]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/netdevice.h
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/teigland/dlm
[mirror_ubuntu-artful-kernel.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/if.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_link.h>
32
33 #ifdef __KERNEL__
34 #include <linux/pm_qos_params.h>
35 #include <linux/timer.h>
36 #include <linux/delay.h>
37 #include <linux/mm.h>
38 #include <asm/atomic.h>
39 #include <asm/cache.h>
40 #include <asm/byteorder.h>
41
42 #include <linux/device.h>
43 #include <linux/percpu.h>
44 #include <linux/rculist.h>
45 #include <linux/dmaengine.h>
46 #include <linux/workqueue.h>
47
48 #include <linux/ethtool.h>
49 #include <net/net_namespace.h>
50 #include <net/dsa.h>
51 #ifdef CONFIG_DCB
52 #include <net/dcbnl.h>
53 #endif
54
55 struct vlan_group;
56 struct netpoll_info;
57 struct phy_device;
58 /* 802.11 specific */
59 struct wireless_dev;
60 /* source back-compat hooks */
61 #define SET_ETHTOOL_OPS(netdev,ops) \
62 ( (netdev)->ethtool_ops = (ops) )
63
64 #define HAVE_ALLOC_NETDEV /* feature macro: alloc_xxxdev
65 functions are available. */
66 #define HAVE_FREE_NETDEV /* free_netdev() */
67 #define HAVE_NETDEV_PRIV /* netdev_priv() */
68
69 /* hardware address assignment types */
70 #define NET_ADDR_PERM 0 /* address is permanent (default) */
71 #define NET_ADDR_RANDOM 1 /* address is generated randomly */
72 #define NET_ADDR_STOLEN 2 /* address is stolen from other device */
73
74 /* Backlog congestion levels */
75 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
76 #define NET_RX_DROP 1 /* packet dropped */
77
78 /*
79 * Transmit return codes: transmit return codes originate from three different
80 * namespaces:
81 *
82 * - qdisc return codes
83 * - driver transmit return codes
84 * - errno values
85 *
86 * Drivers are allowed to return any one of those in their hard_start_xmit()
87 * function. Real network devices commonly used with qdiscs should only return
88 * the driver transmit return codes though - when qdiscs are used, the actual
89 * transmission happens asynchronously, so the value is not propagated to
90 * higher layers. Virtual network devices transmit synchronously, in this case
91 * the driver transmit return codes are consumed by dev_queue_xmit(), all
92 * others are propagated to higher layers.
93 */
94
95 /* qdisc ->enqueue() return codes. */
96 #define NET_XMIT_SUCCESS 0x00
97 #define NET_XMIT_DROP 0x01 /* skb dropped */
98 #define NET_XMIT_CN 0x02 /* congestion notification */
99 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
100 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
101
102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
103 * indicates that the device will soon be dropping packets, or already drops
104 * some packets of the same priority; prompting us to send less aggressively. */
105 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
106 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
107
108 /* Driver transmit return codes */
109 #define NETDEV_TX_MASK 0xf0
110
111 enum netdev_tx {
112 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
113 NETDEV_TX_OK = 0x00, /* driver took care of packet */
114 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
115 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
116 };
117 typedef enum netdev_tx netdev_tx_t;
118
119 /*
120 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
121 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
122 */
123 static inline bool dev_xmit_complete(int rc)
124 {
125 /*
126 * Positive cases with an skb consumed by a driver:
127 * - successful transmission (rc == NETDEV_TX_OK)
128 * - error while transmitting (rc < 0)
129 * - error while queueing to a different device (rc & NET_XMIT_MASK)
130 */
131 if (likely(rc < NET_XMIT_MASK))
132 return true;
133
134 return false;
135 }
136
137 #endif
138
139 #define MAX_ADDR_LEN 32 /* Largest hardware address length */
140
141 /* Initial net device group. All devices belong to group 0 by default. */
142 #define INIT_NETDEV_GROUP 0
143
144 #ifdef __KERNEL__
145 /*
146 * Compute the worst case header length according to the protocols
147 * used.
148 */
149
150 #if defined(CONFIG_WLAN) || defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
151 # if defined(CONFIG_MAC80211_MESH)
152 # define LL_MAX_HEADER 128
153 # else
154 # define LL_MAX_HEADER 96
155 # endif
156 #elif defined(CONFIG_TR) || defined(CONFIG_TR_MODULE)
157 # define LL_MAX_HEADER 48
158 #else
159 # define LL_MAX_HEADER 32
160 #endif
161
162 #if !defined(CONFIG_NET_IPIP) && !defined(CONFIG_NET_IPIP_MODULE) && \
163 !defined(CONFIG_NET_IPGRE) && !defined(CONFIG_NET_IPGRE_MODULE) && \
164 !defined(CONFIG_IPV6_SIT) && !defined(CONFIG_IPV6_SIT_MODULE) && \
165 !defined(CONFIG_IPV6_TUNNEL) && !defined(CONFIG_IPV6_TUNNEL_MODULE)
166 #define MAX_HEADER LL_MAX_HEADER
167 #else
168 #define MAX_HEADER (LL_MAX_HEADER + 48)
169 #endif
170
171 /*
172 * Old network device statistics. Fields are native words
173 * (unsigned long) so they can be read and written atomically.
174 */
175
176 struct net_device_stats {
177 unsigned long rx_packets;
178 unsigned long tx_packets;
179 unsigned long rx_bytes;
180 unsigned long tx_bytes;
181 unsigned long rx_errors;
182 unsigned long tx_errors;
183 unsigned long rx_dropped;
184 unsigned long tx_dropped;
185 unsigned long multicast;
186 unsigned long collisions;
187 unsigned long rx_length_errors;
188 unsigned long rx_over_errors;
189 unsigned long rx_crc_errors;
190 unsigned long rx_frame_errors;
191 unsigned long rx_fifo_errors;
192 unsigned long rx_missed_errors;
193 unsigned long tx_aborted_errors;
194 unsigned long tx_carrier_errors;
195 unsigned long tx_fifo_errors;
196 unsigned long tx_heartbeat_errors;
197 unsigned long tx_window_errors;
198 unsigned long rx_compressed;
199 unsigned long tx_compressed;
200 };
201
202 #endif /* __KERNEL__ */
203
204
205 /* Media selection options. */
206 enum {
207 IF_PORT_UNKNOWN = 0,
208 IF_PORT_10BASE2,
209 IF_PORT_10BASET,
210 IF_PORT_AUI,
211 IF_PORT_100BASET,
212 IF_PORT_100BASETX,
213 IF_PORT_100BASEFX
214 };
215
216 #ifdef __KERNEL__
217
218 #include <linux/cache.h>
219 #include <linux/skbuff.h>
220
221 struct neighbour;
222 struct neigh_parms;
223 struct sk_buff;
224
225 struct netdev_hw_addr {
226 struct list_head list;
227 unsigned char addr[MAX_ADDR_LEN];
228 unsigned char type;
229 #define NETDEV_HW_ADDR_T_LAN 1
230 #define NETDEV_HW_ADDR_T_SAN 2
231 #define NETDEV_HW_ADDR_T_SLAVE 3
232 #define NETDEV_HW_ADDR_T_UNICAST 4
233 #define NETDEV_HW_ADDR_T_MULTICAST 5
234 bool synced;
235 bool global_use;
236 int refcount;
237 struct rcu_head rcu_head;
238 };
239
240 struct netdev_hw_addr_list {
241 struct list_head list;
242 int count;
243 };
244
245 #define netdev_hw_addr_list_count(l) ((l)->count)
246 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
247 #define netdev_hw_addr_list_for_each(ha, l) \
248 list_for_each_entry(ha, &(l)->list, list)
249
250 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
251 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
252 #define netdev_for_each_uc_addr(ha, dev) \
253 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
254
255 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
256 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
257 #define netdev_for_each_mc_addr(ha, dev) \
258 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
259
260 struct hh_cache {
261 struct hh_cache *hh_next; /* Next entry */
262 atomic_t hh_refcnt; /* number of users */
263 /*
264 * We want hh_output, hh_len, hh_lock and hh_data be a in a separate
265 * cache line on SMP.
266 * They are mostly read, but hh_refcnt may be changed quite frequently,
267 * incurring cache line ping pongs.
268 */
269 __be16 hh_type ____cacheline_aligned_in_smp;
270 /* protocol identifier, f.e ETH_P_IP
271 * NOTE: For VLANs, this will be the
272 * encapuslated type. --BLG
273 */
274 u16 hh_len; /* length of header */
275 int (*hh_output)(struct sk_buff *skb);
276 seqlock_t hh_lock;
277
278 /* cached hardware header; allow for machine alignment needs. */
279 #define HH_DATA_MOD 16
280 #define HH_DATA_OFF(__len) \
281 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
282 #define HH_DATA_ALIGN(__len) \
283 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
284 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
285 };
286
287 static inline void hh_cache_put(struct hh_cache *hh)
288 {
289 if (atomic_dec_and_test(&hh->hh_refcnt))
290 kfree(hh);
291 }
292
293 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
294 * Alternative is:
295 * dev->hard_header_len ? (dev->hard_header_len +
296 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
297 *
298 * We could use other alignment values, but we must maintain the
299 * relationship HH alignment <= LL alignment.
300 *
301 * LL_ALLOCATED_SPACE also takes into account the tailroom the device
302 * may need.
303 */
304 #define LL_RESERVED_SPACE(dev) \
305 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
306 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
307 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
308 #define LL_ALLOCATED_SPACE(dev) \
309 ((((dev)->hard_header_len+(dev)->needed_headroom+(dev)->needed_tailroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
310
311 struct header_ops {
312 int (*create) (struct sk_buff *skb, struct net_device *dev,
313 unsigned short type, const void *daddr,
314 const void *saddr, unsigned len);
315 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
316 int (*rebuild)(struct sk_buff *skb);
317 #define HAVE_HEADER_CACHE
318 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh);
319 void (*cache_update)(struct hh_cache *hh,
320 const struct net_device *dev,
321 const unsigned char *haddr);
322 };
323
324 /* These flag bits are private to the generic network queueing
325 * layer, they may not be explicitly referenced by any other
326 * code.
327 */
328
329 enum netdev_state_t {
330 __LINK_STATE_START,
331 __LINK_STATE_PRESENT,
332 __LINK_STATE_NOCARRIER,
333 __LINK_STATE_LINKWATCH_PENDING,
334 __LINK_STATE_DORMANT,
335 };
336
337
338 /*
339 * This structure holds at boot time configured netdevice settings. They
340 * are then used in the device probing.
341 */
342 struct netdev_boot_setup {
343 char name[IFNAMSIZ];
344 struct ifmap map;
345 };
346 #define NETDEV_BOOT_SETUP_MAX 8
347
348 extern int __init netdev_boot_setup(char *str);
349
350 /*
351 * Structure for NAPI scheduling similar to tasklet but with weighting
352 */
353 struct napi_struct {
354 /* The poll_list must only be managed by the entity which
355 * changes the state of the NAPI_STATE_SCHED bit. This means
356 * whoever atomically sets that bit can add this napi_struct
357 * to the per-cpu poll_list, and whoever clears that bit
358 * can remove from the list right before clearing the bit.
359 */
360 struct list_head poll_list;
361
362 unsigned long state;
363 int weight;
364 int (*poll)(struct napi_struct *, int);
365 #ifdef CONFIG_NETPOLL
366 spinlock_t poll_lock;
367 int poll_owner;
368 #endif
369
370 unsigned int gro_count;
371
372 struct net_device *dev;
373 struct list_head dev_list;
374 struct sk_buff *gro_list;
375 struct sk_buff *skb;
376 };
377
378 enum {
379 NAPI_STATE_SCHED, /* Poll is scheduled */
380 NAPI_STATE_DISABLE, /* Disable pending */
381 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
382 };
383
384 enum gro_result {
385 GRO_MERGED,
386 GRO_MERGED_FREE,
387 GRO_HELD,
388 GRO_NORMAL,
389 GRO_DROP,
390 };
391 typedef enum gro_result gro_result_t;
392
393 /*
394 * enum rx_handler_result - Possible return values for rx_handlers.
395 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
396 * further.
397 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
398 * case skb->dev was changed by rx_handler.
399 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
400 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
401 *
402 * rx_handlers are functions called from inside __netif_receive_skb(), to do
403 * special processing of the skb, prior to delivery to protocol handlers.
404 *
405 * Currently, a net_device can only have a single rx_handler registered. Trying
406 * to register a second rx_handler will return -EBUSY.
407 *
408 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
409 * To unregister a rx_handler on a net_device, use
410 * netdev_rx_handler_unregister().
411 *
412 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
413 * do with the skb.
414 *
415 * If the rx_handler consumed to skb in some way, it should return
416 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
417 * the skb to be delivered in some other ways.
418 *
419 * If the rx_handler changed skb->dev, to divert the skb to another
420 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
421 * new device will be called if it exists.
422 *
423 * If the rx_handler consider the skb should be ignored, it should return
424 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
425 * are registred on exact device (ptype->dev == skb->dev).
426 *
427 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
428 * delivered, it should return RX_HANDLER_PASS.
429 *
430 * A device without a registered rx_handler will behave as if rx_handler
431 * returned RX_HANDLER_PASS.
432 */
433
434 enum rx_handler_result {
435 RX_HANDLER_CONSUMED,
436 RX_HANDLER_ANOTHER,
437 RX_HANDLER_EXACT,
438 RX_HANDLER_PASS,
439 };
440 typedef enum rx_handler_result rx_handler_result_t;
441 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
442
443 extern void __napi_schedule(struct napi_struct *n);
444
445 static inline int napi_disable_pending(struct napi_struct *n)
446 {
447 return test_bit(NAPI_STATE_DISABLE, &n->state);
448 }
449
450 /**
451 * napi_schedule_prep - check if napi can be scheduled
452 * @n: napi context
453 *
454 * Test if NAPI routine is already running, and if not mark
455 * it as running. This is used as a condition variable
456 * insure only one NAPI poll instance runs. We also make
457 * sure there is no pending NAPI disable.
458 */
459 static inline int napi_schedule_prep(struct napi_struct *n)
460 {
461 return !napi_disable_pending(n) &&
462 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
463 }
464
465 /**
466 * napi_schedule - schedule NAPI poll
467 * @n: napi context
468 *
469 * Schedule NAPI poll routine to be called if it is not already
470 * running.
471 */
472 static inline void napi_schedule(struct napi_struct *n)
473 {
474 if (napi_schedule_prep(n))
475 __napi_schedule(n);
476 }
477
478 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
479 static inline int napi_reschedule(struct napi_struct *napi)
480 {
481 if (napi_schedule_prep(napi)) {
482 __napi_schedule(napi);
483 return 1;
484 }
485 return 0;
486 }
487
488 /**
489 * napi_complete - NAPI processing complete
490 * @n: napi context
491 *
492 * Mark NAPI processing as complete.
493 */
494 extern void __napi_complete(struct napi_struct *n);
495 extern void napi_complete(struct napi_struct *n);
496
497 /**
498 * napi_disable - prevent NAPI from scheduling
499 * @n: napi context
500 *
501 * Stop NAPI from being scheduled on this context.
502 * Waits till any outstanding processing completes.
503 */
504 static inline void napi_disable(struct napi_struct *n)
505 {
506 set_bit(NAPI_STATE_DISABLE, &n->state);
507 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
508 msleep(1);
509 clear_bit(NAPI_STATE_DISABLE, &n->state);
510 }
511
512 /**
513 * napi_enable - enable NAPI scheduling
514 * @n: napi context
515 *
516 * Resume NAPI from being scheduled on this context.
517 * Must be paired with napi_disable.
518 */
519 static inline void napi_enable(struct napi_struct *n)
520 {
521 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
522 smp_mb__before_clear_bit();
523 clear_bit(NAPI_STATE_SCHED, &n->state);
524 }
525
526 #ifdef CONFIG_SMP
527 /**
528 * napi_synchronize - wait until NAPI is not running
529 * @n: napi context
530 *
531 * Wait until NAPI is done being scheduled on this context.
532 * Waits till any outstanding processing completes but
533 * does not disable future activations.
534 */
535 static inline void napi_synchronize(const struct napi_struct *n)
536 {
537 while (test_bit(NAPI_STATE_SCHED, &n->state))
538 msleep(1);
539 }
540 #else
541 # define napi_synchronize(n) barrier()
542 #endif
543
544 enum netdev_queue_state_t {
545 __QUEUE_STATE_XOFF,
546 __QUEUE_STATE_FROZEN,
547 #define QUEUE_STATE_XOFF_OR_FROZEN ((1 << __QUEUE_STATE_XOFF) | \
548 (1 << __QUEUE_STATE_FROZEN))
549 };
550
551 struct netdev_queue {
552 /*
553 * read mostly part
554 */
555 struct net_device *dev;
556 struct Qdisc *qdisc;
557 unsigned long state;
558 struct Qdisc *qdisc_sleeping;
559 #ifdef CONFIG_RPS
560 struct kobject kobj;
561 #endif
562 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
563 int numa_node;
564 #endif
565 /*
566 * write mostly part
567 */
568 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
569 int xmit_lock_owner;
570 /*
571 * please use this field instead of dev->trans_start
572 */
573 unsigned long trans_start;
574 } ____cacheline_aligned_in_smp;
575
576 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
577 {
578 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
579 return q->numa_node;
580 #else
581 return NUMA_NO_NODE;
582 #endif
583 }
584
585 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
586 {
587 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
588 q->numa_node = node;
589 #endif
590 }
591
592 #ifdef CONFIG_RPS
593 /*
594 * This structure holds an RPS map which can be of variable length. The
595 * map is an array of CPUs.
596 */
597 struct rps_map {
598 unsigned int len;
599 struct rcu_head rcu;
600 u16 cpus[0];
601 };
602 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + (_num * sizeof(u16)))
603
604 /*
605 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
606 * tail pointer for that CPU's input queue at the time of last enqueue, and
607 * a hardware filter index.
608 */
609 struct rps_dev_flow {
610 u16 cpu;
611 u16 filter;
612 unsigned int last_qtail;
613 };
614 #define RPS_NO_FILTER 0xffff
615
616 /*
617 * The rps_dev_flow_table structure contains a table of flow mappings.
618 */
619 struct rps_dev_flow_table {
620 unsigned int mask;
621 struct rcu_head rcu;
622 struct work_struct free_work;
623 struct rps_dev_flow flows[0];
624 };
625 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
626 (_num * sizeof(struct rps_dev_flow)))
627
628 /*
629 * The rps_sock_flow_table contains mappings of flows to the last CPU
630 * on which they were processed by the application (set in recvmsg).
631 */
632 struct rps_sock_flow_table {
633 unsigned int mask;
634 u16 ents[0];
635 };
636 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
637 (_num * sizeof(u16)))
638
639 #define RPS_NO_CPU 0xffff
640
641 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
642 u32 hash)
643 {
644 if (table && hash) {
645 unsigned int cpu, index = hash & table->mask;
646
647 /* We only give a hint, preemption can change cpu under us */
648 cpu = raw_smp_processor_id();
649
650 if (table->ents[index] != cpu)
651 table->ents[index] = cpu;
652 }
653 }
654
655 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
656 u32 hash)
657 {
658 if (table && hash)
659 table->ents[hash & table->mask] = RPS_NO_CPU;
660 }
661
662 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
663
664 #ifdef CONFIG_RFS_ACCEL
665 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
666 u32 flow_id, u16 filter_id);
667 #endif
668
669 /* This structure contains an instance of an RX queue. */
670 struct netdev_rx_queue {
671 struct rps_map __rcu *rps_map;
672 struct rps_dev_flow_table __rcu *rps_flow_table;
673 struct kobject kobj;
674 struct net_device *dev;
675 } ____cacheline_aligned_in_smp;
676 #endif /* CONFIG_RPS */
677
678 #ifdef CONFIG_XPS
679 /*
680 * This structure holds an XPS map which can be of variable length. The
681 * map is an array of queues.
682 */
683 struct xps_map {
684 unsigned int len;
685 unsigned int alloc_len;
686 struct rcu_head rcu;
687 u16 queues[0];
688 };
689 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + (_num * sizeof(u16)))
690 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
691 / sizeof(u16))
692
693 /*
694 * This structure holds all XPS maps for device. Maps are indexed by CPU.
695 */
696 struct xps_dev_maps {
697 struct rcu_head rcu;
698 struct xps_map __rcu *cpu_map[0];
699 };
700 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
701 (nr_cpu_ids * sizeof(struct xps_map *)))
702 #endif /* CONFIG_XPS */
703
704 #define TC_MAX_QUEUE 16
705 #define TC_BITMASK 15
706 /* HW offloaded queuing disciplines txq count and offset maps */
707 struct netdev_tc_txq {
708 u16 count;
709 u16 offset;
710 };
711
712 /*
713 * This structure defines the management hooks for network devices.
714 * The following hooks can be defined; unless noted otherwise, they are
715 * optional and can be filled with a null pointer.
716 *
717 * int (*ndo_init)(struct net_device *dev);
718 * This function is called once when network device is registered.
719 * The network device can use this to any late stage initializaton
720 * or semantic validattion. It can fail with an error code which will
721 * be propogated back to register_netdev
722 *
723 * void (*ndo_uninit)(struct net_device *dev);
724 * This function is called when device is unregistered or when registration
725 * fails. It is not called if init fails.
726 *
727 * int (*ndo_open)(struct net_device *dev);
728 * This function is called when network device transistions to the up
729 * state.
730 *
731 * int (*ndo_stop)(struct net_device *dev);
732 * This function is called when network device transistions to the down
733 * state.
734 *
735 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
736 * struct net_device *dev);
737 * Called when a packet needs to be transmitted.
738 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
739 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
740 * Required can not be NULL.
741 *
742 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
743 * Called to decide which queue to when device supports multiple
744 * transmit queues.
745 *
746 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
747 * This function is called to allow device receiver to make
748 * changes to configuration when multicast or promiscious is enabled.
749 *
750 * void (*ndo_set_rx_mode)(struct net_device *dev);
751 * This function is called device changes address list filtering.
752 *
753 * void (*ndo_set_multicast_list)(struct net_device *dev);
754 * This function is called when the multicast address list changes.
755 *
756 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
757 * This function is called when the Media Access Control address
758 * needs to be changed. If this interface is not defined, the
759 * mac address can not be changed.
760 *
761 * int (*ndo_validate_addr)(struct net_device *dev);
762 * Test if Media Access Control address is valid for the device.
763 *
764 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
765 * Called when a user request an ioctl which can't be handled by
766 * the generic interface code. If not defined ioctl's return
767 * not supported error code.
768 *
769 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
770 * Used to set network devices bus interface parameters. This interface
771 * is retained for legacy reason, new devices should use the bus
772 * interface (PCI) for low level management.
773 *
774 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
775 * Called when a user wants to change the Maximum Transfer Unit
776 * of a device. If not defined, any request to change MTU will
777 * will return an error.
778 *
779 * void (*ndo_tx_timeout)(struct net_device *dev);
780 * Callback uses when the transmitter has not made any progress
781 * for dev->watchdog ticks.
782 *
783 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
784 * struct rtnl_link_stats64 *storage);
785 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
786 * Called when a user wants to get the network device usage
787 * statistics. Drivers must do one of the following:
788 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
789 * rtnl_link_stats64 structure passed by the caller.
790 * 2. Define @ndo_get_stats to update a net_device_stats structure
791 * (which should normally be dev->stats) and return a pointer to
792 * it. The structure may be changed asynchronously only if each
793 * field is written atomically.
794 * 3. Update dev->stats asynchronously and atomically, and define
795 * neither operation.
796 *
797 * void (*ndo_vlan_rx_register)(struct net_device *dev, struct vlan_group *grp);
798 * If device support VLAN receive acceleration
799 * (ie. dev->features & NETIF_F_HW_VLAN_RX), then this function is called
800 * when vlan groups for the device changes. Note: grp is NULL
801 * if no vlan's groups are being used.
802 *
803 * void (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
804 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
805 * this function is called when a VLAN id is registered.
806 *
807 * void (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
808 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
809 * this function is called when a VLAN id is unregistered.
810 *
811 * void (*ndo_poll_controller)(struct net_device *dev);
812 *
813 * SR-IOV management functions.
814 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
815 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
816 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
817 * int (*ndo_get_vf_config)(struct net_device *dev,
818 * int vf, struct ifla_vf_info *ivf);
819 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
820 * struct nlattr *port[]);
821 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
822 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
823 * Called to setup 'tc' number of traffic classes in the net device. This
824 * is always called from the stack with the rtnl lock held and netif tx
825 * queues stopped. This allows the netdevice to perform queue management
826 * safely.
827 *
828 * Fiber Channel over Ethernet (FCoE) offload functions.
829 * int (*ndo_fcoe_enable)(struct net_device *dev);
830 * Called when the FCoE protocol stack wants to start using LLD for FCoE
831 * so the underlying device can perform whatever needed configuration or
832 * initialization to support acceleration of FCoE traffic.
833 *
834 * int (*ndo_fcoe_disable)(struct net_device *dev);
835 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
836 * so the underlying device can perform whatever needed clean-ups to
837 * stop supporting acceleration of FCoE traffic.
838 *
839 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
840 * struct scatterlist *sgl, unsigned int sgc);
841 * Called when the FCoE Initiator wants to initialize an I/O that
842 * is a possible candidate for Direct Data Placement (DDP). The LLD can
843 * perform necessary setup and returns 1 to indicate the device is set up
844 * successfully to perform DDP on this I/O, otherwise this returns 0.
845 *
846 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
847 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
848 * indicated by the FC exchange id 'xid', so the underlying device can
849 * clean up and reuse resources for later DDP requests.
850 *
851 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
852 * struct scatterlist *sgl, unsigned int sgc);
853 * Called when the FCoE Target wants to initialize an I/O that
854 * is a possible candidate for Direct Data Placement (DDP). The LLD can
855 * perform necessary setup and returns 1 to indicate the device is set up
856 * successfully to perform DDP on this I/O, otherwise this returns 0.
857 *
858 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
859 * Called when the underlying device wants to override default World Wide
860 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
861 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
862 * protocol stack to use.
863 *
864 * RFS acceleration.
865 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
866 * u16 rxq_index, u32 flow_id);
867 * Set hardware filter for RFS. rxq_index is the target queue index;
868 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
869 * Return the filter ID on success, or a negative error code.
870 *
871 * Slave management functions (for bridge, bonding, etc). User should
872 * call netdev_set_master() to set dev->master properly.
873 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
874 * Called to make another netdev an underling.
875 *
876 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
877 * Called to release previously enslaved netdev.
878 *
879 * Feature/offload setting functions.
880 * u32 (*ndo_fix_features)(struct net_device *dev, u32 features);
881 * Adjusts the requested feature flags according to device-specific
882 * constraints, and returns the resulting flags. Must not modify
883 * the device state.
884 *
885 * int (*ndo_set_features)(struct net_device *dev, u32 features);
886 * Called to update device configuration to new features. Passed
887 * feature set might be less than what was returned by ndo_fix_features()).
888 * Must return >0 or -errno if it changed dev->features itself.
889 *
890 */
891 #define HAVE_NET_DEVICE_OPS
892 struct net_device_ops {
893 int (*ndo_init)(struct net_device *dev);
894 void (*ndo_uninit)(struct net_device *dev);
895 int (*ndo_open)(struct net_device *dev);
896 int (*ndo_stop)(struct net_device *dev);
897 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
898 struct net_device *dev);
899 u16 (*ndo_select_queue)(struct net_device *dev,
900 struct sk_buff *skb);
901 void (*ndo_change_rx_flags)(struct net_device *dev,
902 int flags);
903 void (*ndo_set_rx_mode)(struct net_device *dev);
904 void (*ndo_set_multicast_list)(struct net_device *dev);
905 int (*ndo_set_mac_address)(struct net_device *dev,
906 void *addr);
907 int (*ndo_validate_addr)(struct net_device *dev);
908 int (*ndo_do_ioctl)(struct net_device *dev,
909 struct ifreq *ifr, int cmd);
910 int (*ndo_set_config)(struct net_device *dev,
911 struct ifmap *map);
912 int (*ndo_change_mtu)(struct net_device *dev,
913 int new_mtu);
914 int (*ndo_neigh_setup)(struct net_device *dev,
915 struct neigh_parms *);
916 void (*ndo_tx_timeout) (struct net_device *dev);
917
918 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
919 struct rtnl_link_stats64 *storage);
920 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
921
922 void (*ndo_vlan_rx_register)(struct net_device *dev,
923 struct vlan_group *grp);
924 void (*ndo_vlan_rx_add_vid)(struct net_device *dev,
925 unsigned short vid);
926 void (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
927 unsigned short vid);
928 #ifdef CONFIG_NET_POLL_CONTROLLER
929 void (*ndo_poll_controller)(struct net_device *dev);
930 int (*ndo_netpoll_setup)(struct net_device *dev,
931 struct netpoll_info *info);
932 void (*ndo_netpoll_cleanup)(struct net_device *dev);
933 #endif
934 int (*ndo_set_vf_mac)(struct net_device *dev,
935 int queue, u8 *mac);
936 int (*ndo_set_vf_vlan)(struct net_device *dev,
937 int queue, u16 vlan, u8 qos);
938 int (*ndo_set_vf_tx_rate)(struct net_device *dev,
939 int vf, int rate);
940 int (*ndo_get_vf_config)(struct net_device *dev,
941 int vf,
942 struct ifla_vf_info *ivf);
943 int (*ndo_set_vf_port)(struct net_device *dev,
944 int vf,
945 struct nlattr *port[]);
946 int (*ndo_get_vf_port)(struct net_device *dev,
947 int vf, struct sk_buff *skb);
948 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
949 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
950 int (*ndo_fcoe_enable)(struct net_device *dev);
951 int (*ndo_fcoe_disable)(struct net_device *dev);
952 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
953 u16 xid,
954 struct scatterlist *sgl,
955 unsigned int sgc);
956 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
957 u16 xid);
958 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
959 u16 xid,
960 struct scatterlist *sgl,
961 unsigned int sgc);
962 #define NETDEV_FCOE_WWNN 0
963 #define NETDEV_FCOE_WWPN 1
964 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
965 u64 *wwn, int type);
966 #endif
967 #ifdef CONFIG_RFS_ACCEL
968 int (*ndo_rx_flow_steer)(struct net_device *dev,
969 const struct sk_buff *skb,
970 u16 rxq_index,
971 u32 flow_id);
972 #endif
973 int (*ndo_add_slave)(struct net_device *dev,
974 struct net_device *slave_dev);
975 int (*ndo_del_slave)(struct net_device *dev,
976 struct net_device *slave_dev);
977 u32 (*ndo_fix_features)(struct net_device *dev,
978 u32 features);
979 int (*ndo_set_features)(struct net_device *dev,
980 u32 features);
981 };
982
983 /*
984 * The DEVICE structure.
985 * Actually, this whole structure is a big mistake. It mixes I/O
986 * data with strictly "high-level" data, and it has to know about
987 * almost every data structure used in the INET module.
988 *
989 * FIXME: cleanup struct net_device such that network protocol info
990 * moves out.
991 */
992
993 struct net_device {
994
995 /*
996 * This is the first field of the "visible" part of this structure
997 * (i.e. as seen by users in the "Space.c" file). It is the name
998 * of the interface.
999 */
1000 char name[IFNAMSIZ];
1001
1002 struct pm_qos_request_list pm_qos_req;
1003
1004 /* device name hash chain */
1005 struct hlist_node name_hlist;
1006 /* snmp alias */
1007 char *ifalias;
1008
1009 /*
1010 * I/O specific fields
1011 * FIXME: Merge these and struct ifmap into one
1012 */
1013 unsigned long mem_end; /* shared mem end */
1014 unsigned long mem_start; /* shared mem start */
1015 unsigned long base_addr; /* device I/O address */
1016 unsigned int irq; /* device IRQ number */
1017
1018 /*
1019 * Some hardware also needs these fields, but they are not
1020 * part of the usual set specified in Space.c.
1021 */
1022
1023 unsigned long state;
1024
1025 struct list_head dev_list;
1026 struct list_head napi_list;
1027 struct list_head unreg_list;
1028
1029 /* currently active device features */
1030 u32 features;
1031 /* user-changeable features */
1032 u32 hw_features;
1033 /* user-requested features */
1034 u32 wanted_features;
1035 /* mask of features inheritable by VLAN devices */
1036 u32 vlan_features;
1037
1038 /* Net device feature bits; if you change something,
1039 * also update netdev_features_strings[] in ethtool.c */
1040
1041 #define NETIF_F_SG 1 /* Scatter/gather IO. */
1042 #define NETIF_F_IP_CSUM 2 /* Can checksum TCP/UDP over IPv4. */
1043 #define NETIF_F_NO_CSUM 4 /* Does not require checksum. F.e. loopack. */
1044 #define NETIF_F_HW_CSUM 8 /* Can checksum all the packets. */
1045 #define NETIF_F_IPV6_CSUM 16 /* Can checksum TCP/UDP over IPV6 */
1046 #define NETIF_F_HIGHDMA 32 /* Can DMA to high memory. */
1047 #define NETIF_F_FRAGLIST 64 /* Scatter/gather IO. */
1048 #define NETIF_F_HW_VLAN_TX 128 /* Transmit VLAN hw acceleration */
1049 #define NETIF_F_HW_VLAN_RX 256 /* Receive VLAN hw acceleration */
1050 #define NETIF_F_HW_VLAN_FILTER 512 /* Receive filtering on VLAN */
1051 #define NETIF_F_VLAN_CHALLENGED 1024 /* Device cannot handle VLAN packets */
1052 #define NETIF_F_GSO 2048 /* Enable software GSO. */
1053 #define NETIF_F_LLTX 4096 /* LockLess TX - deprecated. Please */
1054 /* do not use LLTX in new drivers */
1055 #define NETIF_F_NETNS_LOCAL 8192 /* Does not change network namespaces */
1056 #define NETIF_F_GRO 16384 /* Generic receive offload */
1057 #define NETIF_F_LRO 32768 /* large receive offload */
1058
1059 /* the GSO_MASK reserves bits 16 through 23 */
1060 #define NETIF_F_FCOE_CRC (1 << 24) /* FCoE CRC32 */
1061 #define NETIF_F_SCTP_CSUM (1 << 25) /* SCTP checksum offload */
1062 #define NETIF_F_FCOE_MTU (1 << 26) /* Supports max FCoE MTU, 2158 bytes*/
1063 #define NETIF_F_NTUPLE (1 << 27) /* N-tuple filters supported */
1064 #define NETIF_F_RXHASH (1 << 28) /* Receive hashing offload */
1065 #define NETIF_F_RXCSUM (1 << 29) /* Receive checksumming offload */
1066 #define NETIF_F_NOCACHE_COPY (1 << 30) /* Use no-cache copyfromuser */
1067 #define NETIF_F_LOOPBACK (1 << 31) /* Enable loopback */
1068
1069 /* Segmentation offload features */
1070 #define NETIF_F_GSO_SHIFT 16
1071 #define NETIF_F_GSO_MASK 0x00ff0000
1072 #define NETIF_F_TSO (SKB_GSO_TCPV4 << NETIF_F_GSO_SHIFT)
1073 #define NETIF_F_UFO (SKB_GSO_UDP << NETIF_F_GSO_SHIFT)
1074 #define NETIF_F_GSO_ROBUST (SKB_GSO_DODGY << NETIF_F_GSO_SHIFT)
1075 #define NETIF_F_TSO_ECN (SKB_GSO_TCP_ECN << NETIF_F_GSO_SHIFT)
1076 #define NETIF_F_TSO6 (SKB_GSO_TCPV6 << NETIF_F_GSO_SHIFT)
1077 #define NETIF_F_FSO (SKB_GSO_FCOE << NETIF_F_GSO_SHIFT)
1078
1079 /* Features valid for ethtool to change */
1080 /* = all defined minus driver/device-class-related */
1081 #define NETIF_F_NEVER_CHANGE (NETIF_F_VLAN_CHALLENGED | \
1082 NETIF_F_LLTX | NETIF_F_NETNS_LOCAL)
1083 #define NETIF_F_ETHTOOL_BITS (0xff3fffff & ~NETIF_F_NEVER_CHANGE)
1084
1085 /* List of features with software fallbacks. */
1086 #define NETIF_F_GSO_SOFTWARE (NETIF_F_TSO | NETIF_F_TSO_ECN | \
1087 NETIF_F_TSO6 | NETIF_F_UFO)
1088
1089
1090 #define NETIF_F_GEN_CSUM (NETIF_F_NO_CSUM | NETIF_F_HW_CSUM)
1091 #define NETIF_F_V4_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IP_CSUM)
1092 #define NETIF_F_V6_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IPV6_CSUM)
1093 #define NETIF_F_ALL_CSUM (NETIF_F_V4_CSUM | NETIF_F_V6_CSUM)
1094
1095 #define NETIF_F_ALL_TSO (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1096
1097 #define NETIF_F_ALL_FCOE (NETIF_F_FCOE_CRC | NETIF_F_FCOE_MTU | \
1098 NETIF_F_FSO)
1099
1100 /*
1101 * If one device supports one of these features, then enable them
1102 * for all in netdev_increment_features.
1103 */
1104 #define NETIF_F_ONE_FOR_ALL (NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ROBUST | \
1105 NETIF_F_SG | NETIF_F_HIGHDMA | \
1106 NETIF_F_FRAGLIST | NETIF_F_VLAN_CHALLENGED)
1107 /*
1108 * If one device doesn't support one of these features, then disable it
1109 * for all in netdev_increment_features.
1110 */
1111 #define NETIF_F_ALL_FOR_ALL (NETIF_F_NOCACHE_COPY | NETIF_F_FSO)
1112
1113 /* changeable features with no special hardware requirements */
1114 #define NETIF_F_SOFT_FEATURES (NETIF_F_GSO | NETIF_F_GRO)
1115
1116 /* Interface index. Unique device identifier */
1117 int ifindex;
1118 int iflink;
1119
1120 struct net_device_stats stats;
1121 atomic_long_t rx_dropped; /* dropped packets by core network
1122 * Do not use this in drivers.
1123 */
1124
1125 #ifdef CONFIG_WIRELESS_EXT
1126 /* List of functions to handle Wireless Extensions (instead of ioctl).
1127 * See <net/iw_handler.h> for details. Jean II */
1128 const struct iw_handler_def * wireless_handlers;
1129 /* Instance data managed by the core of Wireless Extensions. */
1130 struct iw_public_data * wireless_data;
1131 #endif
1132 /* Management operations */
1133 const struct net_device_ops *netdev_ops;
1134 const struct ethtool_ops *ethtool_ops;
1135
1136 /* Hardware header description */
1137 const struct header_ops *header_ops;
1138
1139 unsigned int flags; /* interface flags (a la BSD) */
1140 unsigned int priv_flags; /* Like 'flags' but invisible to userspace. */
1141 unsigned short gflags;
1142 unsigned short padded; /* How much padding added by alloc_netdev() */
1143
1144 unsigned char operstate; /* RFC2863 operstate */
1145 unsigned char link_mode; /* mapping policy to operstate */
1146
1147 unsigned char if_port; /* Selectable AUI, TP,..*/
1148 unsigned char dma; /* DMA channel */
1149
1150 unsigned int mtu; /* interface MTU value */
1151 unsigned short type; /* interface hardware type */
1152 unsigned short hard_header_len; /* hardware hdr length */
1153
1154 /* extra head- and tailroom the hardware may need, but not in all cases
1155 * can this be guaranteed, especially tailroom. Some cases also use
1156 * LL_MAX_HEADER instead to allocate the skb.
1157 */
1158 unsigned short needed_headroom;
1159 unsigned short needed_tailroom;
1160
1161 /* Interface address info. */
1162 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1163 unsigned char addr_assign_type; /* hw address assignment type */
1164 unsigned char addr_len; /* hardware address length */
1165 unsigned short dev_id; /* for shared network cards */
1166
1167 spinlock_t addr_list_lock;
1168 struct netdev_hw_addr_list uc; /* Unicast mac addresses */
1169 struct netdev_hw_addr_list mc; /* Multicast mac addresses */
1170 int uc_promisc;
1171 unsigned int promiscuity;
1172 unsigned int allmulti;
1173
1174
1175 /* Protocol specific pointers */
1176
1177 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1178 struct vlan_group __rcu *vlgrp; /* VLAN group */
1179 #endif
1180 #ifdef CONFIG_NET_DSA
1181 void *dsa_ptr; /* dsa specific data */
1182 #endif
1183 void *atalk_ptr; /* AppleTalk link */
1184 struct in_device __rcu *ip_ptr; /* IPv4 specific data */
1185 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */
1186 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */
1187 void *ec_ptr; /* Econet specific data */
1188 void *ax25_ptr; /* AX.25 specific data */
1189 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data,
1190 assign before registering */
1191
1192 /*
1193 * Cache lines mostly used on receive path (including eth_type_trans())
1194 */
1195 unsigned long last_rx; /* Time of last Rx
1196 * This should not be set in
1197 * drivers, unless really needed,
1198 * because network stack (bonding)
1199 * use it if/when necessary, to
1200 * avoid dirtying this cache line.
1201 */
1202
1203 struct net_device *master; /* Pointer to master device of a group,
1204 * which this device is member of.
1205 */
1206
1207 /* Interface address info used in eth_type_trans() */
1208 unsigned char *dev_addr; /* hw address, (before bcast
1209 because most packets are
1210 unicast) */
1211
1212 struct netdev_hw_addr_list dev_addrs; /* list of device
1213 hw addresses */
1214
1215 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */
1216
1217 #ifdef CONFIG_RPS
1218 struct kset *queues_kset;
1219
1220 struct netdev_rx_queue *_rx;
1221
1222 /* Number of RX queues allocated at register_netdev() time */
1223 unsigned int num_rx_queues;
1224
1225 /* Number of RX queues currently active in device */
1226 unsigned int real_num_rx_queues;
1227
1228 #ifdef CONFIG_RFS_ACCEL
1229 /* CPU reverse-mapping for RX completion interrupts, indexed
1230 * by RX queue number. Assigned by driver. This must only be
1231 * set if the ndo_rx_flow_steer operation is defined. */
1232 struct cpu_rmap *rx_cpu_rmap;
1233 #endif
1234 #endif
1235
1236 rx_handler_func_t __rcu *rx_handler;
1237 void __rcu *rx_handler_data;
1238
1239 struct netdev_queue __rcu *ingress_queue;
1240
1241 /*
1242 * Cache lines mostly used on transmit path
1243 */
1244 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1245
1246 /* Number of TX queues allocated at alloc_netdev_mq() time */
1247 unsigned int num_tx_queues;
1248
1249 /* Number of TX queues currently active in device */
1250 unsigned int real_num_tx_queues;
1251
1252 /* root qdisc from userspace point of view */
1253 struct Qdisc *qdisc;
1254
1255 unsigned long tx_queue_len; /* Max frames per queue allowed */
1256 spinlock_t tx_global_lock;
1257
1258 #ifdef CONFIG_XPS
1259 struct xps_dev_maps __rcu *xps_maps;
1260 #endif
1261
1262 /* These may be needed for future network-power-down code. */
1263
1264 /*
1265 * trans_start here is expensive for high speed devices on SMP,
1266 * please use netdev_queue->trans_start instead.
1267 */
1268 unsigned long trans_start; /* Time (in jiffies) of last Tx */
1269
1270 int watchdog_timeo; /* used by dev_watchdog() */
1271 struct timer_list watchdog_timer;
1272
1273 /* Number of references to this device */
1274 int __percpu *pcpu_refcnt;
1275
1276 /* delayed register/unregister */
1277 struct list_head todo_list;
1278 /* device index hash chain */
1279 struct hlist_node index_hlist;
1280
1281 struct list_head link_watch_list;
1282
1283 /* register/unregister state machine */
1284 enum { NETREG_UNINITIALIZED=0,
1285 NETREG_REGISTERED, /* completed register_netdevice */
1286 NETREG_UNREGISTERING, /* called unregister_netdevice */
1287 NETREG_UNREGISTERED, /* completed unregister todo */
1288 NETREG_RELEASED, /* called free_netdev */
1289 NETREG_DUMMY, /* dummy device for NAPI poll */
1290 } reg_state:8;
1291
1292 bool dismantle; /* device is going do be freed */
1293
1294 enum {
1295 RTNL_LINK_INITIALIZED,
1296 RTNL_LINK_INITIALIZING,
1297 } rtnl_link_state:16;
1298
1299 /* Called from unregister, can be used to call free_netdev */
1300 void (*destructor)(struct net_device *dev);
1301
1302 #ifdef CONFIG_NETPOLL
1303 struct netpoll_info *npinfo;
1304 #endif
1305
1306 #ifdef CONFIG_NET_NS
1307 /* Network namespace this network device is inside */
1308 struct net *nd_net;
1309 #endif
1310
1311 /* mid-layer private */
1312 union {
1313 void *ml_priv;
1314 struct pcpu_lstats __percpu *lstats; /* loopback stats */
1315 struct pcpu_tstats __percpu *tstats; /* tunnel stats */
1316 struct pcpu_dstats __percpu *dstats; /* dummy stats */
1317 };
1318 /* GARP */
1319 struct garp_port __rcu *garp_port;
1320
1321 /* class/net/name entry */
1322 struct device dev;
1323 /* space for optional device, statistics, and wireless sysfs groups */
1324 const struct attribute_group *sysfs_groups[4];
1325
1326 /* rtnetlink link ops */
1327 const struct rtnl_link_ops *rtnl_link_ops;
1328
1329 /* for setting kernel sock attribute on TCP connection setup */
1330 #define GSO_MAX_SIZE 65536
1331 unsigned int gso_max_size;
1332
1333 #ifdef CONFIG_DCB
1334 /* Data Center Bridging netlink ops */
1335 const struct dcbnl_rtnl_ops *dcbnl_ops;
1336 #endif
1337 u8 num_tc;
1338 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1339 u8 prio_tc_map[TC_BITMASK + 1];
1340
1341 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
1342 /* max exchange id for FCoE LRO by ddp */
1343 unsigned int fcoe_ddp_xid;
1344 #endif
1345 /* n-tuple filter list attached to this device */
1346 struct ethtool_rx_ntuple_list ethtool_ntuple_list;
1347
1348 /* phy device may attach itself for hardware timestamping */
1349 struct phy_device *phydev;
1350
1351 /* group the device belongs to */
1352 int group;
1353 };
1354 #define to_net_dev(d) container_of(d, struct net_device, dev)
1355
1356 #define NETDEV_ALIGN 32
1357
1358 static inline
1359 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1360 {
1361 return dev->prio_tc_map[prio & TC_BITMASK];
1362 }
1363
1364 static inline
1365 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1366 {
1367 if (tc >= dev->num_tc)
1368 return -EINVAL;
1369
1370 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1371 return 0;
1372 }
1373
1374 static inline
1375 void netdev_reset_tc(struct net_device *dev)
1376 {
1377 dev->num_tc = 0;
1378 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1379 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1380 }
1381
1382 static inline
1383 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1384 {
1385 if (tc >= dev->num_tc)
1386 return -EINVAL;
1387
1388 dev->tc_to_txq[tc].count = count;
1389 dev->tc_to_txq[tc].offset = offset;
1390 return 0;
1391 }
1392
1393 static inline
1394 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1395 {
1396 if (num_tc > TC_MAX_QUEUE)
1397 return -EINVAL;
1398
1399 dev->num_tc = num_tc;
1400 return 0;
1401 }
1402
1403 static inline
1404 int netdev_get_num_tc(struct net_device *dev)
1405 {
1406 return dev->num_tc;
1407 }
1408
1409 static inline
1410 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1411 unsigned int index)
1412 {
1413 return &dev->_tx[index];
1414 }
1415
1416 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1417 void (*f)(struct net_device *,
1418 struct netdev_queue *,
1419 void *),
1420 void *arg)
1421 {
1422 unsigned int i;
1423
1424 for (i = 0; i < dev->num_tx_queues; i++)
1425 f(dev, &dev->_tx[i], arg);
1426 }
1427
1428 /*
1429 * Net namespace inlines
1430 */
1431 static inline
1432 struct net *dev_net(const struct net_device *dev)
1433 {
1434 return read_pnet(&dev->nd_net);
1435 }
1436
1437 static inline
1438 void dev_net_set(struct net_device *dev, struct net *net)
1439 {
1440 #ifdef CONFIG_NET_NS
1441 release_net(dev->nd_net);
1442 dev->nd_net = hold_net(net);
1443 #endif
1444 }
1445
1446 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1447 {
1448 #ifdef CONFIG_NET_DSA_TAG_DSA
1449 if (dev->dsa_ptr != NULL)
1450 return dsa_uses_dsa_tags(dev->dsa_ptr);
1451 #endif
1452
1453 return 0;
1454 }
1455
1456 #ifndef CONFIG_NET_NS
1457 static inline void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1458 {
1459 skb->dev = dev;
1460 }
1461 #else /* CONFIG_NET_NS */
1462 void skb_set_dev(struct sk_buff *skb, struct net_device *dev);
1463 #endif
1464
1465 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1466 {
1467 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1468 if (dev->dsa_ptr != NULL)
1469 return dsa_uses_trailer_tags(dev->dsa_ptr);
1470 #endif
1471
1472 return 0;
1473 }
1474
1475 /**
1476 * netdev_priv - access network device private data
1477 * @dev: network device
1478 *
1479 * Get network device private data
1480 */
1481 static inline void *netdev_priv(const struct net_device *dev)
1482 {
1483 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1484 }
1485
1486 /* Set the sysfs physical device reference for the network logical device
1487 * if set prior to registration will cause a symlink during initialization.
1488 */
1489 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1490
1491 /* Set the sysfs device type for the network logical device to allow
1492 * fin grained indentification of different network device types. For
1493 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1494 */
1495 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1496
1497 /**
1498 * netif_napi_add - initialize a napi context
1499 * @dev: network device
1500 * @napi: napi context
1501 * @poll: polling function
1502 * @weight: default weight
1503 *
1504 * netif_napi_add() must be used to initialize a napi context prior to calling
1505 * *any* of the other napi related functions.
1506 */
1507 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1508 int (*poll)(struct napi_struct *, int), int weight);
1509
1510 /**
1511 * netif_napi_del - remove a napi context
1512 * @napi: napi context
1513 *
1514 * netif_napi_del() removes a napi context from the network device napi list
1515 */
1516 void netif_napi_del(struct napi_struct *napi);
1517
1518 struct napi_gro_cb {
1519 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1520 void *frag0;
1521
1522 /* Length of frag0. */
1523 unsigned int frag0_len;
1524
1525 /* This indicates where we are processing relative to skb->data. */
1526 int data_offset;
1527
1528 /* This is non-zero if the packet may be of the same flow. */
1529 int same_flow;
1530
1531 /* This is non-zero if the packet cannot be merged with the new skb. */
1532 int flush;
1533
1534 /* Number of segments aggregated. */
1535 int count;
1536
1537 /* Free the skb? */
1538 int free;
1539 };
1540
1541 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1542
1543 struct packet_type {
1544 __be16 type; /* This is really htons(ether_type). */
1545 struct net_device *dev; /* NULL is wildcarded here */
1546 int (*func) (struct sk_buff *,
1547 struct net_device *,
1548 struct packet_type *,
1549 struct net_device *);
1550 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1551 u32 features);
1552 int (*gso_send_check)(struct sk_buff *skb);
1553 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1554 struct sk_buff *skb);
1555 int (*gro_complete)(struct sk_buff *skb);
1556 void *af_packet_priv;
1557 struct list_head list;
1558 };
1559
1560 #include <linux/interrupt.h>
1561 #include <linux/notifier.h>
1562
1563 extern rwlock_t dev_base_lock; /* Device list lock */
1564
1565
1566 #define for_each_netdev(net, d) \
1567 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1568 #define for_each_netdev_reverse(net, d) \
1569 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1570 #define for_each_netdev_rcu(net, d) \
1571 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1572 #define for_each_netdev_safe(net, d, n) \
1573 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1574 #define for_each_netdev_continue(net, d) \
1575 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1576 #define for_each_netdev_continue_rcu(net, d) \
1577 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1578 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
1579
1580 static inline struct net_device *next_net_device(struct net_device *dev)
1581 {
1582 struct list_head *lh;
1583 struct net *net;
1584
1585 net = dev_net(dev);
1586 lh = dev->dev_list.next;
1587 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1588 }
1589
1590 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1591 {
1592 struct list_head *lh;
1593 struct net *net;
1594
1595 net = dev_net(dev);
1596 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1597 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1598 }
1599
1600 static inline struct net_device *first_net_device(struct net *net)
1601 {
1602 return list_empty(&net->dev_base_head) ? NULL :
1603 net_device_entry(net->dev_base_head.next);
1604 }
1605
1606 static inline struct net_device *first_net_device_rcu(struct net *net)
1607 {
1608 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1609
1610 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1611 }
1612
1613 extern int netdev_boot_setup_check(struct net_device *dev);
1614 extern unsigned long netdev_boot_base(const char *prefix, int unit);
1615 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1616 const char *hwaddr);
1617 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1618 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1619 extern void dev_add_pack(struct packet_type *pt);
1620 extern void dev_remove_pack(struct packet_type *pt);
1621 extern void __dev_remove_pack(struct packet_type *pt);
1622
1623 extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1624 unsigned short mask);
1625 extern struct net_device *dev_get_by_name(struct net *net, const char *name);
1626 extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1627 extern struct net_device *__dev_get_by_name(struct net *net, const char *name);
1628 extern int dev_alloc_name(struct net_device *dev, const char *name);
1629 extern int dev_open(struct net_device *dev);
1630 extern int dev_close(struct net_device *dev);
1631 extern void dev_disable_lro(struct net_device *dev);
1632 extern int dev_queue_xmit(struct sk_buff *skb);
1633 extern int register_netdevice(struct net_device *dev);
1634 extern void unregister_netdevice_queue(struct net_device *dev,
1635 struct list_head *head);
1636 extern void unregister_netdevice_many(struct list_head *head);
1637 static inline void unregister_netdevice(struct net_device *dev)
1638 {
1639 unregister_netdevice_queue(dev, NULL);
1640 }
1641
1642 extern int netdev_refcnt_read(const struct net_device *dev);
1643 extern void free_netdev(struct net_device *dev);
1644 extern void synchronize_net(void);
1645 extern int register_netdevice_notifier(struct notifier_block *nb);
1646 extern int unregister_netdevice_notifier(struct notifier_block *nb);
1647 extern int init_dummy_netdev(struct net_device *dev);
1648 extern void netdev_resync_ops(struct net_device *dev);
1649
1650 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1651 extern struct net_device *dev_get_by_index(struct net *net, int ifindex);
1652 extern struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1653 extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1654 extern int dev_restart(struct net_device *dev);
1655 #ifdef CONFIG_NETPOLL_TRAP
1656 extern int netpoll_trap(void);
1657 #endif
1658 extern int skb_gro_receive(struct sk_buff **head,
1659 struct sk_buff *skb);
1660 extern void skb_gro_reset_offset(struct sk_buff *skb);
1661
1662 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1663 {
1664 return NAPI_GRO_CB(skb)->data_offset;
1665 }
1666
1667 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1668 {
1669 return skb->len - NAPI_GRO_CB(skb)->data_offset;
1670 }
1671
1672 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1673 {
1674 NAPI_GRO_CB(skb)->data_offset += len;
1675 }
1676
1677 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1678 unsigned int offset)
1679 {
1680 return NAPI_GRO_CB(skb)->frag0 + offset;
1681 }
1682
1683 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1684 {
1685 return NAPI_GRO_CB(skb)->frag0_len < hlen;
1686 }
1687
1688 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1689 unsigned int offset)
1690 {
1691 NAPI_GRO_CB(skb)->frag0 = NULL;
1692 NAPI_GRO_CB(skb)->frag0_len = 0;
1693 return pskb_may_pull(skb, hlen) ? skb->data + offset : NULL;
1694 }
1695
1696 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1697 {
1698 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1699 }
1700
1701 static inline void *skb_gro_network_header(struct sk_buff *skb)
1702 {
1703 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1704 skb_network_offset(skb);
1705 }
1706
1707 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1708 unsigned short type,
1709 const void *daddr, const void *saddr,
1710 unsigned len)
1711 {
1712 if (!dev->header_ops || !dev->header_ops->create)
1713 return 0;
1714
1715 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1716 }
1717
1718 static inline int dev_parse_header(const struct sk_buff *skb,
1719 unsigned char *haddr)
1720 {
1721 const struct net_device *dev = skb->dev;
1722
1723 if (!dev->header_ops || !dev->header_ops->parse)
1724 return 0;
1725 return dev->header_ops->parse(skb, haddr);
1726 }
1727
1728 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1729 extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1730 static inline int unregister_gifconf(unsigned int family)
1731 {
1732 return register_gifconf(family, NULL);
1733 }
1734
1735 /*
1736 * Incoming packets are placed on per-cpu queues
1737 */
1738 struct softnet_data {
1739 struct Qdisc *output_queue;
1740 struct Qdisc **output_queue_tailp;
1741 struct list_head poll_list;
1742 struct sk_buff *completion_queue;
1743 struct sk_buff_head process_queue;
1744
1745 /* stats */
1746 unsigned int processed;
1747 unsigned int time_squeeze;
1748 unsigned int cpu_collision;
1749 unsigned int received_rps;
1750
1751 #ifdef CONFIG_RPS
1752 struct softnet_data *rps_ipi_list;
1753
1754 /* Elements below can be accessed between CPUs for RPS */
1755 struct call_single_data csd ____cacheline_aligned_in_smp;
1756 struct softnet_data *rps_ipi_next;
1757 unsigned int cpu;
1758 unsigned int input_queue_head;
1759 unsigned int input_queue_tail;
1760 #endif
1761 unsigned dropped;
1762 struct sk_buff_head input_pkt_queue;
1763 struct napi_struct backlog;
1764 };
1765
1766 static inline void input_queue_head_incr(struct softnet_data *sd)
1767 {
1768 #ifdef CONFIG_RPS
1769 sd->input_queue_head++;
1770 #endif
1771 }
1772
1773 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1774 unsigned int *qtail)
1775 {
1776 #ifdef CONFIG_RPS
1777 *qtail = ++sd->input_queue_tail;
1778 #endif
1779 }
1780
1781 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1782
1783 #define HAVE_NETIF_QUEUE
1784
1785 extern void __netif_schedule(struct Qdisc *q);
1786
1787 static inline void netif_schedule_queue(struct netdev_queue *txq)
1788 {
1789 if (!test_bit(__QUEUE_STATE_XOFF, &txq->state))
1790 __netif_schedule(txq->qdisc);
1791 }
1792
1793 static inline void netif_tx_schedule_all(struct net_device *dev)
1794 {
1795 unsigned int i;
1796
1797 for (i = 0; i < dev->num_tx_queues; i++)
1798 netif_schedule_queue(netdev_get_tx_queue(dev, i));
1799 }
1800
1801 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1802 {
1803 clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1804 }
1805
1806 /**
1807 * netif_start_queue - allow transmit
1808 * @dev: network device
1809 *
1810 * Allow upper layers to call the device hard_start_xmit routine.
1811 */
1812 static inline void netif_start_queue(struct net_device *dev)
1813 {
1814 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1815 }
1816
1817 static inline void netif_tx_start_all_queues(struct net_device *dev)
1818 {
1819 unsigned int i;
1820
1821 for (i = 0; i < dev->num_tx_queues; i++) {
1822 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1823 netif_tx_start_queue(txq);
1824 }
1825 }
1826
1827 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1828 {
1829 #ifdef CONFIG_NETPOLL_TRAP
1830 if (netpoll_trap()) {
1831 netif_tx_start_queue(dev_queue);
1832 return;
1833 }
1834 #endif
1835 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state))
1836 __netif_schedule(dev_queue->qdisc);
1837 }
1838
1839 /**
1840 * netif_wake_queue - restart transmit
1841 * @dev: network device
1842 *
1843 * Allow upper layers to call the device hard_start_xmit routine.
1844 * Used for flow control when transmit resources are available.
1845 */
1846 static inline void netif_wake_queue(struct net_device *dev)
1847 {
1848 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1849 }
1850
1851 static inline void netif_tx_wake_all_queues(struct net_device *dev)
1852 {
1853 unsigned int i;
1854
1855 for (i = 0; i < dev->num_tx_queues; i++) {
1856 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1857 netif_tx_wake_queue(txq);
1858 }
1859 }
1860
1861 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1862 {
1863 if (WARN_ON(!dev_queue)) {
1864 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
1865 return;
1866 }
1867 set_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1868 }
1869
1870 /**
1871 * netif_stop_queue - stop transmitted packets
1872 * @dev: network device
1873 *
1874 * Stop upper layers calling the device hard_start_xmit routine.
1875 * Used for flow control when transmit resources are unavailable.
1876 */
1877 static inline void netif_stop_queue(struct net_device *dev)
1878 {
1879 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1880 }
1881
1882 static inline void netif_tx_stop_all_queues(struct net_device *dev)
1883 {
1884 unsigned int i;
1885
1886 for (i = 0; i < dev->num_tx_queues; i++) {
1887 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1888 netif_tx_stop_queue(txq);
1889 }
1890 }
1891
1892 static inline int netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1893 {
1894 return test_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1895 }
1896
1897 /**
1898 * netif_queue_stopped - test if transmit queue is flowblocked
1899 * @dev: network device
1900 *
1901 * Test if transmit queue on device is currently unable to send.
1902 */
1903 static inline int netif_queue_stopped(const struct net_device *dev)
1904 {
1905 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1906 }
1907
1908 static inline int netif_tx_queue_frozen_or_stopped(const struct netdev_queue *dev_queue)
1909 {
1910 return dev_queue->state & QUEUE_STATE_XOFF_OR_FROZEN;
1911 }
1912
1913 /**
1914 * netif_running - test if up
1915 * @dev: network device
1916 *
1917 * Test if the device has been brought up.
1918 */
1919 static inline int netif_running(const struct net_device *dev)
1920 {
1921 return test_bit(__LINK_STATE_START, &dev->state);
1922 }
1923
1924 /*
1925 * Routines to manage the subqueues on a device. We only need start
1926 * stop, and a check if it's stopped. All other device management is
1927 * done at the overall netdevice level.
1928 * Also test the device if we're multiqueue.
1929 */
1930
1931 /**
1932 * netif_start_subqueue - allow sending packets on subqueue
1933 * @dev: network device
1934 * @queue_index: sub queue index
1935 *
1936 * Start individual transmit queue of a device with multiple transmit queues.
1937 */
1938 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
1939 {
1940 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1941
1942 netif_tx_start_queue(txq);
1943 }
1944
1945 /**
1946 * netif_stop_subqueue - stop sending packets on subqueue
1947 * @dev: network device
1948 * @queue_index: sub queue index
1949 *
1950 * Stop individual transmit queue of a device with multiple transmit queues.
1951 */
1952 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
1953 {
1954 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1955 #ifdef CONFIG_NETPOLL_TRAP
1956 if (netpoll_trap())
1957 return;
1958 #endif
1959 netif_tx_stop_queue(txq);
1960 }
1961
1962 /**
1963 * netif_subqueue_stopped - test status of subqueue
1964 * @dev: network device
1965 * @queue_index: sub queue index
1966 *
1967 * Check individual transmit queue of a device with multiple transmit queues.
1968 */
1969 static inline int __netif_subqueue_stopped(const struct net_device *dev,
1970 u16 queue_index)
1971 {
1972 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1973
1974 return netif_tx_queue_stopped(txq);
1975 }
1976
1977 static inline int netif_subqueue_stopped(const struct net_device *dev,
1978 struct sk_buff *skb)
1979 {
1980 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
1981 }
1982
1983 /**
1984 * netif_wake_subqueue - allow sending packets on subqueue
1985 * @dev: network device
1986 * @queue_index: sub queue index
1987 *
1988 * Resume individual transmit queue of a device with multiple transmit queues.
1989 */
1990 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
1991 {
1992 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1993 #ifdef CONFIG_NETPOLL_TRAP
1994 if (netpoll_trap())
1995 return;
1996 #endif
1997 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &txq->state))
1998 __netif_schedule(txq->qdisc);
1999 }
2000
2001 /*
2002 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2003 * as a distribution range limit for the returned value.
2004 */
2005 static inline u16 skb_tx_hash(const struct net_device *dev,
2006 const struct sk_buff *skb)
2007 {
2008 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2009 }
2010
2011 /**
2012 * netif_is_multiqueue - test if device has multiple transmit queues
2013 * @dev: network device
2014 *
2015 * Check if device has multiple transmit queues
2016 */
2017 static inline int netif_is_multiqueue(const struct net_device *dev)
2018 {
2019 return dev->num_tx_queues > 1;
2020 }
2021
2022 extern int netif_set_real_num_tx_queues(struct net_device *dev,
2023 unsigned int txq);
2024
2025 #ifdef CONFIG_RPS
2026 extern int netif_set_real_num_rx_queues(struct net_device *dev,
2027 unsigned int rxq);
2028 #else
2029 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2030 unsigned int rxq)
2031 {
2032 return 0;
2033 }
2034 #endif
2035
2036 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2037 const struct net_device *from_dev)
2038 {
2039 netif_set_real_num_tx_queues(to_dev, from_dev->real_num_tx_queues);
2040 #ifdef CONFIG_RPS
2041 return netif_set_real_num_rx_queues(to_dev,
2042 from_dev->real_num_rx_queues);
2043 #else
2044 return 0;
2045 #endif
2046 }
2047
2048 /* Use this variant when it is known for sure that it
2049 * is executing from hardware interrupt context or with hardware interrupts
2050 * disabled.
2051 */
2052 extern void dev_kfree_skb_irq(struct sk_buff *skb);
2053
2054 /* Use this variant in places where it could be invoked
2055 * from either hardware interrupt or other context, with hardware interrupts
2056 * either disabled or enabled.
2057 */
2058 extern void dev_kfree_skb_any(struct sk_buff *skb);
2059
2060 #define HAVE_NETIF_RX 1
2061 extern int netif_rx(struct sk_buff *skb);
2062 extern int netif_rx_ni(struct sk_buff *skb);
2063 #define HAVE_NETIF_RECEIVE_SKB 1
2064 extern int netif_receive_skb(struct sk_buff *skb);
2065 extern gro_result_t dev_gro_receive(struct napi_struct *napi,
2066 struct sk_buff *skb);
2067 extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb);
2068 extern gro_result_t napi_gro_receive(struct napi_struct *napi,
2069 struct sk_buff *skb);
2070 extern void napi_gro_flush(struct napi_struct *napi);
2071 extern struct sk_buff * napi_get_frags(struct napi_struct *napi);
2072 extern gro_result_t napi_frags_finish(struct napi_struct *napi,
2073 struct sk_buff *skb,
2074 gro_result_t ret);
2075 extern struct sk_buff * napi_frags_skb(struct napi_struct *napi);
2076 extern gro_result_t napi_gro_frags(struct napi_struct *napi);
2077
2078 static inline void napi_free_frags(struct napi_struct *napi)
2079 {
2080 kfree_skb(napi->skb);
2081 napi->skb = NULL;
2082 }
2083
2084 extern int netdev_rx_handler_register(struct net_device *dev,
2085 rx_handler_func_t *rx_handler,
2086 void *rx_handler_data);
2087 extern void netdev_rx_handler_unregister(struct net_device *dev);
2088
2089 extern int dev_valid_name(const char *name);
2090 extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2091 extern int dev_ethtool(struct net *net, struct ifreq *);
2092 extern unsigned dev_get_flags(const struct net_device *);
2093 extern int __dev_change_flags(struct net_device *, unsigned int flags);
2094 extern int dev_change_flags(struct net_device *, unsigned);
2095 extern void __dev_notify_flags(struct net_device *, unsigned int old_flags);
2096 extern int dev_change_name(struct net_device *, const char *);
2097 extern int dev_set_alias(struct net_device *, const char *, size_t);
2098 extern int dev_change_net_namespace(struct net_device *,
2099 struct net *, const char *);
2100 extern int dev_set_mtu(struct net_device *, int);
2101 extern void dev_set_group(struct net_device *, int);
2102 extern int dev_set_mac_address(struct net_device *,
2103 struct sockaddr *);
2104 extern int dev_hard_start_xmit(struct sk_buff *skb,
2105 struct net_device *dev,
2106 struct netdev_queue *txq);
2107 extern int dev_forward_skb(struct net_device *dev,
2108 struct sk_buff *skb);
2109
2110 extern int netdev_budget;
2111
2112 /* Called by rtnetlink.c:rtnl_unlock() */
2113 extern void netdev_run_todo(void);
2114
2115 /**
2116 * dev_put - release reference to device
2117 * @dev: network device
2118 *
2119 * Release reference to device to allow it to be freed.
2120 */
2121 static inline void dev_put(struct net_device *dev)
2122 {
2123 irqsafe_cpu_dec(*dev->pcpu_refcnt);
2124 }
2125
2126 /**
2127 * dev_hold - get reference to device
2128 * @dev: network device
2129 *
2130 * Hold reference to device to keep it from being freed.
2131 */
2132 static inline void dev_hold(struct net_device *dev)
2133 {
2134 irqsafe_cpu_inc(*dev->pcpu_refcnt);
2135 }
2136
2137 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2138 * and _off may be called from IRQ context, but it is caller
2139 * who is responsible for serialization of these calls.
2140 *
2141 * The name carrier is inappropriate, these functions should really be
2142 * called netif_lowerlayer_*() because they represent the state of any
2143 * kind of lower layer not just hardware media.
2144 */
2145
2146 extern void linkwatch_fire_event(struct net_device *dev);
2147 extern void linkwatch_forget_dev(struct net_device *dev);
2148
2149 /**
2150 * netif_carrier_ok - test if carrier present
2151 * @dev: network device
2152 *
2153 * Check if carrier is present on device
2154 */
2155 static inline int netif_carrier_ok(const struct net_device *dev)
2156 {
2157 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2158 }
2159
2160 extern unsigned long dev_trans_start(struct net_device *dev);
2161
2162 extern void __netdev_watchdog_up(struct net_device *dev);
2163
2164 extern void netif_carrier_on(struct net_device *dev);
2165
2166 extern void netif_carrier_off(struct net_device *dev);
2167
2168 extern void netif_notify_peers(struct net_device *dev);
2169
2170 /**
2171 * netif_dormant_on - mark device as dormant.
2172 * @dev: network device
2173 *
2174 * Mark device as dormant (as per RFC2863).
2175 *
2176 * The dormant state indicates that the relevant interface is not
2177 * actually in a condition to pass packets (i.e., it is not 'up') but is
2178 * in a "pending" state, waiting for some external event. For "on-
2179 * demand" interfaces, this new state identifies the situation where the
2180 * interface is waiting for events to place it in the up state.
2181 *
2182 */
2183 static inline void netif_dormant_on(struct net_device *dev)
2184 {
2185 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2186 linkwatch_fire_event(dev);
2187 }
2188
2189 /**
2190 * netif_dormant_off - set device as not dormant.
2191 * @dev: network device
2192 *
2193 * Device is not in dormant state.
2194 */
2195 static inline void netif_dormant_off(struct net_device *dev)
2196 {
2197 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2198 linkwatch_fire_event(dev);
2199 }
2200
2201 /**
2202 * netif_dormant - test if carrier present
2203 * @dev: network device
2204 *
2205 * Check if carrier is present on device
2206 */
2207 static inline int netif_dormant(const struct net_device *dev)
2208 {
2209 return test_bit(__LINK_STATE_DORMANT, &dev->state);
2210 }
2211
2212
2213 /**
2214 * netif_oper_up - test if device is operational
2215 * @dev: network device
2216 *
2217 * Check if carrier is operational
2218 */
2219 static inline int netif_oper_up(const struct net_device *dev)
2220 {
2221 return (dev->operstate == IF_OPER_UP ||
2222 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2223 }
2224
2225 /**
2226 * netif_device_present - is device available or removed
2227 * @dev: network device
2228 *
2229 * Check if device has not been removed from system.
2230 */
2231 static inline int netif_device_present(struct net_device *dev)
2232 {
2233 return test_bit(__LINK_STATE_PRESENT, &dev->state);
2234 }
2235
2236 extern void netif_device_detach(struct net_device *dev);
2237
2238 extern void netif_device_attach(struct net_device *dev);
2239
2240 /*
2241 * Network interface message level settings
2242 */
2243 #define HAVE_NETIF_MSG 1
2244
2245 enum {
2246 NETIF_MSG_DRV = 0x0001,
2247 NETIF_MSG_PROBE = 0x0002,
2248 NETIF_MSG_LINK = 0x0004,
2249 NETIF_MSG_TIMER = 0x0008,
2250 NETIF_MSG_IFDOWN = 0x0010,
2251 NETIF_MSG_IFUP = 0x0020,
2252 NETIF_MSG_RX_ERR = 0x0040,
2253 NETIF_MSG_TX_ERR = 0x0080,
2254 NETIF_MSG_TX_QUEUED = 0x0100,
2255 NETIF_MSG_INTR = 0x0200,
2256 NETIF_MSG_TX_DONE = 0x0400,
2257 NETIF_MSG_RX_STATUS = 0x0800,
2258 NETIF_MSG_PKTDATA = 0x1000,
2259 NETIF_MSG_HW = 0x2000,
2260 NETIF_MSG_WOL = 0x4000,
2261 };
2262
2263 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
2264 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
2265 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
2266 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
2267 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
2268 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
2269 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
2270 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
2271 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2272 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
2273 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
2274 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
2275 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
2276 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
2277 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
2278
2279 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2280 {
2281 /* use default */
2282 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2283 return default_msg_enable_bits;
2284 if (debug_value == 0) /* no output */
2285 return 0;
2286 /* set low N bits */
2287 return (1 << debug_value) - 1;
2288 }
2289
2290 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2291 {
2292 spin_lock(&txq->_xmit_lock);
2293 txq->xmit_lock_owner = cpu;
2294 }
2295
2296 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2297 {
2298 spin_lock_bh(&txq->_xmit_lock);
2299 txq->xmit_lock_owner = smp_processor_id();
2300 }
2301
2302 static inline int __netif_tx_trylock(struct netdev_queue *txq)
2303 {
2304 int ok = spin_trylock(&txq->_xmit_lock);
2305 if (likely(ok))
2306 txq->xmit_lock_owner = smp_processor_id();
2307 return ok;
2308 }
2309
2310 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2311 {
2312 txq->xmit_lock_owner = -1;
2313 spin_unlock(&txq->_xmit_lock);
2314 }
2315
2316 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2317 {
2318 txq->xmit_lock_owner = -1;
2319 spin_unlock_bh(&txq->_xmit_lock);
2320 }
2321
2322 static inline void txq_trans_update(struct netdev_queue *txq)
2323 {
2324 if (txq->xmit_lock_owner != -1)
2325 txq->trans_start = jiffies;
2326 }
2327
2328 /**
2329 * netif_tx_lock - grab network device transmit lock
2330 * @dev: network device
2331 *
2332 * Get network device transmit lock
2333 */
2334 static inline void netif_tx_lock(struct net_device *dev)
2335 {
2336 unsigned int i;
2337 int cpu;
2338
2339 spin_lock(&dev->tx_global_lock);
2340 cpu = smp_processor_id();
2341 for (i = 0; i < dev->num_tx_queues; i++) {
2342 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2343
2344 /* We are the only thread of execution doing a
2345 * freeze, but we have to grab the _xmit_lock in
2346 * order to synchronize with threads which are in
2347 * the ->hard_start_xmit() handler and already
2348 * checked the frozen bit.
2349 */
2350 __netif_tx_lock(txq, cpu);
2351 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2352 __netif_tx_unlock(txq);
2353 }
2354 }
2355
2356 static inline void netif_tx_lock_bh(struct net_device *dev)
2357 {
2358 local_bh_disable();
2359 netif_tx_lock(dev);
2360 }
2361
2362 static inline void netif_tx_unlock(struct net_device *dev)
2363 {
2364 unsigned int i;
2365
2366 for (i = 0; i < dev->num_tx_queues; i++) {
2367 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2368
2369 /* No need to grab the _xmit_lock here. If the
2370 * queue is not stopped for another reason, we
2371 * force a schedule.
2372 */
2373 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2374 netif_schedule_queue(txq);
2375 }
2376 spin_unlock(&dev->tx_global_lock);
2377 }
2378
2379 static inline void netif_tx_unlock_bh(struct net_device *dev)
2380 {
2381 netif_tx_unlock(dev);
2382 local_bh_enable();
2383 }
2384
2385 #define HARD_TX_LOCK(dev, txq, cpu) { \
2386 if ((dev->features & NETIF_F_LLTX) == 0) { \
2387 __netif_tx_lock(txq, cpu); \
2388 } \
2389 }
2390
2391 #define HARD_TX_UNLOCK(dev, txq) { \
2392 if ((dev->features & NETIF_F_LLTX) == 0) { \
2393 __netif_tx_unlock(txq); \
2394 } \
2395 }
2396
2397 static inline void netif_tx_disable(struct net_device *dev)
2398 {
2399 unsigned int i;
2400 int cpu;
2401
2402 local_bh_disable();
2403 cpu = smp_processor_id();
2404 for (i = 0; i < dev->num_tx_queues; i++) {
2405 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2406
2407 __netif_tx_lock(txq, cpu);
2408 netif_tx_stop_queue(txq);
2409 __netif_tx_unlock(txq);
2410 }
2411 local_bh_enable();
2412 }
2413
2414 static inline void netif_addr_lock(struct net_device *dev)
2415 {
2416 spin_lock(&dev->addr_list_lock);
2417 }
2418
2419 static inline void netif_addr_lock_bh(struct net_device *dev)
2420 {
2421 spin_lock_bh(&dev->addr_list_lock);
2422 }
2423
2424 static inline void netif_addr_unlock(struct net_device *dev)
2425 {
2426 spin_unlock(&dev->addr_list_lock);
2427 }
2428
2429 static inline void netif_addr_unlock_bh(struct net_device *dev)
2430 {
2431 spin_unlock_bh(&dev->addr_list_lock);
2432 }
2433
2434 /*
2435 * dev_addrs walker. Should be used only for read access. Call with
2436 * rcu_read_lock held.
2437 */
2438 #define for_each_dev_addr(dev, ha) \
2439 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2440
2441 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2442
2443 extern void ether_setup(struct net_device *dev);
2444
2445 /* Support for loadable net-drivers */
2446 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2447 void (*setup)(struct net_device *),
2448 unsigned int txqs, unsigned int rxqs);
2449 #define alloc_netdev(sizeof_priv, name, setup) \
2450 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2451
2452 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2453 alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2454
2455 extern int register_netdev(struct net_device *dev);
2456 extern void unregister_netdev(struct net_device *dev);
2457
2458 /* General hardware address lists handling functions */
2459 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2460 struct netdev_hw_addr_list *from_list,
2461 int addr_len, unsigned char addr_type);
2462 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2463 struct netdev_hw_addr_list *from_list,
2464 int addr_len, unsigned char addr_type);
2465 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2466 struct netdev_hw_addr_list *from_list,
2467 int addr_len);
2468 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2469 struct netdev_hw_addr_list *from_list,
2470 int addr_len);
2471 extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2472 extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2473
2474 /* Functions used for device addresses handling */
2475 extern int dev_addr_add(struct net_device *dev, unsigned char *addr,
2476 unsigned char addr_type);
2477 extern int dev_addr_del(struct net_device *dev, unsigned char *addr,
2478 unsigned char addr_type);
2479 extern int dev_addr_add_multiple(struct net_device *to_dev,
2480 struct net_device *from_dev,
2481 unsigned char addr_type);
2482 extern int dev_addr_del_multiple(struct net_device *to_dev,
2483 struct net_device *from_dev,
2484 unsigned char addr_type);
2485 extern void dev_addr_flush(struct net_device *dev);
2486 extern int dev_addr_init(struct net_device *dev);
2487
2488 /* Functions used for unicast addresses handling */
2489 extern int dev_uc_add(struct net_device *dev, unsigned char *addr);
2490 extern int dev_uc_del(struct net_device *dev, unsigned char *addr);
2491 extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2492 extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2493 extern void dev_uc_flush(struct net_device *dev);
2494 extern void dev_uc_init(struct net_device *dev);
2495
2496 /* Functions used for multicast addresses handling */
2497 extern int dev_mc_add(struct net_device *dev, unsigned char *addr);
2498 extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr);
2499 extern int dev_mc_del(struct net_device *dev, unsigned char *addr);
2500 extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr);
2501 extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2502 extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2503 extern void dev_mc_flush(struct net_device *dev);
2504 extern void dev_mc_init(struct net_device *dev);
2505
2506 /* Functions used for secondary unicast and multicast support */
2507 extern void dev_set_rx_mode(struct net_device *dev);
2508 extern void __dev_set_rx_mode(struct net_device *dev);
2509 extern int dev_set_promiscuity(struct net_device *dev, int inc);
2510 extern int dev_set_allmulti(struct net_device *dev, int inc);
2511 extern void netdev_state_change(struct net_device *dev);
2512 extern int netdev_bonding_change(struct net_device *dev,
2513 unsigned long event);
2514 extern void netdev_features_change(struct net_device *dev);
2515 /* Load a device via the kmod */
2516 extern void dev_load(struct net *net, const char *name);
2517 extern void dev_mcast_init(void);
2518 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2519 struct rtnl_link_stats64 *storage);
2520
2521 extern int netdev_max_backlog;
2522 extern int netdev_tstamp_prequeue;
2523 extern int weight_p;
2524 extern int bpf_jit_enable;
2525 extern int netdev_set_master(struct net_device *dev, struct net_device *master);
2526 extern int netdev_set_bond_master(struct net_device *dev,
2527 struct net_device *master);
2528 extern int skb_checksum_help(struct sk_buff *skb);
2529 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features);
2530 #ifdef CONFIG_BUG
2531 extern void netdev_rx_csum_fault(struct net_device *dev);
2532 #else
2533 static inline void netdev_rx_csum_fault(struct net_device *dev)
2534 {
2535 }
2536 #endif
2537 /* rx skb timestamps */
2538 extern void net_enable_timestamp(void);
2539 extern void net_disable_timestamp(void);
2540
2541 #ifdef CONFIG_PROC_FS
2542 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
2543 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2544 extern void dev_seq_stop(struct seq_file *seq, void *v);
2545 #endif
2546
2547 extern int netdev_class_create_file(struct class_attribute *class_attr);
2548 extern void netdev_class_remove_file(struct class_attribute *class_attr);
2549
2550 extern struct kobj_ns_type_operations net_ns_type_operations;
2551
2552 extern const char *netdev_drivername(const struct net_device *dev);
2553
2554 extern void linkwatch_run_queue(void);
2555
2556 static inline u32 netdev_get_wanted_features(struct net_device *dev)
2557 {
2558 return (dev->features & ~dev->hw_features) | dev->wanted_features;
2559 }
2560 u32 netdev_increment_features(u32 all, u32 one, u32 mask);
2561 u32 netdev_fix_features(struct net_device *dev, u32 features);
2562 int __netdev_update_features(struct net_device *dev);
2563 void netdev_update_features(struct net_device *dev);
2564 void netdev_change_features(struct net_device *dev);
2565
2566 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2567 struct net_device *dev);
2568
2569 u32 netif_skb_features(struct sk_buff *skb);
2570
2571 static inline int net_gso_ok(u32 features, int gso_type)
2572 {
2573 int feature = gso_type << NETIF_F_GSO_SHIFT;
2574 return (features & feature) == feature;
2575 }
2576
2577 static inline int skb_gso_ok(struct sk_buff *skb, u32 features)
2578 {
2579 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2580 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2581 }
2582
2583 static inline int netif_needs_gso(struct sk_buff *skb, int features)
2584 {
2585 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2586 unlikely(skb->ip_summed != CHECKSUM_PARTIAL));
2587 }
2588
2589 static inline void netif_set_gso_max_size(struct net_device *dev,
2590 unsigned int size)
2591 {
2592 dev->gso_max_size = size;
2593 }
2594
2595 static inline int netif_is_bond_slave(struct net_device *dev)
2596 {
2597 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2598 }
2599
2600 extern struct pernet_operations __net_initdata loopback_net_ops;
2601
2602 int dev_ethtool_get_settings(struct net_device *dev,
2603 struct ethtool_cmd *cmd);
2604
2605 static inline u32 dev_ethtool_get_rx_csum(struct net_device *dev)
2606 {
2607 if (dev->features & NETIF_F_RXCSUM)
2608 return 1;
2609 if (!dev->ethtool_ops || !dev->ethtool_ops->get_rx_csum)
2610 return 0;
2611 return dev->ethtool_ops->get_rx_csum(dev);
2612 }
2613
2614 static inline u32 dev_ethtool_get_flags(struct net_device *dev)
2615 {
2616 if (!dev->ethtool_ops || !dev->ethtool_ops->get_flags)
2617 return 0;
2618 return dev->ethtool_ops->get_flags(dev);
2619 }
2620
2621 /* Logging, debugging and troubleshooting/diagnostic helpers. */
2622
2623 /* netdev_printk helpers, similar to dev_printk */
2624
2625 static inline const char *netdev_name(const struct net_device *dev)
2626 {
2627 if (dev->reg_state != NETREG_REGISTERED)
2628 return "(unregistered net_device)";
2629 return dev->name;
2630 }
2631
2632 extern int netdev_printk(const char *level, const struct net_device *dev,
2633 const char *format, ...)
2634 __attribute__ ((format (printf, 3, 4)));
2635 extern int netdev_emerg(const struct net_device *dev, const char *format, ...)
2636 __attribute__ ((format (printf, 2, 3)));
2637 extern int netdev_alert(const struct net_device *dev, const char *format, ...)
2638 __attribute__ ((format (printf, 2, 3)));
2639 extern int netdev_crit(const struct net_device *dev, const char *format, ...)
2640 __attribute__ ((format (printf, 2, 3)));
2641 extern int netdev_err(const struct net_device *dev, const char *format, ...)
2642 __attribute__ ((format (printf, 2, 3)));
2643 extern int netdev_warn(const struct net_device *dev, const char *format, ...)
2644 __attribute__ ((format (printf, 2, 3)));
2645 extern int netdev_notice(const struct net_device *dev, const char *format, ...)
2646 __attribute__ ((format (printf, 2, 3)));
2647 extern int netdev_info(const struct net_device *dev, const char *format, ...)
2648 __attribute__ ((format (printf, 2, 3)));
2649
2650 #define MODULE_ALIAS_NETDEV(device) \
2651 MODULE_ALIAS("netdev-" device)
2652
2653 #if defined(DEBUG)
2654 #define netdev_dbg(__dev, format, args...) \
2655 netdev_printk(KERN_DEBUG, __dev, format, ##args)
2656 #elif defined(CONFIG_DYNAMIC_DEBUG)
2657 #define netdev_dbg(__dev, format, args...) \
2658 do { \
2659 dynamic_dev_dbg((__dev)->dev.parent, "%s: " format, \
2660 netdev_name(__dev), ##args); \
2661 } while (0)
2662 #else
2663 #define netdev_dbg(__dev, format, args...) \
2664 ({ \
2665 if (0) \
2666 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2667 0; \
2668 })
2669 #endif
2670
2671 #if defined(VERBOSE_DEBUG)
2672 #define netdev_vdbg netdev_dbg
2673 #else
2674
2675 #define netdev_vdbg(dev, format, args...) \
2676 ({ \
2677 if (0) \
2678 netdev_printk(KERN_DEBUG, dev, format, ##args); \
2679 0; \
2680 })
2681 #endif
2682
2683 /*
2684 * netdev_WARN() acts like dev_printk(), but with the key difference
2685 * of using a WARN/WARN_ON to get the message out, including the
2686 * file/line information and a backtrace.
2687 */
2688 #define netdev_WARN(dev, format, args...) \
2689 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2690
2691 /* netif printk helpers, similar to netdev_printk */
2692
2693 #define netif_printk(priv, type, level, dev, fmt, args...) \
2694 do { \
2695 if (netif_msg_##type(priv)) \
2696 netdev_printk(level, (dev), fmt, ##args); \
2697 } while (0)
2698
2699 #define netif_level(level, priv, type, dev, fmt, args...) \
2700 do { \
2701 if (netif_msg_##type(priv)) \
2702 netdev_##level(dev, fmt, ##args); \
2703 } while (0)
2704
2705 #define netif_emerg(priv, type, dev, fmt, args...) \
2706 netif_level(emerg, priv, type, dev, fmt, ##args)
2707 #define netif_alert(priv, type, dev, fmt, args...) \
2708 netif_level(alert, priv, type, dev, fmt, ##args)
2709 #define netif_crit(priv, type, dev, fmt, args...) \
2710 netif_level(crit, priv, type, dev, fmt, ##args)
2711 #define netif_err(priv, type, dev, fmt, args...) \
2712 netif_level(err, priv, type, dev, fmt, ##args)
2713 #define netif_warn(priv, type, dev, fmt, args...) \
2714 netif_level(warn, priv, type, dev, fmt, ##args)
2715 #define netif_notice(priv, type, dev, fmt, args...) \
2716 netif_level(notice, priv, type, dev, fmt, ##args)
2717 #define netif_info(priv, type, dev, fmt, args...) \
2718 netif_level(info, priv, type, dev, fmt, ##args)
2719
2720 #if defined(DEBUG)
2721 #define netif_dbg(priv, type, dev, format, args...) \
2722 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2723 #elif defined(CONFIG_DYNAMIC_DEBUG)
2724 #define netif_dbg(priv, type, netdev, format, args...) \
2725 do { \
2726 if (netif_msg_##type(priv)) \
2727 dynamic_dev_dbg((netdev)->dev.parent, \
2728 "%s: " format, \
2729 netdev_name(netdev), ##args); \
2730 } while (0)
2731 #else
2732 #define netif_dbg(priv, type, dev, format, args...) \
2733 ({ \
2734 if (0) \
2735 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2736 0; \
2737 })
2738 #endif
2739
2740 #if defined(VERBOSE_DEBUG)
2741 #define netif_vdbg netif_dbg
2742 #else
2743 #define netif_vdbg(priv, type, dev, format, args...) \
2744 ({ \
2745 if (0) \
2746 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2747 0; \
2748 })
2749 #endif
2750
2751 #endif /* __KERNEL__ */
2752
2753 #endif /* _LINUX_NETDEVICE_H */