]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/linux/netdevice.h
Merge branch '100GbE' of git://git.kernel.org/pub/scm/linux/kernel/git/jkirsher/next...
[mirror_ubuntu-jammy-kernel.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/workqueue.h>
39 #include <linux/dynamic_queue_limits.h>
40
41 #include <linux/ethtool.h>
42 #include <net/net_namespace.h>
43 #ifdef CONFIG_DCB
44 #include <net/dcbnl.h>
45 #endif
46 #include <net/netprio_cgroup.h>
47
48 #include <linux/netdev_features.h>
49 #include <linux/neighbour.h>
50 #include <uapi/linux/netdevice.h>
51 #include <uapi/linux/if_bonding.h>
52 #include <uapi/linux/pkt_cls.h>
53 #include <linux/hashtable.h>
54
55 struct netpoll_info;
56 struct device;
57 struct phy_device;
58 struct dsa_port;
59
60 /* 802.11 specific */
61 struct wireless_dev;
62 /* 802.15.4 specific */
63 struct wpan_dev;
64 struct mpls_dev;
65 /* UDP Tunnel offloads */
66 struct udp_tunnel_info;
67 struct bpf_prog;
68 struct xdp_buff;
69
70 void netdev_set_default_ethtool_ops(struct net_device *dev,
71 const struct ethtool_ops *ops);
72
73 /* Backlog congestion levels */
74 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
75 #define NET_RX_DROP 1 /* packet dropped */
76
77 /*
78 * Transmit return codes: transmit return codes originate from three different
79 * namespaces:
80 *
81 * - qdisc return codes
82 * - driver transmit return codes
83 * - errno values
84 *
85 * Drivers are allowed to return any one of those in their hard_start_xmit()
86 * function. Real network devices commonly used with qdiscs should only return
87 * the driver transmit return codes though - when qdiscs are used, the actual
88 * transmission happens asynchronously, so the value is not propagated to
89 * higher layers. Virtual network devices transmit synchronously; in this case
90 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
91 * others are propagated to higher layers.
92 */
93
94 /* qdisc ->enqueue() return codes. */
95 #define NET_XMIT_SUCCESS 0x00
96 #define NET_XMIT_DROP 0x01 /* skb dropped */
97 #define NET_XMIT_CN 0x02 /* congestion notification */
98 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
99
100 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
101 * indicates that the device will soon be dropping packets, or already drops
102 * some packets of the same priority; prompting us to send less aggressively. */
103 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
104 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
105
106 /* Driver transmit return codes */
107 #define NETDEV_TX_MASK 0xf0
108
109 enum netdev_tx {
110 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
111 NETDEV_TX_OK = 0x00, /* driver took care of packet */
112 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
113 };
114 typedef enum netdev_tx netdev_tx_t;
115
116 /*
117 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
118 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
119 */
120 static inline bool dev_xmit_complete(int rc)
121 {
122 /*
123 * Positive cases with an skb consumed by a driver:
124 * - successful transmission (rc == NETDEV_TX_OK)
125 * - error while transmitting (rc < 0)
126 * - error while queueing to a different device (rc & NET_XMIT_MASK)
127 */
128 if (likely(rc < NET_XMIT_MASK))
129 return true;
130
131 return false;
132 }
133
134 /*
135 * Compute the worst-case header length according to the protocols
136 * used.
137 */
138
139 #if defined(CONFIG_HYPERV_NET)
140 # define LL_MAX_HEADER 128
141 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
142 # if defined(CONFIG_MAC80211_MESH)
143 # define LL_MAX_HEADER 128
144 # else
145 # define LL_MAX_HEADER 96
146 # endif
147 #else
148 # define LL_MAX_HEADER 32
149 #endif
150
151 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
152 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
153 #define MAX_HEADER LL_MAX_HEADER
154 #else
155 #define MAX_HEADER (LL_MAX_HEADER + 48)
156 #endif
157
158 /*
159 * Old network device statistics. Fields are native words
160 * (unsigned long) so they can be read and written atomically.
161 */
162
163 struct net_device_stats {
164 unsigned long rx_packets;
165 unsigned long tx_packets;
166 unsigned long rx_bytes;
167 unsigned long tx_bytes;
168 unsigned long rx_errors;
169 unsigned long tx_errors;
170 unsigned long rx_dropped;
171 unsigned long tx_dropped;
172 unsigned long multicast;
173 unsigned long collisions;
174 unsigned long rx_length_errors;
175 unsigned long rx_over_errors;
176 unsigned long rx_crc_errors;
177 unsigned long rx_frame_errors;
178 unsigned long rx_fifo_errors;
179 unsigned long rx_missed_errors;
180 unsigned long tx_aborted_errors;
181 unsigned long tx_carrier_errors;
182 unsigned long tx_fifo_errors;
183 unsigned long tx_heartbeat_errors;
184 unsigned long tx_window_errors;
185 unsigned long rx_compressed;
186 unsigned long tx_compressed;
187 };
188
189
190 #include <linux/cache.h>
191 #include <linux/skbuff.h>
192
193 #ifdef CONFIG_RPS
194 #include <linux/static_key.h>
195 extern struct static_key rps_needed;
196 extern struct static_key rfs_needed;
197 #endif
198
199 struct neighbour;
200 struct neigh_parms;
201 struct sk_buff;
202
203 struct netdev_hw_addr {
204 struct list_head list;
205 unsigned char addr[MAX_ADDR_LEN];
206 unsigned char type;
207 #define NETDEV_HW_ADDR_T_LAN 1
208 #define NETDEV_HW_ADDR_T_SAN 2
209 #define NETDEV_HW_ADDR_T_SLAVE 3
210 #define NETDEV_HW_ADDR_T_UNICAST 4
211 #define NETDEV_HW_ADDR_T_MULTICAST 5
212 bool global_use;
213 int sync_cnt;
214 int refcount;
215 int synced;
216 struct rcu_head rcu_head;
217 };
218
219 struct netdev_hw_addr_list {
220 struct list_head list;
221 int count;
222 };
223
224 #define netdev_hw_addr_list_count(l) ((l)->count)
225 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
226 #define netdev_hw_addr_list_for_each(ha, l) \
227 list_for_each_entry(ha, &(l)->list, list)
228
229 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
230 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
231 #define netdev_for_each_uc_addr(ha, dev) \
232 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
233
234 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
235 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
236 #define netdev_for_each_mc_addr(ha, dev) \
237 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
238
239 struct hh_cache {
240 unsigned int hh_len;
241 seqlock_t hh_lock;
242
243 /* cached hardware header; allow for machine alignment needs. */
244 #define HH_DATA_MOD 16
245 #define HH_DATA_OFF(__len) \
246 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
247 #define HH_DATA_ALIGN(__len) \
248 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
249 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
250 };
251
252 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
253 * Alternative is:
254 * dev->hard_header_len ? (dev->hard_header_len +
255 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
256 *
257 * We could use other alignment values, but we must maintain the
258 * relationship HH alignment <= LL alignment.
259 */
260 #define LL_RESERVED_SPACE(dev) \
261 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
263 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264
265 struct header_ops {
266 int (*create) (struct sk_buff *skb, struct net_device *dev,
267 unsigned short type, const void *daddr,
268 const void *saddr, unsigned int len);
269 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
270 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
271 void (*cache_update)(struct hh_cache *hh,
272 const struct net_device *dev,
273 const unsigned char *haddr);
274 bool (*validate)(const char *ll_header, unsigned int len);
275 };
276
277 /* These flag bits are private to the generic network queueing
278 * layer; they may not be explicitly referenced by any other
279 * code.
280 */
281
282 enum netdev_state_t {
283 __LINK_STATE_START,
284 __LINK_STATE_PRESENT,
285 __LINK_STATE_NOCARRIER,
286 __LINK_STATE_LINKWATCH_PENDING,
287 __LINK_STATE_DORMANT,
288 };
289
290
291 /*
292 * This structure holds boot-time configured netdevice settings. They
293 * are then used in the device probing.
294 */
295 struct netdev_boot_setup {
296 char name[IFNAMSIZ];
297 struct ifmap map;
298 };
299 #define NETDEV_BOOT_SETUP_MAX 8
300
301 int __init netdev_boot_setup(char *str);
302
303 /*
304 * Structure for NAPI scheduling similar to tasklet but with weighting
305 */
306 struct napi_struct {
307 /* The poll_list must only be managed by the entity which
308 * changes the state of the NAPI_STATE_SCHED bit. This means
309 * whoever atomically sets that bit can add this napi_struct
310 * to the per-CPU poll_list, and whoever clears that bit
311 * can remove from the list right before clearing the bit.
312 */
313 struct list_head poll_list;
314
315 unsigned long state;
316 int weight;
317 unsigned int gro_count;
318 int (*poll)(struct napi_struct *, int);
319 #ifdef CONFIG_NETPOLL
320 int poll_owner;
321 #endif
322 struct net_device *dev;
323 struct sk_buff *gro_list;
324 struct sk_buff *skb;
325 struct hrtimer timer;
326 struct list_head dev_list;
327 struct hlist_node napi_hash_node;
328 unsigned int napi_id;
329 };
330
331 enum {
332 NAPI_STATE_SCHED, /* Poll is scheduled */
333 NAPI_STATE_MISSED, /* reschedule a napi */
334 NAPI_STATE_DISABLE, /* Disable pending */
335 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
336 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */
337 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
338 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
339 };
340
341 enum {
342 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED),
343 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED),
344 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE),
345 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC),
346 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED),
347 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
348 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
349 };
350
351 enum gro_result {
352 GRO_MERGED,
353 GRO_MERGED_FREE,
354 GRO_HELD,
355 GRO_NORMAL,
356 GRO_DROP,
357 GRO_CONSUMED,
358 };
359 typedef enum gro_result gro_result_t;
360
361 /*
362 * enum rx_handler_result - Possible return values for rx_handlers.
363 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
364 * further.
365 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
366 * case skb->dev was changed by rx_handler.
367 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
368 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
369 *
370 * rx_handlers are functions called from inside __netif_receive_skb(), to do
371 * special processing of the skb, prior to delivery to protocol handlers.
372 *
373 * Currently, a net_device can only have a single rx_handler registered. Trying
374 * to register a second rx_handler will return -EBUSY.
375 *
376 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
377 * To unregister a rx_handler on a net_device, use
378 * netdev_rx_handler_unregister().
379 *
380 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
381 * do with the skb.
382 *
383 * If the rx_handler consumed the skb in some way, it should return
384 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
385 * the skb to be delivered in some other way.
386 *
387 * If the rx_handler changed skb->dev, to divert the skb to another
388 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
389 * new device will be called if it exists.
390 *
391 * If the rx_handler decides the skb should be ignored, it should return
392 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
393 * are registered on exact device (ptype->dev == skb->dev).
394 *
395 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
396 * delivered, it should return RX_HANDLER_PASS.
397 *
398 * A device without a registered rx_handler will behave as if rx_handler
399 * returned RX_HANDLER_PASS.
400 */
401
402 enum rx_handler_result {
403 RX_HANDLER_CONSUMED,
404 RX_HANDLER_ANOTHER,
405 RX_HANDLER_EXACT,
406 RX_HANDLER_PASS,
407 };
408 typedef enum rx_handler_result rx_handler_result_t;
409 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
410
411 void __napi_schedule(struct napi_struct *n);
412 void __napi_schedule_irqoff(struct napi_struct *n);
413
414 static inline bool napi_disable_pending(struct napi_struct *n)
415 {
416 return test_bit(NAPI_STATE_DISABLE, &n->state);
417 }
418
419 bool napi_schedule_prep(struct napi_struct *n);
420
421 /**
422 * napi_schedule - schedule NAPI poll
423 * @n: NAPI context
424 *
425 * Schedule NAPI poll routine to be called if it is not already
426 * running.
427 */
428 static inline void napi_schedule(struct napi_struct *n)
429 {
430 if (napi_schedule_prep(n))
431 __napi_schedule(n);
432 }
433
434 /**
435 * napi_schedule_irqoff - schedule NAPI poll
436 * @n: NAPI context
437 *
438 * Variant of napi_schedule(), assuming hard irqs are masked.
439 */
440 static inline void napi_schedule_irqoff(struct napi_struct *n)
441 {
442 if (napi_schedule_prep(n))
443 __napi_schedule_irqoff(n);
444 }
445
446 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
447 static inline bool napi_reschedule(struct napi_struct *napi)
448 {
449 if (napi_schedule_prep(napi)) {
450 __napi_schedule(napi);
451 return true;
452 }
453 return false;
454 }
455
456 bool napi_complete_done(struct napi_struct *n, int work_done);
457 /**
458 * napi_complete - NAPI processing complete
459 * @n: NAPI context
460 *
461 * Mark NAPI processing as complete.
462 * Consider using napi_complete_done() instead.
463 * Return false if device should avoid rearming interrupts.
464 */
465 static inline bool napi_complete(struct napi_struct *n)
466 {
467 return napi_complete_done(n, 0);
468 }
469
470 /**
471 * napi_hash_del - remove a NAPI from global table
472 * @napi: NAPI context
473 *
474 * Warning: caller must observe RCU grace period
475 * before freeing memory containing @napi, if
476 * this function returns true.
477 * Note: core networking stack automatically calls it
478 * from netif_napi_del().
479 * Drivers might want to call this helper to combine all
480 * the needed RCU grace periods into a single one.
481 */
482 bool napi_hash_del(struct napi_struct *napi);
483
484 /**
485 * napi_disable - prevent NAPI from scheduling
486 * @n: NAPI context
487 *
488 * Stop NAPI from being scheduled on this context.
489 * Waits till any outstanding processing completes.
490 */
491 void napi_disable(struct napi_struct *n);
492
493 /**
494 * napi_enable - enable NAPI scheduling
495 * @n: NAPI context
496 *
497 * Resume NAPI from being scheduled on this context.
498 * Must be paired with napi_disable.
499 */
500 static inline void napi_enable(struct napi_struct *n)
501 {
502 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
503 smp_mb__before_atomic();
504 clear_bit(NAPI_STATE_SCHED, &n->state);
505 clear_bit(NAPI_STATE_NPSVC, &n->state);
506 }
507
508 /**
509 * napi_synchronize - wait until NAPI is not running
510 * @n: NAPI context
511 *
512 * Wait until NAPI is done being scheduled on this context.
513 * Waits till any outstanding processing completes but
514 * does not disable future activations.
515 */
516 static inline void napi_synchronize(const struct napi_struct *n)
517 {
518 if (IS_ENABLED(CONFIG_SMP))
519 while (test_bit(NAPI_STATE_SCHED, &n->state))
520 msleep(1);
521 else
522 barrier();
523 }
524
525 enum netdev_queue_state_t {
526 __QUEUE_STATE_DRV_XOFF,
527 __QUEUE_STATE_STACK_XOFF,
528 __QUEUE_STATE_FROZEN,
529 };
530
531 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
532 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
533 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
534
535 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
536 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
537 QUEUE_STATE_FROZEN)
538 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
539 QUEUE_STATE_FROZEN)
540
541 /*
542 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
543 * netif_tx_* functions below are used to manipulate this flag. The
544 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
545 * queue independently. The netif_xmit_*stopped functions below are called
546 * to check if the queue has been stopped by the driver or stack (either
547 * of the XOFF bits are set in the state). Drivers should not need to call
548 * netif_xmit*stopped functions, they should only be using netif_tx_*.
549 */
550
551 struct netdev_queue {
552 /*
553 * read-mostly part
554 */
555 struct net_device *dev;
556 struct Qdisc __rcu *qdisc;
557 struct Qdisc *qdisc_sleeping;
558 #ifdef CONFIG_SYSFS
559 struct kobject kobj;
560 #endif
561 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
562 int numa_node;
563 #endif
564 unsigned long tx_maxrate;
565 /*
566 * Number of TX timeouts for this queue
567 * (/sys/class/net/DEV/Q/trans_timeout)
568 */
569 unsigned long trans_timeout;
570 /*
571 * write-mostly part
572 */
573 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
574 int xmit_lock_owner;
575 /*
576 * Time (in jiffies) of last Tx
577 */
578 unsigned long trans_start;
579
580 unsigned long state;
581
582 #ifdef CONFIG_BQL
583 struct dql dql;
584 #endif
585 } ____cacheline_aligned_in_smp;
586
587 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
588 {
589 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
590 return q->numa_node;
591 #else
592 return NUMA_NO_NODE;
593 #endif
594 }
595
596 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
597 {
598 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
599 q->numa_node = node;
600 #endif
601 }
602
603 #ifdef CONFIG_RPS
604 /*
605 * This structure holds an RPS map which can be of variable length. The
606 * map is an array of CPUs.
607 */
608 struct rps_map {
609 unsigned int len;
610 struct rcu_head rcu;
611 u16 cpus[0];
612 };
613 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
614
615 /*
616 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
617 * tail pointer for that CPU's input queue at the time of last enqueue, and
618 * a hardware filter index.
619 */
620 struct rps_dev_flow {
621 u16 cpu;
622 u16 filter;
623 unsigned int last_qtail;
624 };
625 #define RPS_NO_FILTER 0xffff
626
627 /*
628 * The rps_dev_flow_table structure contains a table of flow mappings.
629 */
630 struct rps_dev_flow_table {
631 unsigned int mask;
632 struct rcu_head rcu;
633 struct rps_dev_flow flows[0];
634 };
635 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
636 ((_num) * sizeof(struct rps_dev_flow)))
637
638 /*
639 * The rps_sock_flow_table contains mappings of flows to the last CPU
640 * on which they were processed by the application (set in recvmsg).
641 * Each entry is a 32bit value. Upper part is the high-order bits
642 * of flow hash, lower part is CPU number.
643 * rps_cpu_mask is used to partition the space, depending on number of
644 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
645 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
646 * meaning we use 32-6=26 bits for the hash.
647 */
648 struct rps_sock_flow_table {
649 u32 mask;
650
651 u32 ents[0] ____cacheline_aligned_in_smp;
652 };
653 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
654
655 #define RPS_NO_CPU 0xffff
656
657 extern u32 rps_cpu_mask;
658 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
659
660 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
661 u32 hash)
662 {
663 if (table && hash) {
664 unsigned int index = hash & table->mask;
665 u32 val = hash & ~rps_cpu_mask;
666
667 /* We only give a hint, preemption can change CPU under us */
668 val |= raw_smp_processor_id();
669
670 if (table->ents[index] != val)
671 table->ents[index] = val;
672 }
673 }
674
675 #ifdef CONFIG_RFS_ACCEL
676 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
677 u16 filter_id);
678 #endif
679 #endif /* CONFIG_RPS */
680
681 /* This structure contains an instance of an RX queue. */
682 struct netdev_rx_queue {
683 #ifdef CONFIG_RPS
684 struct rps_map __rcu *rps_map;
685 struct rps_dev_flow_table __rcu *rps_flow_table;
686 #endif
687 struct kobject kobj;
688 struct net_device *dev;
689 } ____cacheline_aligned_in_smp;
690
691 /*
692 * RX queue sysfs structures and functions.
693 */
694 struct rx_queue_attribute {
695 struct attribute attr;
696 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
697 ssize_t (*store)(struct netdev_rx_queue *queue,
698 const char *buf, size_t len);
699 };
700
701 #ifdef CONFIG_XPS
702 /*
703 * This structure holds an XPS map which can be of variable length. The
704 * map is an array of queues.
705 */
706 struct xps_map {
707 unsigned int len;
708 unsigned int alloc_len;
709 struct rcu_head rcu;
710 u16 queues[0];
711 };
712 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
713 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
714 - sizeof(struct xps_map)) / sizeof(u16))
715
716 /*
717 * This structure holds all XPS maps for device. Maps are indexed by CPU.
718 */
719 struct xps_dev_maps {
720 struct rcu_head rcu;
721 struct xps_map __rcu *cpu_map[0];
722 };
723 #define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \
724 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
725 #endif /* CONFIG_XPS */
726
727 #define TC_MAX_QUEUE 16
728 #define TC_BITMASK 15
729 /* HW offloaded queuing disciplines txq count and offset maps */
730 struct netdev_tc_txq {
731 u16 count;
732 u16 offset;
733 };
734
735 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
736 /*
737 * This structure is to hold information about the device
738 * configured to run FCoE protocol stack.
739 */
740 struct netdev_fcoe_hbainfo {
741 char manufacturer[64];
742 char serial_number[64];
743 char hardware_version[64];
744 char driver_version[64];
745 char optionrom_version[64];
746 char firmware_version[64];
747 char model[256];
748 char model_description[256];
749 };
750 #endif
751
752 #define MAX_PHYS_ITEM_ID_LEN 32
753
754 /* This structure holds a unique identifier to identify some
755 * physical item (port for example) used by a netdevice.
756 */
757 struct netdev_phys_item_id {
758 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
759 unsigned char id_len;
760 };
761
762 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
763 struct netdev_phys_item_id *b)
764 {
765 return a->id_len == b->id_len &&
766 memcmp(a->id, b->id, a->id_len) == 0;
767 }
768
769 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
770 struct sk_buff *skb);
771
772 enum tc_setup_type {
773 TC_SETUP_MQPRIO,
774 TC_SETUP_CLSU32,
775 TC_SETUP_CLSFLOWER,
776 TC_SETUP_CLSMATCHALL,
777 TC_SETUP_CLSBPF,
778 };
779
780 /* These structures hold the attributes of xdp state that are being passed
781 * to the netdevice through the xdp op.
782 */
783 enum xdp_netdev_command {
784 /* Set or clear a bpf program used in the earliest stages of packet
785 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
786 * is responsible for calling bpf_prog_put on any old progs that are
787 * stored. In case of error, the callee need not release the new prog
788 * reference, but on success it takes ownership and must bpf_prog_put
789 * when it is no longer used.
790 */
791 XDP_SETUP_PROG,
792 XDP_SETUP_PROG_HW,
793 /* Check if a bpf program is set on the device. The callee should
794 * set @prog_attached to one of XDP_ATTACHED_* values, note that "true"
795 * is equivalent to XDP_ATTACHED_DRV.
796 */
797 XDP_QUERY_PROG,
798 };
799
800 struct netlink_ext_ack;
801
802 struct netdev_xdp {
803 enum xdp_netdev_command command;
804 union {
805 /* XDP_SETUP_PROG */
806 struct {
807 u32 flags;
808 struct bpf_prog *prog;
809 struct netlink_ext_ack *extack;
810 };
811 /* XDP_QUERY_PROG */
812 struct {
813 u8 prog_attached;
814 u32 prog_id;
815 };
816 };
817 };
818
819 #ifdef CONFIG_XFRM_OFFLOAD
820 struct xfrmdev_ops {
821 int (*xdo_dev_state_add) (struct xfrm_state *x);
822 void (*xdo_dev_state_delete) (struct xfrm_state *x);
823 void (*xdo_dev_state_free) (struct xfrm_state *x);
824 bool (*xdo_dev_offload_ok) (struct sk_buff *skb,
825 struct xfrm_state *x);
826 };
827 #endif
828
829 struct dev_ifalias {
830 struct rcu_head rcuhead;
831 char ifalias[];
832 };
833
834 /*
835 * This structure defines the management hooks for network devices.
836 * The following hooks can be defined; unless noted otherwise, they are
837 * optional and can be filled with a null pointer.
838 *
839 * int (*ndo_init)(struct net_device *dev);
840 * This function is called once when a network device is registered.
841 * The network device can use this for any late stage initialization
842 * or semantic validation. It can fail with an error code which will
843 * be propagated back to register_netdev.
844 *
845 * void (*ndo_uninit)(struct net_device *dev);
846 * This function is called when device is unregistered or when registration
847 * fails. It is not called if init fails.
848 *
849 * int (*ndo_open)(struct net_device *dev);
850 * This function is called when a network device transitions to the up
851 * state.
852 *
853 * int (*ndo_stop)(struct net_device *dev);
854 * This function is called when a network device transitions to the down
855 * state.
856 *
857 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
858 * struct net_device *dev);
859 * Called when a packet needs to be transmitted.
860 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
861 * the queue before that can happen; it's for obsolete devices and weird
862 * corner cases, but the stack really does a non-trivial amount
863 * of useless work if you return NETDEV_TX_BUSY.
864 * Required; cannot be NULL.
865 *
866 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
867 * struct net_device *dev
868 * netdev_features_t features);
869 * Called by core transmit path to determine if device is capable of
870 * performing offload operations on a given packet. This is to give
871 * the device an opportunity to implement any restrictions that cannot
872 * be otherwise expressed by feature flags. The check is called with
873 * the set of features that the stack has calculated and it returns
874 * those the driver believes to be appropriate.
875 *
876 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
877 * void *accel_priv, select_queue_fallback_t fallback);
878 * Called to decide which queue to use when device supports multiple
879 * transmit queues.
880 *
881 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
882 * This function is called to allow device receiver to make
883 * changes to configuration when multicast or promiscuous is enabled.
884 *
885 * void (*ndo_set_rx_mode)(struct net_device *dev);
886 * This function is called device changes address list filtering.
887 * If driver handles unicast address filtering, it should set
888 * IFF_UNICAST_FLT in its priv_flags.
889 *
890 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
891 * This function is called when the Media Access Control address
892 * needs to be changed. If this interface is not defined, the
893 * MAC address can not be changed.
894 *
895 * int (*ndo_validate_addr)(struct net_device *dev);
896 * Test if Media Access Control address is valid for the device.
897 *
898 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
899 * Called when a user requests an ioctl which can't be handled by
900 * the generic interface code. If not defined ioctls return
901 * not supported error code.
902 *
903 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
904 * Used to set network devices bus interface parameters. This interface
905 * is retained for legacy reasons; new devices should use the bus
906 * interface (PCI) for low level management.
907 *
908 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
909 * Called when a user wants to change the Maximum Transfer Unit
910 * of a device.
911 *
912 * void (*ndo_tx_timeout)(struct net_device *dev);
913 * Callback used when the transmitter has not made any progress
914 * for dev->watchdog ticks.
915 *
916 * void (*ndo_get_stats64)(struct net_device *dev,
917 * struct rtnl_link_stats64 *storage);
918 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
919 * Called when a user wants to get the network device usage
920 * statistics. Drivers must do one of the following:
921 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
922 * rtnl_link_stats64 structure passed by the caller.
923 * 2. Define @ndo_get_stats to update a net_device_stats structure
924 * (which should normally be dev->stats) and return a pointer to
925 * it. The structure may be changed asynchronously only if each
926 * field is written atomically.
927 * 3. Update dev->stats asynchronously and atomically, and define
928 * neither operation.
929 *
930 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
931 * Return true if this device supports offload stats of this attr_id.
932 *
933 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
934 * void *attr_data)
935 * Get statistics for offload operations by attr_id. Write it into the
936 * attr_data pointer.
937 *
938 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
939 * If device supports VLAN filtering this function is called when a
940 * VLAN id is registered.
941 *
942 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
943 * If device supports VLAN filtering this function is called when a
944 * VLAN id is unregistered.
945 *
946 * void (*ndo_poll_controller)(struct net_device *dev);
947 *
948 * SR-IOV management functions.
949 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
950 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
951 * u8 qos, __be16 proto);
952 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
953 * int max_tx_rate);
954 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
955 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
956 * int (*ndo_get_vf_config)(struct net_device *dev,
957 * int vf, struct ifla_vf_info *ivf);
958 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
959 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
960 * struct nlattr *port[]);
961 *
962 * Enable or disable the VF ability to query its RSS Redirection Table and
963 * Hash Key. This is needed since on some devices VF share this information
964 * with PF and querying it may introduce a theoretical security risk.
965 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
966 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
967 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
968 * void *type_data);
969 * Called to setup any 'tc' scheduler, classifier or action on @dev.
970 * This is always called from the stack with the rtnl lock held and netif
971 * tx queues stopped. This allows the netdevice to perform queue
972 * management safely.
973 *
974 * Fiber Channel over Ethernet (FCoE) offload functions.
975 * int (*ndo_fcoe_enable)(struct net_device *dev);
976 * Called when the FCoE protocol stack wants to start using LLD for FCoE
977 * so the underlying device can perform whatever needed configuration or
978 * initialization to support acceleration of FCoE traffic.
979 *
980 * int (*ndo_fcoe_disable)(struct net_device *dev);
981 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
982 * so the underlying device can perform whatever needed clean-ups to
983 * stop supporting acceleration of FCoE traffic.
984 *
985 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
986 * struct scatterlist *sgl, unsigned int sgc);
987 * Called when the FCoE Initiator wants to initialize an I/O that
988 * is a possible candidate for Direct Data Placement (DDP). The LLD can
989 * perform necessary setup and returns 1 to indicate the device is set up
990 * successfully to perform DDP on this I/O, otherwise this returns 0.
991 *
992 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
993 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
994 * indicated by the FC exchange id 'xid', so the underlying device can
995 * clean up and reuse resources for later DDP requests.
996 *
997 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
998 * struct scatterlist *sgl, unsigned int sgc);
999 * Called when the FCoE Target wants to initialize an I/O that
1000 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1001 * perform necessary setup and returns 1 to indicate the device is set up
1002 * successfully to perform DDP on this I/O, otherwise this returns 0.
1003 *
1004 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1005 * struct netdev_fcoe_hbainfo *hbainfo);
1006 * Called when the FCoE Protocol stack wants information on the underlying
1007 * device. This information is utilized by the FCoE protocol stack to
1008 * register attributes with Fiber Channel management service as per the
1009 * FC-GS Fabric Device Management Information(FDMI) specification.
1010 *
1011 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1012 * Called when the underlying device wants to override default World Wide
1013 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1014 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1015 * protocol stack to use.
1016 *
1017 * RFS acceleration.
1018 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1019 * u16 rxq_index, u32 flow_id);
1020 * Set hardware filter for RFS. rxq_index is the target queue index;
1021 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1022 * Return the filter ID on success, or a negative error code.
1023 *
1024 * Slave management functions (for bridge, bonding, etc).
1025 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1026 * Called to make another netdev an underling.
1027 *
1028 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1029 * Called to release previously enslaved netdev.
1030 *
1031 * Feature/offload setting functions.
1032 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1033 * netdev_features_t features);
1034 * Adjusts the requested feature flags according to device-specific
1035 * constraints, and returns the resulting flags. Must not modify
1036 * the device state.
1037 *
1038 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1039 * Called to update device configuration to new features. Passed
1040 * feature set might be less than what was returned by ndo_fix_features()).
1041 * Must return >0 or -errno if it changed dev->features itself.
1042 *
1043 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1044 * struct net_device *dev,
1045 * const unsigned char *addr, u16 vid, u16 flags)
1046 * Adds an FDB entry to dev for addr.
1047 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1048 * struct net_device *dev,
1049 * const unsigned char *addr, u16 vid)
1050 * Deletes the FDB entry from dev coresponding to addr.
1051 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1052 * struct net_device *dev, struct net_device *filter_dev,
1053 * int *idx)
1054 * Used to add FDB entries to dump requests. Implementers should add
1055 * entries to skb and update idx with the number of entries.
1056 *
1057 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1058 * u16 flags)
1059 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1060 * struct net_device *dev, u32 filter_mask,
1061 * int nlflags)
1062 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1063 * u16 flags);
1064 *
1065 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1066 * Called to change device carrier. Soft-devices (like dummy, team, etc)
1067 * which do not represent real hardware may define this to allow their
1068 * userspace components to manage their virtual carrier state. Devices
1069 * that determine carrier state from physical hardware properties (eg
1070 * network cables) or protocol-dependent mechanisms (eg
1071 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1072 *
1073 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1074 * struct netdev_phys_item_id *ppid);
1075 * Called to get ID of physical port of this device. If driver does
1076 * not implement this, it is assumed that the hw is not able to have
1077 * multiple net devices on single physical port.
1078 *
1079 * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1080 * struct udp_tunnel_info *ti);
1081 * Called by UDP tunnel to notify a driver about the UDP port and socket
1082 * address family that a UDP tunnel is listnening to. It is called only
1083 * when a new port starts listening. The operation is protected by the
1084 * RTNL.
1085 *
1086 * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1087 * struct udp_tunnel_info *ti);
1088 * Called by UDP tunnel to notify the driver about a UDP port and socket
1089 * address family that the UDP tunnel is not listening to anymore. The
1090 * operation is protected by the RTNL.
1091 *
1092 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1093 * struct net_device *dev)
1094 * Called by upper layer devices to accelerate switching or other
1095 * station functionality into hardware. 'pdev is the lowerdev
1096 * to use for the offload and 'dev' is the net device that will
1097 * back the offload. Returns a pointer to the private structure
1098 * the upper layer will maintain.
1099 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1100 * Called by upper layer device to delete the station created
1101 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1102 * the station and priv is the structure returned by the add
1103 * operation.
1104 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1105 * int queue_index, u32 maxrate);
1106 * Called when a user wants to set a max-rate limitation of specific
1107 * TX queue.
1108 * int (*ndo_get_iflink)(const struct net_device *dev);
1109 * Called to get the iflink value of this device.
1110 * void (*ndo_change_proto_down)(struct net_device *dev,
1111 * bool proto_down);
1112 * This function is used to pass protocol port error state information
1113 * to the switch driver. The switch driver can react to the proto_down
1114 * by doing a phys down on the associated switch port.
1115 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1116 * This function is used to get egress tunnel information for given skb.
1117 * This is useful for retrieving outer tunnel header parameters while
1118 * sampling packet.
1119 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1120 * This function is used to specify the headroom that the skb must
1121 * consider when allocation skb during packet reception. Setting
1122 * appropriate rx headroom value allows avoiding skb head copy on
1123 * forward. Setting a negative value resets the rx headroom to the
1124 * default value.
1125 * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp);
1126 * This function is used to set or query state related to XDP on the
1127 * netdevice. See definition of enum xdp_netdev_command for details.
1128 * int (*ndo_xdp_xmit)(struct net_device *dev, struct xdp_buff *xdp);
1129 * This function is used to submit a XDP packet for transmit on a
1130 * netdevice.
1131 * void (*ndo_xdp_flush)(struct net_device *dev);
1132 * This function is used to inform the driver to flush a particular
1133 * xdp tx queue. Must be called on same CPU as xdp_xmit.
1134 */
1135 struct net_device_ops {
1136 int (*ndo_init)(struct net_device *dev);
1137 void (*ndo_uninit)(struct net_device *dev);
1138 int (*ndo_open)(struct net_device *dev);
1139 int (*ndo_stop)(struct net_device *dev);
1140 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1141 struct net_device *dev);
1142 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1143 struct net_device *dev,
1144 netdev_features_t features);
1145 u16 (*ndo_select_queue)(struct net_device *dev,
1146 struct sk_buff *skb,
1147 void *accel_priv,
1148 select_queue_fallback_t fallback);
1149 void (*ndo_change_rx_flags)(struct net_device *dev,
1150 int flags);
1151 void (*ndo_set_rx_mode)(struct net_device *dev);
1152 int (*ndo_set_mac_address)(struct net_device *dev,
1153 void *addr);
1154 int (*ndo_validate_addr)(struct net_device *dev);
1155 int (*ndo_do_ioctl)(struct net_device *dev,
1156 struct ifreq *ifr, int cmd);
1157 int (*ndo_set_config)(struct net_device *dev,
1158 struct ifmap *map);
1159 int (*ndo_change_mtu)(struct net_device *dev,
1160 int new_mtu);
1161 int (*ndo_neigh_setup)(struct net_device *dev,
1162 struct neigh_parms *);
1163 void (*ndo_tx_timeout) (struct net_device *dev);
1164
1165 void (*ndo_get_stats64)(struct net_device *dev,
1166 struct rtnl_link_stats64 *storage);
1167 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1168 int (*ndo_get_offload_stats)(int attr_id,
1169 const struct net_device *dev,
1170 void *attr_data);
1171 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1172
1173 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1174 __be16 proto, u16 vid);
1175 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1176 __be16 proto, u16 vid);
1177 #ifdef CONFIG_NET_POLL_CONTROLLER
1178 void (*ndo_poll_controller)(struct net_device *dev);
1179 int (*ndo_netpoll_setup)(struct net_device *dev,
1180 struct netpoll_info *info);
1181 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1182 #endif
1183 int (*ndo_set_vf_mac)(struct net_device *dev,
1184 int queue, u8 *mac);
1185 int (*ndo_set_vf_vlan)(struct net_device *dev,
1186 int queue, u16 vlan,
1187 u8 qos, __be16 proto);
1188 int (*ndo_set_vf_rate)(struct net_device *dev,
1189 int vf, int min_tx_rate,
1190 int max_tx_rate);
1191 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1192 int vf, bool setting);
1193 int (*ndo_set_vf_trust)(struct net_device *dev,
1194 int vf, bool setting);
1195 int (*ndo_get_vf_config)(struct net_device *dev,
1196 int vf,
1197 struct ifla_vf_info *ivf);
1198 int (*ndo_set_vf_link_state)(struct net_device *dev,
1199 int vf, int link_state);
1200 int (*ndo_get_vf_stats)(struct net_device *dev,
1201 int vf,
1202 struct ifla_vf_stats
1203 *vf_stats);
1204 int (*ndo_set_vf_port)(struct net_device *dev,
1205 int vf,
1206 struct nlattr *port[]);
1207 int (*ndo_get_vf_port)(struct net_device *dev,
1208 int vf, struct sk_buff *skb);
1209 int (*ndo_set_vf_guid)(struct net_device *dev,
1210 int vf, u64 guid,
1211 int guid_type);
1212 int (*ndo_set_vf_rss_query_en)(
1213 struct net_device *dev,
1214 int vf, bool setting);
1215 int (*ndo_setup_tc)(struct net_device *dev,
1216 enum tc_setup_type type,
1217 void *type_data);
1218 #if IS_ENABLED(CONFIG_FCOE)
1219 int (*ndo_fcoe_enable)(struct net_device *dev);
1220 int (*ndo_fcoe_disable)(struct net_device *dev);
1221 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1222 u16 xid,
1223 struct scatterlist *sgl,
1224 unsigned int sgc);
1225 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1226 u16 xid);
1227 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1228 u16 xid,
1229 struct scatterlist *sgl,
1230 unsigned int sgc);
1231 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1232 struct netdev_fcoe_hbainfo *hbainfo);
1233 #endif
1234
1235 #if IS_ENABLED(CONFIG_LIBFCOE)
1236 #define NETDEV_FCOE_WWNN 0
1237 #define NETDEV_FCOE_WWPN 1
1238 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1239 u64 *wwn, int type);
1240 #endif
1241
1242 #ifdef CONFIG_RFS_ACCEL
1243 int (*ndo_rx_flow_steer)(struct net_device *dev,
1244 const struct sk_buff *skb,
1245 u16 rxq_index,
1246 u32 flow_id);
1247 #endif
1248 int (*ndo_add_slave)(struct net_device *dev,
1249 struct net_device *slave_dev);
1250 int (*ndo_del_slave)(struct net_device *dev,
1251 struct net_device *slave_dev);
1252 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1253 netdev_features_t features);
1254 int (*ndo_set_features)(struct net_device *dev,
1255 netdev_features_t features);
1256 int (*ndo_neigh_construct)(struct net_device *dev,
1257 struct neighbour *n);
1258 void (*ndo_neigh_destroy)(struct net_device *dev,
1259 struct neighbour *n);
1260
1261 int (*ndo_fdb_add)(struct ndmsg *ndm,
1262 struct nlattr *tb[],
1263 struct net_device *dev,
1264 const unsigned char *addr,
1265 u16 vid,
1266 u16 flags);
1267 int (*ndo_fdb_del)(struct ndmsg *ndm,
1268 struct nlattr *tb[],
1269 struct net_device *dev,
1270 const unsigned char *addr,
1271 u16 vid);
1272 int (*ndo_fdb_dump)(struct sk_buff *skb,
1273 struct netlink_callback *cb,
1274 struct net_device *dev,
1275 struct net_device *filter_dev,
1276 int *idx);
1277
1278 int (*ndo_bridge_setlink)(struct net_device *dev,
1279 struct nlmsghdr *nlh,
1280 u16 flags);
1281 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1282 u32 pid, u32 seq,
1283 struct net_device *dev,
1284 u32 filter_mask,
1285 int nlflags);
1286 int (*ndo_bridge_dellink)(struct net_device *dev,
1287 struct nlmsghdr *nlh,
1288 u16 flags);
1289 int (*ndo_change_carrier)(struct net_device *dev,
1290 bool new_carrier);
1291 int (*ndo_get_phys_port_id)(struct net_device *dev,
1292 struct netdev_phys_item_id *ppid);
1293 int (*ndo_get_phys_port_name)(struct net_device *dev,
1294 char *name, size_t len);
1295 void (*ndo_udp_tunnel_add)(struct net_device *dev,
1296 struct udp_tunnel_info *ti);
1297 void (*ndo_udp_tunnel_del)(struct net_device *dev,
1298 struct udp_tunnel_info *ti);
1299 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1300 struct net_device *dev);
1301 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1302 void *priv);
1303
1304 int (*ndo_get_lock_subclass)(struct net_device *dev);
1305 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1306 int queue_index,
1307 u32 maxrate);
1308 int (*ndo_get_iflink)(const struct net_device *dev);
1309 int (*ndo_change_proto_down)(struct net_device *dev,
1310 bool proto_down);
1311 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1312 struct sk_buff *skb);
1313 void (*ndo_set_rx_headroom)(struct net_device *dev,
1314 int needed_headroom);
1315 int (*ndo_xdp)(struct net_device *dev,
1316 struct netdev_xdp *xdp);
1317 int (*ndo_xdp_xmit)(struct net_device *dev,
1318 struct xdp_buff *xdp);
1319 void (*ndo_xdp_flush)(struct net_device *dev);
1320 };
1321
1322 /**
1323 * enum net_device_priv_flags - &struct net_device priv_flags
1324 *
1325 * These are the &struct net_device, they are only set internally
1326 * by drivers and used in the kernel. These flags are invisible to
1327 * userspace; this means that the order of these flags can change
1328 * during any kernel release.
1329 *
1330 * You should have a pretty good reason to be extending these flags.
1331 *
1332 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1333 * @IFF_EBRIDGE: Ethernet bridging device
1334 * @IFF_BONDING: bonding master or slave
1335 * @IFF_ISATAP: ISATAP interface (RFC4214)
1336 * @IFF_WAN_HDLC: WAN HDLC device
1337 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1338 * release skb->dst
1339 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1340 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1341 * @IFF_MACVLAN_PORT: device used as macvlan port
1342 * @IFF_BRIDGE_PORT: device used as bridge port
1343 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1344 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1345 * @IFF_UNICAST_FLT: Supports unicast filtering
1346 * @IFF_TEAM_PORT: device used as team port
1347 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1348 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1349 * change when it's running
1350 * @IFF_MACVLAN: Macvlan device
1351 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1352 * underlying stacked devices
1353 * @IFF_IPVLAN_MASTER: IPvlan master device
1354 * @IFF_IPVLAN_SLAVE: IPvlan slave device
1355 * @IFF_L3MDEV_MASTER: device is an L3 master device
1356 * @IFF_NO_QUEUE: device can run without qdisc attached
1357 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1358 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1359 * @IFF_TEAM: device is a team device
1360 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1361 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1362 * entity (i.e. the master device for bridged veth)
1363 * @IFF_MACSEC: device is a MACsec device
1364 */
1365 enum netdev_priv_flags {
1366 IFF_802_1Q_VLAN = 1<<0,
1367 IFF_EBRIDGE = 1<<1,
1368 IFF_BONDING = 1<<2,
1369 IFF_ISATAP = 1<<3,
1370 IFF_WAN_HDLC = 1<<4,
1371 IFF_XMIT_DST_RELEASE = 1<<5,
1372 IFF_DONT_BRIDGE = 1<<6,
1373 IFF_DISABLE_NETPOLL = 1<<7,
1374 IFF_MACVLAN_PORT = 1<<8,
1375 IFF_BRIDGE_PORT = 1<<9,
1376 IFF_OVS_DATAPATH = 1<<10,
1377 IFF_TX_SKB_SHARING = 1<<11,
1378 IFF_UNICAST_FLT = 1<<12,
1379 IFF_TEAM_PORT = 1<<13,
1380 IFF_SUPP_NOFCS = 1<<14,
1381 IFF_LIVE_ADDR_CHANGE = 1<<15,
1382 IFF_MACVLAN = 1<<16,
1383 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1384 IFF_IPVLAN_MASTER = 1<<18,
1385 IFF_IPVLAN_SLAVE = 1<<19,
1386 IFF_L3MDEV_MASTER = 1<<20,
1387 IFF_NO_QUEUE = 1<<21,
1388 IFF_OPENVSWITCH = 1<<22,
1389 IFF_L3MDEV_SLAVE = 1<<23,
1390 IFF_TEAM = 1<<24,
1391 IFF_RXFH_CONFIGURED = 1<<25,
1392 IFF_PHONY_HEADROOM = 1<<26,
1393 IFF_MACSEC = 1<<27,
1394 };
1395
1396 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1397 #define IFF_EBRIDGE IFF_EBRIDGE
1398 #define IFF_BONDING IFF_BONDING
1399 #define IFF_ISATAP IFF_ISATAP
1400 #define IFF_WAN_HDLC IFF_WAN_HDLC
1401 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1402 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1403 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1404 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1405 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1406 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1407 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1408 #define IFF_UNICAST_FLT IFF_UNICAST_FLT
1409 #define IFF_TEAM_PORT IFF_TEAM_PORT
1410 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1411 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1412 #define IFF_MACVLAN IFF_MACVLAN
1413 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1414 #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER
1415 #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE
1416 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1417 #define IFF_NO_QUEUE IFF_NO_QUEUE
1418 #define IFF_OPENVSWITCH IFF_OPENVSWITCH
1419 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1420 #define IFF_TEAM IFF_TEAM
1421 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED
1422 #define IFF_MACSEC IFF_MACSEC
1423
1424 /**
1425 * struct net_device - The DEVICE structure.
1426 *
1427 * Actually, this whole structure is a big mistake. It mixes I/O
1428 * data with strictly "high-level" data, and it has to know about
1429 * almost every data structure used in the INET module.
1430 *
1431 * @name: This is the first field of the "visible" part of this structure
1432 * (i.e. as seen by users in the "Space.c" file). It is the name
1433 * of the interface.
1434 *
1435 * @name_hlist: Device name hash chain, please keep it close to name[]
1436 * @ifalias: SNMP alias
1437 * @mem_end: Shared memory end
1438 * @mem_start: Shared memory start
1439 * @base_addr: Device I/O address
1440 * @irq: Device IRQ number
1441 *
1442 * @carrier_changes: Stats to monitor carrier on<->off transitions
1443 *
1444 * @state: Generic network queuing layer state, see netdev_state_t
1445 * @dev_list: The global list of network devices
1446 * @napi_list: List entry used for polling NAPI devices
1447 * @unreg_list: List entry when we are unregistering the
1448 * device; see the function unregister_netdev
1449 * @close_list: List entry used when we are closing the device
1450 * @ptype_all: Device-specific packet handlers for all protocols
1451 * @ptype_specific: Device-specific, protocol-specific packet handlers
1452 *
1453 * @adj_list: Directly linked devices, like slaves for bonding
1454 * @features: Currently active device features
1455 * @hw_features: User-changeable features
1456 *
1457 * @wanted_features: User-requested features
1458 * @vlan_features: Mask of features inheritable by VLAN devices
1459 *
1460 * @hw_enc_features: Mask of features inherited by encapsulating devices
1461 * This field indicates what encapsulation
1462 * offloads the hardware is capable of doing,
1463 * and drivers will need to set them appropriately.
1464 *
1465 * @mpls_features: Mask of features inheritable by MPLS
1466 *
1467 * @ifindex: interface index
1468 * @group: The group the device belongs to
1469 *
1470 * @stats: Statistics struct, which was left as a legacy, use
1471 * rtnl_link_stats64 instead
1472 *
1473 * @rx_dropped: Dropped packets by core network,
1474 * do not use this in drivers
1475 * @tx_dropped: Dropped packets by core network,
1476 * do not use this in drivers
1477 * @rx_nohandler: nohandler dropped packets by core network on
1478 * inactive devices, do not use this in drivers
1479 *
1480 * @wireless_handlers: List of functions to handle Wireless Extensions,
1481 * instead of ioctl,
1482 * see <net/iw_handler.h> for details.
1483 * @wireless_data: Instance data managed by the core of wireless extensions
1484 *
1485 * @netdev_ops: Includes several pointers to callbacks,
1486 * if one wants to override the ndo_*() functions
1487 * @ethtool_ops: Management operations
1488 * @ndisc_ops: Includes callbacks for different IPv6 neighbour
1489 * discovery handling. Necessary for e.g. 6LoWPAN.
1490 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1491 * of Layer 2 headers.
1492 *
1493 * @flags: Interface flags (a la BSD)
1494 * @priv_flags: Like 'flags' but invisible to userspace,
1495 * see if.h for the definitions
1496 * @gflags: Global flags ( kept as legacy )
1497 * @padded: How much padding added by alloc_netdev()
1498 * @operstate: RFC2863 operstate
1499 * @link_mode: Mapping policy to operstate
1500 * @if_port: Selectable AUI, TP, ...
1501 * @dma: DMA channel
1502 * @mtu: Interface MTU value
1503 * @min_mtu: Interface Minimum MTU value
1504 * @max_mtu: Interface Maximum MTU value
1505 * @type: Interface hardware type
1506 * @hard_header_len: Maximum hardware header length.
1507 * @min_header_len: Minimum hardware header length
1508 *
1509 * @needed_headroom: Extra headroom the hardware may need, but not in all
1510 * cases can this be guaranteed
1511 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1512 * cases can this be guaranteed. Some cases also use
1513 * LL_MAX_HEADER instead to allocate the skb
1514 *
1515 * interface address info:
1516 *
1517 * @perm_addr: Permanent hw address
1518 * @addr_assign_type: Hw address assignment type
1519 * @addr_len: Hardware address length
1520 * @neigh_priv_len: Used in neigh_alloc()
1521 * @dev_id: Used to differentiate devices that share
1522 * the same link layer address
1523 * @dev_port: Used to differentiate devices that share
1524 * the same function
1525 * @addr_list_lock: XXX: need comments on this one
1526 * @uc_promisc: Counter that indicates promiscuous mode
1527 * has been enabled due to the need to listen to
1528 * additional unicast addresses in a device that
1529 * does not implement ndo_set_rx_mode()
1530 * @uc: unicast mac addresses
1531 * @mc: multicast mac addresses
1532 * @dev_addrs: list of device hw addresses
1533 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1534 * @promiscuity: Number of times the NIC is told to work in
1535 * promiscuous mode; if it becomes 0 the NIC will
1536 * exit promiscuous mode
1537 * @allmulti: Counter, enables or disables allmulticast mode
1538 *
1539 * @vlan_info: VLAN info
1540 * @dsa_ptr: dsa specific data
1541 * @tipc_ptr: TIPC specific data
1542 * @atalk_ptr: AppleTalk link
1543 * @ip_ptr: IPv4 specific data
1544 * @dn_ptr: DECnet specific data
1545 * @ip6_ptr: IPv6 specific data
1546 * @ax25_ptr: AX.25 specific data
1547 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1548 *
1549 * @dev_addr: Hw address (before bcast,
1550 * because most packets are unicast)
1551 *
1552 * @_rx: Array of RX queues
1553 * @num_rx_queues: Number of RX queues
1554 * allocated at register_netdev() time
1555 * @real_num_rx_queues: Number of RX queues currently active in device
1556 *
1557 * @rx_handler: handler for received packets
1558 * @rx_handler_data: XXX: need comments on this one
1559 * @ingress_queue: XXX: need comments on this one
1560 * @broadcast: hw bcast address
1561 *
1562 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1563 * indexed by RX queue number. Assigned by driver.
1564 * This must only be set if the ndo_rx_flow_steer
1565 * operation is defined
1566 * @index_hlist: Device index hash chain
1567 *
1568 * @_tx: Array of TX queues
1569 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1570 * @real_num_tx_queues: Number of TX queues currently active in device
1571 * @qdisc: Root qdisc from userspace point of view
1572 * @tx_queue_len: Max frames per queue allowed
1573 * @tx_global_lock: XXX: need comments on this one
1574 *
1575 * @xps_maps: XXX: need comments on this one
1576 *
1577 * @watchdog_timeo: Represents the timeout that is used by
1578 * the watchdog (see dev_watchdog())
1579 * @watchdog_timer: List of timers
1580 *
1581 * @pcpu_refcnt: Number of references to this device
1582 * @todo_list: Delayed register/unregister
1583 * @link_watch_list: XXX: need comments on this one
1584 *
1585 * @reg_state: Register/unregister state machine
1586 * @dismantle: Device is going to be freed
1587 * @rtnl_link_state: This enum represents the phases of creating
1588 * a new link
1589 *
1590 * @needs_free_netdev: Should unregister perform free_netdev?
1591 * @priv_destructor: Called from unregister
1592 * @npinfo: XXX: need comments on this one
1593 * @nd_net: Network namespace this network device is inside
1594 *
1595 * @ml_priv: Mid-layer private
1596 * @lstats: Loopback statistics
1597 * @tstats: Tunnel statistics
1598 * @dstats: Dummy statistics
1599 * @vstats: Virtual ethernet statistics
1600 *
1601 * @garp_port: GARP
1602 * @mrp_port: MRP
1603 *
1604 * @dev: Class/net/name entry
1605 * @sysfs_groups: Space for optional device, statistics and wireless
1606 * sysfs groups
1607 *
1608 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1609 * @rtnl_link_ops: Rtnl_link_ops
1610 *
1611 * @gso_max_size: Maximum size of generic segmentation offload
1612 * @gso_max_segs: Maximum number of segments that can be passed to the
1613 * NIC for GSO
1614 *
1615 * @dcbnl_ops: Data Center Bridging netlink ops
1616 * @num_tc: Number of traffic classes in the net device
1617 * @tc_to_txq: XXX: need comments on this one
1618 * @prio_tc_map: XXX: need comments on this one
1619 *
1620 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1621 *
1622 * @priomap: XXX: need comments on this one
1623 * @phydev: Physical device may attach itself
1624 * for hardware timestamping
1625 *
1626 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1627 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1628 *
1629 * @proto_down: protocol port state information can be sent to the
1630 * switch driver and used to set the phys state of the
1631 * switch port.
1632 *
1633 * FIXME: cleanup struct net_device such that network protocol info
1634 * moves out.
1635 */
1636
1637 struct net_device {
1638 char name[IFNAMSIZ];
1639 struct hlist_node name_hlist;
1640 struct dev_ifalias __rcu *ifalias;
1641 /*
1642 * I/O specific fields
1643 * FIXME: Merge these and struct ifmap into one
1644 */
1645 unsigned long mem_end;
1646 unsigned long mem_start;
1647 unsigned long base_addr;
1648 int irq;
1649
1650 atomic_t carrier_changes;
1651
1652 /*
1653 * Some hardware also needs these fields (state,dev_list,
1654 * napi_list,unreg_list,close_list) but they are not
1655 * part of the usual set specified in Space.c.
1656 */
1657
1658 unsigned long state;
1659
1660 struct list_head dev_list;
1661 struct list_head napi_list;
1662 struct list_head unreg_list;
1663 struct list_head close_list;
1664 struct list_head ptype_all;
1665 struct list_head ptype_specific;
1666
1667 struct {
1668 struct list_head upper;
1669 struct list_head lower;
1670 } adj_list;
1671
1672 netdev_features_t features;
1673 netdev_features_t hw_features;
1674 netdev_features_t wanted_features;
1675 netdev_features_t vlan_features;
1676 netdev_features_t hw_enc_features;
1677 netdev_features_t mpls_features;
1678 netdev_features_t gso_partial_features;
1679
1680 int ifindex;
1681 int group;
1682
1683 struct net_device_stats stats;
1684
1685 atomic_long_t rx_dropped;
1686 atomic_long_t tx_dropped;
1687 atomic_long_t rx_nohandler;
1688
1689 #ifdef CONFIG_WIRELESS_EXT
1690 const struct iw_handler_def *wireless_handlers;
1691 struct iw_public_data *wireless_data;
1692 #endif
1693 const struct net_device_ops *netdev_ops;
1694 const struct ethtool_ops *ethtool_ops;
1695 #ifdef CONFIG_NET_SWITCHDEV
1696 const struct switchdev_ops *switchdev_ops;
1697 #endif
1698 #ifdef CONFIG_NET_L3_MASTER_DEV
1699 const struct l3mdev_ops *l3mdev_ops;
1700 #endif
1701 #if IS_ENABLED(CONFIG_IPV6)
1702 const struct ndisc_ops *ndisc_ops;
1703 #endif
1704
1705 #ifdef CONFIG_XFRM
1706 const struct xfrmdev_ops *xfrmdev_ops;
1707 #endif
1708
1709 const struct header_ops *header_ops;
1710
1711 unsigned int flags;
1712 unsigned int priv_flags;
1713
1714 unsigned short gflags;
1715 unsigned short padded;
1716
1717 unsigned char operstate;
1718 unsigned char link_mode;
1719
1720 unsigned char if_port;
1721 unsigned char dma;
1722
1723 unsigned int mtu;
1724 unsigned int min_mtu;
1725 unsigned int max_mtu;
1726 unsigned short type;
1727 unsigned short hard_header_len;
1728 unsigned char min_header_len;
1729
1730 unsigned short needed_headroom;
1731 unsigned short needed_tailroom;
1732
1733 /* Interface address info. */
1734 unsigned char perm_addr[MAX_ADDR_LEN];
1735 unsigned char addr_assign_type;
1736 unsigned char addr_len;
1737 unsigned short neigh_priv_len;
1738 unsigned short dev_id;
1739 unsigned short dev_port;
1740 spinlock_t addr_list_lock;
1741 unsigned char name_assign_type;
1742 bool uc_promisc;
1743 struct netdev_hw_addr_list uc;
1744 struct netdev_hw_addr_list mc;
1745 struct netdev_hw_addr_list dev_addrs;
1746
1747 #ifdef CONFIG_SYSFS
1748 struct kset *queues_kset;
1749 #endif
1750 unsigned int promiscuity;
1751 unsigned int allmulti;
1752
1753
1754 /* Protocol-specific pointers */
1755
1756 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1757 struct vlan_info __rcu *vlan_info;
1758 #endif
1759 #if IS_ENABLED(CONFIG_NET_DSA)
1760 struct dsa_port *dsa_ptr;
1761 #endif
1762 #if IS_ENABLED(CONFIG_TIPC)
1763 struct tipc_bearer __rcu *tipc_ptr;
1764 #endif
1765 void *atalk_ptr;
1766 struct in_device __rcu *ip_ptr;
1767 struct dn_dev __rcu *dn_ptr;
1768 struct inet6_dev __rcu *ip6_ptr;
1769 void *ax25_ptr;
1770 struct wireless_dev *ieee80211_ptr;
1771 struct wpan_dev *ieee802154_ptr;
1772 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1773 struct mpls_dev __rcu *mpls_ptr;
1774 #endif
1775
1776 /*
1777 * Cache lines mostly used on receive path (including eth_type_trans())
1778 */
1779 /* Interface address info used in eth_type_trans() */
1780 unsigned char *dev_addr;
1781
1782 #ifdef CONFIG_SYSFS
1783 struct netdev_rx_queue *_rx;
1784
1785 unsigned int num_rx_queues;
1786 unsigned int real_num_rx_queues;
1787 #endif
1788
1789 struct bpf_prog __rcu *xdp_prog;
1790 unsigned long gro_flush_timeout;
1791 rx_handler_func_t __rcu *rx_handler;
1792 void __rcu *rx_handler_data;
1793
1794 #ifdef CONFIG_NET_CLS_ACT
1795 struct tcf_proto __rcu *ingress_cl_list;
1796 #endif
1797 struct netdev_queue __rcu *ingress_queue;
1798 #ifdef CONFIG_NETFILTER_INGRESS
1799 struct nf_hook_entries __rcu *nf_hooks_ingress;
1800 #endif
1801
1802 unsigned char broadcast[MAX_ADDR_LEN];
1803 #ifdef CONFIG_RFS_ACCEL
1804 struct cpu_rmap *rx_cpu_rmap;
1805 #endif
1806 struct hlist_node index_hlist;
1807
1808 /*
1809 * Cache lines mostly used on transmit path
1810 */
1811 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1812 unsigned int num_tx_queues;
1813 unsigned int real_num_tx_queues;
1814 struct Qdisc *qdisc;
1815 #ifdef CONFIG_NET_SCHED
1816 DECLARE_HASHTABLE (qdisc_hash, 4);
1817 #endif
1818 unsigned int tx_queue_len;
1819 spinlock_t tx_global_lock;
1820 int watchdog_timeo;
1821
1822 #ifdef CONFIG_XPS
1823 struct xps_dev_maps __rcu *xps_maps;
1824 #endif
1825 #ifdef CONFIG_NET_CLS_ACT
1826 struct tcf_proto __rcu *egress_cl_list;
1827 #endif
1828
1829 /* These may be needed for future network-power-down code. */
1830 struct timer_list watchdog_timer;
1831
1832 int __percpu *pcpu_refcnt;
1833 struct list_head todo_list;
1834
1835 struct list_head link_watch_list;
1836
1837 enum { NETREG_UNINITIALIZED=0,
1838 NETREG_REGISTERED, /* completed register_netdevice */
1839 NETREG_UNREGISTERING, /* called unregister_netdevice */
1840 NETREG_UNREGISTERED, /* completed unregister todo */
1841 NETREG_RELEASED, /* called free_netdev */
1842 NETREG_DUMMY, /* dummy device for NAPI poll */
1843 } reg_state:8;
1844
1845 bool dismantle;
1846
1847 enum {
1848 RTNL_LINK_INITIALIZED,
1849 RTNL_LINK_INITIALIZING,
1850 } rtnl_link_state:16;
1851
1852 bool needs_free_netdev;
1853 void (*priv_destructor)(struct net_device *dev);
1854
1855 #ifdef CONFIG_NETPOLL
1856 struct netpoll_info __rcu *npinfo;
1857 #endif
1858
1859 possible_net_t nd_net;
1860
1861 /* mid-layer private */
1862 union {
1863 void *ml_priv;
1864 struct pcpu_lstats __percpu *lstats;
1865 struct pcpu_sw_netstats __percpu *tstats;
1866 struct pcpu_dstats __percpu *dstats;
1867 struct pcpu_vstats __percpu *vstats;
1868 };
1869
1870 #if IS_ENABLED(CONFIG_GARP)
1871 struct garp_port __rcu *garp_port;
1872 #endif
1873 #if IS_ENABLED(CONFIG_MRP)
1874 struct mrp_port __rcu *mrp_port;
1875 #endif
1876
1877 struct device dev;
1878 const struct attribute_group *sysfs_groups[4];
1879 const struct attribute_group *sysfs_rx_queue_group;
1880
1881 const struct rtnl_link_ops *rtnl_link_ops;
1882
1883 /* for setting kernel sock attribute on TCP connection setup */
1884 #define GSO_MAX_SIZE 65536
1885 unsigned int gso_max_size;
1886 #define GSO_MAX_SEGS 65535
1887 u16 gso_max_segs;
1888
1889 #ifdef CONFIG_DCB
1890 const struct dcbnl_rtnl_ops *dcbnl_ops;
1891 #endif
1892 u8 num_tc;
1893 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1894 u8 prio_tc_map[TC_BITMASK + 1];
1895
1896 #if IS_ENABLED(CONFIG_FCOE)
1897 unsigned int fcoe_ddp_xid;
1898 #endif
1899 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1900 struct netprio_map __rcu *priomap;
1901 #endif
1902 struct phy_device *phydev;
1903 struct lock_class_key *qdisc_tx_busylock;
1904 struct lock_class_key *qdisc_running_key;
1905 bool proto_down;
1906 };
1907 #define to_net_dev(d) container_of(d, struct net_device, dev)
1908
1909 static inline bool netif_elide_gro(const struct net_device *dev)
1910 {
1911 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
1912 return true;
1913 return false;
1914 }
1915
1916 #define NETDEV_ALIGN 32
1917
1918 static inline
1919 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1920 {
1921 return dev->prio_tc_map[prio & TC_BITMASK];
1922 }
1923
1924 static inline
1925 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1926 {
1927 if (tc >= dev->num_tc)
1928 return -EINVAL;
1929
1930 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1931 return 0;
1932 }
1933
1934 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
1935 void netdev_reset_tc(struct net_device *dev);
1936 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
1937 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
1938
1939 static inline
1940 int netdev_get_num_tc(struct net_device *dev)
1941 {
1942 return dev->num_tc;
1943 }
1944
1945 static inline
1946 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1947 unsigned int index)
1948 {
1949 return &dev->_tx[index];
1950 }
1951
1952 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1953 const struct sk_buff *skb)
1954 {
1955 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1956 }
1957
1958 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1959 void (*f)(struct net_device *,
1960 struct netdev_queue *,
1961 void *),
1962 void *arg)
1963 {
1964 unsigned int i;
1965
1966 for (i = 0; i < dev->num_tx_queues; i++)
1967 f(dev, &dev->_tx[i], arg);
1968 }
1969
1970 #define netdev_lockdep_set_classes(dev) \
1971 { \
1972 static struct lock_class_key qdisc_tx_busylock_key; \
1973 static struct lock_class_key qdisc_running_key; \
1974 static struct lock_class_key qdisc_xmit_lock_key; \
1975 static struct lock_class_key dev_addr_list_lock_key; \
1976 unsigned int i; \
1977 \
1978 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \
1979 (dev)->qdisc_running_key = &qdisc_running_key; \
1980 lockdep_set_class(&(dev)->addr_list_lock, \
1981 &dev_addr_list_lock_key); \
1982 for (i = 0; i < (dev)->num_tx_queues; i++) \
1983 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \
1984 &qdisc_xmit_lock_key); \
1985 }
1986
1987 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1988 struct sk_buff *skb,
1989 void *accel_priv);
1990
1991 /* returns the headroom that the master device needs to take in account
1992 * when forwarding to this dev
1993 */
1994 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
1995 {
1996 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
1997 }
1998
1999 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2000 {
2001 if (dev->netdev_ops->ndo_set_rx_headroom)
2002 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2003 }
2004
2005 /* set the device rx headroom to the dev's default */
2006 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2007 {
2008 netdev_set_rx_headroom(dev, -1);
2009 }
2010
2011 /*
2012 * Net namespace inlines
2013 */
2014 static inline
2015 struct net *dev_net(const struct net_device *dev)
2016 {
2017 return read_pnet(&dev->nd_net);
2018 }
2019
2020 static inline
2021 void dev_net_set(struct net_device *dev, struct net *net)
2022 {
2023 write_pnet(&dev->nd_net, net);
2024 }
2025
2026 /**
2027 * netdev_priv - access network device private data
2028 * @dev: network device
2029 *
2030 * Get network device private data
2031 */
2032 static inline void *netdev_priv(const struct net_device *dev)
2033 {
2034 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2035 }
2036
2037 /* Set the sysfs physical device reference for the network logical device
2038 * if set prior to registration will cause a symlink during initialization.
2039 */
2040 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
2041
2042 /* Set the sysfs device type for the network logical device to allow
2043 * fine-grained identification of different network device types. For
2044 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2045 */
2046 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
2047
2048 /* Default NAPI poll() weight
2049 * Device drivers are strongly advised to not use bigger value
2050 */
2051 #define NAPI_POLL_WEIGHT 64
2052
2053 /**
2054 * netif_napi_add - initialize a NAPI context
2055 * @dev: network device
2056 * @napi: NAPI context
2057 * @poll: polling function
2058 * @weight: default weight
2059 *
2060 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2061 * *any* of the other NAPI-related functions.
2062 */
2063 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2064 int (*poll)(struct napi_struct *, int), int weight);
2065
2066 /**
2067 * netif_tx_napi_add - initialize a NAPI context
2068 * @dev: network device
2069 * @napi: NAPI context
2070 * @poll: polling function
2071 * @weight: default weight
2072 *
2073 * This variant of netif_napi_add() should be used from drivers using NAPI
2074 * to exclusively poll a TX queue.
2075 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2076 */
2077 static inline void netif_tx_napi_add(struct net_device *dev,
2078 struct napi_struct *napi,
2079 int (*poll)(struct napi_struct *, int),
2080 int weight)
2081 {
2082 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2083 netif_napi_add(dev, napi, poll, weight);
2084 }
2085
2086 /**
2087 * netif_napi_del - remove a NAPI context
2088 * @napi: NAPI context
2089 *
2090 * netif_napi_del() removes a NAPI context from the network device NAPI list
2091 */
2092 void netif_napi_del(struct napi_struct *napi);
2093
2094 struct napi_gro_cb {
2095 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2096 void *frag0;
2097
2098 /* Length of frag0. */
2099 unsigned int frag0_len;
2100
2101 /* This indicates where we are processing relative to skb->data. */
2102 int data_offset;
2103
2104 /* This is non-zero if the packet cannot be merged with the new skb. */
2105 u16 flush;
2106
2107 /* Save the IP ID here and check when we get to the transport layer */
2108 u16 flush_id;
2109
2110 /* Number of segments aggregated. */
2111 u16 count;
2112
2113 /* Start offset for remote checksum offload */
2114 u16 gro_remcsum_start;
2115
2116 /* jiffies when first packet was created/queued */
2117 unsigned long age;
2118
2119 /* Used in ipv6_gro_receive() and foo-over-udp */
2120 u16 proto;
2121
2122 /* This is non-zero if the packet may be of the same flow. */
2123 u8 same_flow:1;
2124
2125 /* Used in tunnel GRO receive */
2126 u8 encap_mark:1;
2127
2128 /* GRO checksum is valid */
2129 u8 csum_valid:1;
2130
2131 /* Number of checksums via CHECKSUM_UNNECESSARY */
2132 u8 csum_cnt:3;
2133
2134 /* Free the skb? */
2135 u8 free:2;
2136 #define NAPI_GRO_FREE 1
2137 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2138
2139 /* Used in foo-over-udp, set in udp[46]_gro_receive */
2140 u8 is_ipv6:1;
2141
2142 /* Used in GRE, set in fou/gue_gro_receive */
2143 u8 is_fou:1;
2144
2145 /* Used to determine if flush_id can be ignored */
2146 u8 is_atomic:1;
2147
2148 /* Number of gro_receive callbacks this packet already went through */
2149 u8 recursion_counter:4;
2150
2151 /* 1 bit hole */
2152
2153 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2154 __wsum csum;
2155
2156 /* used in skb_gro_receive() slow path */
2157 struct sk_buff *last;
2158 };
2159
2160 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2161
2162 #define GRO_RECURSION_LIMIT 15
2163 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2164 {
2165 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2166 }
2167
2168 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *);
2169 static inline struct sk_buff **call_gro_receive(gro_receive_t cb,
2170 struct sk_buff **head,
2171 struct sk_buff *skb)
2172 {
2173 if (unlikely(gro_recursion_inc_test(skb))) {
2174 NAPI_GRO_CB(skb)->flush |= 1;
2175 return NULL;
2176 }
2177
2178 return cb(head, skb);
2179 }
2180
2181 typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **,
2182 struct sk_buff *);
2183 static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb,
2184 struct sock *sk,
2185 struct sk_buff **head,
2186 struct sk_buff *skb)
2187 {
2188 if (unlikely(gro_recursion_inc_test(skb))) {
2189 NAPI_GRO_CB(skb)->flush |= 1;
2190 return NULL;
2191 }
2192
2193 return cb(sk, head, skb);
2194 }
2195
2196 struct packet_type {
2197 __be16 type; /* This is really htons(ether_type). */
2198 struct net_device *dev; /* NULL is wildcarded here */
2199 int (*func) (struct sk_buff *,
2200 struct net_device *,
2201 struct packet_type *,
2202 struct net_device *);
2203 bool (*id_match)(struct packet_type *ptype,
2204 struct sock *sk);
2205 void *af_packet_priv;
2206 struct list_head list;
2207 };
2208
2209 struct offload_callbacks {
2210 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2211 netdev_features_t features);
2212 struct sk_buff **(*gro_receive)(struct sk_buff **head,
2213 struct sk_buff *skb);
2214 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2215 };
2216
2217 struct packet_offload {
2218 __be16 type; /* This is really htons(ether_type). */
2219 u16 priority;
2220 struct offload_callbacks callbacks;
2221 struct list_head list;
2222 };
2223
2224 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2225 struct pcpu_sw_netstats {
2226 u64 rx_packets;
2227 u64 rx_bytes;
2228 u64 tx_packets;
2229 u64 tx_bytes;
2230 struct u64_stats_sync syncp;
2231 };
2232
2233 #define __netdev_alloc_pcpu_stats(type, gfp) \
2234 ({ \
2235 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2236 if (pcpu_stats) { \
2237 int __cpu; \
2238 for_each_possible_cpu(__cpu) { \
2239 typeof(type) *stat; \
2240 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2241 u64_stats_init(&stat->syncp); \
2242 } \
2243 } \
2244 pcpu_stats; \
2245 })
2246
2247 #define netdev_alloc_pcpu_stats(type) \
2248 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2249
2250 enum netdev_lag_tx_type {
2251 NETDEV_LAG_TX_TYPE_UNKNOWN,
2252 NETDEV_LAG_TX_TYPE_RANDOM,
2253 NETDEV_LAG_TX_TYPE_BROADCAST,
2254 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2255 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2256 NETDEV_LAG_TX_TYPE_HASH,
2257 };
2258
2259 struct netdev_lag_upper_info {
2260 enum netdev_lag_tx_type tx_type;
2261 };
2262
2263 struct netdev_lag_lower_state_info {
2264 u8 link_up : 1,
2265 tx_enabled : 1;
2266 };
2267
2268 #include <linux/notifier.h>
2269
2270 /* netdevice notifier chain. Please remember to update the rtnetlink
2271 * notification exclusion list in rtnetlink_event() when adding new
2272 * types.
2273 */
2274 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
2275 #define NETDEV_DOWN 0x0002
2276 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
2277 detected a hardware crash and restarted
2278 - we can use this eg to kick tcp sessions
2279 once done */
2280 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
2281 #define NETDEV_REGISTER 0x0005
2282 #define NETDEV_UNREGISTER 0x0006
2283 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */
2284 #define NETDEV_CHANGEADDR 0x0008
2285 #define NETDEV_GOING_DOWN 0x0009
2286 #define NETDEV_CHANGENAME 0x000A
2287 #define NETDEV_FEAT_CHANGE 0x000B
2288 #define NETDEV_BONDING_FAILOVER 0x000C
2289 #define NETDEV_PRE_UP 0x000D
2290 #define NETDEV_PRE_TYPE_CHANGE 0x000E
2291 #define NETDEV_POST_TYPE_CHANGE 0x000F
2292 #define NETDEV_POST_INIT 0x0010
2293 #define NETDEV_UNREGISTER_FINAL 0x0011
2294 #define NETDEV_RELEASE 0x0012
2295 #define NETDEV_NOTIFY_PEERS 0x0013
2296 #define NETDEV_JOIN 0x0014
2297 #define NETDEV_CHANGEUPPER 0x0015
2298 #define NETDEV_RESEND_IGMP 0x0016
2299 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */
2300 #define NETDEV_CHANGEINFODATA 0x0018
2301 #define NETDEV_BONDING_INFO 0x0019
2302 #define NETDEV_PRECHANGEUPPER 0x001A
2303 #define NETDEV_CHANGELOWERSTATE 0x001B
2304 #define NETDEV_UDP_TUNNEL_PUSH_INFO 0x001C
2305 #define NETDEV_UDP_TUNNEL_DROP_INFO 0x001D
2306 #define NETDEV_CHANGE_TX_QUEUE_LEN 0x001E
2307
2308 int register_netdevice_notifier(struct notifier_block *nb);
2309 int unregister_netdevice_notifier(struct notifier_block *nb);
2310
2311 struct netdev_notifier_info {
2312 struct net_device *dev;
2313 };
2314
2315 struct netdev_notifier_change_info {
2316 struct netdev_notifier_info info; /* must be first */
2317 unsigned int flags_changed;
2318 };
2319
2320 struct netdev_notifier_changeupper_info {
2321 struct netdev_notifier_info info; /* must be first */
2322 struct net_device *upper_dev; /* new upper dev */
2323 bool master; /* is upper dev master */
2324 bool linking; /* is the notification for link or unlink */
2325 void *upper_info; /* upper dev info */
2326 };
2327
2328 struct netdev_notifier_changelowerstate_info {
2329 struct netdev_notifier_info info; /* must be first */
2330 void *lower_state_info; /* is lower dev state */
2331 };
2332
2333 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2334 struct net_device *dev)
2335 {
2336 info->dev = dev;
2337 }
2338
2339 static inline struct net_device *
2340 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2341 {
2342 return info->dev;
2343 }
2344
2345 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2346
2347
2348 extern rwlock_t dev_base_lock; /* Device list lock */
2349
2350 #define for_each_netdev(net, d) \
2351 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2352 #define for_each_netdev_reverse(net, d) \
2353 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2354 #define for_each_netdev_rcu(net, d) \
2355 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2356 #define for_each_netdev_safe(net, d, n) \
2357 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2358 #define for_each_netdev_continue(net, d) \
2359 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2360 #define for_each_netdev_continue_rcu(net, d) \
2361 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2362 #define for_each_netdev_in_bond_rcu(bond, slave) \
2363 for_each_netdev_rcu(&init_net, slave) \
2364 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2365 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2366
2367 static inline struct net_device *next_net_device(struct net_device *dev)
2368 {
2369 struct list_head *lh;
2370 struct net *net;
2371
2372 net = dev_net(dev);
2373 lh = dev->dev_list.next;
2374 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2375 }
2376
2377 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2378 {
2379 struct list_head *lh;
2380 struct net *net;
2381
2382 net = dev_net(dev);
2383 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2384 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2385 }
2386
2387 static inline struct net_device *first_net_device(struct net *net)
2388 {
2389 return list_empty(&net->dev_base_head) ? NULL :
2390 net_device_entry(net->dev_base_head.next);
2391 }
2392
2393 static inline struct net_device *first_net_device_rcu(struct net *net)
2394 {
2395 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2396
2397 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2398 }
2399
2400 int netdev_boot_setup_check(struct net_device *dev);
2401 unsigned long netdev_boot_base(const char *prefix, int unit);
2402 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2403 const char *hwaddr);
2404 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2405 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2406 void dev_add_pack(struct packet_type *pt);
2407 void dev_remove_pack(struct packet_type *pt);
2408 void __dev_remove_pack(struct packet_type *pt);
2409 void dev_add_offload(struct packet_offload *po);
2410 void dev_remove_offload(struct packet_offload *po);
2411
2412 int dev_get_iflink(const struct net_device *dev);
2413 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2414 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2415 unsigned short mask);
2416 struct net_device *dev_get_by_name(struct net *net, const char *name);
2417 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2418 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2419 int dev_alloc_name(struct net_device *dev, const char *name);
2420 int dev_open(struct net_device *dev);
2421 void dev_close(struct net_device *dev);
2422 void dev_close_many(struct list_head *head, bool unlink);
2423 void dev_disable_lro(struct net_device *dev);
2424 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2425 int dev_queue_xmit(struct sk_buff *skb);
2426 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2427 int register_netdevice(struct net_device *dev);
2428 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2429 void unregister_netdevice_many(struct list_head *head);
2430 static inline void unregister_netdevice(struct net_device *dev)
2431 {
2432 unregister_netdevice_queue(dev, NULL);
2433 }
2434
2435 int netdev_refcnt_read(const struct net_device *dev);
2436 void free_netdev(struct net_device *dev);
2437 void netdev_freemem(struct net_device *dev);
2438 void synchronize_net(void);
2439 int init_dummy_netdev(struct net_device *dev);
2440
2441 DECLARE_PER_CPU(int, xmit_recursion);
2442 #define XMIT_RECURSION_LIMIT 10
2443
2444 static inline int dev_recursion_level(void)
2445 {
2446 return this_cpu_read(xmit_recursion);
2447 }
2448
2449 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2450 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2451 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2452 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2453 int netdev_get_name(struct net *net, char *name, int ifindex);
2454 int dev_restart(struct net_device *dev);
2455 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2456
2457 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2458 {
2459 return NAPI_GRO_CB(skb)->data_offset;
2460 }
2461
2462 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2463 {
2464 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2465 }
2466
2467 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2468 {
2469 NAPI_GRO_CB(skb)->data_offset += len;
2470 }
2471
2472 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2473 unsigned int offset)
2474 {
2475 return NAPI_GRO_CB(skb)->frag0 + offset;
2476 }
2477
2478 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2479 {
2480 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2481 }
2482
2483 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2484 {
2485 NAPI_GRO_CB(skb)->frag0 = NULL;
2486 NAPI_GRO_CB(skb)->frag0_len = 0;
2487 }
2488
2489 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2490 unsigned int offset)
2491 {
2492 if (!pskb_may_pull(skb, hlen))
2493 return NULL;
2494
2495 skb_gro_frag0_invalidate(skb);
2496 return skb->data + offset;
2497 }
2498
2499 static inline void *skb_gro_network_header(struct sk_buff *skb)
2500 {
2501 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2502 skb_network_offset(skb);
2503 }
2504
2505 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2506 const void *start, unsigned int len)
2507 {
2508 if (NAPI_GRO_CB(skb)->csum_valid)
2509 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2510 csum_partial(start, len, 0));
2511 }
2512
2513 /* GRO checksum functions. These are logical equivalents of the normal
2514 * checksum functions (in skbuff.h) except that they operate on the GRO
2515 * offsets and fields in sk_buff.
2516 */
2517
2518 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2519
2520 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2521 {
2522 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2523 }
2524
2525 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2526 bool zero_okay,
2527 __sum16 check)
2528 {
2529 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2530 skb_checksum_start_offset(skb) <
2531 skb_gro_offset(skb)) &&
2532 !skb_at_gro_remcsum_start(skb) &&
2533 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2534 (!zero_okay || check));
2535 }
2536
2537 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2538 __wsum psum)
2539 {
2540 if (NAPI_GRO_CB(skb)->csum_valid &&
2541 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2542 return 0;
2543
2544 NAPI_GRO_CB(skb)->csum = psum;
2545
2546 return __skb_gro_checksum_complete(skb);
2547 }
2548
2549 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2550 {
2551 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2552 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2553 NAPI_GRO_CB(skb)->csum_cnt--;
2554 } else {
2555 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2556 * verified a new top level checksum or an encapsulated one
2557 * during GRO. This saves work if we fallback to normal path.
2558 */
2559 __skb_incr_checksum_unnecessary(skb);
2560 }
2561 }
2562
2563 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2564 compute_pseudo) \
2565 ({ \
2566 __sum16 __ret = 0; \
2567 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2568 __ret = __skb_gro_checksum_validate_complete(skb, \
2569 compute_pseudo(skb, proto)); \
2570 if (!__ret) \
2571 skb_gro_incr_csum_unnecessary(skb); \
2572 __ret; \
2573 })
2574
2575 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2576 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2577
2578 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2579 compute_pseudo) \
2580 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2581
2582 #define skb_gro_checksum_simple_validate(skb) \
2583 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2584
2585 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2586 {
2587 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2588 !NAPI_GRO_CB(skb)->csum_valid);
2589 }
2590
2591 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2592 __sum16 check, __wsum pseudo)
2593 {
2594 NAPI_GRO_CB(skb)->csum = ~pseudo;
2595 NAPI_GRO_CB(skb)->csum_valid = 1;
2596 }
2597
2598 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2599 do { \
2600 if (__skb_gro_checksum_convert_check(skb)) \
2601 __skb_gro_checksum_convert(skb, check, \
2602 compute_pseudo(skb, proto)); \
2603 } while (0)
2604
2605 struct gro_remcsum {
2606 int offset;
2607 __wsum delta;
2608 };
2609
2610 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2611 {
2612 grc->offset = 0;
2613 grc->delta = 0;
2614 }
2615
2616 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2617 unsigned int off, size_t hdrlen,
2618 int start, int offset,
2619 struct gro_remcsum *grc,
2620 bool nopartial)
2621 {
2622 __wsum delta;
2623 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2624
2625 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2626
2627 if (!nopartial) {
2628 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2629 return ptr;
2630 }
2631
2632 ptr = skb_gro_header_fast(skb, off);
2633 if (skb_gro_header_hard(skb, off + plen)) {
2634 ptr = skb_gro_header_slow(skb, off + plen, off);
2635 if (!ptr)
2636 return NULL;
2637 }
2638
2639 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2640 start, offset);
2641
2642 /* Adjust skb->csum since we changed the packet */
2643 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2644
2645 grc->offset = off + hdrlen + offset;
2646 grc->delta = delta;
2647
2648 return ptr;
2649 }
2650
2651 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2652 struct gro_remcsum *grc)
2653 {
2654 void *ptr;
2655 size_t plen = grc->offset + sizeof(u16);
2656
2657 if (!grc->delta)
2658 return;
2659
2660 ptr = skb_gro_header_fast(skb, grc->offset);
2661 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2662 ptr = skb_gro_header_slow(skb, plen, grc->offset);
2663 if (!ptr)
2664 return;
2665 }
2666
2667 remcsum_unadjust((__sum16 *)ptr, grc->delta);
2668 }
2669
2670 #ifdef CONFIG_XFRM_OFFLOAD
2671 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2672 {
2673 if (PTR_ERR(pp) != -EINPROGRESS)
2674 NAPI_GRO_CB(skb)->flush |= flush;
2675 }
2676 #else
2677 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2678 {
2679 NAPI_GRO_CB(skb)->flush |= flush;
2680 }
2681 #endif
2682
2683 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2684 unsigned short type,
2685 const void *daddr, const void *saddr,
2686 unsigned int len)
2687 {
2688 if (!dev->header_ops || !dev->header_ops->create)
2689 return 0;
2690
2691 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2692 }
2693
2694 static inline int dev_parse_header(const struct sk_buff *skb,
2695 unsigned char *haddr)
2696 {
2697 const struct net_device *dev = skb->dev;
2698
2699 if (!dev->header_ops || !dev->header_ops->parse)
2700 return 0;
2701 return dev->header_ops->parse(skb, haddr);
2702 }
2703
2704 /* ll_header must have at least hard_header_len allocated */
2705 static inline bool dev_validate_header(const struct net_device *dev,
2706 char *ll_header, int len)
2707 {
2708 if (likely(len >= dev->hard_header_len))
2709 return true;
2710 if (len < dev->min_header_len)
2711 return false;
2712
2713 if (capable(CAP_SYS_RAWIO)) {
2714 memset(ll_header + len, 0, dev->hard_header_len - len);
2715 return true;
2716 }
2717
2718 if (dev->header_ops && dev->header_ops->validate)
2719 return dev->header_ops->validate(ll_header, len);
2720
2721 return false;
2722 }
2723
2724 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2725 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2726 static inline int unregister_gifconf(unsigned int family)
2727 {
2728 return register_gifconf(family, NULL);
2729 }
2730
2731 #ifdef CONFIG_NET_FLOW_LIMIT
2732 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
2733 struct sd_flow_limit {
2734 u64 count;
2735 unsigned int num_buckets;
2736 unsigned int history_head;
2737 u16 history[FLOW_LIMIT_HISTORY];
2738 u8 buckets[];
2739 };
2740
2741 extern int netdev_flow_limit_table_len;
2742 #endif /* CONFIG_NET_FLOW_LIMIT */
2743
2744 /*
2745 * Incoming packets are placed on per-CPU queues
2746 */
2747 struct softnet_data {
2748 struct list_head poll_list;
2749 struct sk_buff_head process_queue;
2750
2751 /* stats */
2752 unsigned int processed;
2753 unsigned int time_squeeze;
2754 unsigned int received_rps;
2755 #ifdef CONFIG_RPS
2756 struct softnet_data *rps_ipi_list;
2757 #endif
2758 #ifdef CONFIG_NET_FLOW_LIMIT
2759 struct sd_flow_limit __rcu *flow_limit;
2760 #endif
2761 struct Qdisc *output_queue;
2762 struct Qdisc **output_queue_tailp;
2763 struct sk_buff *completion_queue;
2764
2765 #ifdef CONFIG_RPS
2766 /* input_queue_head should be written by cpu owning this struct,
2767 * and only read by other cpus. Worth using a cache line.
2768 */
2769 unsigned int input_queue_head ____cacheline_aligned_in_smp;
2770
2771 /* Elements below can be accessed between CPUs for RPS/RFS */
2772 call_single_data_t csd ____cacheline_aligned_in_smp;
2773 struct softnet_data *rps_ipi_next;
2774 unsigned int cpu;
2775 unsigned int input_queue_tail;
2776 #endif
2777 unsigned int dropped;
2778 struct sk_buff_head input_pkt_queue;
2779 struct napi_struct backlog;
2780
2781 };
2782
2783 static inline void input_queue_head_incr(struct softnet_data *sd)
2784 {
2785 #ifdef CONFIG_RPS
2786 sd->input_queue_head++;
2787 #endif
2788 }
2789
2790 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2791 unsigned int *qtail)
2792 {
2793 #ifdef CONFIG_RPS
2794 *qtail = ++sd->input_queue_tail;
2795 #endif
2796 }
2797
2798 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2799
2800 void __netif_schedule(struct Qdisc *q);
2801 void netif_schedule_queue(struct netdev_queue *txq);
2802
2803 static inline void netif_tx_schedule_all(struct net_device *dev)
2804 {
2805 unsigned int i;
2806
2807 for (i = 0; i < dev->num_tx_queues; i++)
2808 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2809 }
2810
2811 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2812 {
2813 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2814 }
2815
2816 /**
2817 * netif_start_queue - allow transmit
2818 * @dev: network device
2819 *
2820 * Allow upper layers to call the device hard_start_xmit routine.
2821 */
2822 static inline void netif_start_queue(struct net_device *dev)
2823 {
2824 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2825 }
2826
2827 static inline void netif_tx_start_all_queues(struct net_device *dev)
2828 {
2829 unsigned int i;
2830
2831 for (i = 0; i < dev->num_tx_queues; i++) {
2832 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2833 netif_tx_start_queue(txq);
2834 }
2835 }
2836
2837 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2838
2839 /**
2840 * netif_wake_queue - restart transmit
2841 * @dev: network device
2842 *
2843 * Allow upper layers to call the device hard_start_xmit routine.
2844 * Used for flow control when transmit resources are available.
2845 */
2846 static inline void netif_wake_queue(struct net_device *dev)
2847 {
2848 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2849 }
2850
2851 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2852 {
2853 unsigned int i;
2854
2855 for (i = 0; i < dev->num_tx_queues; i++) {
2856 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2857 netif_tx_wake_queue(txq);
2858 }
2859 }
2860
2861 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2862 {
2863 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2864 }
2865
2866 /**
2867 * netif_stop_queue - stop transmitted packets
2868 * @dev: network device
2869 *
2870 * Stop upper layers calling the device hard_start_xmit routine.
2871 * Used for flow control when transmit resources are unavailable.
2872 */
2873 static inline void netif_stop_queue(struct net_device *dev)
2874 {
2875 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2876 }
2877
2878 void netif_tx_stop_all_queues(struct net_device *dev);
2879
2880 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2881 {
2882 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2883 }
2884
2885 /**
2886 * netif_queue_stopped - test if transmit queue is flowblocked
2887 * @dev: network device
2888 *
2889 * Test if transmit queue on device is currently unable to send.
2890 */
2891 static inline bool netif_queue_stopped(const struct net_device *dev)
2892 {
2893 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2894 }
2895
2896 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2897 {
2898 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2899 }
2900
2901 static inline bool
2902 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2903 {
2904 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2905 }
2906
2907 static inline bool
2908 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2909 {
2910 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2911 }
2912
2913 /**
2914 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2915 * @dev_queue: pointer to transmit queue
2916 *
2917 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2918 * to give appropriate hint to the CPU.
2919 */
2920 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2921 {
2922 #ifdef CONFIG_BQL
2923 prefetchw(&dev_queue->dql.num_queued);
2924 #endif
2925 }
2926
2927 /**
2928 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2929 * @dev_queue: pointer to transmit queue
2930 *
2931 * BQL enabled drivers might use this helper in their TX completion path,
2932 * to give appropriate hint to the CPU.
2933 */
2934 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2935 {
2936 #ifdef CONFIG_BQL
2937 prefetchw(&dev_queue->dql.limit);
2938 #endif
2939 }
2940
2941 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2942 unsigned int bytes)
2943 {
2944 #ifdef CONFIG_BQL
2945 dql_queued(&dev_queue->dql, bytes);
2946
2947 if (likely(dql_avail(&dev_queue->dql) >= 0))
2948 return;
2949
2950 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2951
2952 /*
2953 * The XOFF flag must be set before checking the dql_avail below,
2954 * because in netdev_tx_completed_queue we update the dql_completed
2955 * before checking the XOFF flag.
2956 */
2957 smp_mb();
2958
2959 /* check again in case another CPU has just made room avail */
2960 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2961 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2962 #endif
2963 }
2964
2965 /**
2966 * netdev_sent_queue - report the number of bytes queued to hardware
2967 * @dev: network device
2968 * @bytes: number of bytes queued to the hardware device queue
2969 *
2970 * Report the number of bytes queued for sending/completion to the network
2971 * device hardware queue. @bytes should be a good approximation and should
2972 * exactly match netdev_completed_queue() @bytes
2973 */
2974 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2975 {
2976 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2977 }
2978
2979 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2980 unsigned int pkts, unsigned int bytes)
2981 {
2982 #ifdef CONFIG_BQL
2983 if (unlikely(!bytes))
2984 return;
2985
2986 dql_completed(&dev_queue->dql, bytes);
2987
2988 /*
2989 * Without the memory barrier there is a small possiblity that
2990 * netdev_tx_sent_queue will miss the update and cause the queue to
2991 * be stopped forever
2992 */
2993 smp_mb();
2994
2995 if (dql_avail(&dev_queue->dql) < 0)
2996 return;
2997
2998 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2999 netif_schedule_queue(dev_queue);
3000 #endif
3001 }
3002
3003 /**
3004 * netdev_completed_queue - report bytes and packets completed by device
3005 * @dev: network device
3006 * @pkts: actual number of packets sent over the medium
3007 * @bytes: actual number of bytes sent over the medium
3008 *
3009 * Report the number of bytes and packets transmitted by the network device
3010 * hardware queue over the physical medium, @bytes must exactly match the
3011 * @bytes amount passed to netdev_sent_queue()
3012 */
3013 static inline void netdev_completed_queue(struct net_device *dev,
3014 unsigned int pkts, unsigned int bytes)
3015 {
3016 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3017 }
3018
3019 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3020 {
3021 #ifdef CONFIG_BQL
3022 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3023 dql_reset(&q->dql);
3024 #endif
3025 }
3026
3027 /**
3028 * netdev_reset_queue - reset the packets and bytes count of a network device
3029 * @dev_queue: network device
3030 *
3031 * Reset the bytes and packet count of a network device and clear the
3032 * software flow control OFF bit for this network device
3033 */
3034 static inline void netdev_reset_queue(struct net_device *dev_queue)
3035 {
3036 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3037 }
3038
3039 /**
3040 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
3041 * @dev: network device
3042 * @queue_index: given tx queue index
3043 *
3044 * Returns 0 if given tx queue index >= number of device tx queues,
3045 * otherwise returns the originally passed tx queue index.
3046 */
3047 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3048 {
3049 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3050 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3051 dev->name, queue_index,
3052 dev->real_num_tx_queues);
3053 return 0;
3054 }
3055
3056 return queue_index;
3057 }
3058
3059 /**
3060 * netif_running - test if up
3061 * @dev: network device
3062 *
3063 * Test if the device has been brought up.
3064 */
3065 static inline bool netif_running(const struct net_device *dev)
3066 {
3067 return test_bit(__LINK_STATE_START, &dev->state);
3068 }
3069
3070 /*
3071 * Routines to manage the subqueues on a device. We only need start,
3072 * stop, and a check if it's stopped. All other device management is
3073 * done at the overall netdevice level.
3074 * Also test the device if we're multiqueue.
3075 */
3076
3077 /**
3078 * netif_start_subqueue - allow sending packets on subqueue
3079 * @dev: network device
3080 * @queue_index: sub queue index
3081 *
3082 * Start individual transmit queue of a device with multiple transmit queues.
3083 */
3084 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3085 {
3086 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3087
3088 netif_tx_start_queue(txq);
3089 }
3090
3091 /**
3092 * netif_stop_subqueue - stop sending packets on subqueue
3093 * @dev: network device
3094 * @queue_index: sub queue index
3095 *
3096 * Stop individual transmit queue of a device with multiple transmit queues.
3097 */
3098 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3099 {
3100 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3101 netif_tx_stop_queue(txq);
3102 }
3103
3104 /**
3105 * netif_subqueue_stopped - test status of subqueue
3106 * @dev: network device
3107 * @queue_index: sub queue index
3108 *
3109 * Check individual transmit queue of a device with multiple transmit queues.
3110 */
3111 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3112 u16 queue_index)
3113 {
3114 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3115
3116 return netif_tx_queue_stopped(txq);
3117 }
3118
3119 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3120 struct sk_buff *skb)
3121 {
3122 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3123 }
3124
3125 /**
3126 * netif_wake_subqueue - allow sending packets on subqueue
3127 * @dev: network device
3128 * @queue_index: sub queue index
3129 *
3130 * Resume individual transmit queue of a device with multiple transmit queues.
3131 */
3132 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3133 {
3134 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3135
3136 netif_tx_wake_queue(txq);
3137 }
3138
3139 #ifdef CONFIG_XPS
3140 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3141 u16 index);
3142 #else
3143 static inline int netif_set_xps_queue(struct net_device *dev,
3144 const struct cpumask *mask,
3145 u16 index)
3146 {
3147 return 0;
3148 }
3149 #endif
3150
3151 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3152 unsigned int num_tx_queues);
3153
3154 /*
3155 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3156 * as a distribution range limit for the returned value.
3157 */
3158 static inline u16 skb_tx_hash(const struct net_device *dev,
3159 struct sk_buff *skb)
3160 {
3161 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3162 }
3163
3164 /**
3165 * netif_is_multiqueue - test if device has multiple transmit queues
3166 * @dev: network device
3167 *
3168 * Check if device has multiple transmit queues
3169 */
3170 static inline bool netif_is_multiqueue(const struct net_device *dev)
3171 {
3172 return dev->num_tx_queues > 1;
3173 }
3174
3175 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3176
3177 #ifdef CONFIG_SYSFS
3178 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3179 #else
3180 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3181 unsigned int rxq)
3182 {
3183 return 0;
3184 }
3185 #endif
3186
3187 #ifdef CONFIG_SYSFS
3188 static inline unsigned int get_netdev_rx_queue_index(
3189 struct netdev_rx_queue *queue)
3190 {
3191 struct net_device *dev = queue->dev;
3192 int index = queue - dev->_rx;
3193
3194 BUG_ON(index >= dev->num_rx_queues);
3195 return index;
3196 }
3197 #endif
3198
3199 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
3200 int netif_get_num_default_rss_queues(void);
3201
3202 enum skb_free_reason {
3203 SKB_REASON_CONSUMED,
3204 SKB_REASON_DROPPED,
3205 };
3206
3207 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3208 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3209
3210 /*
3211 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3212 * interrupt context or with hardware interrupts being disabled.
3213 * (in_irq() || irqs_disabled())
3214 *
3215 * We provide four helpers that can be used in following contexts :
3216 *
3217 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3218 * replacing kfree_skb(skb)
3219 *
3220 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3221 * Typically used in place of consume_skb(skb) in TX completion path
3222 *
3223 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3224 * replacing kfree_skb(skb)
3225 *
3226 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3227 * and consumed a packet. Used in place of consume_skb(skb)
3228 */
3229 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3230 {
3231 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3232 }
3233
3234 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3235 {
3236 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3237 }
3238
3239 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3240 {
3241 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3242 }
3243
3244 static inline void dev_consume_skb_any(struct sk_buff *skb)
3245 {
3246 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3247 }
3248
3249 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3250 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3251 int netif_rx(struct sk_buff *skb);
3252 int netif_rx_ni(struct sk_buff *skb);
3253 int netif_receive_skb(struct sk_buff *skb);
3254 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3255 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3256 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3257 gro_result_t napi_gro_frags(struct napi_struct *napi);
3258 struct packet_offload *gro_find_receive_by_type(__be16 type);
3259 struct packet_offload *gro_find_complete_by_type(__be16 type);
3260
3261 static inline void napi_free_frags(struct napi_struct *napi)
3262 {
3263 kfree_skb(napi->skb);
3264 napi->skb = NULL;
3265 }
3266
3267 bool netdev_is_rx_handler_busy(struct net_device *dev);
3268 int netdev_rx_handler_register(struct net_device *dev,
3269 rx_handler_func_t *rx_handler,
3270 void *rx_handler_data);
3271 void netdev_rx_handler_unregister(struct net_device *dev);
3272
3273 bool dev_valid_name(const char *name);
3274 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3275 int dev_ethtool(struct net *net, struct ifreq *);
3276 unsigned int dev_get_flags(const struct net_device *);
3277 int __dev_change_flags(struct net_device *, unsigned int flags);
3278 int dev_change_flags(struct net_device *, unsigned int);
3279 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3280 unsigned int gchanges);
3281 int dev_change_name(struct net_device *, const char *);
3282 int dev_set_alias(struct net_device *, const char *, size_t);
3283 int dev_get_alias(const struct net_device *, char *, size_t);
3284 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3285 int __dev_set_mtu(struct net_device *, int);
3286 int dev_set_mtu(struct net_device *, int);
3287 void dev_set_group(struct net_device *, int);
3288 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3289 int dev_change_carrier(struct net_device *, bool new_carrier);
3290 int dev_get_phys_port_id(struct net_device *dev,
3291 struct netdev_phys_item_id *ppid);
3292 int dev_get_phys_port_name(struct net_device *dev,
3293 char *name, size_t len);
3294 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3295 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3296 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3297 struct netdev_queue *txq, int *ret);
3298
3299 typedef int (*xdp_op_t)(struct net_device *dev, struct netdev_xdp *xdp);
3300 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3301 int fd, u32 flags);
3302 u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id);
3303
3304 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3305 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3306 bool is_skb_forwardable(const struct net_device *dev,
3307 const struct sk_buff *skb);
3308
3309 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3310 struct sk_buff *skb)
3311 {
3312 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3313 unlikely(!is_skb_forwardable(dev, skb))) {
3314 atomic_long_inc(&dev->rx_dropped);
3315 kfree_skb(skb);
3316 return NET_RX_DROP;
3317 }
3318
3319 skb_scrub_packet(skb, true);
3320 skb->priority = 0;
3321 return 0;
3322 }
3323
3324 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3325
3326 extern int netdev_budget;
3327 extern unsigned int netdev_budget_usecs;
3328
3329 /* Called by rtnetlink.c:rtnl_unlock() */
3330 void netdev_run_todo(void);
3331
3332 /**
3333 * dev_put - release reference to device
3334 * @dev: network device
3335 *
3336 * Release reference to device to allow it to be freed.
3337 */
3338 static inline void dev_put(struct net_device *dev)
3339 {
3340 this_cpu_dec(*dev->pcpu_refcnt);
3341 }
3342
3343 /**
3344 * dev_hold - get reference to device
3345 * @dev: network device
3346 *
3347 * Hold reference to device to keep it from being freed.
3348 */
3349 static inline void dev_hold(struct net_device *dev)
3350 {
3351 this_cpu_inc(*dev->pcpu_refcnt);
3352 }
3353
3354 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3355 * and _off may be called from IRQ context, but it is caller
3356 * who is responsible for serialization of these calls.
3357 *
3358 * The name carrier is inappropriate, these functions should really be
3359 * called netif_lowerlayer_*() because they represent the state of any
3360 * kind of lower layer not just hardware media.
3361 */
3362
3363 void linkwatch_init_dev(struct net_device *dev);
3364 void linkwatch_fire_event(struct net_device *dev);
3365 void linkwatch_forget_dev(struct net_device *dev);
3366
3367 /**
3368 * netif_carrier_ok - test if carrier present
3369 * @dev: network device
3370 *
3371 * Check if carrier is present on device
3372 */
3373 static inline bool netif_carrier_ok(const struct net_device *dev)
3374 {
3375 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3376 }
3377
3378 unsigned long dev_trans_start(struct net_device *dev);
3379
3380 void __netdev_watchdog_up(struct net_device *dev);
3381
3382 void netif_carrier_on(struct net_device *dev);
3383
3384 void netif_carrier_off(struct net_device *dev);
3385
3386 /**
3387 * netif_dormant_on - mark device as dormant.
3388 * @dev: network device
3389 *
3390 * Mark device as dormant (as per RFC2863).
3391 *
3392 * The dormant state indicates that the relevant interface is not
3393 * actually in a condition to pass packets (i.e., it is not 'up') but is
3394 * in a "pending" state, waiting for some external event. For "on-
3395 * demand" interfaces, this new state identifies the situation where the
3396 * interface is waiting for events to place it in the up state.
3397 */
3398 static inline void netif_dormant_on(struct net_device *dev)
3399 {
3400 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3401 linkwatch_fire_event(dev);
3402 }
3403
3404 /**
3405 * netif_dormant_off - set device as not dormant.
3406 * @dev: network device
3407 *
3408 * Device is not in dormant state.
3409 */
3410 static inline void netif_dormant_off(struct net_device *dev)
3411 {
3412 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3413 linkwatch_fire_event(dev);
3414 }
3415
3416 /**
3417 * netif_dormant - test if device is dormant
3418 * @dev: network device
3419 *
3420 * Check if device is dormant.
3421 */
3422 static inline bool netif_dormant(const struct net_device *dev)
3423 {
3424 return test_bit(__LINK_STATE_DORMANT, &dev->state);
3425 }
3426
3427
3428 /**
3429 * netif_oper_up - test if device is operational
3430 * @dev: network device
3431 *
3432 * Check if carrier is operational
3433 */
3434 static inline bool netif_oper_up(const struct net_device *dev)
3435 {
3436 return (dev->operstate == IF_OPER_UP ||
3437 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3438 }
3439
3440 /**
3441 * netif_device_present - is device available or removed
3442 * @dev: network device
3443 *
3444 * Check if device has not been removed from system.
3445 */
3446 static inline bool netif_device_present(struct net_device *dev)
3447 {
3448 return test_bit(__LINK_STATE_PRESENT, &dev->state);
3449 }
3450
3451 void netif_device_detach(struct net_device *dev);
3452
3453 void netif_device_attach(struct net_device *dev);
3454
3455 /*
3456 * Network interface message level settings
3457 */
3458
3459 enum {
3460 NETIF_MSG_DRV = 0x0001,
3461 NETIF_MSG_PROBE = 0x0002,
3462 NETIF_MSG_LINK = 0x0004,
3463 NETIF_MSG_TIMER = 0x0008,
3464 NETIF_MSG_IFDOWN = 0x0010,
3465 NETIF_MSG_IFUP = 0x0020,
3466 NETIF_MSG_RX_ERR = 0x0040,
3467 NETIF_MSG_TX_ERR = 0x0080,
3468 NETIF_MSG_TX_QUEUED = 0x0100,
3469 NETIF_MSG_INTR = 0x0200,
3470 NETIF_MSG_TX_DONE = 0x0400,
3471 NETIF_MSG_RX_STATUS = 0x0800,
3472 NETIF_MSG_PKTDATA = 0x1000,
3473 NETIF_MSG_HW = 0x2000,
3474 NETIF_MSG_WOL = 0x4000,
3475 };
3476
3477 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
3478 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
3479 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
3480 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
3481 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
3482 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
3483 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
3484 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
3485 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3486 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
3487 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
3488 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3489 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
3490 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
3491 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
3492
3493 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3494 {
3495 /* use default */
3496 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3497 return default_msg_enable_bits;
3498 if (debug_value == 0) /* no output */
3499 return 0;
3500 /* set low N bits */
3501 return (1 << debug_value) - 1;
3502 }
3503
3504 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3505 {
3506 spin_lock(&txq->_xmit_lock);
3507 txq->xmit_lock_owner = cpu;
3508 }
3509
3510 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3511 {
3512 __acquire(&txq->_xmit_lock);
3513 return true;
3514 }
3515
3516 static inline void __netif_tx_release(struct netdev_queue *txq)
3517 {
3518 __release(&txq->_xmit_lock);
3519 }
3520
3521 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3522 {
3523 spin_lock_bh(&txq->_xmit_lock);
3524 txq->xmit_lock_owner = smp_processor_id();
3525 }
3526
3527 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3528 {
3529 bool ok = spin_trylock(&txq->_xmit_lock);
3530 if (likely(ok))
3531 txq->xmit_lock_owner = smp_processor_id();
3532 return ok;
3533 }
3534
3535 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3536 {
3537 txq->xmit_lock_owner = -1;
3538 spin_unlock(&txq->_xmit_lock);
3539 }
3540
3541 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3542 {
3543 txq->xmit_lock_owner = -1;
3544 spin_unlock_bh(&txq->_xmit_lock);
3545 }
3546
3547 static inline void txq_trans_update(struct netdev_queue *txq)
3548 {
3549 if (txq->xmit_lock_owner != -1)
3550 txq->trans_start = jiffies;
3551 }
3552
3553 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3554 static inline void netif_trans_update(struct net_device *dev)
3555 {
3556 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3557
3558 if (txq->trans_start != jiffies)
3559 txq->trans_start = jiffies;
3560 }
3561
3562 /**
3563 * netif_tx_lock - grab network device transmit lock
3564 * @dev: network device
3565 *
3566 * Get network device transmit lock
3567 */
3568 static inline void netif_tx_lock(struct net_device *dev)
3569 {
3570 unsigned int i;
3571 int cpu;
3572
3573 spin_lock(&dev->tx_global_lock);
3574 cpu = smp_processor_id();
3575 for (i = 0; i < dev->num_tx_queues; i++) {
3576 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3577
3578 /* We are the only thread of execution doing a
3579 * freeze, but we have to grab the _xmit_lock in
3580 * order to synchronize with threads which are in
3581 * the ->hard_start_xmit() handler and already
3582 * checked the frozen bit.
3583 */
3584 __netif_tx_lock(txq, cpu);
3585 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3586 __netif_tx_unlock(txq);
3587 }
3588 }
3589
3590 static inline void netif_tx_lock_bh(struct net_device *dev)
3591 {
3592 local_bh_disable();
3593 netif_tx_lock(dev);
3594 }
3595
3596 static inline void netif_tx_unlock(struct net_device *dev)
3597 {
3598 unsigned int i;
3599
3600 for (i = 0; i < dev->num_tx_queues; i++) {
3601 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3602
3603 /* No need to grab the _xmit_lock here. If the
3604 * queue is not stopped for another reason, we
3605 * force a schedule.
3606 */
3607 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3608 netif_schedule_queue(txq);
3609 }
3610 spin_unlock(&dev->tx_global_lock);
3611 }
3612
3613 static inline void netif_tx_unlock_bh(struct net_device *dev)
3614 {
3615 netif_tx_unlock(dev);
3616 local_bh_enable();
3617 }
3618
3619 #define HARD_TX_LOCK(dev, txq, cpu) { \
3620 if ((dev->features & NETIF_F_LLTX) == 0) { \
3621 __netif_tx_lock(txq, cpu); \
3622 } else { \
3623 __netif_tx_acquire(txq); \
3624 } \
3625 }
3626
3627 #define HARD_TX_TRYLOCK(dev, txq) \
3628 (((dev->features & NETIF_F_LLTX) == 0) ? \
3629 __netif_tx_trylock(txq) : \
3630 __netif_tx_acquire(txq))
3631
3632 #define HARD_TX_UNLOCK(dev, txq) { \
3633 if ((dev->features & NETIF_F_LLTX) == 0) { \
3634 __netif_tx_unlock(txq); \
3635 } else { \
3636 __netif_tx_release(txq); \
3637 } \
3638 }
3639
3640 static inline void netif_tx_disable(struct net_device *dev)
3641 {
3642 unsigned int i;
3643 int cpu;
3644
3645 local_bh_disable();
3646 cpu = smp_processor_id();
3647 for (i = 0; i < dev->num_tx_queues; i++) {
3648 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3649
3650 __netif_tx_lock(txq, cpu);
3651 netif_tx_stop_queue(txq);
3652 __netif_tx_unlock(txq);
3653 }
3654 local_bh_enable();
3655 }
3656
3657 static inline void netif_addr_lock(struct net_device *dev)
3658 {
3659 spin_lock(&dev->addr_list_lock);
3660 }
3661
3662 static inline void netif_addr_lock_nested(struct net_device *dev)
3663 {
3664 int subclass = SINGLE_DEPTH_NESTING;
3665
3666 if (dev->netdev_ops->ndo_get_lock_subclass)
3667 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3668
3669 spin_lock_nested(&dev->addr_list_lock, subclass);
3670 }
3671
3672 static inline void netif_addr_lock_bh(struct net_device *dev)
3673 {
3674 spin_lock_bh(&dev->addr_list_lock);
3675 }
3676
3677 static inline void netif_addr_unlock(struct net_device *dev)
3678 {
3679 spin_unlock(&dev->addr_list_lock);
3680 }
3681
3682 static inline void netif_addr_unlock_bh(struct net_device *dev)
3683 {
3684 spin_unlock_bh(&dev->addr_list_lock);
3685 }
3686
3687 /*
3688 * dev_addrs walker. Should be used only for read access. Call with
3689 * rcu_read_lock held.
3690 */
3691 #define for_each_dev_addr(dev, ha) \
3692 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3693
3694 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3695
3696 void ether_setup(struct net_device *dev);
3697
3698 /* Support for loadable net-drivers */
3699 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3700 unsigned char name_assign_type,
3701 void (*setup)(struct net_device *),
3702 unsigned int txqs, unsigned int rxqs);
3703 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3704 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3705
3706 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3707 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3708 count)
3709
3710 int register_netdev(struct net_device *dev);
3711 void unregister_netdev(struct net_device *dev);
3712
3713 /* General hardware address lists handling functions */
3714 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3715 struct netdev_hw_addr_list *from_list, int addr_len);
3716 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3717 struct netdev_hw_addr_list *from_list, int addr_len);
3718 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3719 struct net_device *dev,
3720 int (*sync)(struct net_device *, const unsigned char *),
3721 int (*unsync)(struct net_device *,
3722 const unsigned char *));
3723 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3724 struct net_device *dev,
3725 int (*unsync)(struct net_device *,
3726 const unsigned char *));
3727 void __hw_addr_init(struct netdev_hw_addr_list *list);
3728
3729 /* Functions used for device addresses handling */
3730 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3731 unsigned char addr_type);
3732 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3733 unsigned char addr_type);
3734 void dev_addr_flush(struct net_device *dev);
3735 int dev_addr_init(struct net_device *dev);
3736
3737 /* Functions used for unicast addresses handling */
3738 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3739 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3740 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3741 int dev_uc_sync(struct net_device *to, struct net_device *from);
3742 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3743 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3744 void dev_uc_flush(struct net_device *dev);
3745 void dev_uc_init(struct net_device *dev);
3746
3747 /**
3748 * __dev_uc_sync - Synchonize device's unicast list
3749 * @dev: device to sync
3750 * @sync: function to call if address should be added
3751 * @unsync: function to call if address should be removed
3752 *
3753 * Add newly added addresses to the interface, and release
3754 * addresses that have been deleted.
3755 */
3756 static inline int __dev_uc_sync(struct net_device *dev,
3757 int (*sync)(struct net_device *,
3758 const unsigned char *),
3759 int (*unsync)(struct net_device *,
3760 const unsigned char *))
3761 {
3762 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3763 }
3764
3765 /**
3766 * __dev_uc_unsync - Remove synchronized addresses from device
3767 * @dev: device to sync
3768 * @unsync: function to call if address should be removed
3769 *
3770 * Remove all addresses that were added to the device by dev_uc_sync().
3771 */
3772 static inline void __dev_uc_unsync(struct net_device *dev,
3773 int (*unsync)(struct net_device *,
3774 const unsigned char *))
3775 {
3776 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3777 }
3778
3779 /* Functions used for multicast addresses handling */
3780 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3781 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3782 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3783 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3784 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3785 int dev_mc_sync(struct net_device *to, struct net_device *from);
3786 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3787 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3788 void dev_mc_flush(struct net_device *dev);
3789 void dev_mc_init(struct net_device *dev);
3790
3791 /**
3792 * __dev_mc_sync - Synchonize device's multicast list
3793 * @dev: device to sync
3794 * @sync: function to call if address should be added
3795 * @unsync: function to call if address should be removed
3796 *
3797 * Add newly added addresses to the interface, and release
3798 * addresses that have been deleted.
3799 */
3800 static inline int __dev_mc_sync(struct net_device *dev,
3801 int (*sync)(struct net_device *,
3802 const unsigned char *),
3803 int (*unsync)(struct net_device *,
3804 const unsigned char *))
3805 {
3806 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3807 }
3808
3809 /**
3810 * __dev_mc_unsync - Remove synchronized addresses from device
3811 * @dev: device to sync
3812 * @unsync: function to call if address should be removed
3813 *
3814 * Remove all addresses that were added to the device by dev_mc_sync().
3815 */
3816 static inline void __dev_mc_unsync(struct net_device *dev,
3817 int (*unsync)(struct net_device *,
3818 const unsigned char *))
3819 {
3820 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3821 }
3822
3823 /* Functions used for secondary unicast and multicast support */
3824 void dev_set_rx_mode(struct net_device *dev);
3825 void __dev_set_rx_mode(struct net_device *dev);
3826 int dev_set_promiscuity(struct net_device *dev, int inc);
3827 int dev_set_allmulti(struct net_device *dev, int inc);
3828 void netdev_state_change(struct net_device *dev);
3829 void netdev_notify_peers(struct net_device *dev);
3830 void netdev_features_change(struct net_device *dev);
3831 /* Load a device via the kmod */
3832 void dev_load(struct net *net, const char *name);
3833 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3834 struct rtnl_link_stats64 *storage);
3835 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3836 const struct net_device_stats *netdev_stats);
3837
3838 extern int netdev_max_backlog;
3839 extern int netdev_tstamp_prequeue;
3840 extern int weight_p;
3841 extern int dev_weight_rx_bias;
3842 extern int dev_weight_tx_bias;
3843 extern int dev_rx_weight;
3844 extern int dev_tx_weight;
3845
3846 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3847 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3848 struct list_head **iter);
3849 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3850 struct list_head **iter);
3851
3852 /* iterate through upper list, must be called under RCU read lock */
3853 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3854 for (iter = &(dev)->adj_list.upper, \
3855 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3856 updev; \
3857 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3858
3859 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
3860 int (*fn)(struct net_device *upper_dev,
3861 void *data),
3862 void *data);
3863
3864 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
3865 struct net_device *upper_dev);
3866
3867 bool netdev_has_any_upper_dev(struct net_device *dev);
3868
3869 void *netdev_lower_get_next_private(struct net_device *dev,
3870 struct list_head **iter);
3871 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3872 struct list_head **iter);
3873
3874 #define netdev_for_each_lower_private(dev, priv, iter) \
3875 for (iter = (dev)->adj_list.lower.next, \
3876 priv = netdev_lower_get_next_private(dev, &(iter)); \
3877 priv; \
3878 priv = netdev_lower_get_next_private(dev, &(iter)))
3879
3880 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3881 for (iter = &(dev)->adj_list.lower, \
3882 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3883 priv; \
3884 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3885
3886 void *netdev_lower_get_next(struct net_device *dev,
3887 struct list_head **iter);
3888
3889 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3890 for (iter = (dev)->adj_list.lower.next, \
3891 ldev = netdev_lower_get_next(dev, &(iter)); \
3892 ldev; \
3893 ldev = netdev_lower_get_next(dev, &(iter)))
3894
3895 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
3896 struct list_head **iter);
3897 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
3898 struct list_head **iter);
3899
3900 int netdev_walk_all_lower_dev(struct net_device *dev,
3901 int (*fn)(struct net_device *lower_dev,
3902 void *data),
3903 void *data);
3904 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
3905 int (*fn)(struct net_device *lower_dev,
3906 void *data),
3907 void *data);
3908
3909 void *netdev_adjacent_get_private(struct list_head *adj_list);
3910 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3911 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3912 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3913 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3914 int netdev_master_upper_dev_link(struct net_device *dev,
3915 struct net_device *upper_dev,
3916 void *upper_priv, void *upper_info);
3917 void netdev_upper_dev_unlink(struct net_device *dev,
3918 struct net_device *upper_dev);
3919 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3920 void *netdev_lower_dev_get_private(struct net_device *dev,
3921 struct net_device *lower_dev);
3922 void netdev_lower_state_changed(struct net_device *lower_dev,
3923 void *lower_state_info);
3924
3925 /* RSS keys are 40 or 52 bytes long */
3926 #define NETDEV_RSS_KEY_LEN 52
3927 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
3928 void netdev_rss_key_fill(void *buffer, size_t len);
3929
3930 int dev_get_nest_level(struct net_device *dev);
3931 int skb_checksum_help(struct sk_buff *skb);
3932 int skb_crc32c_csum_help(struct sk_buff *skb);
3933 int skb_csum_hwoffload_help(struct sk_buff *skb,
3934 const netdev_features_t features);
3935
3936 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3937 netdev_features_t features, bool tx_path);
3938 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3939 netdev_features_t features);
3940
3941 struct netdev_bonding_info {
3942 ifslave slave;
3943 ifbond master;
3944 };
3945
3946 struct netdev_notifier_bonding_info {
3947 struct netdev_notifier_info info; /* must be first */
3948 struct netdev_bonding_info bonding_info;
3949 };
3950
3951 void netdev_bonding_info_change(struct net_device *dev,
3952 struct netdev_bonding_info *bonding_info);
3953
3954 static inline
3955 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3956 {
3957 return __skb_gso_segment(skb, features, true);
3958 }
3959 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3960
3961 static inline bool can_checksum_protocol(netdev_features_t features,
3962 __be16 protocol)
3963 {
3964 if (protocol == htons(ETH_P_FCOE))
3965 return !!(features & NETIF_F_FCOE_CRC);
3966
3967 /* Assume this is an IP checksum (not SCTP CRC) */
3968
3969 if (features & NETIF_F_HW_CSUM) {
3970 /* Can checksum everything */
3971 return true;
3972 }
3973
3974 switch (protocol) {
3975 case htons(ETH_P_IP):
3976 return !!(features & NETIF_F_IP_CSUM);
3977 case htons(ETH_P_IPV6):
3978 return !!(features & NETIF_F_IPV6_CSUM);
3979 default:
3980 return false;
3981 }
3982 }
3983
3984 #ifdef CONFIG_BUG
3985 void netdev_rx_csum_fault(struct net_device *dev);
3986 #else
3987 static inline void netdev_rx_csum_fault(struct net_device *dev)
3988 {
3989 }
3990 #endif
3991 /* rx skb timestamps */
3992 void net_enable_timestamp(void);
3993 void net_disable_timestamp(void);
3994
3995 #ifdef CONFIG_PROC_FS
3996 int __init dev_proc_init(void);
3997 #else
3998 #define dev_proc_init() 0
3999 #endif
4000
4001 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4002 struct sk_buff *skb, struct net_device *dev,
4003 bool more)
4004 {
4005 skb->xmit_more = more ? 1 : 0;
4006 return ops->ndo_start_xmit(skb, dev);
4007 }
4008
4009 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4010 struct netdev_queue *txq, bool more)
4011 {
4012 const struct net_device_ops *ops = dev->netdev_ops;
4013 int rc;
4014
4015 rc = __netdev_start_xmit(ops, skb, dev, more);
4016 if (rc == NETDEV_TX_OK)
4017 txq_trans_update(txq);
4018
4019 return rc;
4020 }
4021
4022 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4023 const void *ns);
4024 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4025 const void *ns);
4026
4027 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4028 {
4029 return netdev_class_create_file_ns(class_attr, NULL);
4030 }
4031
4032 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4033 {
4034 netdev_class_remove_file_ns(class_attr, NULL);
4035 }
4036
4037 extern const struct kobj_ns_type_operations net_ns_type_operations;
4038
4039 const char *netdev_drivername(const struct net_device *dev);
4040
4041 void linkwatch_run_queue(void);
4042
4043 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4044 netdev_features_t f2)
4045 {
4046 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4047 if (f1 & NETIF_F_HW_CSUM)
4048 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4049 else
4050 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4051 }
4052
4053 return f1 & f2;
4054 }
4055
4056 static inline netdev_features_t netdev_get_wanted_features(
4057 struct net_device *dev)
4058 {
4059 return (dev->features & ~dev->hw_features) | dev->wanted_features;
4060 }
4061 netdev_features_t netdev_increment_features(netdev_features_t all,
4062 netdev_features_t one, netdev_features_t mask);
4063
4064 /* Allow TSO being used on stacked device :
4065 * Performing the GSO segmentation before last device
4066 * is a performance improvement.
4067 */
4068 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4069 netdev_features_t mask)
4070 {
4071 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4072 }
4073
4074 int __netdev_update_features(struct net_device *dev);
4075 void netdev_update_features(struct net_device *dev);
4076 void netdev_change_features(struct net_device *dev);
4077
4078 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4079 struct net_device *dev);
4080
4081 netdev_features_t passthru_features_check(struct sk_buff *skb,
4082 struct net_device *dev,
4083 netdev_features_t features);
4084 netdev_features_t netif_skb_features(struct sk_buff *skb);
4085
4086 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4087 {
4088 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4089
4090 /* check flags correspondence */
4091 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4092 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4093 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4094 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4095 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4096 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4097 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4098 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4099 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4100 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4101 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4102 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4103 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4104 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4105 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4106 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4107
4108 return (features & feature) == feature;
4109 }
4110
4111 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4112 {
4113 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4114 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4115 }
4116
4117 static inline bool netif_needs_gso(struct sk_buff *skb,
4118 netdev_features_t features)
4119 {
4120 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4121 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4122 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4123 }
4124
4125 static inline void netif_set_gso_max_size(struct net_device *dev,
4126 unsigned int size)
4127 {
4128 dev->gso_max_size = size;
4129 }
4130
4131 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4132 int pulled_hlen, u16 mac_offset,
4133 int mac_len)
4134 {
4135 skb->protocol = protocol;
4136 skb->encapsulation = 1;
4137 skb_push(skb, pulled_hlen);
4138 skb_reset_transport_header(skb);
4139 skb->mac_header = mac_offset;
4140 skb->network_header = skb->mac_header + mac_len;
4141 skb->mac_len = mac_len;
4142 }
4143
4144 static inline bool netif_is_macsec(const struct net_device *dev)
4145 {
4146 return dev->priv_flags & IFF_MACSEC;
4147 }
4148
4149 static inline bool netif_is_macvlan(const struct net_device *dev)
4150 {
4151 return dev->priv_flags & IFF_MACVLAN;
4152 }
4153
4154 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4155 {
4156 return dev->priv_flags & IFF_MACVLAN_PORT;
4157 }
4158
4159 static inline bool netif_is_ipvlan(const struct net_device *dev)
4160 {
4161 return dev->priv_flags & IFF_IPVLAN_SLAVE;
4162 }
4163
4164 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
4165 {
4166 return dev->priv_flags & IFF_IPVLAN_MASTER;
4167 }
4168
4169 static inline bool netif_is_bond_master(const struct net_device *dev)
4170 {
4171 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4172 }
4173
4174 static inline bool netif_is_bond_slave(const struct net_device *dev)
4175 {
4176 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4177 }
4178
4179 static inline bool netif_supports_nofcs(struct net_device *dev)
4180 {
4181 return dev->priv_flags & IFF_SUPP_NOFCS;
4182 }
4183
4184 static inline bool netif_is_l3_master(const struct net_device *dev)
4185 {
4186 return dev->priv_flags & IFF_L3MDEV_MASTER;
4187 }
4188
4189 static inline bool netif_is_l3_slave(const struct net_device *dev)
4190 {
4191 return dev->priv_flags & IFF_L3MDEV_SLAVE;
4192 }
4193
4194 static inline bool netif_is_bridge_master(const struct net_device *dev)
4195 {
4196 return dev->priv_flags & IFF_EBRIDGE;
4197 }
4198
4199 static inline bool netif_is_bridge_port(const struct net_device *dev)
4200 {
4201 return dev->priv_flags & IFF_BRIDGE_PORT;
4202 }
4203
4204 static inline bool netif_is_ovs_master(const struct net_device *dev)
4205 {
4206 return dev->priv_flags & IFF_OPENVSWITCH;
4207 }
4208
4209 static inline bool netif_is_ovs_port(const struct net_device *dev)
4210 {
4211 return dev->priv_flags & IFF_OVS_DATAPATH;
4212 }
4213
4214 static inline bool netif_is_team_master(const struct net_device *dev)
4215 {
4216 return dev->priv_flags & IFF_TEAM;
4217 }
4218
4219 static inline bool netif_is_team_port(const struct net_device *dev)
4220 {
4221 return dev->priv_flags & IFF_TEAM_PORT;
4222 }
4223
4224 static inline bool netif_is_lag_master(const struct net_device *dev)
4225 {
4226 return netif_is_bond_master(dev) || netif_is_team_master(dev);
4227 }
4228
4229 static inline bool netif_is_lag_port(const struct net_device *dev)
4230 {
4231 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4232 }
4233
4234 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4235 {
4236 return dev->priv_flags & IFF_RXFH_CONFIGURED;
4237 }
4238
4239 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4240 static inline void netif_keep_dst(struct net_device *dev)
4241 {
4242 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4243 }
4244
4245 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4246 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4247 {
4248 /* TODO: reserve and use an additional IFF bit, if we get more users */
4249 return dev->priv_flags & IFF_MACSEC;
4250 }
4251
4252 extern struct pernet_operations __net_initdata loopback_net_ops;
4253
4254 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4255
4256 /* netdev_printk helpers, similar to dev_printk */
4257
4258 static inline const char *netdev_name(const struct net_device *dev)
4259 {
4260 if (!dev->name[0] || strchr(dev->name, '%'))
4261 return "(unnamed net_device)";
4262 return dev->name;
4263 }
4264
4265 static inline bool netdev_unregistering(const struct net_device *dev)
4266 {
4267 return dev->reg_state == NETREG_UNREGISTERING;
4268 }
4269
4270 static inline const char *netdev_reg_state(const struct net_device *dev)
4271 {
4272 switch (dev->reg_state) {
4273 case NETREG_UNINITIALIZED: return " (uninitialized)";
4274 case NETREG_REGISTERED: return "";
4275 case NETREG_UNREGISTERING: return " (unregistering)";
4276 case NETREG_UNREGISTERED: return " (unregistered)";
4277 case NETREG_RELEASED: return " (released)";
4278 case NETREG_DUMMY: return " (dummy)";
4279 }
4280
4281 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4282 return " (unknown)";
4283 }
4284
4285 __printf(3, 4)
4286 void netdev_printk(const char *level, const struct net_device *dev,
4287 const char *format, ...);
4288 __printf(2, 3)
4289 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4290 __printf(2, 3)
4291 void netdev_alert(const struct net_device *dev, const char *format, ...);
4292 __printf(2, 3)
4293 void netdev_crit(const struct net_device *dev, const char *format, ...);
4294 __printf(2, 3)
4295 void netdev_err(const struct net_device *dev, const char *format, ...);
4296 __printf(2, 3)
4297 void netdev_warn(const struct net_device *dev, const char *format, ...);
4298 __printf(2, 3)
4299 void netdev_notice(const struct net_device *dev, const char *format, ...);
4300 __printf(2, 3)
4301 void netdev_info(const struct net_device *dev, const char *format, ...);
4302
4303 #define MODULE_ALIAS_NETDEV(device) \
4304 MODULE_ALIAS("netdev-" device)
4305
4306 #if defined(CONFIG_DYNAMIC_DEBUG)
4307 #define netdev_dbg(__dev, format, args...) \
4308 do { \
4309 dynamic_netdev_dbg(__dev, format, ##args); \
4310 } while (0)
4311 #elif defined(DEBUG)
4312 #define netdev_dbg(__dev, format, args...) \
4313 netdev_printk(KERN_DEBUG, __dev, format, ##args)
4314 #else
4315 #define netdev_dbg(__dev, format, args...) \
4316 ({ \
4317 if (0) \
4318 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4319 })
4320 #endif
4321
4322 #if defined(VERBOSE_DEBUG)
4323 #define netdev_vdbg netdev_dbg
4324 #else
4325
4326 #define netdev_vdbg(dev, format, args...) \
4327 ({ \
4328 if (0) \
4329 netdev_printk(KERN_DEBUG, dev, format, ##args); \
4330 0; \
4331 })
4332 #endif
4333
4334 /*
4335 * netdev_WARN() acts like dev_printk(), but with the key difference
4336 * of using a WARN/WARN_ON to get the message out, including the
4337 * file/line information and a backtrace.
4338 */
4339 #define netdev_WARN(dev, format, args...) \
4340 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \
4341 netdev_reg_state(dev), ##args)
4342
4343 /* netif printk helpers, similar to netdev_printk */
4344
4345 #define netif_printk(priv, type, level, dev, fmt, args...) \
4346 do { \
4347 if (netif_msg_##type(priv)) \
4348 netdev_printk(level, (dev), fmt, ##args); \
4349 } while (0)
4350
4351 #define netif_level(level, priv, type, dev, fmt, args...) \
4352 do { \
4353 if (netif_msg_##type(priv)) \
4354 netdev_##level(dev, fmt, ##args); \
4355 } while (0)
4356
4357 #define netif_emerg(priv, type, dev, fmt, args...) \
4358 netif_level(emerg, priv, type, dev, fmt, ##args)
4359 #define netif_alert(priv, type, dev, fmt, args...) \
4360 netif_level(alert, priv, type, dev, fmt, ##args)
4361 #define netif_crit(priv, type, dev, fmt, args...) \
4362 netif_level(crit, priv, type, dev, fmt, ##args)
4363 #define netif_err(priv, type, dev, fmt, args...) \
4364 netif_level(err, priv, type, dev, fmt, ##args)
4365 #define netif_warn(priv, type, dev, fmt, args...) \
4366 netif_level(warn, priv, type, dev, fmt, ##args)
4367 #define netif_notice(priv, type, dev, fmt, args...) \
4368 netif_level(notice, priv, type, dev, fmt, ##args)
4369 #define netif_info(priv, type, dev, fmt, args...) \
4370 netif_level(info, priv, type, dev, fmt, ##args)
4371
4372 #if defined(CONFIG_DYNAMIC_DEBUG)
4373 #define netif_dbg(priv, type, netdev, format, args...) \
4374 do { \
4375 if (netif_msg_##type(priv)) \
4376 dynamic_netdev_dbg(netdev, format, ##args); \
4377 } while (0)
4378 #elif defined(DEBUG)
4379 #define netif_dbg(priv, type, dev, format, args...) \
4380 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4381 #else
4382 #define netif_dbg(priv, type, dev, format, args...) \
4383 ({ \
4384 if (0) \
4385 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4386 0; \
4387 })
4388 #endif
4389
4390 /* if @cond then downgrade to debug, else print at @level */
4391 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \
4392 do { \
4393 if (cond) \
4394 netif_dbg(priv, type, netdev, fmt, ##args); \
4395 else \
4396 netif_ ## level(priv, type, netdev, fmt, ##args); \
4397 } while (0)
4398
4399 #if defined(VERBOSE_DEBUG)
4400 #define netif_vdbg netif_dbg
4401 #else
4402 #define netif_vdbg(priv, type, dev, format, args...) \
4403 ({ \
4404 if (0) \
4405 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4406 0; \
4407 })
4408 #endif
4409
4410 /*
4411 * The list of packet types we will receive (as opposed to discard)
4412 * and the routines to invoke.
4413 *
4414 * Why 16. Because with 16 the only overlap we get on a hash of the
4415 * low nibble of the protocol value is RARP/SNAP/X.25.
4416 *
4417 * NOTE: That is no longer true with the addition of VLAN tags. Not
4418 * sure which should go first, but I bet it won't make much
4419 * difference if we are running VLANs. The good news is that
4420 * this protocol won't be in the list unless compiled in, so
4421 * the average user (w/out VLANs) will not be adversely affected.
4422 * --BLG
4423 *
4424 * 0800 IP
4425 * 8100 802.1Q VLAN
4426 * 0001 802.3
4427 * 0002 AX.25
4428 * 0004 802.2
4429 * 8035 RARP
4430 * 0005 SNAP
4431 * 0805 X.25
4432 * 0806 ARP
4433 * 8137 IPX
4434 * 0009 Localtalk
4435 * 86DD IPv6
4436 */
4437 #define PTYPE_HASH_SIZE (16)
4438 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4439
4440 #endif /* _LINUX_NETDEVICE_H */