 }
2845
2846 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2847 {
2848 unsigned int i;
2849
2850 for (i = 0; i < dev->num_tx_queues; i++) {
2851 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2852 netif_tx_wake_queue(txq);
2853 }
2854 }
2855
2856 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2857 {
2858 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2859 }
2860
2861 /**
2862 * netif_stop_queue - stop transmitted packets
2863 * @dev: network device
2864 *
2865 * Stop upper layers calling the device hard_start_xmit routine.
2866 * Used for flow control when transmit resources are unavailable.
2867 */
2868 static inline void netif_stop_queue(struct net_device *dev)
2869 {
2870 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2871 }
2872
2873 void netif_tx_stop_all_queues(struct net_device *dev);
2874
2875 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2876 {
2877 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2878 }
2879
2880 /**
2881 * netif_queue_stopped - test if transmit queue is flowblocked
2882 * @dev: network device
2883 *
2884 * Test if transmit queue on device is currently unable to send.
2885 */
2886 static inline bool netif_queue_stopped(const struct net_device *dev)
2887 {
2888 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2889 }
2890
2891 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2892 {
2893 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2894 }
2895
2896 static inline bool
2897 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2898 {
2899 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2900 }
2901
2902 static inline bool
2903 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2904 {
2905 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2906 }
2907
2908 /**
2909 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2910 * @dev_queue: pointer to transmit queue
2911 *
2912 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2913 * to give appropriate hint to the CPU.
2914 */
2915 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2916 {
2917 #ifdef CONFIG_BQL
2918 prefetchw(&dev_queue->dql.num_queued);
2919 #endif
2920 }
2921
2922 /**
2923 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2924 * @dev_queue: pointer to transmit queue
2925 *
2926 * BQL enabled drivers might use this helper in their TX completion path,
2927 * to give appropriate hint to the CPU.
2928 */
2929 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2930 {
2931 #ifdef CONFIG_BQL
2932 prefetchw(&dev_queue->dql.limit);
2933 #endif
2934 }
2935
2936 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2937 unsigned int bytes)
2938 {
2939 #ifdef CONFIG_BQL
2940 dql_queued(&dev_queue->dql, bytes);
2941
2942 if (likely(dql_avail(&dev_queue->dql) >= 0))
2943 return;
2944
2945 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2946
2947 /*
2948 * The XOFF flag must be set before checking the dql_avail below,
2949 * because in netdev_tx_completed_queue we update the dql_completed
2950 * before checking the XOFF flag.
2951 */
2952 smp_mb();
2953
2954 /* check again in case another CPU has just made room avail */
2955 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2956 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2957 #endif
2958 }
2959
2960 /**
2961 * netdev_sent_queue - report the number of bytes queued to hardware
2962 * @dev: network device
2963 * @bytes: number of bytes queued to the hardware device queue
2964 *
2965 * Report the number of bytes queued for sending/completion to the network
2966 * device hardware queue. @bytes should be a good approximation and should
2967 * exactly match netdev_completed_queue() @bytes
2968 */
2969 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2970 {
2971 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2972 }
2973
2974 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2975 unsigned int pkts, unsigned int bytes)
2976 {
2977 #ifdef CONFIG_BQL
2978 if (unlikely(!bytes))
2979 return;
2980
2981 dql_completed(&dev_queue->dql, bytes);
2982
2983 /*
2984 * Without the memory barrier there is a small possiblity that
2985 * netdev_tx_sent_queue will miss the update and cause the queue to
2986 * be stopped forever
2987 */
2988 smp_mb();
2989
2990 if (dql_avail(&dev_queue->dql) < 0)
2991 return;
2992
2993 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2994 netif_schedule_queue(dev_queue);
2995 #endif
2996 }
2997
2998 /**
2999 * netdev_completed_queue - report bytes and packets completed by device
3000 * @dev: network device
3001 * @pkts: actual number of packets sent over the medium
3002 * @bytes: actual number of bytes sent over the medium
3003 *
3004 * Report the number of bytes and packets transmitted by the network device
3005 * hardware queue over the physical medium, @bytes must exactly match the
3006 * @bytes amount passed to netdev_sent_queue()
3007 */
3008 static inline void netdev_completed_queue(struct net_device *dev,
3009 unsigned int pkts, unsigned int bytes)
3010 {
3011 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3012 }
3013
3014 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3015 {
3016 #ifdef CONFIG_BQL
3017 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3018 dql_reset(&q->dql);
3019 #endif
3020 }
3021
3022 /**
3023 * netdev_reset_queue - reset the packets and bytes count of a network device
3024 * @dev_queue: network device
3025 *
3026 * Reset the bytes and packet count of a network device and clear the
3027 * software flow control OFF bit for this network device
3028 */
3029 static inline void netdev_reset_queue(struct net_device *dev_queue)
3030 {
3031 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3032 }
3033
3034 /**
3035 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
3036 * @dev: network device
3037 * @queue_index: given tx queue index
3038 *
3039 * Returns 0 if given tx queue index >= number of device tx queues,
3040 * otherwise returns the originally passed tx queue index.
3041 */
3042 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3043 {
3044 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3045 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3046 dev->name, queue_index,
3047 dev->real_num_tx_queues);
3048 return 0;
3049 }
3050
3051 return queue_index;
3052 }
3053
3054 /**
3055 * netif_running - test if up
3056 * @dev: network device
3057 *
3058 * Test if the device has been brought up.
3059 */
3060 static inline bool netif_running(const struct net_device *dev)
3061 {
3062 return test_bit(__LINK_STATE_START, &dev->state);
3063 }
3064
3065 /*
3066 * Routines to manage the subqueues on a device. We only need start,
3067 * stop, and a check if it's stopped. All other device management is
3068 * done at the overall netdevice level.
3069 * Also test the device if we're multiqueue.
3070 */
3071
3072 /**
3073 * netif_start_subqueue - allow sending packets on subqueue
3074 * @dev: network device
3075 * @queue_index: sub queue index
3076 *
3077 * Start individual transmit queue of a device with multiple transmit queues.
3078 */
3079 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3080 {
3081 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3082
3083 netif_tx_start_queue(txq);
3084 }
3085
3086 /**
3087 * netif_stop_subqueue - stop sending packets on subqueue
3088 * @dev: network device
3089 * @queue_index: sub queue index
3090 *
3091 * Stop individual transmit queue of a device with multiple transmit queues.
3092 */
3093 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3094 {
3095 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3096 netif_tx_stop_queue(txq);
3097 }
3098
3099 /**
3100 * netif_subqueue_stopped - test status of subqueue
3101 * @dev: network device
3102 * @queue_index: sub queue index
3103 *
3104 * Check individual transmit queue of a device with multiple transmit queues.
3105 */
3106 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3107 u16 queue_index)
3108 {
3109 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3110
3111 return netif_tx_queue_stopped(txq);
3112 }
3113
3114 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3115 struct sk_buff *skb)
3116 {
3117 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3118 }
3119
3120 /**
3121 * netif_wake_subqueue - allow sending packets on subqueue
3122 * @dev: network device
3123 * @queue_index: sub queue index
3124 *
3125 * Resume individual transmit queue of a device with multiple transmit queues.
3126 */
3127 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3128 {
3129 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3130
3131 netif_tx_wake_queue(txq);
3132 }
3133
3134 #ifdef CONFIG_XPS
3135 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3136 u16 index);
3137 #else
3138 static inline int netif_set_xps_queue(struct net_device *dev,
3139 const struct cpumask *mask,
3140 u16 index)
3141 {
3142 return 0;
3143 }
3144 #endif
3145
3146 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3147 unsigned int num_tx_queues);
3148
3149 /*
3150 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3151 * as a distribution range limit for the returned value.
3152 */
3153 static inline u16 skb_tx_hash(const struct net_device *dev,
3154 struct sk_buff *skb)
3155 {
3156 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3157 }
3158
3159 /**
3160 * netif_is_multiqueue - test if device has multiple transmit queues
3161 * @dev: network device
3162 *
3163 * Check if device has multiple transmit queues
3164 */
3165 static inline bool netif_is_multiqueue(const struct net_device *dev)
3166 {
3167 return dev->num_tx_queues > 1;
3168 }
3169
3170 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3171
3172 #ifdef CONFIG_SYSFS
3173 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3174 #else
3175 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3176 unsigned int rxq)
3177 {
3178 return 0;
3179 }
3180 #endif
3181
3182 #ifdef CONFIG_SYSFS
3183 static inline unsigned int get_netdev_rx_queue_index(
3184 struct netdev_rx_queue *queue)
3185 {
3186 struct net_device *dev = queue->dev;
3187 int index = queue - dev->_rx;
3188
3189 BUG_ON(index >= dev->num_rx_queues);
3190 return index;
3191 }
3192 #endif
3193
3194 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
3195 int netif_get_num_default_rss_queues(void);
3196
3197 enum skb_free_reason {
3198 SKB_REASON_CONSUMED,
3199 SKB_REASON_DROPPED,
3200 };
3201
3202 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3203 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3204
3205 /*
3206 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3207 * interrupt context or with hardware interrupts being disabled.
3208 * (in_irq() || irqs_disabled())
3209 *
3210 * We provide four helpers that can be used in following contexts :
3211 *
3212 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3213 * replacing kfree_skb(skb)
3214 *
3215 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3216 * Typically used in place of consume_skb(skb) in TX completion path
3217 *
3218 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3219 * replacing kfree_skb(skb)
3220 *
3221 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3222 * and consumed a packet. Used in place of consume_skb(skb)
3223 */
3224 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3225 {
3226 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3227 }
3228
3229 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3230 {
3231 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3232 }
3233
3234 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3235 {
3236 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3237 }
3238
3239 static inline void dev_consume_skb_any(struct sk_buff *skb)
3240 {
3241 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3242 }
3243
3244 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3245 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3246 int netif_rx(struct sk_buff *skb);
3247 int netif_rx_ni(struct sk_buff *skb);
3248 int netif_receive_skb(struct sk_buff *skb);
3249 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3250 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3251 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3252 gro_result_t napi_gro_frags(struct napi_struct *napi);
3253 struct packet_offload *gro_find_receive_by_type(__be16 type);
3254 struct packet_offload *gro_find_complete_by_type(__be16 type);
3255
3256 static inline void napi_free_frags(struct napi_struct *napi)
3257 {
3258 kfree_skb(napi->skb);
3259 napi->skb = NULL;
3260 }
3261
3262 bool netdev_is_rx_handler_busy(struct net_device *dev);
3263 int netdev_rx_handler_register(struct net_device *dev,
3264 rx_handler_func_t *rx_handler,
3265 void *rx_handler_data);
3266 void netdev_rx_handler_unregister(struct net_device *dev);
3267
3268 bool dev_valid_name(const char *name);
3269 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3270 int dev_ethtool(struct net *net, struct ifreq *);
3271 unsigned int dev_get_flags(const struct net_device *);
3272 int __dev_change_flags(struct net_device *, unsigned int flags);
3273 int dev_change_flags(struct net_device *, unsigned int);
3274 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3275 unsigned int gchanges);
3276 int dev_change_name(struct net_device *, const char *);
3277 int dev_set_alias(struct net_device *, const char *, size_t);
3278 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3279 int __dev_set_mtu(struct net_device *, int);
3280 int dev_set_mtu(struct net_device *, int);
3281 void dev_set_group(struct net_device *, int);
3282 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3283 int dev_change_carrier(struct net_device *, bool new_carrier);
3284 int dev_get_phys_port_id(struct net_device *dev,
3285 struct netdev_phys_item_id *ppid);
3286 int dev_get_phys_port_name(struct net_device *dev,
3287 char *name, size_t len);
3288 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3289 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3290 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3291 struct netdev_queue *txq, int *ret);
3292
3293 typedef int (*xdp_op_t)(struct net_device *dev, struct netdev_xdp *xdp);
3294 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3295 int fd, u32 flags);
3296 u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id);
3297
3298 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3299 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3300 bool is_skb_forwardable(const struct net_device *dev,
3301 const struct sk_buff *skb);
3302
3303 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3304 struct sk_buff *skb)
3305 {
3306 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3307 unlikely(!is_skb_forwardable(dev, skb))) {
3308 atomic_long_inc(&dev->rx_dropped);
3309 kfree_skb(skb);
3310 return NET_RX_DROP;
3311 }
3312
3313 skb_scrub_packet(skb, true);
3314 skb->priority = 0;
3315 return 0;
3316 }
3317
3318 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3319
3320 extern int netdev_budget;
3321 extern unsigned int netdev_budget_usecs;
3322
3323 /* Called by rtnetlink.c:rtnl_unlock() */
3324 void netdev_run_todo(void);
3325
3326 /**
3327 * dev_put - release reference to device
3328 * @dev: network device
3329 *
3330 * Release reference to device to allow it to be freed.
3331 */
3332 static inline void dev_put(struct net_device *dev)
3333 {
3334 this_cpu_dec(*dev->pcpu_refcnt);
3335 }
3336
3337 /**
3338 * dev_hold - get reference to device
3339 * @dev: network device
3340 *
3341 * Hold reference to device to keep it from being freed.
3342 */
3343 static inline void dev_hold(struct net_device *dev)
3344 {
3345 this_cpu_inc(*dev->pcpu_refcnt);
3346 }
3347
3348 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3349 * and _off may be called from IRQ context, but it is caller
3350 * who is responsible for serialization of these calls.
3351 *
3352 * The name carrier is inappropriate, these functions should really be
3353 * called netif_lowerlayer_*() because they represent the state of any
3354 * kind of lower layer not just hardware media.
3355 */
3356
3357 void linkwatch_init_dev(struct net_device *dev);
3358 void linkwatch_fire_event(struct net_device *dev);
3359 void linkwatch_forget_dev(struct net_device *dev);
3360
3361 /**
3362 * netif_carrier_ok - test if carrier present
3363 * @dev: network device
3364 *
3365 * Check if carrier is present on device
3366 */
3367 static inline bool netif_carrier_ok(const struct net_device *dev)
3368 {
3369 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3370 }
3371
3372 unsigned long dev_trans_start(struct net_device *dev);
3373
3374 void __netdev_watchdog_up(struct net_device *dev);
3375
3376 void netif_carrier_on(struct net_device *dev);
3377
3378 void netif_carrier_off(struct net_device *dev);
3379
3380 /**
3381 * netif_dormant_on - mark device as dormant.
3382 * @dev: network device
3383 *
3384 * Mark device as dormant (as per RFC2863).
3385 *
3386 * The dormant state indicates that the relevant interface is not
3387 * actually in a condition to pass packets (i.e., it is not 'up') but is
3388 * in a "pending" state, waiting for some external event. For "on-
3389 * demand" interfaces, this new state identifies the situation where the
3390 * interface is waiting for events to place it in the up state.
3391 */
3392 static inline void netif_dormant_on(struct net_device *dev)
3393 {
3394 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3395 linkwatch_fire_event(dev);
3396 }
3397
3398 /**
3399 * netif_dormant_off - set device as not dormant.
3400 * @dev: network device
3401 *
3402 * Device is not in dormant state.
3403 */
3404 static inline void netif_dormant_off(struct net_device *dev)
3405 {
3406 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3407 linkwatch_fire_event(dev);
3408 }
3409
3410 /**
3411 * netif_dormant - test if device is dormant
3412 * @dev: network device
3413 *
3414 * Check if device is dormant.
3415 */
3416 static inline bool netif_dormant(const struct net_device *dev)
3417 {
3418 return test_bit(__LINK_STATE_DORMANT, &dev->state);
3419 }
3420
3421
3422 /**
3423 * netif_oper_up - test if device is operational
3424 * @dev: network device
3425 *
3426 * Check if carrier is operational
3427 */
3428 static inline bool netif_oper_up(const struct net_device *dev)
3429 {
3430 return (dev->operstate == IF_OPER_UP ||
3431 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3432 }
3433
3434 /**
3435 * netif_device_present - is device available or removed
3436 * @dev: network device
3437 *
3438 * Check if device has not been removed from system.
3439 */
3440 static inline bool netif_device_present(struct net_device *dev)
3441 {
3442 return test_bit(__LINK_STATE_PRESENT, &dev->state);
3443 }
3444
3445 void netif_device_detach(struct net_device *dev);
3446
3447 void netif_device_attach(struct net_device *dev);
3448
3449 /*
3450 * Network interface message level settings
3451 */
3452
3453 enum {
3454 NETIF_MSG_DRV = 0x0001,
3455 NETIF_MSG_PROBE = 0x0002,
3456 NETIF_MSG_LINK = 0x0004,
3457 NETIF_MSG_TIMER = 0x0008,
3458 NETIF_MSG_IFDOWN = 0x0010,
3459 NETIF_MSG_IFUP = 0x0020,
3460 NETIF_MSG_RX_ERR = 0x0040,
3461 NETIF_MSG_TX_ERR = 0x0080,
3462 NETIF_MSG_TX_QUEUED = 0x0100,
3463 NETIF_MSG_INTR = 0x0200,
3464 NETIF_MSG_TX_DONE = 0x0400,
3465 NETIF_MSG_RX_STATUS = 0x0800,
3466 NETIF_MSG_PKTDATA = 0x1000,
3467 NETIF_MSG_HW = 0x2000,
3468 NETIF_MSG_WOL = 0x4000,
3469 };
3470
3471 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
3472 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
3473 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
3474 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
3475 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
3476 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
3477 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
3478 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
3479 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3480 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
3481 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
3482 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3483 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
3484 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
3485 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
3486
3487 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3488 {
3489 /* use default */
3490 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3491 return default_msg_enable_bits;
3492 if (debug_value == 0) /* no output */
3493 return 0;
3494 /* set low N bits */
3495 return (1 << debug_value) - 1;
3496 }
3497
3498 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3499 {
3500 spin_lock(&txq->_xmit_lock);
3501 txq->xmit_lock_owner = cpu;
3502 }
3503
3504 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3505 {
3506 __acquire(&txq->_xmit_lock);
3507 return true;
3508 }
3509
3510 static inline void __netif_tx_release(struct netdev_queue *txq)
3511 {
3512 __release(&txq->_xmit_lock);
3513 }
3514
3515 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3516 {
3517 spin_lock_bh(&txq->_xmit_lock);
3518 txq->xmit_lock_owner = smp_processor_id();
3519 }
3520
3521 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3522 {
3523 bool ok = spin_trylock(&txq->_xmit_lock);
3524 if (likely(ok))
3525 txq->xmit_lock_owner = smp_processor_id();
3526 return ok;
3527 }
3528
3529 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3530 {
3531 txq->xmit_lock_owner = -1;
3532 spin_unlock(&txq->_xmit_lock);
3533 }
3534
3535 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3536 {
3537 txq->xmit_lock_owner = -1;
3538 spin_unlock_bh(&txq->_xmit_lock);
3539 }
3540
3541 static inline void txq_trans_update(struct netdev_queue *txq)
3542 {
3543 if (txq->xmit_lock_owner != -1)
3544 txq->trans_start = jiffies;
3545 }
3546
3547 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3548 static inline void netif_trans_update(struct net_device *dev)
3549 {
3550 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3551
3552 if (txq->trans_start != jiffies)
3553 txq->trans_start = jiffies;
3554 }
3555
3556 /**
3557 * netif_tx_lock - grab network device transmit lock
3558 * @dev: network device
3559 *
3560 * Get network device transmit lock
3561 */
3562 static inline void netif_tx_lock(struct net_device *dev)
3563 {
3564 unsigned int i;
3565 int cpu;
3566
3567 spin_lock(&dev->tx_global_lock);
3568 cpu = smp_processor_id();
3569 for (i = 0; i < dev->num_tx_queues; i++) {
3570 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3571
3572 /* We are the only thread of execution doing a
3573 * freeze, but we have to grab the _xmit_lock in
3574 * order to synchronize with threads which are in
3575 * the ->hard_start_xmit() handler and already
3576 * checked the frozen bit.
3577 */
3578 __netif_tx_lock(txq, cpu);
3579 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3580 __netif_tx_unlock(txq);
3581 }
3582 }
3583
3584 static inline void netif_tx_lock_bh(struct net_device *dev)
3585 {
3586 local_bh_disable();
3587 netif_tx_lock(dev);
3588 }
3589
3590 static inline void netif_tx_unlock(struct net_device *dev)
3591 {
3592 unsigned int i;
3593
3594 for (i = 0; i < dev->num_tx_queues; i++) {
3595 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3596
3597 /* No need to grab the _xmit_lock here. If the
3598 * queue is not stopped for another reason, we
3599 * force a schedule.
3600 */
3601 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3602 netif_schedule_queue(txq);
3603 }
3604 spin_unlock(&dev->tx_global_lock);
3605 }
3606
3607 static inline void netif_tx_unlock_bh(struct net_device *dev)
3608 {
3609 netif_tx_unlock(dev);
3610 local_bh_enable();
3611 }
3612
3613 #define HARD_TX_LOCK(dev, txq, cpu) { \
3614 if ((dev->features & NETIF_F_LLTX) == 0) { \
3615 __netif_tx_lock(txq, cpu); \
3616 } else { \
3617 __netif_tx_acquire(txq); \
3618 } \
3619 }
3620
3621 #define HARD_TX_TRYLOCK(dev, txq) \
3622 (((dev->features & NETIF_F_LLTX) == 0) ? \
3623 __netif_tx_trylock(txq) : \
3624 __netif_tx_acquire(txq))
3625
3626 #define HARD_TX_UNLOCK(dev, txq) { \
3627 if ((dev->features & NETIF_F_LLTX) == 0) { \
3628 __netif_tx_unlock(txq); \
3629 } else { \
3630 __netif_tx_release(txq); \
3631 } \
3632 }
3633
3634 static inline void netif_tx_disable(struct net_device *dev)
3635 {
3636 unsigned int i;
3637 int cpu;
3638
3639 local_bh_disable();
3640 cpu = smp_processor_id();
3641 for (i = 0; i < dev->num_tx_queues; i++) {
3642 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3643
3644 __netif_tx_lock(txq, cpu);
3645 netif_tx_stop_queue(txq);
3646 __netif_tx_unlock(txq);
3647 }
3648 local_bh_enable();
3649 }
3650
3651 static inline void netif_addr_lock(struct net_device *dev)
3652 {
3653 spin_lock(&dev->addr_list_lock);
3654 }
3655
3656 static inline void netif_addr_lock_nested(struct net_device *dev)
3657 {
3658 int subclass = SINGLE_DEPTH_NESTING;
3659
3660 if (dev->netdev_ops->ndo_get_lock_subclass)
3661 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3662
3663 spin_lock_nested(&dev->addr_list_lock, subclass);
3664 }
3665
3666 static inline void netif_addr_lock_bh(struct net_device *dev)
3667 {
3668 spin_lock_bh(&dev->addr_list_lock);
3669 }
3670
3671 static inline void netif_addr_unlock(struct net_device *dev)
3672 {
3673 spin_unlock(&dev->addr_list_lock);
3674 }
3675
3676 static inline void netif_addr_unlock_bh(struct net_device *dev)
3677 {
3678 spin_unlock_bh(&dev->addr_list_lock);
3679 }
3680
3681 /*
3682 * dev_addrs walker. Should be used only for read access. Call with
3683 * rcu_read_lock held.
3684 */
3685 #define for_each_dev_addr(dev, ha) \
3686 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3687
3688 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3689
3690 void ether_setup(struct net_device *dev);
3691
3692 /* Support for loadable net-drivers */
3693 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3694 unsigned char name_assign_type,
3695 void (*setup)(struct net_device *),
3696 unsigned int txqs, unsigned int rxqs);
3697 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3698 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3699
3700 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3701 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3702 count)
3703
3704 int register_netdev(struct net_device *dev);
3705 void unregister_netdev(struct net_device *dev);
3706
3707 /* General hardware address lists handling functions */
3708 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3709 struct netdev_hw_addr_list *from_list, int addr_len);
3710 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3711 struct netdev_hw_addr_list *from_list, int addr_len);
3712 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3713 struct net_device *dev,
3714 int (*sync)(struct net_device *, const unsigned char *),
3715 int (*unsync)(struct net_device *,
3716 const unsigned char *));
3717 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3718 struct net_device *dev,
3719 int (*unsync)(struct net_device *,
3720 const unsigned char *));
3721 void __hw_addr_init(struct netdev_hw_addr_list *list);
3722
3723 /* Functions used for device addresses handling */
3724 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3725 unsigned char addr_type);
3726 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3727 unsigned char addr_type);
3728 void dev_addr_flush(struct net_device *dev);
3729 int dev_addr_init(struct net_device *dev);
3730
3731 /* Functions used for unicast addresses handling */
3732 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3733 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3734 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3735 int dev_uc_sync(struct net_device *to, struct net_device *from);
3736 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3737 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3738 void dev_uc_flush(struct net_device *dev);
3739 void dev_uc_init(struct net_device *dev);
3740
3741 /**
3742 * __dev_uc_sync - Synchonize device's unicast list
3743 * @dev: device to sync
3744 * @sync: function to call if address should be added
3745 * @unsync: function to call if address should be removed
3746 *
3747 * Add newly added addresses to the interface, and release
3748 * addresses that have been deleted.
3749 */
3750 static inline int __dev_uc_sync(struct net_device *dev,
3751 int (*sync)(struct net_device *,
3752 const unsigned char *),
3753 int (*unsync)(struct net_device *,
3754 const unsigned char *))
3755 {
3756 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3757 }
3758
3759 /**
3760 * __dev_uc_unsync - Remove synchronized addresses from device
3761 * @dev: device to sync
3762 * @unsync: function to call if address should be removed
3763 *
3764 * Remove all addresses that were added to the device by dev_uc_sync().
3765 */
3766 static inline void __dev_uc_unsync(struct net_device *dev,
3767 int (*unsync)(struct net_device *,
3768 const unsigned char *))
3769 {
3770 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3771 }
3772
3773 /* Functions used for multicast addresses handling */
3774 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3775 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3776 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3777 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3778 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3779 int dev_mc_sync(struct net_device *to, struct net_device *from);
3780 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3781 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3782 void dev_mc_flush(struct net_device *dev);
3783 void dev_mc_init(struct net_device *dev);
3784
3785 /**
3786 * __dev_mc_sync - Synchonize device's multicast list
3787 * @dev: device to sync
3788 * @sync: function to call if address should be added
3789 * @unsync: function to call if address should be removed
3790 *
3791 * Add newly added addresses to the interface, and release
3792 * addresses that have been deleted.
3793 */
3794 static inline int __dev_mc_sync(struct net_device *dev,
3795 int (*sync)(struct net_device *,
3796 const unsigned char *),
3797 int (*unsync)(struct net_device *,
3798 const unsigned char *))
3799 {
3800 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3801 }
3802
3803 /**
3804 * __dev_mc_unsync - Remove synchronized addresses from device
3805 * @dev: device to sync
3806 * @unsync: function to call if address should be removed
3807 *
3808 * Remove all addresses that were added to the device by dev_mc_sync().
3809 */
3810 static inline void __dev_mc_unsync(struct net_device *dev,
3811 int (*unsync)(struct net_device *,
3812 const unsigned char *))
3813 {
3814 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3815 }
3816
3817 /* Functions used for secondary unicast and multicast support */
3818 void dev_set_rx_mode(struct net_device *dev);
3819 void __dev_set_rx_mode(struct net_device *dev);
3820 int dev_set_promiscuity(struct net_device *dev, int inc);
3821 int dev_set_allmulti(struct net_device *dev, int inc);
3822 void netdev_state_change(struct net_device *dev);
3823 void netdev_notify_peers(struct net_device *dev);
3824 void netdev_features_change(struct net_device *dev);
3825 /* Load a device via the kmod */
3826 void dev_load(struct net *net, const char *name);
3827 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3828 struct rtnl_link_stats64 *storage);
3829 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3830 const struct net_device_stats *netdev_stats);
3831
3832 extern int netdev_max_backlog;
3833 extern int netdev_tstamp_prequeue;
3834 extern int weight_p;
3835 extern int dev_weight_rx_bias;
3836 extern int dev_weight_tx_bias;
3837 extern int dev_rx_weight;
3838 extern int dev_tx_weight;
3839
3840 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3841 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3842 struct list_head **iter);
3843 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3844 struct list_head **iter);
3845
3846 /* iterate through upper list, must be called under RCU read lock */
3847 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3848 for (iter = &(dev)->adj_list.upper, \
3849 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3850 updev; \
3851 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3852
3853 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
3854 int (*fn)(struct net_device *upper_dev,
3855 void *data),
3856 void *data);
3857
3858 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
3859 struct net_device *upper_dev);
3860
3861 bool netdev_has_any_upper_dev(struct net_device *dev);
3862
3863 void *netdev_lower_get_next_private(struct net_device *dev,
3864 struct list_head **iter);
3865 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3866 struct list_head **iter);
3867
3868 #define netdev_for_each_lower_private(dev, priv, iter) \
3869 for (iter = (dev)->adj_list.lower.next, \
3870 priv = netdev_lower_get_next_private(dev, &(iter)); \
3871 priv; \
3872 priv = netdev_lower_get_next_private(dev, &(iter)))
3873
3874 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3875 for (iter = &(dev)->adj_list.lower, \
3876 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3877 priv; \
3878 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3879
3880 void *netdev_lower_get_next(struct net_device *dev,
3881 struct list_head **iter);
3882
3883 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3884 for (iter = (dev)->adj_list.lower.next, \
3885 ldev = netdev_lower_get_next(dev, &(iter)); \
3886 ldev; \
3887 ldev = netdev_lower_get_next(dev, &(iter)))
3888
3889 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
3890 struct list_head **iter);
3891 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
3892 struct list_head **iter);
3893
3894 int netdev_walk_all_lower_dev(struct net_device *dev,
3895 int (*fn)(struct net_device *lower_dev,
3896 void *data),
3897 void *data);
3898 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
3899 int (*fn)(struct net_device *lower_dev,
3900 void *data),
3901 void *data);
3902
3903 void *netdev_adjacent_get_private(struct list_head *adj_list);
3904 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3905 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3906 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3907 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3908 int netdev_master_upper_dev_link(struct net_device *dev,
3909 struct net_device *upper_dev,
3910 void *upper_priv, void *upper_info);
3911 void netdev_upper_dev_unlink(struct net_device *dev,
3912 struct net_device *upper_dev);
3913 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3914 void *netdev_lower_dev_get_private(struct net_device *dev,
3915 struct net_device *lower_dev);
3916 void netdev_lower_state_changed(struct net_device *lower_dev,
3917 void *lower_state_info);
3918
3919 /* RSS keys are 40 or 52 bytes long */
3920 #define NETDEV_RSS_KEY_LEN 52
3921 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
3922 void netdev_rss_key_fill(void *buffer, size_t len);
3923
3924 int dev_get_nest_level(struct net_device *dev);
3925 int skb_checksum_help(struct sk_buff *skb);
3926 int skb_crc32c_csum_help(struct sk_buff *skb);
3927 int skb_csum_hwoffload_help(struct sk_buff *skb,
3928 const netdev_features_t features);
3929
3930 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3931 netdev_features_t features, bool tx_path);
3932 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3933 netdev_features_t features);
3934
3935 struct netdev_bonding_info {
3936 ifslave slave;
3937 ifbond master;
3938 };
3939
3940 struct netdev_notifier_bonding_info {
3941 struct netdev_notifier_info info; /* must be first */
3942 struct netdev_bonding_info bonding_info;
3943 };
3944
3945 void netdev_bonding_info_change(struct net_device *dev,
3946 struct netdev_bonding_info *bonding_info);
3947
3948 static inline
3949 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3950 {
3951 return __skb_gso_segment(skb, features, true);
3952 }
3953 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3954
3955 static inline bool can_checksum_protocol(netdev_features_t features,
3956 __be16 protocol)
3957 {
3958 if (protocol == htons(ETH_P_FCOE))
3959 return !!(features & NETIF_F_FCOE_CRC);
3960
3961 /* Assume this is an IP checksum (not SCTP CRC) */
3962
3963 if (features & NETIF_F_HW_CSUM) {
3964 /* Can checksum everything */
3965 return true;
3966 }
3967
3968 switch (protocol) {
3969 case htons(ETH_P_IP):
3970 return !!(features & NETIF_F_IP_CSUM);
3971 case htons(ETH_P_IPV6):
3972 return !!(features & NETIF_F_IPV6_CSUM);
3973 default:
3974 return false;
3975 }
3976 }
3977
3978 #ifdef CONFIG_BUG
3979 void netdev_rx_csum_fault(struct net_device *dev);
3980 #else
3981 static inline void netdev_rx_csum_fault(struct net_device *dev)
3982 {
3983 }
3984 #endif
3985 /* rx skb timestamps */
3986 void net_enable_timestamp(void);
3987 void net_disable_timestamp(void);
3988
3989 #ifdef CONFIG_PROC_FS
3990 int __init dev_proc_init(void);
3991 #else
3992 #define dev_proc_init() 0
3993 #endif
3994
3995 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3996 struct sk_buff *skb, struct net_device *dev,
3997 bool more)
3998 {
3999 skb->xmit_more = more ? 1 : 0;
4000 return ops->ndo_start_xmit(skb, dev);
4001 }
4002
4003 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4004 struct netdev_queue *txq, bool more)
4005 {
4006 const struct net_device_ops *ops = dev->netdev_ops;
4007 int rc;
4008
4009 rc = __netdev_start_xmit(ops, skb, dev, more);
4010 if (rc == NETDEV_TX_OK)
4011 txq_trans_update(txq);
4012
4013 return rc;
4014 }
4015
4016 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4017 const void *ns);
4018 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4019 const void *ns);
4020
4021 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4022 {
4023 return netdev_class_create_file_ns(class_attr, NULL);
4024 }
4025
4026 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4027 {
4028 netdev_class_remove_file_ns(class_attr, NULL);
4029 }
4030
4031 extern const struct kobj_ns_type_operations net_ns_type_operations;
4032
4033 const char *netdev_drivername(const struct net_device *dev);
4034
4035 void linkwatch_run_queue(void);
4036
4037 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4038 netdev_features_t f2)
4039 {
4040 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4041 if (f1 & NETIF_F_HW_CSUM)
4042 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4043 else
4044 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4045 }
4046
4047 return f1 & f2;
4048 }
4049
4050 static inline netdev_features_t netdev_get_wanted_features(
4051 struct net_device *dev)
4052 {
4053 return (dev->features & ~dev->hw_features) | dev->wanted_features;
4054 }
4055 netdev_features_t netdev_increment_features(netdev_features_t all,
4056 netdev_features_t one, netdev_features_t mask);
4057
4058 /* Allow TSO being used on stacked device :
4059 * Performing the GSO segmentation before last device
4060 * is a performance improvement.
4061 */
4062 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4063 netdev_features_t mask)
4064 {
4065 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4066 }
4067
4068 int __netdev_update_features(struct net_device *dev);
4069 void netdev_update_features(struct net_device *dev);
4070 void netdev_change_features(struct net_device *dev);
4071
4072 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4073 struct net_device *dev);
4074
4075 netdev_features_t passthru_features_check(struct sk_buff *skb,
4076 struct net_device *dev,
4077 netdev_features_t features);
4078 netdev_features_t netif_skb_features(struct sk_buff *skb);
4079
4080 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4081 {
4082 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4083
4084 /* check flags correspondence */
4085 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4086 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4087 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4088 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4089 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4090 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4091 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4092 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4093 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4094 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4095 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4096 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4097 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4098 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4099 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4100 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4101
4102 return (features & feature) == feature;
4103 }
4104
4105 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4106 {
4107 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4108 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4109 }
4110
4111 static inline bool netif_needs_gso(struct sk_buff *skb,
4112 netdev_features_t features)
4113 {
4114 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4115 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4116 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4117 }
4118
4119 static inline void netif_set_gso_max_size(struct net_device *dev,
4120 unsigned int size)
4121 {
4122 dev->gso_max_size = size;
4123 }
4124
4125 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4126 int pulled_hlen, u16 mac_offset,
4127 int mac_len)
4128 {
4129 skb->protocol = protocol;
4130 skb->encapsulation = 1;
4131 skb_push(skb, pulled_hlen);
4132 skb_reset_transport_header(skb);
4133 skb->mac_header = mac_offset;
4134 skb->network_header = skb->mac_header + mac_len;
4135 skb->mac_len = mac_len;
4136 }
4137
4138 static inline bool netif_is_macsec(const struct net_device *dev)
4139 {
4140 return dev->priv_flags & IFF_MACSEC;
4141 }
4142
4143 static inline bool netif_is_macvlan(const struct net_device *dev)
4144 {
4145 return dev->priv_flags & IFF_MACVLAN;
4146 }
4147
4148 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4149 {
4150 return dev->priv_flags & IFF_MACVLAN_PORT;
4151 }
4152
4153 static inline bool netif_is_ipvlan(const struct net_device *dev)
4154 {
4155 return dev->priv_flags & IFF_IPVLAN_SLAVE;
4156 }
4157
4158 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
4159 {
4160 return dev->priv_flags & IFF_IPVLAN_MASTER;
4161 }
4162
4163 static inline bool netif_is_bond_master(const struct net_device *dev)
4164 {
4165 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4166 }
4167
4168 static inline bool netif_is_bond_slave(const struct net_device *dev)
4169 {
4170 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4171 }
4172
4173 static inline bool netif_supports_nofcs(struct net_device *dev)
4174 {
4175 return dev->priv_flags & IFF_SUPP_NOFCS;
4176 }
4177
4178 static inline bool netif_is_l3_master(const struct net_device *dev)
4179 {
4180 return dev->priv_flags & IFF_L3MDEV_MASTER;
4181 }
4182
4183 static inline bool netif_is_l3_slave(const struct net_device *dev)
4184 {
4185 return dev->priv_flags & IFF_L3MDEV_SLAVE;
4186 }
4187
4188 static inline bool netif_is_bridge_master(const struct net_device *dev)
4189 {
4190 return dev->priv_flags & IFF_EBRIDGE;
4191 }
4192
4193 static inline bool netif_is_bridge_port(const struct net_device *dev)
4194 {
4195 return dev->priv_flags & IFF_BRIDGE_PORT;
4196 }
4197
4198 static inline bool netif_is_ovs_master(const struct net_device *dev)
4199 {
4200 return dev->priv_flags & IFF_OPENVSWITCH;
4201 }
4202
4203 static inline bool netif_is_ovs_port(const struct net_device *dev)
4204 {
4205 return dev->priv_flags & IFF_OVS_DATAPATH;
4206 }
4207
4208 static inline bool netif_is_team_master(const struct net_device *dev)
4209 {
4210 return dev->priv_flags & IFF_TEAM;
4211 }
4212
4213 static inline bool netif_is_team_port(const struct net_device *dev)
4214 {
4215 return dev->priv_flags & IFF_TEAM_PORT;
4216 }
4217
4218 static inline bool netif_is_lag_master(const struct net_device *dev)
4219 {
4220 return netif_is_bond_master(dev) || netif_is_team_master(dev);
4221 }
4222
4223 static inline bool netif_is_lag_port(const struct net_device *dev)
4224 {
4225 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4226 }
4227
4228 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4229 {
4230 return dev->priv_flags & IFF_RXFH_CONFIGURED;
4231 }
4232
4233 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4234 static inline void netif_keep_dst(struct net_device *dev)
4235 {
4236 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4237 }
4238
4239 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4240 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4241 {
4242 /* TODO: reserve and use an additional IFF bit, if we get more users */
4243 return dev->priv_flags & IFF_MACSEC;
4244 }
4245
4246 extern struct pernet_operations __net_initdata loopback_net_ops;
4247
4248 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4249
4250 /* netdev_printk helpers, similar to dev_printk */
4251
4252 static inline const char *netdev_name(const struct net_device *dev)
4253 {
4254 if (!dev->name[0] || strchr(dev->name, '%'))
4255 return "(unnamed net_device)";
4256 return dev->name;
4257 }
4258
4259 static inline bool netdev_unregistering(const struct net_device *dev)
4260 {
4261 return dev->reg_state == NETREG_UNREGISTERING;
4262 }
4263
4264 static inline const char *netdev_reg_state(const struct net_device *dev)
4265 {
4266 switch (dev->reg_state) {
4267 case NETREG_UNINITIALIZED: return " (uninitialized)";
4268 case NETREG_REGISTERED: return "";
4269 case NETREG_UNREGISTERING: return " (unregistering)";
4270 case NETREG_UNREGISTERED: return " (unregistered)";
4271 case NETREG_RELEASED: return " (released)";
4272 case NETREG_DUMMY: return " (dummy)";
4273 }
4274
4275 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4276 return " (unknown)";
4277 }
4278
4279 __printf(3, 4)
4280 void netdev_printk(const char *level, const struct net_device *dev,
4281 const char *format, ...);
4282 __printf(2, 3)
4283 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4284 __printf(2, 3)
4285 void netdev_alert(const struct net_device *dev, const char *format, ...);
4286 __printf(2, 3)
4287 void netdev_crit(const struct net_device *dev, const char *format, ...);
4288 __printf(2, 3)
4289 void netdev_err(const struct net_device *dev, const char *format, ...);
4290 __printf(2, 3)
4291 void netdev_warn(const struct net_device *dev, const char *format, ...);
4292 __printf(2, 3)
4293 void netdev_notice(const struct net_device *dev, const char *format, ...);
4294 __printf(2, 3)
4295 void netdev_info(const struct net_device *dev, const char *format, ...);
4296
4297 #define MODULE_ALIAS_NETDEV(device) \
4298 MODULE_ALIAS("netdev-" device)
4299
4300 #if defined(CONFIG_DYNAMIC_DEBUG)
4301 #define netdev_dbg(__dev, format, args...) \
4302 do { \
4303 dynamic_netdev_dbg(__dev, format, ##args); \
4304 } while (0)
4305 #elif defined(DEBUG)
4306 #define netdev_dbg(__dev, format, args...) \
4307 netdev_printk(KERN_DEBUG, __dev, format, ##args)
4308 #else
4309 #define netdev_dbg(__dev, format, args...) \
4310 ({ \
4311 if (0) \
4312 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4313 })
4314 #endif
4315
4316 #if defined(VERBOSE_DEBUG)
4317 #define netdev_vdbg netdev_dbg
4318 #else
4319
4320 #define netdev_vdbg(dev, format, args...) \
4321 ({ \
4322 if (0) \
4323 netdev_printk(KERN_DEBUG, dev, format, ##args); \
4324 0; \
4325 })
4326 #endif
4327
4328 /*
4329 * netdev_WARN() acts like dev_printk(), but with the key difference
4330 * of using a WARN/WARN_ON to get the message out, including the
4331 * file/line information and a backtrace.
4332 */
4333 #define netdev_WARN(dev, format, args...) \
4334 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \
4335 netdev_reg_state(dev), ##args)
4336
4337 /* netif printk helpers, similar to netdev_printk */
4338
4339 #define netif_printk(priv, type, level, dev, fmt, args...) \
4340 do { \
4341 if (netif_msg_##type(priv)) \
4342 netdev_printk(level, (dev), fmt, ##args); \
4343 } while (0)
4344
4345 #define netif_level(level, priv, type, dev, fmt, args...) \
4346 do { \
4347 if (netif_msg_##type(priv)) \
4348 netdev_##level(dev, fmt, ##args); \
4349 } while (0)
4350
4351 #define netif_emerg(priv, type, dev, fmt, args...) \
4352 netif_level(emerg, priv, type, dev, fmt, ##args)
4353 #define netif_alert(priv, type, dev, fmt, args...) \
4354 netif_level(alert, priv, type, dev, fmt, ##args)
4355 #define netif_crit(priv, type, dev, fmt, args...) \
4356 netif_level(crit, priv, type, dev, fmt, ##args)
4357 #define netif_err(priv, type, dev, fmt, args...) \
4358 netif_level(err, priv, type, dev, fmt, ##args)
4359 #define netif_warn(priv, type, dev, fmt, args...) \
4360 netif_level(warn, priv, type, dev, fmt, ##args)
4361 #define netif_notice(priv, type, dev, fmt, args...) \
4362 netif_level(notice, priv, type, dev, fmt, ##args)
4363 #define netif_info(priv, type, dev, fmt, args...) \
4364 netif_level(info, priv, type, dev, fmt, ##args)
4365
4366 #if defined(CONFIG_DYNAMIC_DEBUG)
4367 #define netif_dbg(priv, type, netdev, format, args...) \
4368 do { \
4369 if (netif_msg_##type(priv)) \
4370 dynamic_netdev_dbg(netdev, format, ##args); \
4371 } while (0)
4372 #elif defined(DEBUG)
4373 #define netif_dbg(priv, type, dev, format, args...) \
4374 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4375 #else
4376 #define netif_dbg(priv, type, dev, format, args...) \
4377 ({ \
4378 if (0) \
4379 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4380 0; \
4381 })
4382 #endif
4383
4384 /* if @cond then downgrade to debug, else print at @level */
4385 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \
4386 do { \
4387 if (cond) \
4388 netif_dbg(priv, type, netdev, fmt, ##args); \
4389 else \
4390 netif_ ## level(priv, type, netdev, fmt, ##args); \
4391 } while (0)
4392
4393 #if defined(VERBOSE_DEBUG)
4394 #define netif_vdbg netif_dbg
4395 #else
4396 #define netif_vdbg(priv, type, dev, format, args...) \
4397 ({ \
4398 if (0) \
4399 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4400 0; \
4401 })
4402 #endif
4403
4404 /*
4405 * The list of packet types we will receive (as opposed to discard)
4406 * and the routines to invoke.
4407 *
4408 * Why 16. Because with 16 the only overlap we get on a hash of the
4409 * low nibble of the protocol value is RARP/SNAP/X.25.
4410 *
4411 * NOTE: That is no longer true with the addition of VLAN tags. Not
4412 * sure which should go first, but I bet it won't make much
4413 * difference if we are running VLANs. The good news is that
4414 * this protocol won't be in the list unless compiled in, so
4415 * the average user (w/out VLANs) will not be adversely affected.
4416 * --BLG
4417 *
4418 * 0800 IP
4419 * 8100 802.1Q VLAN
4420 * 0001 802.3
4421 * 0002 AX.25
4422 * 0004 802.2
4423 * 8035 RARP
4424 * 0005 SNAP
4425 * 0805 X.25
4426 * 0806 ARP
4427 * 8137 IPX
4428 * 0009 Localtalk
4429 * 86DD IPv6
4430 */
4431 #define PTYPE_HASH_SIZE (16)
4432 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4433
4434 #endif /* _LINUX_NETDEVICE_H */