]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/netdevice.h
xps: Add xps_queue_release function
[mirror_ubuntu-artful-kernel.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/if.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_link.h>
32
33 #ifdef __KERNEL__
34 #include <linux/pm_qos.h>
35 #include <linux/timer.h>
36 #include <linux/delay.h>
37 #include <linux/atomic.h>
38 #include <asm/cache.h>
39 #include <asm/byteorder.h>
40
41 #include <linux/device.h>
42 #include <linux/percpu.h>
43 #include <linux/rculist.h>
44 #include <linux/dmaengine.h>
45 #include <linux/workqueue.h>
46
47 #include <linux/ethtool.h>
48 #include <net/net_namespace.h>
49 #include <net/dsa.h>
50 #ifdef CONFIG_DCB
51 #include <net/dcbnl.h>
52 #endif
53 #include <net/netprio_cgroup.h>
54
55 #include <linux/netdev_features.h>
56
57 struct vlan_group;
58 struct netpoll_info;
59 struct phy_device;
60 /* 802.11 specific */
61 struct wireless_dev;
62 /* source back-compat hooks */
63 #define SET_ETHTOOL_OPS(netdev,ops) \
64 ( (netdev)->ethtool_ops = (ops) )
65
66 /* hardware address assignment types */
67 #define NET_ADDR_PERM 0 /* address is permanent (default) */
68 #define NET_ADDR_RANDOM 1 /* address is generated randomly */
69 #define NET_ADDR_STOLEN 2 /* address is stolen from other device */
70
71 /* Backlog congestion levels */
72 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
73 #define NET_RX_DROP 1 /* packet dropped */
74
75 /*
76 * Transmit return codes: transmit return codes originate from three different
77 * namespaces:
78 *
79 * - qdisc return codes
80 * - driver transmit return codes
81 * - errno values
82 *
83 * Drivers are allowed to return any one of those in their hard_start_xmit()
84 * function. Real network devices commonly used with qdiscs should only return
85 * the driver transmit return codes though - when qdiscs are used, the actual
86 * transmission happens asynchronously, so the value is not propagated to
87 * higher layers. Virtual network devices transmit synchronously, in this case
88 * the driver transmit return codes are consumed by dev_queue_xmit(), all
89 * others are propagated to higher layers.
90 */
91
92 /* qdisc ->enqueue() return codes. */
93 #define NET_XMIT_SUCCESS 0x00
94 #define NET_XMIT_DROP 0x01 /* skb dropped */
95 #define NET_XMIT_CN 0x02 /* congestion notification */
96 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
97 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
98
99 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
100 * indicates that the device will soon be dropping packets, or already drops
101 * some packets of the same priority; prompting us to send less aggressively. */
102 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
103 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
104
105 /* Driver transmit return codes */
106 #define NETDEV_TX_MASK 0xf0
107
108 enum netdev_tx {
109 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
110 NETDEV_TX_OK = 0x00, /* driver took care of packet */
111 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
112 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
113 };
114 typedef enum netdev_tx netdev_tx_t;
115
116 /*
117 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
118 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
119 */
120 static inline bool dev_xmit_complete(int rc)
121 {
122 /*
123 * Positive cases with an skb consumed by a driver:
124 * - successful transmission (rc == NETDEV_TX_OK)
125 * - error while transmitting (rc < 0)
126 * - error while queueing to a different device (rc & NET_XMIT_MASK)
127 */
128 if (likely(rc < NET_XMIT_MASK))
129 return true;
130
131 return false;
132 }
133
134 #endif
135
136 #define MAX_ADDR_LEN 32 /* Largest hardware address length */
137
138 /* Initial net device group. All devices belong to group 0 by default. */
139 #define INIT_NETDEV_GROUP 0
140
141 #ifdef __KERNEL__
142 /*
143 * Compute the worst case header length according to the protocols
144 * used.
145 */
146
147 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
148 # if defined(CONFIG_MAC80211_MESH)
149 # define LL_MAX_HEADER 128
150 # else
151 # define LL_MAX_HEADER 96
152 # endif
153 #elif IS_ENABLED(CONFIG_TR)
154 # define LL_MAX_HEADER 48
155 #else
156 # define LL_MAX_HEADER 32
157 #endif
158
159 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
160 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
161 #define MAX_HEADER LL_MAX_HEADER
162 #else
163 #define MAX_HEADER (LL_MAX_HEADER + 48)
164 #endif
165
166 /*
167 * Old network device statistics. Fields are native words
168 * (unsigned long) so they can be read and written atomically.
169 */
170
171 struct net_device_stats {
172 unsigned long rx_packets;
173 unsigned long tx_packets;
174 unsigned long rx_bytes;
175 unsigned long tx_bytes;
176 unsigned long rx_errors;
177 unsigned long tx_errors;
178 unsigned long rx_dropped;
179 unsigned long tx_dropped;
180 unsigned long multicast;
181 unsigned long collisions;
182 unsigned long rx_length_errors;
183 unsigned long rx_over_errors;
184 unsigned long rx_crc_errors;
185 unsigned long rx_frame_errors;
186 unsigned long rx_fifo_errors;
187 unsigned long rx_missed_errors;
188 unsigned long tx_aborted_errors;
189 unsigned long tx_carrier_errors;
190 unsigned long tx_fifo_errors;
191 unsigned long tx_heartbeat_errors;
192 unsigned long tx_window_errors;
193 unsigned long rx_compressed;
194 unsigned long tx_compressed;
195 };
196
197 #endif /* __KERNEL__ */
198
199
200 /* Media selection options. */
201 enum {
202 IF_PORT_UNKNOWN = 0,
203 IF_PORT_10BASE2,
204 IF_PORT_10BASET,
205 IF_PORT_AUI,
206 IF_PORT_100BASET,
207 IF_PORT_100BASETX,
208 IF_PORT_100BASEFX
209 };
210
211 #ifdef __KERNEL__
212
213 #include <linux/cache.h>
214 #include <linux/skbuff.h>
215
216 #ifdef CONFIG_RPS
217 #include <linux/jump_label.h>
218 extern struct jump_label_key rps_needed;
219 #endif
220
221 struct neighbour;
222 struct neigh_parms;
223 struct sk_buff;
224
225 struct netdev_hw_addr {
226 struct list_head list;
227 unsigned char addr[MAX_ADDR_LEN];
228 unsigned char type;
229 #define NETDEV_HW_ADDR_T_LAN 1
230 #define NETDEV_HW_ADDR_T_SAN 2
231 #define NETDEV_HW_ADDR_T_SLAVE 3
232 #define NETDEV_HW_ADDR_T_UNICAST 4
233 #define NETDEV_HW_ADDR_T_MULTICAST 5
234 bool synced;
235 bool global_use;
236 int refcount;
237 struct rcu_head rcu_head;
238 };
239
240 struct netdev_hw_addr_list {
241 struct list_head list;
242 int count;
243 };
244
245 #define netdev_hw_addr_list_count(l) ((l)->count)
246 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
247 #define netdev_hw_addr_list_for_each(ha, l) \
248 list_for_each_entry(ha, &(l)->list, list)
249
250 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
251 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
252 #define netdev_for_each_uc_addr(ha, dev) \
253 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
254
255 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
256 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
257 #define netdev_for_each_mc_addr(ha, dev) \
258 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
259
260 struct hh_cache {
261 u16 hh_len;
262 u16 __pad;
263 seqlock_t hh_lock;
264
265 /* cached hardware header; allow for machine alignment needs. */
266 #define HH_DATA_MOD 16
267 #define HH_DATA_OFF(__len) \
268 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
269 #define HH_DATA_ALIGN(__len) \
270 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
271 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
272 };
273
274 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
275 * Alternative is:
276 * dev->hard_header_len ? (dev->hard_header_len +
277 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
278 *
279 * We could use other alignment values, but we must maintain the
280 * relationship HH alignment <= LL alignment.
281 */
282 #define LL_RESERVED_SPACE(dev) \
283 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
284 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
285 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
286
287 struct header_ops {
288 int (*create) (struct sk_buff *skb, struct net_device *dev,
289 unsigned short type, const void *daddr,
290 const void *saddr, unsigned len);
291 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
292 int (*rebuild)(struct sk_buff *skb);
293 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
294 void (*cache_update)(struct hh_cache *hh,
295 const struct net_device *dev,
296 const unsigned char *haddr);
297 };
298
299 /* These flag bits are private to the generic network queueing
300 * layer, they may not be explicitly referenced by any other
301 * code.
302 */
303
304 enum netdev_state_t {
305 __LINK_STATE_START,
306 __LINK_STATE_PRESENT,
307 __LINK_STATE_NOCARRIER,
308 __LINK_STATE_LINKWATCH_PENDING,
309 __LINK_STATE_DORMANT,
310 };
311
312
313 /*
314 * This structure holds at boot time configured netdevice settings. They
315 * are then used in the device probing.
316 */
317 struct netdev_boot_setup {
318 char name[IFNAMSIZ];
319 struct ifmap map;
320 };
321 #define NETDEV_BOOT_SETUP_MAX 8
322
323 extern int __init netdev_boot_setup(char *str);
324
325 /*
326 * Structure for NAPI scheduling similar to tasklet but with weighting
327 */
328 struct napi_struct {
329 /* The poll_list must only be managed by the entity which
330 * changes the state of the NAPI_STATE_SCHED bit. This means
331 * whoever atomically sets that bit can add this napi_struct
332 * to the per-cpu poll_list, and whoever clears that bit
333 * can remove from the list right before clearing the bit.
334 */
335 struct list_head poll_list;
336
337 unsigned long state;
338 int weight;
339 int (*poll)(struct napi_struct *, int);
340 #ifdef CONFIG_NETPOLL
341 spinlock_t poll_lock;
342 int poll_owner;
343 #endif
344
345 unsigned int gro_count;
346
347 struct net_device *dev;
348 struct list_head dev_list;
349 struct sk_buff *gro_list;
350 struct sk_buff *skb;
351 };
352
353 enum {
354 NAPI_STATE_SCHED, /* Poll is scheduled */
355 NAPI_STATE_DISABLE, /* Disable pending */
356 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
357 };
358
359 enum gro_result {
360 GRO_MERGED,
361 GRO_MERGED_FREE,
362 GRO_HELD,
363 GRO_NORMAL,
364 GRO_DROP,
365 };
366 typedef enum gro_result gro_result_t;
367
368 /*
369 * enum rx_handler_result - Possible return values for rx_handlers.
370 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
371 * further.
372 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
373 * case skb->dev was changed by rx_handler.
374 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
375 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
376 *
377 * rx_handlers are functions called from inside __netif_receive_skb(), to do
378 * special processing of the skb, prior to delivery to protocol handlers.
379 *
380 * Currently, a net_device can only have a single rx_handler registered. Trying
381 * to register a second rx_handler will return -EBUSY.
382 *
383 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
384 * To unregister a rx_handler on a net_device, use
385 * netdev_rx_handler_unregister().
386 *
387 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
388 * do with the skb.
389 *
390 * If the rx_handler consumed to skb in some way, it should return
391 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
392 * the skb to be delivered in some other ways.
393 *
394 * If the rx_handler changed skb->dev, to divert the skb to another
395 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
396 * new device will be called if it exists.
397 *
398 * If the rx_handler consider the skb should be ignored, it should return
399 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
400 * are registred on exact device (ptype->dev == skb->dev).
401 *
402 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
403 * delivered, it should return RX_HANDLER_PASS.
404 *
405 * A device without a registered rx_handler will behave as if rx_handler
406 * returned RX_HANDLER_PASS.
407 */
408
409 enum rx_handler_result {
410 RX_HANDLER_CONSUMED,
411 RX_HANDLER_ANOTHER,
412 RX_HANDLER_EXACT,
413 RX_HANDLER_PASS,
414 };
415 typedef enum rx_handler_result rx_handler_result_t;
416 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
417
418 extern void __napi_schedule(struct napi_struct *n);
419
420 static inline int napi_disable_pending(struct napi_struct *n)
421 {
422 return test_bit(NAPI_STATE_DISABLE, &n->state);
423 }
424
425 /**
426 * napi_schedule_prep - check if napi can be scheduled
427 * @n: napi context
428 *
429 * Test if NAPI routine is already running, and if not mark
430 * it as running. This is used as a condition variable
431 * insure only one NAPI poll instance runs. We also make
432 * sure there is no pending NAPI disable.
433 */
434 static inline int napi_schedule_prep(struct napi_struct *n)
435 {
436 return !napi_disable_pending(n) &&
437 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
438 }
439
440 /**
441 * napi_schedule - schedule NAPI poll
442 * @n: napi context
443 *
444 * Schedule NAPI poll routine to be called if it is not already
445 * running.
446 */
447 static inline void napi_schedule(struct napi_struct *n)
448 {
449 if (napi_schedule_prep(n))
450 __napi_schedule(n);
451 }
452
453 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
454 static inline int napi_reschedule(struct napi_struct *napi)
455 {
456 if (napi_schedule_prep(napi)) {
457 __napi_schedule(napi);
458 return 1;
459 }
460 return 0;
461 }
462
463 /**
464 * napi_complete - NAPI processing complete
465 * @n: napi context
466 *
467 * Mark NAPI processing as complete.
468 */
469 extern void __napi_complete(struct napi_struct *n);
470 extern void napi_complete(struct napi_struct *n);
471
472 /**
473 * napi_disable - prevent NAPI from scheduling
474 * @n: napi context
475 *
476 * Stop NAPI from being scheduled on this context.
477 * Waits till any outstanding processing completes.
478 */
479 static inline void napi_disable(struct napi_struct *n)
480 {
481 set_bit(NAPI_STATE_DISABLE, &n->state);
482 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
483 msleep(1);
484 clear_bit(NAPI_STATE_DISABLE, &n->state);
485 }
486
487 /**
488 * napi_enable - enable NAPI scheduling
489 * @n: napi context
490 *
491 * Resume NAPI from being scheduled on this context.
492 * Must be paired with napi_disable.
493 */
494 static inline void napi_enable(struct napi_struct *n)
495 {
496 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
497 smp_mb__before_clear_bit();
498 clear_bit(NAPI_STATE_SCHED, &n->state);
499 }
500
501 #ifdef CONFIG_SMP
502 /**
503 * napi_synchronize - wait until NAPI is not running
504 * @n: napi context
505 *
506 * Wait until NAPI is done being scheduled on this context.
507 * Waits till any outstanding processing completes but
508 * does not disable future activations.
509 */
510 static inline void napi_synchronize(const struct napi_struct *n)
511 {
512 while (test_bit(NAPI_STATE_SCHED, &n->state))
513 msleep(1);
514 }
515 #else
516 # define napi_synchronize(n) barrier()
517 #endif
518
519 enum netdev_queue_state_t {
520 __QUEUE_STATE_DRV_XOFF,
521 __QUEUE_STATE_STACK_XOFF,
522 __QUEUE_STATE_FROZEN,
523 #define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF) | \
524 (1 << __QUEUE_STATE_STACK_XOFF))
525 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
526 (1 << __QUEUE_STATE_FROZEN))
527 };
528 /*
529 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
530 * netif_tx_* functions below are used to manipulate this flag. The
531 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
532 * queue independently. The netif_xmit_*stopped functions below are called
533 * to check if the queue has been stopped by the driver or stack (either
534 * of the XOFF bits are set in the state). Drivers should not need to call
535 * netif_xmit*stopped functions, they should only be using netif_tx_*.
536 */
537
538 struct netdev_queue {
539 /*
540 * read mostly part
541 */
542 struct net_device *dev;
543 struct Qdisc *qdisc;
544 unsigned long state;
545 struct Qdisc *qdisc_sleeping;
546 #ifdef CONFIG_SYSFS
547 struct kobject kobj;
548 #endif
549 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
550 int numa_node;
551 #endif
552 /*
553 * write mostly part
554 */
555 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
556 int xmit_lock_owner;
557 /*
558 * please use this field instead of dev->trans_start
559 */
560 unsigned long trans_start;
561
562 /*
563 * Number of TX timeouts for this queue
564 * (/sys/class/net/DEV/Q/trans_timeout)
565 */
566 unsigned long trans_timeout;
567 } ____cacheline_aligned_in_smp;
568
569 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
570 {
571 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
572 return q->numa_node;
573 #else
574 return NUMA_NO_NODE;
575 #endif
576 }
577
578 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
579 {
580 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
581 q->numa_node = node;
582 #endif
583 }
584
585 #ifdef CONFIG_RPS
586 /*
587 * This structure holds an RPS map which can be of variable length. The
588 * map is an array of CPUs.
589 */
590 struct rps_map {
591 unsigned int len;
592 struct rcu_head rcu;
593 u16 cpus[0];
594 };
595 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + (_num * sizeof(u16)))
596
597 /*
598 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
599 * tail pointer for that CPU's input queue at the time of last enqueue, and
600 * a hardware filter index.
601 */
602 struct rps_dev_flow {
603 u16 cpu;
604 u16 filter;
605 unsigned int last_qtail;
606 };
607 #define RPS_NO_FILTER 0xffff
608
609 /*
610 * The rps_dev_flow_table structure contains a table of flow mappings.
611 */
612 struct rps_dev_flow_table {
613 unsigned int mask;
614 struct rcu_head rcu;
615 struct work_struct free_work;
616 struct rps_dev_flow flows[0];
617 };
618 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
619 (_num * sizeof(struct rps_dev_flow)))
620
621 /*
622 * The rps_sock_flow_table contains mappings of flows to the last CPU
623 * on which they were processed by the application (set in recvmsg).
624 */
625 struct rps_sock_flow_table {
626 unsigned int mask;
627 u16 ents[0];
628 };
629 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
630 (_num * sizeof(u16)))
631
632 #define RPS_NO_CPU 0xffff
633
634 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
635 u32 hash)
636 {
637 if (table && hash) {
638 unsigned int cpu, index = hash & table->mask;
639
640 /* We only give a hint, preemption can change cpu under us */
641 cpu = raw_smp_processor_id();
642
643 if (table->ents[index] != cpu)
644 table->ents[index] = cpu;
645 }
646 }
647
648 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
649 u32 hash)
650 {
651 if (table && hash)
652 table->ents[hash & table->mask] = RPS_NO_CPU;
653 }
654
655 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
656
657 #ifdef CONFIG_RFS_ACCEL
658 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
659 u32 flow_id, u16 filter_id);
660 #endif
661
662 /* This structure contains an instance of an RX queue. */
663 struct netdev_rx_queue {
664 struct rps_map __rcu *rps_map;
665 struct rps_dev_flow_table __rcu *rps_flow_table;
666 struct kobject kobj;
667 struct net_device *dev;
668 } ____cacheline_aligned_in_smp;
669 #endif /* CONFIG_RPS */
670
671 #ifdef CONFIG_XPS
672 /*
673 * This structure holds an XPS map which can be of variable length. The
674 * map is an array of queues.
675 */
676 struct xps_map {
677 unsigned int len;
678 unsigned int alloc_len;
679 struct rcu_head rcu;
680 u16 queues[0];
681 };
682 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + (_num * sizeof(u16)))
683 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
684 / sizeof(u16))
685
686 /*
687 * This structure holds all XPS maps for device. Maps are indexed by CPU.
688 */
689 struct xps_dev_maps {
690 struct rcu_head rcu;
691 struct xps_map __rcu *cpu_map[0];
692 };
693 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
694 (nr_cpu_ids * sizeof(struct xps_map *)))
695 #endif /* CONFIG_XPS */
696
697 #define TC_MAX_QUEUE 16
698 #define TC_BITMASK 15
699 /* HW offloaded queuing disciplines txq count and offset maps */
700 struct netdev_tc_txq {
701 u16 count;
702 u16 offset;
703 };
704
705 /*
706 * This structure defines the management hooks for network devices.
707 * The following hooks can be defined; unless noted otherwise, they are
708 * optional and can be filled with a null pointer.
709 *
710 * int (*ndo_init)(struct net_device *dev);
711 * This function is called once when network device is registered.
712 * The network device can use this to any late stage initializaton
713 * or semantic validattion. It can fail with an error code which will
714 * be propogated back to register_netdev
715 *
716 * void (*ndo_uninit)(struct net_device *dev);
717 * This function is called when device is unregistered or when registration
718 * fails. It is not called if init fails.
719 *
720 * int (*ndo_open)(struct net_device *dev);
721 * This function is called when network device transistions to the up
722 * state.
723 *
724 * int (*ndo_stop)(struct net_device *dev);
725 * This function is called when network device transistions to the down
726 * state.
727 *
728 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
729 * struct net_device *dev);
730 * Called when a packet needs to be transmitted.
731 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
732 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
733 * Required can not be NULL.
734 *
735 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
736 * Called to decide which queue to when device supports multiple
737 * transmit queues.
738 *
739 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
740 * This function is called to allow device receiver to make
741 * changes to configuration when multicast or promiscious is enabled.
742 *
743 * void (*ndo_set_rx_mode)(struct net_device *dev);
744 * This function is called device changes address list filtering.
745 * If driver handles unicast address filtering, it should set
746 * IFF_UNICAST_FLT to its priv_flags.
747 *
748 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
749 * This function is called when the Media Access Control address
750 * needs to be changed. If this interface is not defined, the
751 * mac address can not be changed.
752 *
753 * int (*ndo_validate_addr)(struct net_device *dev);
754 * Test if Media Access Control address is valid for the device.
755 *
756 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
757 * Called when a user request an ioctl which can't be handled by
758 * the generic interface code. If not defined ioctl's return
759 * not supported error code.
760 *
761 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
762 * Used to set network devices bus interface parameters. This interface
763 * is retained for legacy reason, new devices should use the bus
764 * interface (PCI) for low level management.
765 *
766 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
767 * Called when a user wants to change the Maximum Transfer Unit
768 * of a device. If not defined, any request to change MTU will
769 * will return an error.
770 *
771 * void (*ndo_tx_timeout)(struct net_device *dev);
772 * Callback uses when the transmitter has not made any progress
773 * for dev->watchdog ticks.
774 *
775 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
776 * struct rtnl_link_stats64 *storage);
777 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
778 * Called when a user wants to get the network device usage
779 * statistics. Drivers must do one of the following:
780 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
781 * rtnl_link_stats64 structure passed by the caller.
782 * 2. Define @ndo_get_stats to update a net_device_stats structure
783 * (which should normally be dev->stats) and return a pointer to
784 * it. The structure may be changed asynchronously only if each
785 * field is written atomically.
786 * 3. Update dev->stats asynchronously and atomically, and define
787 * neither operation.
788 *
789 * void (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
790 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
791 * this function is called when a VLAN id is registered.
792 *
793 * void (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
794 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
795 * this function is called when a VLAN id is unregistered.
796 *
797 * void (*ndo_poll_controller)(struct net_device *dev);
798 *
799 * SR-IOV management functions.
800 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
801 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
802 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
803 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
804 * int (*ndo_get_vf_config)(struct net_device *dev,
805 * int vf, struct ifla_vf_info *ivf);
806 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
807 * struct nlattr *port[]);
808 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
809 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
810 * Called to setup 'tc' number of traffic classes in the net device. This
811 * is always called from the stack with the rtnl lock held and netif tx
812 * queues stopped. This allows the netdevice to perform queue management
813 * safely.
814 *
815 * Fiber Channel over Ethernet (FCoE) offload functions.
816 * int (*ndo_fcoe_enable)(struct net_device *dev);
817 * Called when the FCoE protocol stack wants to start using LLD for FCoE
818 * so the underlying device can perform whatever needed configuration or
819 * initialization to support acceleration of FCoE traffic.
820 *
821 * int (*ndo_fcoe_disable)(struct net_device *dev);
822 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
823 * so the underlying device can perform whatever needed clean-ups to
824 * stop supporting acceleration of FCoE traffic.
825 *
826 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
827 * struct scatterlist *sgl, unsigned int sgc);
828 * Called when the FCoE Initiator wants to initialize an I/O that
829 * is a possible candidate for Direct Data Placement (DDP). The LLD can
830 * perform necessary setup and returns 1 to indicate the device is set up
831 * successfully to perform DDP on this I/O, otherwise this returns 0.
832 *
833 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
834 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
835 * indicated by the FC exchange id 'xid', so the underlying device can
836 * clean up and reuse resources for later DDP requests.
837 *
838 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
839 * struct scatterlist *sgl, unsigned int sgc);
840 * Called when the FCoE Target wants to initialize an I/O that
841 * is a possible candidate for Direct Data Placement (DDP). The LLD can
842 * perform necessary setup and returns 1 to indicate the device is set up
843 * successfully to perform DDP on this I/O, otherwise this returns 0.
844 *
845 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
846 * Called when the underlying device wants to override default World Wide
847 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
848 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
849 * protocol stack to use.
850 *
851 * RFS acceleration.
852 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
853 * u16 rxq_index, u32 flow_id);
854 * Set hardware filter for RFS. rxq_index is the target queue index;
855 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
856 * Return the filter ID on success, or a negative error code.
857 *
858 * Slave management functions (for bridge, bonding, etc). User should
859 * call netdev_set_master() to set dev->master properly.
860 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
861 * Called to make another netdev an underling.
862 *
863 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
864 * Called to release previously enslaved netdev.
865 *
866 * Feature/offload setting functions.
867 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
868 * netdev_features_t features);
869 * Adjusts the requested feature flags according to device-specific
870 * constraints, and returns the resulting flags. Must not modify
871 * the device state.
872 *
873 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
874 * Called to update device configuration to new features. Passed
875 * feature set might be less than what was returned by ndo_fix_features()).
876 * Must return >0 or -errno if it changed dev->features itself.
877 *
878 */
879 struct net_device_ops {
880 int (*ndo_init)(struct net_device *dev);
881 void (*ndo_uninit)(struct net_device *dev);
882 int (*ndo_open)(struct net_device *dev);
883 int (*ndo_stop)(struct net_device *dev);
884 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
885 struct net_device *dev);
886 u16 (*ndo_select_queue)(struct net_device *dev,
887 struct sk_buff *skb);
888 void (*ndo_change_rx_flags)(struct net_device *dev,
889 int flags);
890 void (*ndo_set_rx_mode)(struct net_device *dev);
891 int (*ndo_set_mac_address)(struct net_device *dev,
892 void *addr);
893 int (*ndo_validate_addr)(struct net_device *dev);
894 int (*ndo_do_ioctl)(struct net_device *dev,
895 struct ifreq *ifr, int cmd);
896 int (*ndo_set_config)(struct net_device *dev,
897 struct ifmap *map);
898 int (*ndo_change_mtu)(struct net_device *dev,
899 int new_mtu);
900 int (*ndo_neigh_setup)(struct net_device *dev,
901 struct neigh_parms *);
902 void (*ndo_tx_timeout) (struct net_device *dev);
903
904 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
905 struct rtnl_link_stats64 *storage);
906 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
907
908 void (*ndo_vlan_rx_add_vid)(struct net_device *dev,
909 unsigned short vid);
910 void (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
911 unsigned short vid);
912 #ifdef CONFIG_NET_POLL_CONTROLLER
913 void (*ndo_poll_controller)(struct net_device *dev);
914 int (*ndo_netpoll_setup)(struct net_device *dev,
915 struct netpoll_info *info);
916 void (*ndo_netpoll_cleanup)(struct net_device *dev);
917 #endif
918 int (*ndo_set_vf_mac)(struct net_device *dev,
919 int queue, u8 *mac);
920 int (*ndo_set_vf_vlan)(struct net_device *dev,
921 int queue, u16 vlan, u8 qos);
922 int (*ndo_set_vf_tx_rate)(struct net_device *dev,
923 int vf, int rate);
924 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
925 int vf, bool setting);
926 int (*ndo_get_vf_config)(struct net_device *dev,
927 int vf,
928 struct ifla_vf_info *ivf);
929 int (*ndo_set_vf_port)(struct net_device *dev,
930 int vf,
931 struct nlattr *port[]);
932 int (*ndo_get_vf_port)(struct net_device *dev,
933 int vf, struct sk_buff *skb);
934 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
935 #if IS_ENABLED(CONFIG_FCOE)
936 int (*ndo_fcoe_enable)(struct net_device *dev);
937 int (*ndo_fcoe_disable)(struct net_device *dev);
938 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
939 u16 xid,
940 struct scatterlist *sgl,
941 unsigned int sgc);
942 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
943 u16 xid);
944 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
945 u16 xid,
946 struct scatterlist *sgl,
947 unsigned int sgc);
948 #endif
949
950 #if IS_ENABLED(CONFIG_LIBFCOE)
951 #define NETDEV_FCOE_WWNN 0
952 #define NETDEV_FCOE_WWPN 1
953 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
954 u64 *wwn, int type);
955 #endif
956
957 #ifdef CONFIG_RFS_ACCEL
958 int (*ndo_rx_flow_steer)(struct net_device *dev,
959 const struct sk_buff *skb,
960 u16 rxq_index,
961 u32 flow_id);
962 #endif
963 int (*ndo_add_slave)(struct net_device *dev,
964 struct net_device *slave_dev);
965 int (*ndo_del_slave)(struct net_device *dev,
966 struct net_device *slave_dev);
967 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
968 netdev_features_t features);
969 int (*ndo_set_features)(struct net_device *dev,
970 netdev_features_t features);
971 };
972
973 /*
974 * The DEVICE structure.
975 * Actually, this whole structure is a big mistake. It mixes I/O
976 * data with strictly "high-level" data, and it has to know about
977 * almost every data structure used in the INET module.
978 *
979 * FIXME: cleanup struct net_device such that network protocol info
980 * moves out.
981 */
982
983 struct net_device {
984
985 /*
986 * This is the first field of the "visible" part of this structure
987 * (i.e. as seen by users in the "Space.c" file). It is the name
988 * of the interface.
989 */
990 char name[IFNAMSIZ];
991
992 struct pm_qos_request pm_qos_req;
993
994 /* device name hash chain */
995 struct hlist_node name_hlist;
996 /* snmp alias */
997 char *ifalias;
998
999 /*
1000 * I/O specific fields
1001 * FIXME: Merge these and struct ifmap into one
1002 */
1003 unsigned long mem_end; /* shared mem end */
1004 unsigned long mem_start; /* shared mem start */
1005 unsigned long base_addr; /* device I/O address */
1006 unsigned int irq; /* device IRQ number */
1007
1008 /*
1009 * Some hardware also needs these fields, but they are not
1010 * part of the usual set specified in Space.c.
1011 */
1012
1013 unsigned long state;
1014
1015 struct list_head dev_list;
1016 struct list_head napi_list;
1017 struct list_head unreg_list;
1018
1019 /* currently active device features */
1020 netdev_features_t features;
1021 /* user-changeable features */
1022 netdev_features_t hw_features;
1023 /* user-requested features */
1024 netdev_features_t wanted_features;
1025 /* mask of features inheritable by VLAN devices */
1026 netdev_features_t vlan_features;
1027
1028 /* Interface index. Unique device identifier */
1029 int ifindex;
1030 int iflink;
1031
1032 struct net_device_stats stats;
1033 atomic_long_t rx_dropped; /* dropped packets by core network
1034 * Do not use this in drivers.
1035 */
1036
1037 #ifdef CONFIG_WIRELESS_EXT
1038 /* List of functions to handle Wireless Extensions (instead of ioctl).
1039 * See <net/iw_handler.h> for details. Jean II */
1040 const struct iw_handler_def * wireless_handlers;
1041 /* Instance data managed by the core of Wireless Extensions. */
1042 struct iw_public_data * wireless_data;
1043 #endif
1044 /* Management operations */
1045 const struct net_device_ops *netdev_ops;
1046 const struct ethtool_ops *ethtool_ops;
1047
1048 /* Hardware header description */
1049 const struct header_ops *header_ops;
1050
1051 unsigned int flags; /* interface flags (a la BSD) */
1052 unsigned int priv_flags; /* Like 'flags' but invisible to userspace. */
1053 unsigned short gflags;
1054 unsigned short padded; /* How much padding added by alloc_netdev() */
1055
1056 unsigned char operstate; /* RFC2863 operstate */
1057 unsigned char link_mode; /* mapping policy to operstate */
1058
1059 unsigned char if_port; /* Selectable AUI, TP,..*/
1060 unsigned char dma; /* DMA channel */
1061
1062 unsigned int mtu; /* interface MTU value */
1063 unsigned short type; /* interface hardware type */
1064 unsigned short hard_header_len; /* hardware hdr length */
1065
1066 /* extra head- and tailroom the hardware may need, but not in all cases
1067 * can this be guaranteed, especially tailroom. Some cases also use
1068 * LL_MAX_HEADER instead to allocate the skb.
1069 */
1070 unsigned short needed_headroom;
1071 unsigned short needed_tailroom;
1072
1073 /* Interface address info. */
1074 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1075 unsigned char addr_assign_type; /* hw address assignment type */
1076 unsigned char addr_len; /* hardware address length */
1077 unsigned short dev_id; /* for shared network cards */
1078
1079 spinlock_t addr_list_lock;
1080 struct netdev_hw_addr_list uc; /* Unicast mac addresses */
1081 struct netdev_hw_addr_list mc; /* Multicast mac addresses */
1082 bool uc_promisc;
1083 unsigned int promiscuity;
1084 unsigned int allmulti;
1085
1086
1087 /* Protocol specific pointers */
1088
1089 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1090 struct vlan_group __rcu *vlgrp; /* VLAN group */
1091 #endif
1092 #if IS_ENABLED(CONFIG_NET_DSA)
1093 struct dsa_switch_tree *dsa_ptr; /* dsa specific data */
1094 #endif
1095 void *atalk_ptr; /* AppleTalk link */
1096 struct in_device __rcu *ip_ptr; /* IPv4 specific data */
1097 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */
1098 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */
1099 void *ec_ptr; /* Econet specific data */
1100 void *ax25_ptr; /* AX.25 specific data */
1101 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data,
1102 assign before registering */
1103
1104 /*
1105 * Cache lines mostly used on receive path (including eth_type_trans())
1106 */
1107 unsigned long last_rx; /* Time of last Rx
1108 * This should not be set in
1109 * drivers, unless really needed,
1110 * because network stack (bonding)
1111 * use it if/when necessary, to
1112 * avoid dirtying this cache line.
1113 */
1114
1115 struct net_device *master; /* Pointer to master device of a group,
1116 * which this device is member of.
1117 */
1118
1119 /* Interface address info used in eth_type_trans() */
1120 unsigned char *dev_addr; /* hw address, (before bcast
1121 because most packets are
1122 unicast) */
1123
1124 struct netdev_hw_addr_list dev_addrs; /* list of device
1125 hw addresses */
1126
1127 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */
1128
1129 #ifdef CONFIG_SYSFS
1130 struct kset *queues_kset;
1131 #endif
1132
1133 #ifdef CONFIG_RPS
1134 struct netdev_rx_queue *_rx;
1135
1136 /* Number of RX queues allocated at register_netdev() time */
1137 unsigned int num_rx_queues;
1138
1139 /* Number of RX queues currently active in device */
1140 unsigned int real_num_rx_queues;
1141
1142 #ifdef CONFIG_RFS_ACCEL
1143 /* CPU reverse-mapping for RX completion interrupts, indexed
1144 * by RX queue number. Assigned by driver. This must only be
1145 * set if the ndo_rx_flow_steer operation is defined. */
1146 struct cpu_rmap *rx_cpu_rmap;
1147 #endif
1148 #endif
1149
1150 rx_handler_func_t __rcu *rx_handler;
1151 void __rcu *rx_handler_data;
1152
1153 struct netdev_queue __rcu *ingress_queue;
1154
1155 /*
1156 * Cache lines mostly used on transmit path
1157 */
1158 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1159
1160 /* Number of TX queues allocated at alloc_netdev_mq() time */
1161 unsigned int num_tx_queues;
1162
1163 /* Number of TX queues currently active in device */
1164 unsigned int real_num_tx_queues;
1165
1166 /* root qdisc from userspace point of view */
1167 struct Qdisc *qdisc;
1168
1169 unsigned long tx_queue_len; /* Max frames per queue allowed */
1170 spinlock_t tx_global_lock;
1171
1172 #ifdef CONFIG_XPS
1173 struct xps_dev_maps __rcu *xps_maps;
1174 #endif
1175
1176 /* These may be needed for future network-power-down code. */
1177
1178 /*
1179 * trans_start here is expensive for high speed devices on SMP,
1180 * please use netdev_queue->trans_start instead.
1181 */
1182 unsigned long trans_start; /* Time (in jiffies) of last Tx */
1183
1184 int watchdog_timeo; /* used by dev_watchdog() */
1185 struct timer_list watchdog_timer;
1186
1187 /* Number of references to this device */
1188 int __percpu *pcpu_refcnt;
1189
1190 /* delayed register/unregister */
1191 struct list_head todo_list;
1192 /* device index hash chain */
1193 struct hlist_node index_hlist;
1194
1195 struct list_head link_watch_list;
1196
1197 /* register/unregister state machine */
1198 enum { NETREG_UNINITIALIZED=0,
1199 NETREG_REGISTERED, /* completed register_netdevice */
1200 NETREG_UNREGISTERING, /* called unregister_netdevice */
1201 NETREG_UNREGISTERED, /* completed unregister todo */
1202 NETREG_RELEASED, /* called free_netdev */
1203 NETREG_DUMMY, /* dummy device for NAPI poll */
1204 } reg_state:8;
1205
1206 bool dismantle; /* device is going do be freed */
1207
1208 enum {
1209 RTNL_LINK_INITIALIZED,
1210 RTNL_LINK_INITIALIZING,
1211 } rtnl_link_state:16;
1212
1213 /* Called from unregister, can be used to call free_netdev */
1214 void (*destructor)(struct net_device *dev);
1215
1216 #ifdef CONFIG_NETPOLL
1217 struct netpoll_info *npinfo;
1218 #endif
1219
1220 #ifdef CONFIG_NET_NS
1221 /* Network namespace this network device is inside */
1222 struct net *nd_net;
1223 #endif
1224
1225 /* mid-layer private */
1226 union {
1227 void *ml_priv;
1228 struct pcpu_lstats __percpu *lstats; /* loopback stats */
1229 struct pcpu_tstats __percpu *tstats; /* tunnel stats */
1230 struct pcpu_dstats __percpu *dstats; /* dummy stats */
1231 };
1232 /* GARP */
1233 struct garp_port __rcu *garp_port;
1234
1235 /* class/net/name entry */
1236 struct device dev;
1237 /* space for optional device, statistics, and wireless sysfs groups */
1238 const struct attribute_group *sysfs_groups[4];
1239
1240 /* rtnetlink link ops */
1241 const struct rtnl_link_ops *rtnl_link_ops;
1242
1243 /* for setting kernel sock attribute on TCP connection setup */
1244 #define GSO_MAX_SIZE 65536
1245 unsigned int gso_max_size;
1246
1247 #ifdef CONFIG_DCB
1248 /* Data Center Bridging netlink ops */
1249 const struct dcbnl_rtnl_ops *dcbnl_ops;
1250 #endif
1251 u8 num_tc;
1252 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1253 u8 prio_tc_map[TC_BITMASK + 1];
1254
1255 #if IS_ENABLED(CONFIG_FCOE)
1256 /* max exchange id for FCoE LRO by ddp */
1257 unsigned int fcoe_ddp_xid;
1258 #endif
1259 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1260 struct netprio_map __rcu *priomap;
1261 #endif
1262 /* phy device may attach itself for hardware timestamping */
1263 struct phy_device *phydev;
1264
1265 /* group the device belongs to */
1266 int group;
1267 };
1268 #define to_net_dev(d) container_of(d, struct net_device, dev)
1269
1270 #define NETDEV_ALIGN 32
1271
1272 static inline
1273 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1274 {
1275 return dev->prio_tc_map[prio & TC_BITMASK];
1276 }
1277
1278 static inline
1279 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1280 {
1281 if (tc >= dev->num_tc)
1282 return -EINVAL;
1283
1284 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1285 return 0;
1286 }
1287
1288 static inline
1289 void netdev_reset_tc(struct net_device *dev)
1290 {
1291 dev->num_tc = 0;
1292 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1293 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1294 }
1295
1296 static inline
1297 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1298 {
1299 if (tc >= dev->num_tc)
1300 return -EINVAL;
1301
1302 dev->tc_to_txq[tc].count = count;
1303 dev->tc_to_txq[tc].offset = offset;
1304 return 0;
1305 }
1306
1307 static inline
1308 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1309 {
1310 if (num_tc > TC_MAX_QUEUE)
1311 return -EINVAL;
1312
1313 dev->num_tc = num_tc;
1314 return 0;
1315 }
1316
1317 static inline
1318 int netdev_get_num_tc(struct net_device *dev)
1319 {
1320 return dev->num_tc;
1321 }
1322
1323 static inline
1324 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1325 unsigned int index)
1326 {
1327 return &dev->_tx[index];
1328 }
1329
1330 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1331 void (*f)(struct net_device *,
1332 struct netdev_queue *,
1333 void *),
1334 void *arg)
1335 {
1336 unsigned int i;
1337
1338 for (i = 0; i < dev->num_tx_queues; i++)
1339 f(dev, &dev->_tx[i], arg);
1340 }
1341
1342 /*
1343 * Net namespace inlines
1344 */
1345 static inline
1346 struct net *dev_net(const struct net_device *dev)
1347 {
1348 return read_pnet(&dev->nd_net);
1349 }
1350
1351 static inline
1352 void dev_net_set(struct net_device *dev, struct net *net)
1353 {
1354 #ifdef CONFIG_NET_NS
1355 release_net(dev->nd_net);
1356 dev->nd_net = hold_net(net);
1357 #endif
1358 }
1359
1360 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1361 {
1362 #ifdef CONFIG_NET_DSA_TAG_DSA
1363 if (dev->dsa_ptr != NULL)
1364 return dsa_uses_dsa_tags(dev->dsa_ptr);
1365 #endif
1366
1367 return 0;
1368 }
1369
1370 #ifndef CONFIG_NET_NS
1371 static inline void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1372 {
1373 skb->dev = dev;
1374 }
1375 #else /* CONFIG_NET_NS */
1376 void skb_set_dev(struct sk_buff *skb, struct net_device *dev);
1377 #endif
1378
1379 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1380 {
1381 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1382 if (dev->dsa_ptr != NULL)
1383 return dsa_uses_trailer_tags(dev->dsa_ptr);
1384 #endif
1385
1386 return 0;
1387 }
1388
1389 /**
1390 * netdev_priv - access network device private data
1391 * @dev: network device
1392 *
1393 * Get network device private data
1394 */
1395 static inline void *netdev_priv(const struct net_device *dev)
1396 {
1397 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1398 }
1399
1400 /* Set the sysfs physical device reference for the network logical device
1401 * if set prior to registration will cause a symlink during initialization.
1402 */
1403 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1404
1405 /* Set the sysfs device type for the network logical device to allow
1406 * fin grained indentification of different network device types. For
1407 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1408 */
1409 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1410
1411 /**
1412 * netif_napi_add - initialize a napi context
1413 * @dev: network device
1414 * @napi: napi context
1415 * @poll: polling function
1416 * @weight: default weight
1417 *
1418 * netif_napi_add() must be used to initialize a napi context prior to calling
1419 * *any* of the other napi related functions.
1420 */
1421 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1422 int (*poll)(struct napi_struct *, int), int weight);
1423
1424 /**
1425 * netif_napi_del - remove a napi context
1426 * @napi: napi context
1427 *
1428 * netif_napi_del() removes a napi context from the network device napi list
1429 */
1430 void netif_napi_del(struct napi_struct *napi);
1431
1432 struct napi_gro_cb {
1433 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1434 void *frag0;
1435
1436 /* Length of frag0. */
1437 unsigned int frag0_len;
1438
1439 /* This indicates where we are processing relative to skb->data. */
1440 int data_offset;
1441
1442 /* This is non-zero if the packet may be of the same flow. */
1443 int same_flow;
1444
1445 /* This is non-zero if the packet cannot be merged with the new skb. */
1446 int flush;
1447
1448 /* Number of segments aggregated. */
1449 int count;
1450
1451 /* Free the skb? */
1452 int free;
1453 };
1454
1455 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1456
1457 struct packet_type {
1458 __be16 type; /* This is really htons(ether_type). */
1459 struct net_device *dev; /* NULL is wildcarded here */
1460 int (*func) (struct sk_buff *,
1461 struct net_device *,
1462 struct packet_type *,
1463 struct net_device *);
1464 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1465 netdev_features_t features);
1466 int (*gso_send_check)(struct sk_buff *skb);
1467 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1468 struct sk_buff *skb);
1469 int (*gro_complete)(struct sk_buff *skb);
1470 void *af_packet_priv;
1471 struct list_head list;
1472 };
1473
1474 #include <linux/notifier.h>
1475
1476 /* netdevice notifier chain. Please remember to update the rtnetlink
1477 * notification exclusion list in rtnetlink_event() when adding new
1478 * types.
1479 */
1480 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
1481 #define NETDEV_DOWN 0x0002
1482 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
1483 detected a hardware crash and restarted
1484 - we can use this eg to kick tcp sessions
1485 once done */
1486 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
1487 #define NETDEV_REGISTER 0x0005
1488 #define NETDEV_UNREGISTER 0x0006
1489 #define NETDEV_CHANGEMTU 0x0007
1490 #define NETDEV_CHANGEADDR 0x0008
1491 #define NETDEV_GOING_DOWN 0x0009
1492 #define NETDEV_CHANGENAME 0x000A
1493 #define NETDEV_FEAT_CHANGE 0x000B
1494 #define NETDEV_BONDING_FAILOVER 0x000C
1495 #define NETDEV_PRE_UP 0x000D
1496 #define NETDEV_PRE_TYPE_CHANGE 0x000E
1497 #define NETDEV_POST_TYPE_CHANGE 0x000F
1498 #define NETDEV_POST_INIT 0x0010
1499 #define NETDEV_UNREGISTER_BATCH 0x0011
1500 #define NETDEV_RELEASE 0x0012
1501 #define NETDEV_NOTIFY_PEERS 0x0013
1502 #define NETDEV_JOIN 0x0014
1503
1504 extern int register_netdevice_notifier(struct notifier_block *nb);
1505 extern int unregister_netdevice_notifier(struct notifier_block *nb);
1506 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1507
1508
1509 extern rwlock_t dev_base_lock; /* Device list lock */
1510
1511
1512 #define for_each_netdev(net, d) \
1513 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1514 #define for_each_netdev_reverse(net, d) \
1515 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1516 #define for_each_netdev_rcu(net, d) \
1517 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1518 #define for_each_netdev_safe(net, d, n) \
1519 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1520 #define for_each_netdev_continue(net, d) \
1521 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1522 #define for_each_netdev_continue_rcu(net, d) \
1523 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1524 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
1525
1526 static inline struct net_device *next_net_device(struct net_device *dev)
1527 {
1528 struct list_head *lh;
1529 struct net *net;
1530
1531 net = dev_net(dev);
1532 lh = dev->dev_list.next;
1533 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1534 }
1535
1536 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1537 {
1538 struct list_head *lh;
1539 struct net *net;
1540
1541 net = dev_net(dev);
1542 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1543 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1544 }
1545
1546 static inline struct net_device *first_net_device(struct net *net)
1547 {
1548 return list_empty(&net->dev_base_head) ? NULL :
1549 net_device_entry(net->dev_base_head.next);
1550 }
1551
1552 static inline struct net_device *first_net_device_rcu(struct net *net)
1553 {
1554 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1555
1556 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1557 }
1558
1559 extern int netdev_boot_setup_check(struct net_device *dev);
1560 extern unsigned long netdev_boot_base(const char *prefix, int unit);
1561 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1562 const char *hwaddr);
1563 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1564 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1565 extern void dev_add_pack(struct packet_type *pt);
1566 extern void dev_remove_pack(struct packet_type *pt);
1567 extern void __dev_remove_pack(struct packet_type *pt);
1568
1569 extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1570 unsigned short mask);
1571 extern struct net_device *dev_get_by_name(struct net *net, const char *name);
1572 extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1573 extern struct net_device *__dev_get_by_name(struct net *net, const char *name);
1574 extern int dev_alloc_name(struct net_device *dev, const char *name);
1575 extern int dev_open(struct net_device *dev);
1576 extern int dev_close(struct net_device *dev);
1577 extern void dev_disable_lro(struct net_device *dev);
1578 extern int dev_queue_xmit(struct sk_buff *skb);
1579 extern int register_netdevice(struct net_device *dev);
1580 extern void unregister_netdevice_queue(struct net_device *dev,
1581 struct list_head *head);
1582 extern void unregister_netdevice_many(struct list_head *head);
1583 static inline void unregister_netdevice(struct net_device *dev)
1584 {
1585 unregister_netdevice_queue(dev, NULL);
1586 }
1587
1588 extern int netdev_refcnt_read(const struct net_device *dev);
1589 extern void free_netdev(struct net_device *dev);
1590 extern void synchronize_net(void);
1591 extern int init_dummy_netdev(struct net_device *dev);
1592 extern void netdev_resync_ops(struct net_device *dev);
1593
1594 extern struct net_device *dev_get_by_index(struct net *net, int ifindex);
1595 extern struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1596 extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1597 extern int dev_restart(struct net_device *dev);
1598 #ifdef CONFIG_NETPOLL_TRAP
1599 extern int netpoll_trap(void);
1600 #endif
1601 extern int skb_gro_receive(struct sk_buff **head,
1602 struct sk_buff *skb);
1603 extern void skb_gro_reset_offset(struct sk_buff *skb);
1604
1605 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1606 {
1607 return NAPI_GRO_CB(skb)->data_offset;
1608 }
1609
1610 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1611 {
1612 return skb->len - NAPI_GRO_CB(skb)->data_offset;
1613 }
1614
1615 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1616 {
1617 NAPI_GRO_CB(skb)->data_offset += len;
1618 }
1619
1620 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1621 unsigned int offset)
1622 {
1623 return NAPI_GRO_CB(skb)->frag0 + offset;
1624 }
1625
1626 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1627 {
1628 return NAPI_GRO_CB(skb)->frag0_len < hlen;
1629 }
1630
1631 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1632 unsigned int offset)
1633 {
1634 if (!pskb_may_pull(skb, hlen))
1635 return NULL;
1636
1637 NAPI_GRO_CB(skb)->frag0 = NULL;
1638 NAPI_GRO_CB(skb)->frag0_len = 0;
1639 return skb->data + offset;
1640 }
1641
1642 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1643 {
1644 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1645 }
1646
1647 static inline void *skb_gro_network_header(struct sk_buff *skb)
1648 {
1649 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1650 skb_network_offset(skb);
1651 }
1652
1653 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1654 unsigned short type,
1655 const void *daddr, const void *saddr,
1656 unsigned len)
1657 {
1658 if (!dev->header_ops || !dev->header_ops->create)
1659 return 0;
1660
1661 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1662 }
1663
1664 static inline int dev_parse_header(const struct sk_buff *skb,
1665 unsigned char *haddr)
1666 {
1667 const struct net_device *dev = skb->dev;
1668
1669 if (!dev->header_ops || !dev->header_ops->parse)
1670 return 0;
1671 return dev->header_ops->parse(skb, haddr);
1672 }
1673
1674 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1675 extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1676 static inline int unregister_gifconf(unsigned int family)
1677 {
1678 return register_gifconf(family, NULL);
1679 }
1680
1681 /*
1682 * Incoming packets are placed on per-cpu queues
1683 */
1684 struct softnet_data {
1685 struct Qdisc *output_queue;
1686 struct Qdisc **output_queue_tailp;
1687 struct list_head poll_list;
1688 struct sk_buff *completion_queue;
1689 struct sk_buff_head process_queue;
1690
1691 /* stats */
1692 unsigned int processed;
1693 unsigned int time_squeeze;
1694 unsigned int cpu_collision;
1695 unsigned int received_rps;
1696
1697 #ifdef CONFIG_RPS
1698 struct softnet_data *rps_ipi_list;
1699
1700 /* Elements below can be accessed between CPUs for RPS */
1701 struct call_single_data csd ____cacheline_aligned_in_smp;
1702 struct softnet_data *rps_ipi_next;
1703 unsigned int cpu;
1704 unsigned int input_queue_head;
1705 unsigned int input_queue_tail;
1706 #endif
1707 unsigned dropped;
1708 struct sk_buff_head input_pkt_queue;
1709 struct napi_struct backlog;
1710 };
1711
1712 static inline void input_queue_head_incr(struct softnet_data *sd)
1713 {
1714 #ifdef CONFIG_RPS
1715 sd->input_queue_head++;
1716 #endif
1717 }
1718
1719 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1720 unsigned int *qtail)
1721 {
1722 #ifdef CONFIG_RPS
1723 *qtail = ++sd->input_queue_tail;
1724 #endif
1725 }
1726
1727 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1728
1729 extern void __netif_schedule(struct Qdisc *q);
1730
1731 static inline void netif_schedule_queue(struct netdev_queue *txq)
1732 {
1733 if (!(txq->state & QUEUE_STATE_ANY_XOFF))
1734 __netif_schedule(txq->qdisc);
1735 }
1736
1737 static inline void netif_tx_schedule_all(struct net_device *dev)
1738 {
1739 unsigned int i;
1740
1741 for (i = 0; i < dev->num_tx_queues; i++)
1742 netif_schedule_queue(netdev_get_tx_queue(dev, i));
1743 }
1744
1745 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1746 {
1747 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1748 }
1749
1750 /**
1751 * netif_start_queue - allow transmit
1752 * @dev: network device
1753 *
1754 * Allow upper layers to call the device hard_start_xmit routine.
1755 */
1756 static inline void netif_start_queue(struct net_device *dev)
1757 {
1758 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1759 }
1760
1761 static inline void netif_tx_start_all_queues(struct net_device *dev)
1762 {
1763 unsigned int i;
1764
1765 for (i = 0; i < dev->num_tx_queues; i++) {
1766 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1767 netif_tx_start_queue(txq);
1768 }
1769 }
1770
1771 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1772 {
1773 #ifdef CONFIG_NETPOLL_TRAP
1774 if (netpoll_trap()) {
1775 netif_tx_start_queue(dev_queue);
1776 return;
1777 }
1778 #endif
1779 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
1780 __netif_schedule(dev_queue->qdisc);
1781 }
1782
1783 /**
1784 * netif_wake_queue - restart transmit
1785 * @dev: network device
1786 *
1787 * Allow upper layers to call the device hard_start_xmit routine.
1788 * Used for flow control when transmit resources are available.
1789 */
1790 static inline void netif_wake_queue(struct net_device *dev)
1791 {
1792 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1793 }
1794
1795 static inline void netif_tx_wake_all_queues(struct net_device *dev)
1796 {
1797 unsigned int i;
1798
1799 for (i = 0; i < dev->num_tx_queues; i++) {
1800 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1801 netif_tx_wake_queue(txq);
1802 }
1803 }
1804
1805 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1806 {
1807 if (WARN_ON(!dev_queue)) {
1808 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
1809 return;
1810 }
1811 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1812 }
1813
1814 /**
1815 * netif_stop_queue - stop transmitted packets
1816 * @dev: network device
1817 *
1818 * Stop upper layers calling the device hard_start_xmit routine.
1819 * Used for flow control when transmit resources are unavailable.
1820 */
1821 static inline void netif_stop_queue(struct net_device *dev)
1822 {
1823 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1824 }
1825
1826 static inline void netif_tx_stop_all_queues(struct net_device *dev)
1827 {
1828 unsigned int i;
1829
1830 for (i = 0; i < dev->num_tx_queues; i++) {
1831 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1832 netif_tx_stop_queue(txq);
1833 }
1834 }
1835
1836 static inline int netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1837 {
1838 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1839 }
1840
1841 /**
1842 * netif_queue_stopped - test if transmit queue is flowblocked
1843 * @dev: network device
1844 *
1845 * Test if transmit queue on device is currently unable to send.
1846 */
1847 static inline int netif_queue_stopped(const struct net_device *dev)
1848 {
1849 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1850 }
1851
1852 static inline int netif_xmit_stopped(const struct netdev_queue *dev_queue)
1853 {
1854 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
1855 }
1856
1857 static inline int netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
1858 {
1859 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
1860 }
1861
1862 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
1863 unsigned int bytes)
1864 {
1865 }
1866
1867 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
1868 {
1869 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
1870 }
1871
1872 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
1873 unsigned pkts, unsigned bytes)
1874 {
1875 }
1876
1877 static inline void netdev_completed_queue(struct net_device *dev,
1878 unsigned pkts, unsigned bytes)
1879 {
1880 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
1881 }
1882
1883 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
1884 {
1885 }
1886
1887 static inline void netdev_reset_queue(struct net_device *dev_queue)
1888 {
1889 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
1890 }
1891
1892 /**
1893 * netif_running - test if up
1894 * @dev: network device
1895 *
1896 * Test if the device has been brought up.
1897 */
1898 static inline int netif_running(const struct net_device *dev)
1899 {
1900 return test_bit(__LINK_STATE_START, &dev->state);
1901 }
1902
1903 /*
1904 * Routines to manage the subqueues on a device. We only need start
1905 * stop, and a check if it's stopped. All other device management is
1906 * done at the overall netdevice level.
1907 * Also test the device if we're multiqueue.
1908 */
1909
1910 /**
1911 * netif_start_subqueue - allow sending packets on subqueue
1912 * @dev: network device
1913 * @queue_index: sub queue index
1914 *
1915 * Start individual transmit queue of a device with multiple transmit queues.
1916 */
1917 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
1918 {
1919 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1920
1921 netif_tx_start_queue(txq);
1922 }
1923
1924 /**
1925 * netif_stop_subqueue - stop sending packets on subqueue
1926 * @dev: network device
1927 * @queue_index: sub queue index
1928 *
1929 * Stop individual transmit queue of a device with multiple transmit queues.
1930 */
1931 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
1932 {
1933 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1934 #ifdef CONFIG_NETPOLL_TRAP
1935 if (netpoll_trap())
1936 return;
1937 #endif
1938 netif_tx_stop_queue(txq);
1939 }
1940
1941 /**
1942 * netif_subqueue_stopped - test status of subqueue
1943 * @dev: network device
1944 * @queue_index: sub queue index
1945 *
1946 * Check individual transmit queue of a device with multiple transmit queues.
1947 */
1948 static inline int __netif_subqueue_stopped(const struct net_device *dev,
1949 u16 queue_index)
1950 {
1951 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1952
1953 return netif_tx_queue_stopped(txq);
1954 }
1955
1956 static inline int netif_subqueue_stopped(const struct net_device *dev,
1957 struct sk_buff *skb)
1958 {
1959 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
1960 }
1961
1962 /**
1963 * netif_wake_subqueue - allow sending packets on subqueue
1964 * @dev: network device
1965 * @queue_index: sub queue index
1966 *
1967 * Resume individual transmit queue of a device with multiple transmit queues.
1968 */
1969 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
1970 {
1971 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1972 #ifdef CONFIG_NETPOLL_TRAP
1973 if (netpoll_trap())
1974 return;
1975 #endif
1976 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
1977 __netif_schedule(txq->qdisc);
1978 }
1979
1980 /*
1981 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
1982 * as a distribution range limit for the returned value.
1983 */
1984 static inline u16 skb_tx_hash(const struct net_device *dev,
1985 const struct sk_buff *skb)
1986 {
1987 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
1988 }
1989
1990 /**
1991 * netif_is_multiqueue - test if device has multiple transmit queues
1992 * @dev: network device
1993 *
1994 * Check if device has multiple transmit queues
1995 */
1996 static inline int netif_is_multiqueue(const struct net_device *dev)
1997 {
1998 return dev->num_tx_queues > 1;
1999 }
2000
2001 extern int netif_set_real_num_tx_queues(struct net_device *dev,
2002 unsigned int txq);
2003
2004 #ifdef CONFIG_RPS
2005 extern int netif_set_real_num_rx_queues(struct net_device *dev,
2006 unsigned int rxq);
2007 #else
2008 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2009 unsigned int rxq)
2010 {
2011 return 0;
2012 }
2013 #endif
2014
2015 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2016 const struct net_device *from_dev)
2017 {
2018 netif_set_real_num_tx_queues(to_dev, from_dev->real_num_tx_queues);
2019 #ifdef CONFIG_RPS
2020 return netif_set_real_num_rx_queues(to_dev,
2021 from_dev->real_num_rx_queues);
2022 #else
2023 return 0;
2024 #endif
2025 }
2026
2027 /* Use this variant when it is known for sure that it
2028 * is executing from hardware interrupt context or with hardware interrupts
2029 * disabled.
2030 */
2031 extern void dev_kfree_skb_irq(struct sk_buff *skb);
2032
2033 /* Use this variant in places where it could be invoked
2034 * from either hardware interrupt or other context, with hardware interrupts
2035 * either disabled or enabled.
2036 */
2037 extern void dev_kfree_skb_any(struct sk_buff *skb);
2038
2039 extern int netif_rx(struct sk_buff *skb);
2040 extern int netif_rx_ni(struct sk_buff *skb);
2041 extern int netif_receive_skb(struct sk_buff *skb);
2042 extern gro_result_t dev_gro_receive(struct napi_struct *napi,
2043 struct sk_buff *skb);
2044 extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb);
2045 extern gro_result_t napi_gro_receive(struct napi_struct *napi,
2046 struct sk_buff *skb);
2047 extern void napi_gro_flush(struct napi_struct *napi);
2048 extern struct sk_buff * napi_get_frags(struct napi_struct *napi);
2049 extern gro_result_t napi_frags_finish(struct napi_struct *napi,
2050 struct sk_buff *skb,
2051 gro_result_t ret);
2052 extern struct sk_buff * napi_frags_skb(struct napi_struct *napi);
2053 extern gro_result_t napi_gro_frags(struct napi_struct *napi);
2054
2055 static inline void napi_free_frags(struct napi_struct *napi)
2056 {
2057 kfree_skb(napi->skb);
2058 napi->skb = NULL;
2059 }
2060
2061 extern int netdev_rx_handler_register(struct net_device *dev,
2062 rx_handler_func_t *rx_handler,
2063 void *rx_handler_data);
2064 extern void netdev_rx_handler_unregister(struct net_device *dev);
2065
2066 extern int dev_valid_name(const char *name);
2067 extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2068 extern int dev_ethtool(struct net *net, struct ifreq *);
2069 extern unsigned dev_get_flags(const struct net_device *);
2070 extern int __dev_change_flags(struct net_device *, unsigned int flags);
2071 extern int dev_change_flags(struct net_device *, unsigned);
2072 extern void __dev_notify_flags(struct net_device *, unsigned int old_flags);
2073 extern int dev_change_name(struct net_device *, const char *);
2074 extern int dev_set_alias(struct net_device *, const char *, size_t);
2075 extern int dev_change_net_namespace(struct net_device *,
2076 struct net *, const char *);
2077 extern int dev_set_mtu(struct net_device *, int);
2078 extern void dev_set_group(struct net_device *, int);
2079 extern int dev_set_mac_address(struct net_device *,
2080 struct sockaddr *);
2081 extern int dev_hard_start_xmit(struct sk_buff *skb,
2082 struct net_device *dev,
2083 struct netdev_queue *txq);
2084 extern int dev_forward_skb(struct net_device *dev,
2085 struct sk_buff *skb);
2086
2087 extern int netdev_budget;
2088
2089 /* Called by rtnetlink.c:rtnl_unlock() */
2090 extern void netdev_run_todo(void);
2091
2092 /**
2093 * dev_put - release reference to device
2094 * @dev: network device
2095 *
2096 * Release reference to device to allow it to be freed.
2097 */
2098 static inline void dev_put(struct net_device *dev)
2099 {
2100 irqsafe_cpu_dec(*dev->pcpu_refcnt);
2101 }
2102
2103 /**
2104 * dev_hold - get reference to device
2105 * @dev: network device
2106 *
2107 * Hold reference to device to keep it from being freed.
2108 */
2109 static inline void dev_hold(struct net_device *dev)
2110 {
2111 irqsafe_cpu_inc(*dev->pcpu_refcnt);
2112 }
2113
2114 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2115 * and _off may be called from IRQ context, but it is caller
2116 * who is responsible for serialization of these calls.
2117 *
2118 * The name carrier is inappropriate, these functions should really be
2119 * called netif_lowerlayer_*() because they represent the state of any
2120 * kind of lower layer not just hardware media.
2121 */
2122
2123 extern void linkwatch_fire_event(struct net_device *dev);
2124 extern void linkwatch_forget_dev(struct net_device *dev);
2125
2126 /**
2127 * netif_carrier_ok - test if carrier present
2128 * @dev: network device
2129 *
2130 * Check if carrier is present on device
2131 */
2132 static inline int netif_carrier_ok(const struct net_device *dev)
2133 {
2134 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2135 }
2136
2137 extern unsigned long dev_trans_start(struct net_device *dev);
2138
2139 extern void __netdev_watchdog_up(struct net_device *dev);
2140
2141 extern void netif_carrier_on(struct net_device *dev);
2142
2143 extern void netif_carrier_off(struct net_device *dev);
2144
2145 extern void netif_notify_peers(struct net_device *dev);
2146
2147 /**
2148 * netif_dormant_on - mark device as dormant.
2149 * @dev: network device
2150 *
2151 * Mark device as dormant (as per RFC2863).
2152 *
2153 * The dormant state indicates that the relevant interface is not
2154 * actually in a condition to pass packets (i.e., it is not 'up') but is
2155 * in a "pending" state, waiting for some external event. For "on-
2156 * demand" interfaces, this new state identifies the situation where the
2157 * interface is waiting for events to place it in the up state.
2158 *
2159 */
2160 static inline void netif_dormant_on(struct net_device *dev)
2161 {
2162 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2163 linkwatch_fire_event(dev);
2164 }
2165
2166 /**
2167 * netif_dormant_off - set device as not dormant.
2168 * @dev: network device
2169 *
2170 * Device is not in dormant state.
2171 */
2172 static inline void netif_dormant_off(struct net_device *dev)
2173 {
2174 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2175 linkwatch_fire_event(dev);
2176 }
2177
2178 /**
2179 * netif_dormant - test if carrier present
2180 * @dev: network device
2181 *
2182 * Check if carrier is present on device
2183 */
2184 static inline int netif_dormant(const struct net_device *dev)
2185 {
2186 return test_bit(__LINK_STATE_DORMANT, &dev->state);
2187 }
2188
2189
2190 /**
2191 * netif_oper_up - test if device is operational
2192 * @dev: network device
2193 *
2194 * Check if carrier is operational
2195 */
2196 static inline int netif_oper_up(const struct net_device *dev)
2197 {
2198 return (dev->operstate == IF_OPER_UP ||
2199 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2200 }
2201
2202 /**
2203 * netif_device_present - is device available or removed
2204 * @dev: network device
2205 *
2206 * Check if device has not been removed from system.
2207 */
2208 static inline int netif_device_present(struct net_device *dev)
2209 {
2210 return test_bit(__LINK_STATE_PRESENT, &dev->state);
2211 }
2212
2213 extern void netif_device_detach(struct net_device *dev);
2214
2215 extern void netif_device_attach(struct net_device *dev);
2216
2217 /*
2218 * Network interface message level settings
2219 */
2220
2221 enum {
2222 NETIF_MSG_DRV = 0x0001,
2223 NETIF_MSG_PROBE = 0x0002,
2224 NETIF_MSG_LINK = 0x0004,
2225 NETIF_MSG_TIMER = 0x0008,
2226 NETIF_MSG_IFDOWN = 0x0010,
2227 NETIF_MSG_IFUP = 0x0020,
2228 NETIF_MSG_RX_ERR = 0x0040,
2229 NETIF_MSG_TX_ERR = 0x0080,
2230 NETIF_MSG_TX_QUEUED = 0x0100,
2231 NETIF_MSG_INTR = 0x0200,
2232 NETIF_MSG_TX_DONE = 0x0400,
2233 NETIF_MSG_RX_STATUS = 0x0800,
2234 NETIF_MSG_PKTDATA = 0x1000,
2235 NETIF_MSG_HW = 0x2000,
2236 NETIF_MSG_WOL = 0x4000,
2237 };
2238
2239 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
2240 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
2241 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
2242 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
2243 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
2244 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
2245 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
2246 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
2247 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2248 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
2249 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
2250 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
2251 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
2252 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
2253 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
2254
2255 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2256 {
2257 /* use default */
2258 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2259 return default_msg_enable_bits;
2260 if (debug_value == 0) /* no output */
2261 return 0;
2262 /* set low N bits */
2263 return (1 << debug_value) - 1;
2264 }
2265
2266 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2267 {
2268 spin_lock(&txq->_xmit_lock);
2269 txq->xmit_lock_owner = cpu;
2270 }
2271
2272 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2273 {
2274 spin_lock_bh(&txq->_xmit_lock);
2275 txq->xmit_lock_owner = smp_processor_id();
2276 }
2277
2278 static inline int __netif_tx_trylock(struct netdev_queue *txq)
2279 {
2280 int ok = spin_trylock(&txq->_xmit_lock);
2281 if (likely(ok))
2282 txq->xmit_lock_owner = smp_processor_id();
2283 return ok;
2284 }
2285
2286 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2287 {
2288 txq->xmit_lock_owner = -1;
2289 spin_unlock(&txq->_xmit_lock);
2290 }
2291
2292 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2293 {
2294 txq->xmit_lock_owner = -1;
2295 spin_unlock_bh(&txq->_xmit_lock);
2296 }
2297
2298 static inline void txq_trans_update(struct netdev_queue *txq)
2299 {
2300 if (txq->xmit_lock_owner != -1)
2301 txq->trans_start = jiffies;
2302 }
2303
2304 /**
2305 * netif_tx_lock - grab network device transmit lock
2306 * @dev: network device
2307 *
2308 * Get network device transmit lock
2309 */
2310 static inline void netif_tx_lock(struct net_device *dev)
2311 {
2312 unsigned int i;
2313 int cpu;
2314
2315 spin_lock(&dev->tx_global_lock);
2316 cpu = smp_processor_id();
2317 for (i = 0; i < dev->num_tx_queues; i++) {
2318 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2319
2320 /* We are the only thread of execution doing a
2321 * freeze, but we have to grab the _xmit_lock in
2322 * order to synchronize with threads which are in
2323 * the ->hard_start_xmit() handler and already
2324 * checked the frozen bit.
2325 */
2326 __netif_tx_lock(txq, cpu);
2327 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2328 __netif_tx_unlock(txq);
2329 }
2330 }
2331
2332 static inline void netif_tx_lock_bh(struct net_device *dev)
2333 {
2334 local_bh_disable();
2335 netif_tx_lock(dev);
2336 }
2337
2338 static inline void netif_tx_unlock(struct net_device *dev)
2339 {
2340 unsigned int i;
2341
2342 for (i = 0; i < dev->num_tx_queues; i++) {
2343 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2344
2345 /* No need to grab the _xmit_lock here. If the
2346 * queue is not stopped for another reason, we
2347 * force a schedule.
2348 */
2349 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2350 netif_schedule_queue(txq);
2351 }
2352 spin_unlock(&dev->tx_global_lock);
2353 }
2354
2355 static inline void netif_tx_unlock_bh(struct net_device *dev)
2356 {
2357 netif_tx_unlock(dev);
2358 local_bh_enable();
2359 }
2360
2361 #define HARD_TX_LOCK(dev, txq, cpu) { \
2362 if ((dev->features & NETIF_F_LLTX) == 0) { \
2363 __netif_tx_lock(txq, cpu); \
2364 } \
2365 }
2366
2367 #define HARD_TX_UNLOCK(dev, txq) { \
2368 if ((dev->features & NETIF_F_LLTX) == 0) { \
2369 __netif_tx_unlock(txq); \
2370 } \
2371 }
2372
2373 static inline void netif_tx_disable(struct net_device *dev)
2374 {
2375 unsigned int i;
2376 int cpu;
2377
2378 local_bh_disable();
2379 cpu = smp_processor_id();
2380 for (i = 0; i < dev->num_tx_queues; i++) {
2381 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2382
2383 __netif_tx_lock(txq, cpu);
2384 netif_tx_stop_queue(txq);
2385 __netif_tx_unlock(txq);
2386 }
2387 local_bh_enable();
2388 }
2389
2390 static inline void netif_addr_lock(struct net_device *dev)
2391 {
2392 spin_lock(&dev->addr_list_lock);
2393 }
2394
2395 static inline void netif_addr_lock_bh(struct net_device *dev)
2396 {
2397 spin_lock_bh(&dev->addr_list_lock);
2398 }
2399
2400 static inline void netif_addr_unlock(struct net_device *dev)
2401 {
2402 spin_unlock(&dev->addr_list_lock);
2403 }
2404
2405 static inline void netif_addr_unlock_bh(struct net_device *dev)
2406 {
2407 spin_unlock_bh(&dev->addr_list_lock);
2408 }
2409
2410 /*
2411 * dev_addrs walker. Should be used only for read access. Call with
2412 * rcu_read_lock held.
2413 */
2414 #define for_each_dev_addr(dev, ha) \
2415 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2416
2417 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2418
2419 extern void ether_setup(struct net_device *dev);
2420
2421 /* Support for loadable net-drivers */
2422 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2423 void (*setup)(struct net_device *),
2424 unsigned int txqs, unsigned int rxqs);
2425 #define alloc_netdev(sizeof_priv, name, setup) \
2426 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2427
2428 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2429 alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2430
2431 extern int register_netdev(struct net_device *dev);
2432 extern void unregister_netdev(struct net_device *dev);
2433
2434 /* General hardware address lists handling functions */
2435 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2436 struct netdev_hw_addr_list *from_list,
2437 int addr_len, unsigned char addr_type);
2438 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2439 struct netdev_hw_addr_list *from_list,
2440 int addr_len, unsigned char addr_type);
2441 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2442 struct netdev_hw_addr_list *from_list,
2443 int addr_len);
2444 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2445 struct netdev_hw_addr_list *from_list,
2446 int addr_len);
2447 extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2448 extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2449
2450 /* Functions used for device addresses handling */
2451 extern int dev_addr_add(struct net_device *dev, unsigned char *addr,
2452 unsigned char addr_type);
2453 extern int dev_addr_del(struct net_device *dev, unsigned char *addr,
2454 unsigned char addr_type);
2455 extern int dev_addr_add_multiple(struct net_device *to_dev,
2456 struct net_device *from_dev,
2457 unsigned char addr_type);
2458 extern int dev_addr_del_multiple(struct net_device *to_dev,
2459 struct net_device *from_dev,
2460 unsigned char addr_type);
2461 extern void dev_addr_flush(struct net_device *dev);
2462 extern int dev_addr_init(struct net_device *dev);
2463
2464 /* Functions used for unicast addresses handling */
2465 extern int dev_uc_add(struct net_device *dev, unsigned char *addr);
2466 extern int dev_uc_del(struct net_device *dev, unsigned char *addr);
2467 extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2468 extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2469 extern void dev_uc_flush(struct net_device *dev);
2470 extern void dev_uc_init(struct net_device *dev);
2471
2472 /* Functions used for multicast addresses handling */
2473 extern int dev_mc_add(struct net_device *dev, unsigned char *addr);
2474 extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr);
2475 extern int dev_mc_del(struct net_device *dev, unsigned char *addr);
2476 extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr);
2477 extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2478 extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2479 extern void dev_mc_flush(struct net_device *dev);
2480 extern void dev_mc_init(struct net_device *dev);
2481
2482 /* Functions used for secondary unicast and multicast support */
2483 extern void dev_set_rx_mode(struct net_device *dev);
2484 extern void __dev_set_rx_mode(struct net_device *dev);
2485 extern int dev_set_promiscuity(struct net_device *dev, int inc);
2486 extern int dev_set_allmulti(struct net_device *dev, int inc);
2487 extern void netdev_state_change(struct net_device *dev);
2488 extern int netdev_bonding_change(struct net_device *dev,
2489 unsigned long event);
2490 extern void netdev_features_change(struct net_device *dev);
2491 /* Load a device via the kmod */
2492 extern void dev_load(struct net *net, const char *name);
2493 extern void dev_mcast_init(void);
2494 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2495 struct rtnl_link_stats64 *storage);
2496
2497 extern int netdev_max_backlog;
2498 extern int netdev_tstamp_prequeue;
2499 extern int weight_p;
2500 extern int bpf_jit_enable;
2501 extern int netdev_set_master(struct net_device *dev, struct net_device *master);
2502 extern int netdev_set_bond_master(struct net_device *dev,
2503 struct net_device *master);
2504 extern int skb_checksum_help(struct sk_buff *skb);
2505 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb,
2506 netdev_features_t features);
2507 #ifdef CONFIG_BUG
2508 extern void netdev_rx_csum_fault(struct net_device *dev);
2509 #else
2510 static inline void netdev_rx_csum_fault(struct net_device *dev)
2511 {
2512 }
2513 #endif
2514 /* rx skb timestamps */
2515 extern void net_enable_timestamp(void);
2516 extern void net_disable_timestamp(void);
2517
2518 #ifdef CONFIG_PROC_FS
2519 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
2520 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2521 extern void dev_seq_stop(struct seq_file *seq, void *v);
2522 #endif
2523
2524 extern int netdev_class_create_file(struct class_attribute *class_attr);
2525 extern void netdev_class_remove_file(struct class_attribute *class_attr);
2526
2527 extern struct kobj_ns_type_operations net_ns_type_operations;
2528
2529 extern const char *netdev_drivername(const struct net_device *dev);
2530
2531 extern void linkwatch_run_queue(void);
2532
2533 static inline netdev_features_t netdev_get_wanted_features(
2534 struct net_device *dev)
2535 {
2536 return (dev->features & ~dev->hw_features) | dev->wanted_features;
2537 }
2538 netdev_features_t netdev_increment_features(netdev_features_t all,
2539 netdev_features_t one, netdev_features_t mask);
2540 int __netdev_update_features(struct net_device *dev);
2541 void netdev_update_features(struct net_device *dev);
2542 void netdev_change_features(struct net_device *dev);
2543
2544 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2545 struct net_device *dev);
2546
2547 netdev_features_t netif_skb_features(struct sk_buff *skb);
2548
2549 static inline int net_gso_ok(netdev_features_t features, int gso_type)
2550 {
2551 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
2552
2553 /* check flags correspondence */
2554 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
2555 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
2556 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
2557 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
2558 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
2559 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
2560
2561 return (features & feature) == feature;
2562 }
2563
2564 static inline int skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
2565 {
2566 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2567 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2568 }
2569
2570 static inline int netif_needs_gso(struct sk_buff *skb,
2571 netdev_features_t features)
2572 {
2573 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2574 unlikely(skb->ip_summed != CHECKSUM_PARTIAL));
2575 }
2576
2577 static inline void netif_set_gso_max_size(struct net_device *dev,
2578 unsigned int size)
2579 {
2580 dev->gso_max_size = size;
2581 }
2582
2583 static inline int netif_is_bond_slave(struct net_device *dev)
2584 {
2585 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2586 }
2587
2588 extern struct pernet_operations __net_initdata loopback_net_ops;
2589
2590 /* Logging, debugging and troubleshooting/diagnostic helpers. */
2591
2592 /* netdev_printk helpers, similar to dev_printk */
2593
2594 static inline const char *netdev_name(const struct net_device *dev)
2595 {
2596 if (dev->reg_state != NETREG_REGISTERED)
2597 return "(unregistered net_device)";
2598 return dev->name;
2599 }
2600
2601 extern int __netdev_printk(const char *level, const struct net_device *dev,
2602 struct va_format *vaf);
2603
2604 extern __printf(3, 4)
2605 int netdev_printk(const char *level, const struct net_device *dev,
2606 const char *format, ...);
2607 extern __printf(2, 3)
2608 int netdev_emerg(const struct net_device *dev, const char *format, ...);
2609 extern __printf(2, 3)
2610 int netdev_alert(const struct net_device *dev, const char *format, ...);
2611 extern __printf(2, 3)
2612 int netdev_crit(const struct net_device *dev, const char *format, ...);
2613 extern __printf(2, 3)
2614 int netdev_err(const struct net_device *dev, const char *format, ...);
2615 extern __printf(2, 3)
2616 int netdev_warn(const struct net_device *dev, const char *format, ...);
2617 extern __printf(2, 3)
2618 int netdev_notice(const struct net_device *dev, const char *format, ...);
2619 extern __printf(2, 3)
2620 int netdev_info(const struct net_device *dev, const char *format, ...);
2621
2622 #define MODULE_ALIAS_NETDEV(device) \
2623 MODULE_ALIAS("netdev-" device)
2624
2625 #if defined(DEBUG)
2626 #define netdev_dbg(__dev, format, args...) \
2627 netdev_printk(KERN_DEBUG, __dev, format, ##args)
2628 #elif defined(CONFIG_DYNAMIC_DEBUG)
2629 #define netdev_dbg(__dev, format, args...) \
2630 do { \
2631 dynamic_netdev_dbg(__dev, format, ##args); \
2632 } while (0)
2633 #else
2634 #define netdev_dbg(__dev, format, args...) \
2635 ({ \
2636 if (0) \
2637 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2638 0; \
2639 })
2640 #endif
2641
2642 #if defined(VERBOSE_DEBUG)
2643 #define netdev_vdbg netdev_dbg
2644 #else
2645
2646 #define netdev_vdbg(dev, format, args...) \
2647 ({ \
2648 if (0) \
2649 netdev_printk(KERN_DEBUG, dev, format, ##args); \
2650 0; \
2651 })
2652 #endif
2653
2654 /*
2655 * netdev_WARN() acts like dev_printk(), but with the key difference
2656 * of using a WARN/WARN_ON to get the message out, including the
2657 * file/line information and a backtrace.
2658 */
2659 #define netdev_WARN(dev, format, args...) \
2660 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2661
2662 /* netif printk helpers, similar to netdev_printk */
2663
2664 #define netif_printk(priv, type, level, dev, fmt, args...) \
2665 do { \
2666 if (netif_msg_##type(priv)) \
2667 netdev_printk(level, (dev), fmt, ##args); \
2668 } while (0)
2669
2670 #define netif_level(level, priv, type, dev, fmt, args...) \
2671 do { \
2672 if (netif_msg_##type(priv)) \
2673 netdev_##level(dev, fmt, ##args); \
2674 } while (0)
2675
2676 #define netif_emerg(priv, type, dev, fmt, args...) \
2677 netif_level(emerg, priv, type, dev, fmt, ##args)
2678 #define netif_alert(priv, type, dev, fmt, args...) \
2679 netif_level(alert, priv, type, dev, fmt, ##args)
2680 #define netif_crit(priv, type, dev, fmt, args...) \
2681 netif_level(crit, priv, type, dev, fmt, ##args)
2682 #define netif_err(priv, type, dev, fmt, args...) \
2683 netif_level(err, priv, type, dev, fmt, ##args)
2684 #define netif_warn(priv, type, dev, fmt, args...) \
2685 netif_level(warn, priv, type, dev, fmt, ##args)
2686 #define netif_notice(priv, type, dev, fmt, args...) \
2687 netif_level(notice, priv, type, dev, fmt, ##args)
2688 #define netif_info(priv, type, dev, fmt, args...) \
2689 netif_level(info, priv, type, dev, fmt, ##args)
2690
2691 #if defined(DEBUG)
2692 #define netif_dbg(priv, type, dev, format, args...) \
2693 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2694 #elif defined(CONFIG_DYNAMIC_DEBUG)
2695 #define netif_dbg(priv, type, netdev, format, args...) \
2696 do { \
2697 if (netif_msg_##type(priv)) \
2698 dynamic_netdev_dbg(netdev, format, ##args); \
2699 } while (0)
2700 #else
2701 #define netif_dbg(priv, type, dev, format, args...) \
2702 ({ \
2703 if (0) \
2704 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2705 0; \
2706 })
2707 #endif
2708
2709 #if defined(VERBOSE_DEBUG)
2710 #define netif_vdbg netif_dbg
2711 #else
2712 #define netif_vdbg(priv, type, dev, format, args...) \
2713 ({ \
2714 if (0) \
2715 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2716 0; \
2717 })
2718 #endif
2719
2720 #endif /* __KERNEL__ */
2721
2722 #endif /* _LINUX_NETDEVICE_H */