]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/netdevice.h
xfrm: Add a secpath_set helper.
[mirror_ubuntu-artful-kernel.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 #include <uapi/linux/if_bonding.h>
54 #include <uapi/linux/pkt_cls.h>
55 #include <linux/hashtable.h>
56
57 struct netpoll_info;
58 struct device;
59 struct phy_device;
60 /* 802.11 specific */
61 struct wireless_dev;
62 /* 802.15.4 specific */
63 struct wpan_dev;
64 struct mpls_dev;
65 /* UDP Tunnel offloads */
66 struct udp_tunnel_info;
67 struct bpf_prog;
68
69 void netdev_set_default_ethtool_ops(struct net_device *dev,
70 const struct ethtool_ops *ops);
71
72 /* Backlog congestion levels */
73 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
74 #define NET_RX_DROP 1 /* packet dropped */
75
76 /*
77 * Transmit return codes: transmit return codes originate from three different
78 * namespaces:
79 *
80 * - qdisc return codes
81 * - driver transmit return codes
82 * - errno values
83 *
84 * Drivers are allowed to return any one of those in their hard_start_xmit()
85 * function. Real network devices commonly used with qdiscs should only return
86 * the driver transmit return codes though - when qdiscs are used, the actual
87 * transmission happens asynchronously, so the value is not propagated to
88 * higher layers. Virtual network devices transmit synchronously; in this case
89 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
90 * others are propagated to higher layers.
91 */
92
93 /* qdisc ->enqueue() return codes. */
94 #define NET_XMIT_SUCCESS 0x00
95 #define NET_XMIT_DROP 0x01 /* skb dropped */
96 #define NET_XMIT_CN 0x02 /* congestion notification */
97 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
98
99 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
100 * indicates that the device will soon be dropping packets, or already drops
101 * some packets of the same priority; prompting us to send less aggressively. */
102 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
103 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
104
105 /* Driver transmit return codes */
106 #define NETDEV_TX_MASK 0xf0
107
108 enum netdev_tx {
109 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
110 NETDEV_TX_OK = 0x00, /* driver took care of packet */
111 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
112 };
113 typedef enum netdev_tx netdev_tx_t;
114
115 /*
116 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
117 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
118 */
119 static inline bool dev_xmit_complete(int rc)
120 {
121 /*
122 * Positive cases with an skb consumed by a driver:
123 * - successful transmission (rc == NETDEV_TX_OK)
124 * - error while transmitting (rc < 0)
125 * - error while queueing to a different device (rc & NET_XMIT_MASK)
126 */
127 if (likely(rc < NET_XMIT_MASK))
128 return true;
129
130 return false;
131 }
132
133 /*
134 * Compute the worst-case header length according to the protocols
135 * used.
136 */
137
138 #if defined(CONFIG_HYPERV_NET)
139 # define LL_MAX_HEADER 128
140 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
141 # if defined(CONFIG_MAC80211_MESH)
142 # define LL_MAX_HEADER 128
143 # else
144 # define LL_MAX_HEADER 96
145 # endif
146 #else
147 # define LL_MAX_HEADER 32
148 #endif
149
150 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
151 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
152 #define MAX_HEADER LL_MAX_HEADER
153 #else
154 #define MAX_HEADER (LL_MAX_HEADER + 48)
155 #endif
156
157 /*
158 * Old network device statistics. Fields are native words
159 * (unsigned long) so they can be read and written atomically.
160 */
161
162 struct net_device_stats {
163 unsigned long rx_packets;
164 unsigned long tx_packets;
165 unsigned long rx_bytes;
166 unsigned long tx_bytes;
167 unsigned long rx_errors;
168 unsigned long tx_errors;
169 unsigned long rx_dropped;
170 unsigned long tx_dropped;
171 unsigned long multicast;
172 unsigned long collisions;
173 unsigned long rx_length_errors;
174 unsigned long rx_over_errors;
175 unsigned long rx_crc_errors;
176 unsigned long rx_frame_errors;
177 unsigned long rx_fifo_errors;
178 unsigned long rx_missed_errors;
179 unsigned long tx_aborted_errors;
180 unsigned long tx_carrier_errors;
181 unsigned long tx_fifo_errors;
182 unsigned long tx_heartbeat_errors;
183 unsigned long tx_window_errors;
184 unsigned long rx_compressed;
185 unsigned long tx_compressed;
186 };
187
188
189 #include <linux/cache.h>
190 #include <linux/skbuff.h>
191
192 #ifdef CONFIG_RPS
193 #include <linux/static_key.h>
194 extern struct static_key rps_needed;
195 extern struct static_key rfs_needed;
196 #endif
197
198 struct neighbour;
199 struct neigh_parms;
200 struct sk_buff;
201
202 struct netdev_hw_addr {
203 struct list_head list;
204 unsigned char addr[MAX_ADDR_LEN];
205 unsigned char type;
206 #define NETDEV_HW_ADDR_T_LAN 1
207 #define NETDEV_HW_ADDR_T_SAN 2
208 #define NETDEV_HW_ADDR_T_SLAVE 3
209 #define NETDEV_HW_ADDR_T_UNICAST 4
210 #define NETDEV_HW_ADDR_T_MULTICAST 5
211 bool global_use;
212 int sync_cnt;
213 int refcount;
214 int synced;
215 struct rcu_head rcu_head;
216 };
217
218 struct netdev_hw_addr_list {
219 struct list_head list;
220 int count;
221 };
222
223 #define netdev_hw_addr_list_count(l) ((l)->count)
224 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
225 #define netdev_hw_addr_list_for_each(ha, l) \
226 list_for_each_entry(ha, &(l)->list, list)
227
228 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
229 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
230 #define netdev_for_each_uc_addr(ha, dev) \
231 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
232
233 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
234 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
235 #define netdev_for_each_mc_addr(ha, dev) \
236 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
237
238 struct hh_cache {
239 u16 hh_len;
240 u16 __pad;
241 seqlock_t hh_lock;
242
243 /* cached hardware header; allow for machine alignment needs. */
244 #define HH_DATA_MOD 16
245 #define HH_DATA_OFF(__len) \
246 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
247 #define HH_DATA_ALIGN(__len) \
248 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
249 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
250 };
251
252 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
253 * Alternative is:
254 * dev->hard_header_len ? (dev->hard_header_len +
255 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
256 *
257 * We could use other alignment values, but we must maintain the
258 * relationship HH alignment <= LL alignment.
259 */
260 #define LL_RESERVED_SPACE(dev) \
261 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
263 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264
265 struct header_ops {
266 int (*create) (struct sk_buff *skb, struct net_device *dev,
267 unsigned short type, const void *daddr,
268 const void *saddr, unsigned int len);
269 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
270 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
271 void (*cache_update)(struct hh_cache *hh,
272 const struct net_device *dev,
273 const unsigned char *haddr);
274 bool (*validate)(const char *ll_header, unsigned int len);
275 };
276
277 /* These flag bits are private to the generic network queueing
278 * layer; they may not be explicitly referenced by any other
279 * code.
280 */
281
282 enum netdev_state_t {
283 __LINK_STATE_START,
284 __LINK_STATE_PRESENT,
285 __LINK_STATE_NOCARRIER,
286 __LINK_STATE_LINKWATCH_PENDING,
287 __LINK_STATE_DORMANT,
288 };
289
290
291 /*
292 * This structure holds boot-time configured netdevice settings. They
293 * are then used in the device probing.
294 */
295 struct netdev_boot_setup {
296 char name[IFNAMSIZ];
297 struct ifmap map;
298 };
299 #define NETDEV_BOOT_SETUP_MAX 8
300
301 int __init netdev_boot_setup(char *str);
302
303 /*
304 * Structure for NAPI scheduling similar to tasklet but with weighting
305 */
306 struct napi_struct {
307 /* The poll_list must only be managed by the entity which
308 * changes the state of the NAPI_STATE_SCHED bit. This means
309 * whoever atomically sets that bit can add this napi_struct
310 * to the per-CPU poll_list, and whoever clears that bit
311 * can remove from the list right before clearing the bit.
312 */
313 struct list_head poll_list;
314
315 unsigned long state;
316 int weight;
317 unsigned int gro_count;
318 int (*poll)(struct napi_struct *, int);
319 #ifdef CONFIG_NETPOLL
320 int poll_owner;
321 #endif
322 struct net_device *dev;
323 struct sk_buff *gro_list;
324 struct sk_buff *skb;
325 struct hrtimer timer;
326 struct list_head dev_list;
327 struct hlist_node napi_hash_node;
328 unsigned int napi_id;
329 };
330
331 enum {
332 NAPI_STATE_SCHED, /* Poll is scheduled */
333 NAPI_STATE_DISABLE, /* Disable pending */
334 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
335 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */
336 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
337 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
338 };
339
340 enum {
341 NAPIF_STATE_SCHED = (1UL << NAPI_STATE_SCHED),
342 NAPIF_STATE_DISABLE = (1UL << NAPI_STATE_DISABLE),
343 NAPIF_STATE_NPSVC = (1UL << NAPI_STATE_NPSVC),
344 NAPIF_STATE_HASHED = (1UL << NAPI_STATE_HASHED),
345 NAPIF_STATE_NO_BUSY_POLL = (1UL << NAPI_STATE_NO_BUSY_POLL),
346 NAPIF_STATE_IN_BUSY_POLL = (1UL << NAPI_STATE_IN_BUSY_POLL),
347 };
348
349 enum gro_result {
350 GRO_MERGED,
351 GRO_MERGED_FREE,
352 GRO_HELD,
353 GRO_NORMAL,
354 GRO_DROP,
355 };
356 typedef enum gro_result gro_result_t;
357
358 /*
359 * enum rx_handler_result - Possible return values for rx_handlers.
360 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
361 * further.
362 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
363 * case skb->dev was changed by rx_handler.
364 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
365 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
366 *
367 * rx_handlers are functions called from inside __netif_receive_skb(), to do
368 * special processing of the skb, prior to delivery to protocol handlers.
369 *
370 * Currently, a net_device can only have a single rx_handler registered. Trying
371 * to register a second rx_handler will return -EBUSY.
372 *
373 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
374 * To unregister a rx_handler on a net_device, use
375 * netdev_rx_handler_unregister().
376 *
377 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
378 * do with the skb.
379 *
380 * If the rx_handler consumed the skb in some way, it should return
381 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
382 * the skb to be delivered in some other way.
383 *
384 * If the rx_handler changed skb->dev, to divert the skb to another
385 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
386 * new device will be called if it exists.
387 *
388 * If the rx_handler decides the skb should be ignored, it should return
389 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
390 * are registered on exact device (ptype->dev == skb->dev).
391 *
392 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
393 * delivered, it should return RX_HANDLER_PASS.
394 *
395 * A device without a registered rx_handler will behave as if rx_handler
396 * returned RX_HANDLER_PASS.
397 */
398
399 enum rx_handler_result {
400 RX_HANDLER_CONSUMED,
401 RX_HANDLER_ANOTHER,
402 RX_HANDLER_EXACT,
403 RX_HANDLER_PASS,
404 };
405 typedef enum rx_handler_result rx_handler_result_t;
406 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
407
408 void __napi_schedule(struct napi_struct *n);
409 void __napi_schedule_irqoff(struct napi_struct *n);
410
411 static inline bool napi_disable_pending(struct napi_struct *n)
412 {
413 return test_bit(NAPI_STATE_DISABLE, &n->state);
414 }
415
416 /**
417 * napi_schedule_prep - check if NAPI can be scheduled
418 * @n: NAPI context
419 *
420 * Test if NAPI routine is already running, and if not mark
421 * it as running. This is used as a condition variable to
422 * insure only one NAPI poll instance runs. We also make
423 * sure there is no pending NAPI disable.
424 */
425 static inline bool napi_schedule_prep(struct napi_struct *n)
426 {
427 return !napi_disable_pending(n) &&
428 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
429 }
430
431 /**
432 * napi_schedule - schedule NAPI poll
433 * @n: NAPI context
434 *
435 * Schedule NAPI poll routine to be called if it is not already
436 * running.
437 */
438 static inline void napi_schedule(struct napi_struct *n)
439 {
440 if (napi_schedule_prep(n))
441 __napi_schedule(n);
442 }
443
444 /**
445 * napi_schedule_irqoff - schedule NAPI poll
446 * @n: NAPI context
447 *
448 * Variant of napi_schedule(), assuming hard irqs are masked.
449 */
450 static inline void napi_schedule_irqoff(struct napi_struct *n)
451 {
452 if (napi_schedule_prep(n))
453 __napi_schedule_irqoff(n);
454 }
455
456 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
457 static inline bool napi_reschedule(struct napi_struct *napi)
458 {
459 if (napi_schedule_prep(napi)) {
460 __napi_schedule(napi);
461 return true;
462 }
463 return false;
464 }
465
466 bool napi_complete_done(struct napi_struct *n, int work_done);
467 /**
468 * napi_complete - NAPI processing complete
469 * @n: NAPI context
470 *
471 * Mark NAPI processing as complete.
472 * Consider using napi_complete_done() instead.
473 * Return false if device should avoid rearming interrupts.
474 */
475 static inline bool napi_complete(struct napi_struct *n)
476 {
477 return napi_complete_done(n, 0);
478 }
479
480 /**
481 * napi_hash_del - remove a NAPI from global table
482 * @napi: NAPI context
483 *
484 * Warning: caller must observe RCU grace period
485 * before freeing memory containing @napi, if
486 * this function returns true.
487 * Note: core networking stack automatically calls it
488 * from netif_napi_del().
489 * Drivers might want to call this helper to combine all
490 * the needed RCU grace periods into a single one.
491 */
492 bool napi_hash_del(struct napi_struct *napi);
493
494 /**
495 * napi_disable - prevent NAPI from scheduling
496 * @n: NAPI context
497 *
498 * Stop NAPI from being scheduled on this context.
499 * Waits till any outstanding processing completes.
500 */
501 void napi_disable(struct napi_struct *n);
502
503 /**
504 * napi_enable - enable NAPI scheduling
505 * @n: NAPI context
506 *
507 * Resume NAPI from being scheduled on this context.
508 * Must be paired with napi_disable.
509 */
510 static inline void napi_enable(struct napi_struct *n)
511 {
512 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
513 smp_mb__before_atomic();
514 clear_bit(NAPI_STATE_SCHED, &n->state);
515 clear_bit(NAPI_STATE_NPSVC, &n->state);
516 }
517
518 /**
519 * napi_synchronize - wait until NAPI is not running
520 * @n: NAPI context
521 *
522 * Wait until NAPI is done being scheduled on this context.
523 * Waits till any outstanding processing completes but
524 * does not disable future activations.
525 */
526 static inline void napi_synchronize(const struct napi_struct *n)
527 {
528 if (IS_ENABLED(CONFIG_SMP))
529 while (test_bit(NAPI_STATE_SCHED, &n->state))
530 msleep(1);
531 else
532 barrier();
533 }
534
535 enum netdev_queue_state_t {
536 __QUEUE_STATE_DRV_XOFF,
537 __QUEUE_STATE_STACK_XOFF,
538 __QUEUE_STATE_FROZEN,
539 };
540
541 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
542 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
543 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
544
545 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
546 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
547 QUEUE_STATE_FROZEN)
548 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
549 QUEUE_STATE_FROZEN)
550
551 /*
552 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
553 * netif_tx_* functions below are used to manipulate this flag. The
554 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
555 * queue independently. The netif_xmit_*stopped functions below are called
556 * to check if the queue has been stopped by the driver or stack (either
557 * of the XOFF bits are set in the state). Drivers should not need to call
558 * netif_xmit*stopped functions, they should only be using netif_tx_*.
559 */
560
561 struct netdev_queue {
562 /*
563 * read-mostly part
564 */
565 struct net_device *dev;
566 struct Qdisc __rcu *qdisc;
567 struct Qdisc *qdisc_sleeping;
568 #ifdef CONFIG_SYSFS
569 struct kobject kobj;
570 #endif
571 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
572 int numa_node;
573 #endif
574 unsigned long tx_maxrate;
575 /*
576 * Number of TX timeouts for this queue
577 * (/sys/class/net/DEV/Q/trans_timeout)
578 */
579 unsigned long trans_timeout;
580 /*
581 * write-mostly part
582 */
583 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
584 int xmit_lock_owner;
585 /*
586 * Time (in jiffies) of last Tx
587 */
588 unsigned long trans_start;
589
590 unsigned long state;
591
592 #ifdef CONFIG_BQL
593 struct dql dql;
594 #endif
595 } ____cacheline_aligned_in_smp;
596
597 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
598 {
599 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
600 return q->numa_node;
601 #else
602 return NUMA_NO_NODE;
603 #endif
604 }
605
606 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
607 {
608 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
609 q->numa_node = node;
610 #endif
611 }
612
613 #ifdef CONFIG_RPS
614 /*
615 * This structure holds an RPS map which can be of variable length. The
616 * map is an array of CPUs.
617 */
618 struct rps_map {
619 unsigned int len;
620 struct rcu_head rcu;
621 u16 cpus[0];
622 };
623 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
624
625 /*
626 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
627 * tail pointer for that CPU's input queue at the time of last enqueue, and
628 * a hardware filter index.
629 */
630 struct rps_dev_flow {
631 u16 cpu;
632 u16 filter;
633 unsigned int last_qtail;
634 };
635 #define RPS_NO_FILTER 0xffff
636
637 /*
638 * The rps_dev_flow_table structure contains a table of flow mappings.
639 */
640 struct rps_dev_flow_table {
641 unsigned int mask;
642 struct rcu_head rcu;
643 struct rps_dev_flow flows[0];
644 };
645 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
646 ((_num) * sizeof(struct rps_dev_flow)))
647
648 /*
649 * The rps_sock_flow_table contains mappings of flows to the last CPU
650 * on which they were processed by the application (set in recvmsg).
651 * Each entry is a 32bit value. Upper part is the high-order bits
652 * of flow hash, lower part is CPU number.
653 * rps_cpu_mask is used to partition the space, depending on number of
654 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
655 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
656 * meaning we use 32-6=26 bits for the hash.
657 */
658 struct rps_sock_flow_table {
659 u32 mask;
660
661 u32 ents[0] ____cacheline_aligned_in_smp;
662 };
663 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
664
665 #define RPS_NO_CPU 0xffff
666
667 extern u32 rps_cpu_mask;
668 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
669
670 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
671 u32 hash)
672 {
673 if (table && hash) {
674 unsigned int index = hash & table->mask;
675 u32 val = hash & ~rps_cpu_mask;
676
677 /* We only give a hint, preemption can change CPU under us */
678 val |= raw_smp_processor_id();
679
680 if (table->ents[index] != val)
681 table->ents[index] = val;
682 }
683 }
684
685 #ifdef CONFIG_RFS_ACCEL
686 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
687 u16 filter_id);
688 #endif
689 #endif /* CONFIG_RPS */
690
691 /* This structure contains an instance of an RX queue. */
692 struct netdev_rx_queue {
693 #ifdef CONFIG_RPS
694 struct rps_map __rcu *rps_map;
695 struct rps_dev_flow_table __rcu *rps_flow_table;
696 #endif
697 struct kobject kobj;
698 struct net_device *dev;
699 } ____cacheline_aligned_in_smp;
700
701 /*
702 * RX queue sysfs structures and functions.
703 */
704 struct rx_queue_attribute {
705 struct attribute attr;
706 ssize_t (*show)(struct netdev_rx_queue *queue,
707 struct rx_queue_attribute *attr, char *buf);
708 ssize_t (*store)(struct netdev_rx_queue *queue,
709 struct rx_queue_attribute *attr, const char *buf, size_t len);
710 };
711
712 #ifdef CONFIG_XPS
713 /*
714 * This structure holds an XPS map which can be of variable length. The
715 * map is an array of queues.
716 */
717 struct xps_map {
718 unsigned int len;
719 unsigned int alloc_len;
720 struct rcu_head rcu;
721 u16 queues[0];
722 };
723 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
724 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
725 - sizeof(struct xps_map)) / sizeof(u16))
726
727 /*
728 * This structure holds all XPS maps for device. Maps are indexed by CPU.
729 */
730 struct xps_dev_maps {
731 struct rcu_head rcu;
732 struct xps_map __rcu *cpu_map[0];
733 };
734 #define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \
735 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
736 #endif /* CONFIG_XPS */
737
738 #define TC_MAX_QUEUE 16
739 #define TC_BITMASK 15
740 /* HW offloaded queuing disciplines txq count and offset maps */
741 struct netdev_tc_txq {
742 u16 count;
743 u16 offset;
744 };
745
746 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
747 /*
748 * This structure is to hold information about the device
749 * configured to run FCoE protocol stack.
750 */
751 struct netdev_fcoe_hbainfo {
752 char manufacturer[64];
753 char serial_number[64];
754 char hardware_version[64];
755 char driver_version[64];
756 char optionrom_version[64];
757 char firmware_version[64];
758 char model[256];
759 char model_description[256];
760 };
761 #endif
762
763 #define MAX_PHYS_ITEM_ID_LEN 32
764
765 /* This structure holds a unique identifier to identify some
766 * physical item (port for example) used by a netdevice.
767 */
768 struct netdev_phys_item_id {
769 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
770 unsigned char id_len;
771 };
772
773 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
774 struct netdev_phys_item_id *b)
775 {
776 return a->id_len == b->id_len &&
777 memcmp(a->id, b->id, a->id_len) == 0;
778 }
779
780 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
781 struct sk_buff *skb);
782
783 /* These structures hold the attributes of qdisc and classifiers
784 * that are being passed to the netdevice through the setup_tc op.
785 */
786 enum {
787 TC_SETUP_MQPRIO,
788 TC_SETUP_CLSU32,
789 TC_SETUP_CLSFLOWER,
790 TC_SETUP_MATCHALL,
791 TC_SETUP_CLSBPF,
792 };
793
794 struct tc_cls_u32_offload;
795
796 struct tc_to_netdev {
797 unsigned int type;
798 union {
799 u8 tc;
800 struct tc_cls_u32_offload *cls_u32;
801 struct tc_cls_flower_offload *cls_flower;
802 struct tc_cls_matchall_offload *cls_mall;
803 struct tc_cls_bpf_offload *cls_bpf;
804 };
805 bool egress_dev;
806 };
807
808 /* These structures hold the attributes of xdp state that are being passed
809 * to the netdevice through the xdp op.
810 */
811 enum xdp_netdev_command {
812 /* Set or clear a bpf program used in the earliest stages of packet
813 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
814 * is responsible for calling bpf_prog_put on any old progs that are
815 * stored. In case of error, the callee need not release the new prog
816 * reference, but on success it takes ownership and must bpf_prog_put
817 * when it is no longer used.
818 */
819 XDP_SETUP_PROG,
820 /* Check if a bpf program is set on the device. The callee should
821 * return true if a program is currently attached and running.
822 */
823 XDP_QUERY_PROG,
824 };
825
826 struct netdev_xdp {
827 enum xdp_netdev_command command;
828 union {
829 /* XDP_SETUP_PROG */
830 struct bpf_prog *prog;
831 /* XDP_QUERY_PROG */
832 bool prog_attached;
833 };
834 };
835
836 /*
837 * This structure defines the management hooks for network devices.
838 * The following hooks can be defined; unless noted otherwise, they are
839 * optional and can be filled with a null pointer.
840 *
841 * int (*ndo_init)(struct net_device *dev);
842 * This function is called once when a network device is registered.
843 * The network device can use this for any late stage initialization
844 * or semantic validation. It can fail with an error code which will
845 * be propagated back to register_netdev.
846 *
847 * void (*ndo_uninit)(struct net_device *dev);
848 * This function is called when device is unregistered or when registration
849 * fails. It is not called if init fails.
850 *
851 * int (*ndo_open)(struct net_device *dev);
852 * This function is called when a network device transitions to the up
853 * state.
854 *
855 * int (*ndo_stop)(struct net_device *dev);
856 * This function is called when a network device transitions to the down
857 * state.
858 *
859 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
860 * struct net_device *dev);
861 * Called when a packet needs to be transmitted.
862 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
863 * the queue before that can happen; it's for obsolete devices and weird
864 * corner cases, but the stack really does a non-trivial amount
865 * of useless work if you return NETDEV_TX_BUSY.
866 * Required; cannot be NULL.
867 *
868 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
869 * struct net_device *dev
870 * netdev_features_t features);
871 * Called by core transmit path to determine if device is capable of
872 * performing offload operations on a given packet. This is to give
873 * the device an opportunity to implement any restrictions that cannot
874 * be otherwise expressed by feature flags. The check is called with
875 * the set of features that the stack has calculated and it returns
876 * those the driver believes to be appropriate.
877 *
878 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
879 * void *accel_priv, select_queue_fallback_t fallback);
880 * Called to decide which queue to use when device supports multiple
881 * transmit queues.
882 *
883 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
884 * This function is called to allow device receiver to make
885 * changes to configuration when multicast or promiscuous is enabled.
886 *
887 * void (*ndo_set_rx_mode)(struct net_device *dev);
888 * This function is called device changes address list filtering.
889 * If driver handles unicast address filtering, it should set
890 * IFF_UNICAST_FLT in its priv_flags.
891 *
892 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
893 * This function is called when the Media Access Control address
894 * needs to be changed. If this interface is not defined, the
895 * MAC address can not be changed.
896 *
897 * int (*ndo_validate_addr)(struct net_device *dev);
898 * Test if Media Access Control address is valid for the device.
899 *
900 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
901 * Called when a user requests an ioctl which can't be handled by
902 * the generic interface code. If not defined ioctls return
903 * not supported error code.
904 *
905 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
906 * Used to set network devices bus interface parameters. This interface
907 * is retained for legacy reasons; new devices should use the bus
908 * interface (PCI) for low level management.
909 *
910 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
911 * Called when a user wants to change the Maximum Transfer Unit
912 * of a device. If not defined, any request to change MTU will
913 * will return an error.
914 *
915 * void (*ndo_tx_timeout)(struct net_device *dev);
916 * Callback used when the transmitter has not made any progress
917 * for dev->watchdog ticks.
918 *
919 * void (*ndo_get_stats64)(struct net_device *dev,
920 * struct rtnl_link_stats64 *storage);
921 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
922 * Called when a user wants to get the network device usage
923 * statistics. Drivers must do one of the following:
924 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
925 * rtnl_link_stats64 structure passed by the caller.
926 * 2. Define @ndo_get_stats to update a net_device_stats structure
927 * (which should normally be dev->stats) and return a pointer to
928 * it. The structure may be changed asynchronously only if each
929 * field is written atomically.
930 * 3. Update dev->stats asynchronously and atomically, and define
931 * neither operation.
932 *
933 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
934 * Return true if this device supports offload stats of this attr_id.
935 *
936 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
937 * void *attr_data)
938 * Get statistics for offload operations by attr_id. Write it into the
939 * attr_data pointer.
940 *
941 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
942 * If device supports VLAN filtering this function is called when a
943 * VLAN id is registered.
944 *
945 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
946 * If device supports VLAN filtering this function is called when a
947 * VLAN id is unregistered.
948 *
949 * void (*ndo_poll_controller)(struct net_device *dev);
950 *
951 * SR-IOV management functions.
952 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
953 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
954 * u8 qos, __be16 proto);
955 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
956 * int max_tx_rate);
957 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
958 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
959 * int (*ndo_get_vf_config)(struct net_device *dev,
960 * int vf, struct ifla_vf_info *ivf);
961 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
962 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
963 * struct nlattr *port[]);
964 *
965 * Enable or disable the VF ability to query its RSS Redirection Table and
966 * Hash Key. This is needed since on some devices VF share this information
967 * with PF and querying it may introduce a theoretical security risk.
968 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
969 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
970 * int (*ndo_setup_tc)(struct net_device *dev, u32 handle,
971 * __be16 protocol, struct tc_to_netdev *tc);
972 * Called to setup any 'tc' scheduler, classifier or action on @dev.
973 * This is always called from the stack with the rtnl lock held and netif
974 * tx queues stopped. This allows the netdevice to perform queue
975 * management safely.
976 *
977 * Fiber Channel over Ethernet (FCoE) offload functions.
978 * int (*ndo_fcoe_enable)(struct net_device *dev);
979 * Called when the FCoE protocol stack wants to start using LLD for FCoE
980 * so the underlying device can perform whatever needed configuration or
981 * initialization to support acceleration of FCoE traffic.
982 *
983 * int (*ndo_fcoe_disable)(struct net_device *dev);
984 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
985 * so the underlying device can perform whatever needed clean-ups to
986 * stop supporting acceleration of FCoE traffic.
987 *
988 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
989 * struct scatterlist *sgl, unsigned int sgc);
990 * Called when the FCoE Initiator wants to initialize an I/O that
991 * is a possible candidate for Direct Data Placement (DDP). The LLD can
992 * perform necessary setup and returns 1 to indicate the device is set up
993 * successfully to perform DDP on this I/O, otherwise this returns 0.
994 *
995 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
996 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
997 * indicated by the FC exchange id 'xid', so the underlying device can
998 * clean up and reuse resources for later DDP requests.
999 *
1000 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1001 * struct scatterlist *sgl, unsigned int sgc);
1002 * Called when the FCoE Target wants to initialize an I/O that
1003 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1004 * perform necessary setup and returns 1 to indicate the device is set up
1005 * successfully to perform DDP on this I/O, otherwise this returns 0.
1006 *
1007 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1008 * struct netdev_fcoe_hbainfo *hbainfo);
1009 * Called when the FCoE Protocol stack wants information on the underlying
1010 * device. This information is utilized by the FCoE protocol stack to
1011 * register attributes with Fiber Channel management service as per the
1012 * FC-GS Fabric Device Management Information(FDMI) specification.
1013 *
1014 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1015 * Called when the underlying device wants to override default World Wide
1016 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1017 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1018 * protocol stack to use.
1019 *
1020 * RFS acceleration.
1021 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1022 * u16 rxq_index, u32 flow_id);
1023 * Set hardware filter for RFS. rxq_index is the target queue index;
1024 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1025 * Return the filter ID on success, or a negative error code.
1026 *
1027 * Slave management functions (for bridge, bonding, etc).
1028 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1029 * Called to make another netdev an underling.
1030 *
1031 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1032 * Called to release previously enslaved netdev.
1033 *
1034 * Feature/offload setting functions.
1035 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1036 * netdev_features_t features);
1037 * Adjusts the requested feature flags according to device-specific
1038 * constraints, and returns the resulting flags. Must not modify
1039 * the device state.
1040 *
1041 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1042 * Called to update device configuration to new features. Passed
1043 * feature set might be less than what was returned by ndo_fix_features()).
1044 * Must return >0 or -errno if it changed dev->features itself.
1045 *
1046 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1047 * struct net_device *dev,
1048 * const unsigned char *addr, u16 vid, u16 flags)
1049 * Adds an FDB entry to dev for addr.
1050 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1051 * struct net_device *dev,
1052 * const unsigned char *addr, u16 vid)
1053 * Deletes the FDB entry from dev coresponding to addr.
1054 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1055 * struct net_device *dev, struct net_device *filter_dev,
1056 * int *idx)
1057 * Used to add FDB entries to dump requests. Implementers should add
1058 * entries to skb and update idx with the number of entries.
1059 *
1060 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1061 * u16 flags)
1062 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1063 * struct net_device *dev, u32 filter_mask,
1064 * int nlflags)
1065 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1066 * u16 flags);
1067 *
1068 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1069 * Called to change device carrier. Soft-devices (like dummy, team, etc)
1070 * which do not represent real hardware may define this to allow their
1071 * userspace components to manage their virtual carrier state. Devices
1072 * that determine carrier state from physical hardware properties (eg
1073 * network cables) or protocol-dependent mechanisms (eg
1074 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1075 *
1076 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1077 * struct netdev_phys_item_id *ppid);
1078 * Called to get ID of physical port of this device. If driver does
1079 * not implement this, it is assumed that the hw is not able to have
1080 * multiple net devices on single physical port.
1081 *
1082 * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1083 * struct udp_tunnel_info *ti);
1084 * Called by UDP tunnel to notify a driver about the UDP port and socket
1085 * address family that a UDP tunnel is listnening to. It is called only
1086 * when a new port starts listening. The operation is protected by the
1087 * RTNL.
1088 *
1089 * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1090 * struct udp_tunnel_info *ti);
1091 * Called by UDP tunnel to notify the driver about a UDP port and socket
1092 * address family that the UDP tunnel is not listening to anymore. The
1093 * operation is protected by the RTNL.
1094 *
1095 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1096 * struct net_device *dev)
1097 * Called by upper layer devices to accelerate switching or other
1098 * station functionality into hardware. 'pdev is the lowerdev
1099 * to use for the offload and 'dev' is the net device that will
1100 * back the offload. Returns a pointer to the private structure
1101 * the upper layer will maintain.
1102 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1103 * Called by upper layer device to delete the station created
1104 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1105 * the station and priv is the structure returned by the add
1106 * operation.
1107 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1108 * struct net_device *dev,
1109 * void *priv);
1110 * Callback to use for xmit over the accelerated station. This
1111 * is used in place of ndo_start_xmit on accelerated net
1112 * devices.
1113 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1114 * int queue_index, u32 maxrate);
1115 * Called when a user wants to set a max-rate limitation of specific
1116 * TX queue.
1117 * int (*ndo_get_iflink)(const struct net_device *dev);
1118 * Called to get the iflink value of this device.
1119 * void (*ndo_change_proto_down)(struct net_device *dev,
1120 * bool proto_down);
1121 * This function is used to pass protocol port error state information
1122 * to the switch driver. The switch driver can react to the proto_down
1123 * by doing a phys down on the associated switch port.
1124 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1125 * This function is used to get egress tunnel information for given skb.
1126 * This is useful for retrieving outer tunnel header parameters while
1127 * sampling packet.
1128 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1129 * This function is used to specify the headroom that the skb must
1130 * consider when allocation skb during packet reception. Setting
1131 * appropriate rx headroom value allows avoiding skb head copy on
1132 * forward. Setting a negative value resets the rx headroom to the
1133 * default value.
1134 * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp);
1135 * This function is used to set or query state related to XDP on the
1136 * netdevice. See definition of enum xdp_netdev_command for details.
1137 *
1138 */
1139 struct net_device_ops {
1140 int (*ndo_init)(struct net_device *dev);
1141 void (*ndo_uninit)(struct net_device *dev);
1142 int (*ndo_open)(struct net_device *dev);
1143 int (*ndo_stop)(struct net_device *dev);
1144 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1145 struct net_device *dev);
1146 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1147 struct net_device *dev,
1148 netdev_features_t features);
1149 u16 (*ndo_select_queue)(struct net_device *dev,
1150 struct sk_buff *skb,
1151 void *accel_priv,
1152 select_queue_fallback_t fallback);
1153 void (*ndo_change_rx_flags)(struct net_device *dev,
1154 int flags);
1155 void (*ndo_set_rx_mode)(struct net_device *dev);
1156 int (*ndo_set_mac_address)(struct net_device *dev,
1157 void *addr);
1158 int (*ndo_validate_addr)(struct net_device *dev);
1159 int (*ndo_do_ioctl)(struct net_device *dev,
1160 struct ifreq *ifr, int cmd);
1161 int (*ndo_set_config)(struct net_device *dev,
1162 struct ifmap *map);
1163 int (*ndo_change_mtu)(struct net_device *dev,
1164 int new_mtu);
1165 int (*ndo_neigh_setup)(struct net_device *dev,
1166 struct neigh_parms *);
1167 void (*ndo_tx_timeout) (struct net_device *dev);
1168
1169 void (*ndo_get_stats64)(struct net_device *dev,
1170 struct rtnl_link_stats64 *storage);
1171 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1172 int (*ndo_get_offload_stats)(int attr_id,
1173 const struct net_device *dev,
1174 void *attr_data);
1175 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1176
1177 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1178 __be16 proto, u16 vid);
1179 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1180 __be16 proto, u16 vid);
1181 #ifdef CONFIG_NET_POLL_CONTROLLER
1182 void (*ndo_poll_controller)(struct net_device *dev);
1183 int (*ndo_netpoll_setup)(struct net_device *dev,
1184 struct netpoll_info *info);
1185 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1186 #endif
1187 int (*ndo_set_vf_mac)(struct net_device *dev,
1188 int queue, u8 *mac);
1189 int (*ndo_set_vf_vlan)(struct net_device *dev,
1190 int queue, u16 vlan,
1191 u8 qos, __be16 proto);
1192 int (*ndo_set_vf_rate)(struct net_device *dev,
1193 int vf, int min_tx_rate,
1194 int max_tx_rate);
1195 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1196 int vf, bool setting);
1197 int (*ndo_set_vf_trust)(struct net_device *dev,
1198 int vf, bool setting);
1199 int (*ndo_get_vf_config)(struct net_device *dev,
1200 int vf,
1201 struct ifla_vf_info *ivf);
1202 int (*ndo_set_vf_link_state)(struct net_device *dev,
1203 int vf, int link_state);
1204 int (*ndo_get_vf_stats)(struct net_device *dev,
1205 int vf,
1206 struct ifla_vf_stats
1207 *vf_stats);
1208 int (*ndo_set_vf_port)(struct net_device *dev,
1209 int vf,
1210 struct nlattr *port[]);
1211 int (*ndo_get_vf_port)(struct net_device *dev,
1212 int vf, struct sk_buff *skb);
1213 int (*ndo_set_vf_guid)(struct net_device *dev,
1214 int vf, u64 guid,
1215 int guid_type);
1216 int (*ndo_set_vf_rss_query_en)(
1217 struct net_device *dev,
1218 int vf, bool setting);
1219 int (*ndo_setup_tc)(struct net_device *dev,
1220 u32 handle,
1221 __be16 protocol,
1222 struct tc_to_netdev *tc);
1223 #if IS_ENABLED(CONFIG_FCOE)
1224 int (*ndo_fcoe_enable)(struct net_device *dev);
1225 int (*ndo_fcoe_disable)(struct net_device *dev);
1226 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1227 u16 xid,
1228 struct scatterlist *sgl,
1229 unsigned int sgc);
1230 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1231 u16 xid);
1232 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1233 u16 xid,
1234 struct scatterlist *sgl,
1235 unsigned int sgc);
1236 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1237 struct netdev_fcoe_hbainfo *hbainfo);
1238 #endif
1239
1240 #if IS_ENABLED(CONFIG_LIBFCOE)
1241 #define NETDEV_FCOE_WWNN 0
1242 #define NETDEV_FCOE_WWPN 1
1243 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1244 u64 *wwn, int type);
1245 #endif
1246
1247 #ifdef CONFIG_RFS_ACCEL
1248 int (*ndo_rx_flow_steer)(struct net_device *dev,
1249 const struct sk_buff *skb,
1250 u16 rxq_index,
1251 u32 flow_id);
1252 #endif
1253 int (*ndo_add_slave)(struct net_device *dev,
1254 struct net_device *slave_dev);
1255 int (*ndo_del_slave)(struct net_device *dev,
1256 struct net_device *slave_dev);
1257 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1258 netdev_features_t features);
1259 int (*ndo_set_features)(struct net_device *dev,
1260 netdev_features_t features);
1261 int (*ndo_neigh_construct)(struct net_device *dev,
1262 struct neighbour *n);
1263 void (*ndo_neigh_destroy)(struct net_device *dev,
1264 struct neighbour *n);
1265
1266 int (*ndo_fdb_add)(struct ndmsg *ndm,
1267 struct nlattr *tb[],
1268 struct net_device *dev,
1269 const unsigned char *addr,
1270 u16 vid,
1271 u16 flags);
1272 int (*ndo_fdb_del)(struct ndmsg *ndm,
1273 struct nlattr *tb[],
1274 struct net_device *dev,
1275 const unsigned char *addr,
1276 u16 vid);
1277 int (*ndo_fdb_dump)(struct sk_buff *skb,
1278 struct netlink_callback *cb,
1279 struct net_device *dev,
1280 struct net_device *filter_dev,
1281 int *idx);
1282
1283 int (*ndo_bridge_setlink)(struct net_device *dev,
1284 struct nlmsghdr *nlh,
1285 u16 flags);
1286 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1287 u32 pid, u32 seq,
1288 struct net_device *dev,
1289 u32 filter_mask,
1290 int nlflags);
1291 int (*ndo_bridge_dellink)(struct net_device *dev,
1292 struct nlmsghdr *nlh,
1293 u16 flags);
1294 int (*ndo_change_carrier)(struct net_device *dev,
1295 bool new_carrier);
1296 int (*ndo_get_phys_port_id)(struct net_device *dev,
1297 struct netdev_phys_item_id *ppid);
1298 int (*ndo_get_phys_port_name)(struct net_device *dev,
1299 char *name, size_t len);
1300 void (*ndo_udp_tunnel_add)(struct net_device *dev,
1301 struct udp_tunnel_info *ti);
1302 void (*ndo_udp_tunnel_del)(struct net_device *dev,
1303 struct udp_tunnel_info *ti);
1304 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1305 struct net_device *dev);
1306 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1307 void *priv);
1308
1309 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1310 struct net_device *dev,
1311 void *priv);
1312 int (*ndo_get_lock_subclass)(struct net_device *dev);
1313 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1314 int queue_index,
1315 u32 maxrate);
1316 int (*ndo_get_iflink)(const struct net_device *dev);
1317 int (*ndo_change_proto_down)(struct net_device *dev,
1318 bool proto_down);
1319 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1320 struct sk_buff *skb);
1321 void (*ndo_set_rx_headroom)(struct net_device *dev,
1322 int needed_headroom);
1323 int (*ndo_xdp)(struct net_device *dev,
1324 struct netdev_xdp *xdp);
1325 };
1326
1327 /**
1328 * enum net_device_priv_flags - &struct net_device priv_flags
1329 *
1330 * These are the &struct net_device, they are only set internally
1331 * by drivers and used in the kernel. These flags are invisible to
1332 * userspace; this means that the order of these flags can change
1333 * during any kernel release.
1334 *
1335 * You should have a pretty good reason to be extending these flags.
1336 *
1337 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1338 * @IFF_EBRIDGE: Ethernet bridging device
1339 * @IFF_BONDING: bonding master or slave
1340 * @IFF_ISATAP: ISATAP interface (RFC4214)
1341 * @IFF_WAN_HDLC: WAN HDLC device
1342 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1343 * release skb->dst
1344 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1345 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1346 * @IFF_MACVLAN_PORT: device used as macvlan port
1347 * @IFF_BRIDGE_PORT: device used as bridge port
1348 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1349 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1350 * @IFF_UNICAST_FLT: Supports unicast filtering
1351 * @IFF_TEAM_PORT: device used as team port
1352 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1353 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1354 * change when it's running
1355 * @IFF_MACVLAN: Macvlan device
1356 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1357 * underlying stacked devices
1358 * @IFF_IPVLAN_MASTER: IPvlan master device
1359 * @IFF_IPVLAN_SLAVE: IPvlan slave device
1360 * @IFF_L3MDEV_MASTER: device is an L3 master device
1361 * @IFF_NO_QUEUE: device can run without qdisc attached
1362 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1363 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1364 * @IFF_TEAM: device is a team device
1365 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1366 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1367 * entity (i.e. the master device for bridged veth)
1368 * @IFF_MACSEC: device is a MACsec device
1369 */
1370 enum netdev_priv_flags {
1371 IFF_802_1Q_VLAN = 1<<0,
1372 IFF_EBRIDGE = 1<<1,
1373 IFF_BONDING = 1<<2,
1374 IFF_ISATAP = 1<<3,
1375 IFF_WAN_HDLC = 1<<4,
1376 IFF_XMIT_DST_RELEASE = 1<<5,
1377 IFF_DONT_BRIDGE = 1<<6,
1378 IFF_DISABLE_NETPOLL = 1<<7,
1379 IFF_MACVLAN_PORT = 1<<8,
1380 IFF_BRIDGE_PORT = 1<<9,
1381 IFF_OVS_DATAPATH = 1<<10,
1382 IFF_TX_SKB_SHARING = 1<<11,
1383 IFF_UNICAST_FLT = 1<<12,
1384 IFF_TEAM_PORT = 1<<13,
1385 IFF_SUPP_NOFCS = 1<<14,
1386 IFF_LIVE_ADDR_CHANGE = 1<<15,
1387 IFF_MACVLAN = 1<<16,
1388 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1389 IFF_IPVLAN_MASTER = 1<<18,
1390 IFF_IPVLAN_SLAVE = 1<<19,
1391 IFF_L3MDEV_MASTER = 1<<20,
1392 IFF_NO_QUEUE = 1<<21,
1393 IFF_OPENVSWITCH = 1<<22,
1394 IFF_L3MDEV_SLAVE = 1<<23,
1395 IFF_TEAM = 1<<24,
1396 IFF_RXFH_CONFIGURED = 1<<25,
1397 IFF_PHONY_HEADROOM = 1<<26,
1398 IFF_MACSEC = 1<<27,
1399 };
1400
1401 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1402 #define IFF_EBRIDGE IFF_EBRIDGE
1403 #define IFF_BONDING IFF_BONDING
1404 #define IFF_ISATAP IFF_ISATAP
1405 #define IFF_WAN_HDLC IFF_WAN_HDLC
1406 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1407 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1408 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1409 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1410 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1411 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1412 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1413 #define IFF_UNICAST_FLT IFF_UNICAST_FLT
1414 #define IFF_TEAM_PORT IFF_TEAM_PORT
1415 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1416 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1417 #define IFF_MACVLAN IFF_MACVLAN
1418 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1419 #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER
1420 #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE
1421 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1422 #define IFF_NO_QUEUE IFF_NO_QUEUE
1423 #define IFF_OPENVSWITCH IFF_OPENVSWITCH
1424 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1425 #define IFF_TEAM IFF_TEAM
1426 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED
1427 #define IFF_MACSEC IFF_MACSEC
1428
1429 /**
1430 * struct net_device - The DEVICE structure.
1431 * Actually, this whole structure is a big mistake. It mixes I/O
1432 * data with strictly "high-level" data, and it has to know about
1433 * almost every data structure used in the INET module.
1434 *
1435 * @name: This is the first field of the "visible" part of this structure
1436 * (i.e. as seen by users in the "Space.c" file). It is the name
1437 * of the interface.
1438 *
1439 * @name_hlist: Device name hash chain, please keep it close to name[]
1440 * @ifalias: SNMP alias
1441 * @mem_end: Shared memory end
1442 * @mem_start: Shared memory start
1443 * @base_addr: Device I/O address
1444 * @irq: Device IRQ number
1445 *
1446 * @carrier_changes: Stats to monitor carrier on<->off transitions
1447 *
1448 * @state: Generic network queuing layer state, see netdev_state_t
1449 * @dev_list: The global list of network devices
1450 * @napi_list: List entry used for polling NAPI devices
1451 * @unreg_list: List entry when we are unregistering the
1452 * device; see the function unregister_netdev
1453 * @close_list: List entry used when we are closing the device
1454 * @ptype_all: Device-specific packet handlers for all protocols
1455 * @ptype_specific: Device-specific, protocol-specific packet handlers
1456 *
1457 * @adj_list: Directly linked devices, like slaves for bonding
1458 * @features: Currently active device features
1459 * @hw_features: User-changeable features
1460 *
1461 * @wanted_features: User-requested features
1462 * @vlan_features: Mask of features inheritable by VLAN devices
1463 *
1464 * @hw_enc_features: Mask of features inherited by encapsulating devices
1465 * This field indicates what encapsulation
1466 * offloads the hardware is capable of doing,
1467 * and drivers will need to set them appropriately.
1468 *
1469 * @mpls_features: Mask of features inheritable by MPLS
1470 *
1471 * @ifindex: interface index
1472 * @group: The group the device belongs to
1473 *
1474 * @stats: Statistics struct, which was left as a legacy, use
1475 * rtnl_link_stats64 instead
1476 *
1477 * @rx_dropped: Dropped packets by core network,
1478 * do not use this in drivers
1479 * @tx_dropped: Dropped packets by core network,
1480 * do not use this in drivers
1481 * @rx_nohandler: nohandler dropped packets by core network on
1482 * inactive devices, do not use this in drivers
1483 *
1484 * @wireless_handlers: List of functions to handle Wireless Extensions,
1485 * instead of ioctl,
1486 * see <net/iw_handler.h> for details.
1487 * @wireless_data: Instance data managed by the core of wireless extensions
1488 *
1489 * @netdev_ops: Includes several pointers to callbacks,
1490 * if one wants to override the ndo_*() functions
1491 * @ethtool_ops: Management operations
1492 * @ndisc_ops: Includes callbacks for different IPv6 neighbour
1493 * discovery handling. Necessary for e.g. 6LoWPAN.
1494 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1495 * of Layer 2 headers.
1496 *
1497 * @flags: Interface flags (a la BSD)
1498 * @priv_flags: Like 'flags' but invisible to userspace,
1499 * see if.h for the definitions
1500 * @gflags: Global flags ( kept as legacy )
1501 * @padded: How much padding added by alloc_netdev()
1502 * @operstate: RFC2863 operstate
1503 * @link_mode: Mapping policy to operstate
1504 * @if_port: Selectable AUI, TP, ...
1505 * @dma: DMA channel
1506 * @mtu: Interface MTU value
1507 * @min_mtu: Interface Minimum MTU value
1508 * @max_mtu: Interface Maximum MTU value
1509 * @type: Interface hardware type
1510 * @hard_header_len: Maximum hardware header length.
1511 *
1512 * @needed_headroom: Extra headroom the hardware may need, but not in all
1513 * cases can this be guaranteed
1514 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1515 * cases can this be guaranteed. Some cases also use
1516 * LL_MAX_HEADER instead to allocate the skb
1517 *
1518 * interface address info:
1519 *
1520 * @perm_addr: Permanent hw address
1521 * @addr_assign_type: Hw address assignment type
1522 * @addr_len: Hardware address length
1523 * @neigh_priv_len: Used in neigh_alloc()
1524 * @dev_id: Used to differentiate devices that share
1525 * the same link layer address
1526 * @dev_port: Used to differentiate devices that share
1527 * the same function
1528 * @addr_list_lock: XXX: need comments on this one
1529 * @uc_promisc: Counter that indicates promiscuous mode
1530 * has been enabled due to the need to listen to
1531 * additional unicast addresses in a device that
1532 * does not implement ndo_set_rx_mode()
1533 * @uc: unicast mac addresses
1534 * @mc: multicast mac addresses
1535 * @dev_addrs: list of device hw addresses
1536 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1537 * @promiscuity: Number of times the NIC is told to work in
1538 * promiscuous mode; if it becomes 0 the NIC will
1539 * exit promiscuous mode
1540 * @allmulti: Counter, enables or disables allmulticast mode
1541 *
1542 * @vlan_info: VLAN info
1543 * @dsa_ptr: dsa specific data
1544 * @tipc_ptr: TIPC specific data
1545 * @atalk_ptr: AppleTalk link
1546 * @ip_ptr: IPv4 specific data
1547 * @dn_ptr: DECnet specific data
1548 * @ip6_ptr: IPv6 specific data
1549 * @ax25_ptr: AX.25 specific data
1550 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1551 *
1552 * @dev_addr: Hw address (before bcast,
1553 * because most packets are unicast)
1554 *
1555 * @_rx: Array of RX queues
1556 * @num_rx_queues: Number of RX queues
1557 * allocated at register_netdev() time
1558 * @real_num_rx_queues: Number of RX queues currently active in device
1559 *
1560 * @rx_handler: handler for received packets
1561 * @rx_handler_data: XXX: need comments on this one
1562 * @ingress_queue: XXX: need comments on this one
1563 * @broadcast: hw bcast address
1564 *
1565 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1566 * indexed by RX queue number. Assigned by driver.
1567 * This must only be set if the ndo_rx_flow_steer
1568 * operation is defined
1569 * @index_hlist: Device index hash chain
1570 *
1571 * @_tx: Array of TX queues
1572 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1573 * @real_num_tx_queues: Number of TX queues currently active in device
1574 * @qdisc: Root qdisc from userspace point of view
1575 * @tx_queue_len: Max frames per queue allowed
1576 * @tx_global_lock: XXX: need comments on this one
1577 *
1578 * @xps_maps: XXX: need comments on this one
1579 *
1580 * @watchdog_timeo: Represents the timeout that is used by
1581 * the watchdog (see dev_watchdog())
1582 * @watchdog_timer: List of timers
1583 *
1584 * @pcpu_refcnt: Number of references to this device
1585 * @todo_list: Delayed register/unregister
1586 * @link_watch_list: XXX: need comments on this one
1587 *
1588 * @reg_state: Register/unregister state machine
1589 * @dismantle: Device is going to be freed
1590 * @rtnl_link_state: This enum represents the phases of creating
1591 * a new link
1592 *
1593 * @destructor: Called from unregister,
1594 * can be used to call free_netdev
1595 * @npinfo: XXX: need comments on this one
1596 * @nd_net: Network namespace this network device is inside
1597 *
1598 * @ml_priv: Mid-layer private
1599 * @lstats: Loopback statistics
1600 * @tstats: Tunnel statistics
1601 * @dstats: Dummy statistics
1602 * @vstats: Virtual ethernet statistics
1603 *
1604 * @garp_port: GARP
1605 * @mrp_port: MRP
1606 *
1607 * @dev: Class/net/name entry
1608 * @sysfs_groups: Space for optional device, statistics and wireless
1609 * sysfs groups
1610 *
1611 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1612 * @rtnl_link_ops: Rtnl_link_ops
1613 *
1614 * @gso_max_size: Maximum size of generic segmentation offload
1615 * @gso_max_segs: Maximum number of segments that can be passed to the
1616 * NIC for GSO
1617 *
1618 * @dcbnl_ops: Data Center Bridging netlink ops
1619 * @num_tc: Number of traffic classes in the net device
1620 * @tc_to_txq: XXX: need comments on this one
1621 * @prio_tc_map: XXX: need comments on this one
1622 *
1623 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1624 *
1625 * @priomap: XXX: need comments on this one
1626 * @phydev: Physical device may attach itself
1627 * for hardware timestamping
1628 *
1629 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1630 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1631 *
1632 * @proto_down: protocol port state information can be sent to the
1633 * switch driver and used to set the phys state of the
1634 * switch port.
1635 *
1636 * FIXME: cleanup struct net_device such that network protocol info
1637 * moves out.
1638 */
1639
1640 struct net_device {
1641 char name[IFNAMSIZ];
1642 struct hlist_node name_hlist;
1643 char *ifalias;
1644 /*
1645 * I/O specific fields
1646 * FIXME: Merge these and struct ifmap into one
1647 */
1648 unsigned long mem_end;
1649 unsigned long mem_start;
1650 unsigned long base_addr;
1651 int irq;
1652
1653 atomic_t carrier_changes;
1654
1655 /*
1656 * Some hardware also needs these fields (state,dev_list,
1657 * napi_list,unreg_list,close_list) but they are not
1658 * part of the usual set specified in Space.c.
1659 */
1660
1661 unsigned long state;
1662
1663 struct list_head dev_list;
1664 struct list_head napi_list;
1665 struct list_head unreg_list;
1666 struct list_head close_list;
1667 struct list_head ptype_all;
1668 struct list_head ptype_specific;
1669
1670 struct {
1671 struct list_head upper;
1672 struct list_head lower;
1673 } adj_list;
1674
1675 netdev_features_t features;
1676 netdev_features_t hw_features;
1677 netdev_features_t wanted_features;
1678 netdev_features_t vlan_features;
1679 netdev_features_t hw_enc_features;
1680 netdev_features_t mpls_features;
1681 netdev_features_t gso_partial_features;
1682
1683 int ifindex;
1684 int group;
1685
1686 struct net_device_stats stats;
1687
1688 atomic_long_t rx_dropped;
1689 atomic_long_t tx_dropped;
1690 atomic_long_t rx_nohandler;
1691
1692 #ifdef CONFIG_WIRELESS_EXT
1693 const struct iw_handler_def *wireless_handlers;
1694 struct iw_public_data *wireless_data;
1695 #endif
1696 const struct net_device_ops *netdev_ops;
1697 const struct ethtool_ops *ethtool_ops;
1698 #ifdef CONFIG_NET_SWITCHDEV
1699 const struct switchdev_ops *switchdev_ops;
1700 #endif
1701 #ifdef CONFIG_NET_L3_MASTER_DEV
1702 const struct l3mdev_ops *l3mdev_ops;
1703 #endif
1704 #if IS_ENABLED(CONFIG_IPV6)
1705 const struct ndisc_ops *ndisc_ops;
1706 #endif
1707
1708 const struct header_ops *header_ops;
1709
1710 unsigned int flags;
1711 unsigned int priv_flags;
1712
1713 unsigned short gflags;
1714 unsigned short padded;
1715
1716 unsigned char operstate;
1717 unsigned char link_mode;
1718
1719 unsigned char if_port;
1720 unsigned char dma;
1721
1722 unsigned int mtu;
1723 unsigned int min_mtu;
1724 unsigned int max_mtu;
1725 unsigned short type;
1726 unsigned short hard_header_len;
1727
1728 unsigned short needed_headroom;
1729 unsigned short needed_tailroom;
1730
1731 /* Interface address info. */
1732 unsigned char perm_addr[MAX_ADDR_LEN];
1733 unsigned char addr_assign_type;
1734 unsigned char addr_len;
1735 unsigned short neigh_priv_len;
1736 unsigned short dev_id;
1737 unsigned short dev_port;
1738 spinlock_t addr_list_lock;
1739 unsigned char name_assign_type;
1740 bool uc_promisc;
1741 struct netdev_hw_addr_list uc;
1742 struct netdev_hw_addr_list mc;
1743 struct netdev_hw_addr_list dev_addrs;
1744
1745 #ifdef CONFIG_SYSFS
1746 struct kset *queues_kset;
1747 #endif
1748 unsigned int promiscuity;
1749 unsigned int allmulti;
1750
1751
1752 /* Protocol-specific pointers */
1753
1754 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1755 struct vlan_info __rcu *vlan_info;
1756 #endif
1757 #if IS_ENABLED(CONFIG_NET_DSA)
1758 struct dsa_switch_tree *dsa_ptr;
1759 #endif
1760 #if IS_ENABLED(CONFIG_TIPC)
1761 struct tipc_bearer __rcu *tipc_ptr;
1762 #endif
1763 void *atalk_ptr;
1764 struct in_device __rcu *ip_ptr;
1765 struct dn_dev __rcu *dn_ptr;
1766 struct inet6_dev __rcu *ip6_ptr;
1767 void *ax25_ptr;
1768 struct wireless_dev *ieee80211_ptr;
1769 struct wpan_dev *ieee802154_ptr;
1770 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1771 struct mpls_dev __rcu *mpls_ptr;
1772 #endif
1773
1774 /*
1775 * Cache lines mostly used on receive path (including eth_type_trans())
1776 */
1777 /* Interface address info used in eth_type_trans() */
1778 unsigned char *dev_addr;
1779
1780 #ifdef CONFIG_SYSFS
1781 struct netdev_rx_queue *_rx;
1782
1783 unsigned int num_rx_queues;
1784 unsigned int real_num_rx_queues;
1785 #endif
1786
1787 unsigned long gro_flush_timeout;
1788 rx_handler_func_t __rcu *rx_handler;
1789 void __rcu *rx_handler_data;
1790
1791 #ifdef CONFIG_NET_CLS_ACT
1792 struct tcf_proto __rcu *ingress_cl_list;
1793 #endif
1794 struct netdev_queue __rcu *ingress_queue;
1795 #ifdef CONFIG_NETFILTER_INGRESS
1796 struct nf_hook_entry __rcu *nf_hooks_ingress;
1797 #endif
1798
1799 unsigned char broadcast[MAX_ADDR_LEN];
1800 #ifdef CONFIG_RFS_ACCEL
1801 struct cpu_rmap *rx_cpu_rmap;
1802 #endif
1803 struct hlist_node index_hlist;
1804
1805 /*
1806 * Cache lines mostly used on transmit path
1807 */
1808 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1809 unsigned int num_tx_queues;
1810 unsigned int real_num_tx_queues;
1811 struct Qdisc *qdisc;
1812 #ifdef CONFIG_NET_SCHED
1813 DECLARE_HASHTABLE (qdisc_hash, 4);
1814 #endif
1815 unsigned long tx_queue_len;
1816 spinlock_t tx_global_lock;
1817 int watchdog_timeo;
1818
1819 #ifdef CONFIG_XPS
1820 struct xps_dev_maps __rcu *xps_maps;
1821 #endif
1822 #ifdef CONFIG_NET_CLS_ACT
1823 struct tcf_proto __rcu *egress_cl_list;
1824 #endif
1825
1826 /* These may be needed for future network-power-down code. */
1827 struct timer_list watchdog_timer;
1828
1829 int __percpu *pcpu_refcnt;
1830 struct list_head todo_list;
1831
1832 struct list_head link_watch_list;
1833
1834 enum { NETREG_UNINITIALIZED=0,
1835 NETREG_REGISTERED, /* completed register_netdevice */
1836 NETREG_UNREGISTERING, /* called unregister_netdevice */
1837 NETREG_UNREGISTERED, /* completed unregister todo */
1838 NETREG_RELEASED, /* called free_netdev */
1839 NETREG_DUMMY, /* dummy device for NAPI poll */
1840 } reg_state:8;
1841
1842 bool dismantle;
1843
1844 enum {
1845 RTNL_LINK_INITIALIZED,
1846 RTNL_LINK_INITIALIZING,
1847 } rtnl_link_state:16;
1848
1849 void (*destructor)(struct net_device *dev);
1850
1851 #ifdef CONFIG_NETPOLL
1852 struct netpoll_info __rcu *npinfo;
1853 #endif
1854
1855 possible_net_t nd_net;
1856
1857 /* mid-layer private */
1858 union {
1859 void *ml_priv;
1860 struct pcpu_lstats __percpu *lstats;
1861 struct pcpu_sw_netstats __percpu *tstats;
1862 struct pcpu_dstats __percpu *dstats;
1863 struct pcpu_vstats __percpu *vstats;
1864 };
1865
1866 struct garp_port __rcu *garp_port;
1867 struct mrp_port __rcu *mrp_port;
1868
1869 struct device dev;
1870 const struct attribute_group *sysfs_groups[4];
1871 const struct attribute_group *sysfs_rx_queue_group;
1872
1873 const struct rtnl_link_ops *rtnl_link_ops;
1874
1875 /* for setting kernel sock attribute on TCP connection setup */
1876 #define GSO_MAX_SIZE 65536
1877 unsigned int gso_max_size;
1878 #define GSO_MAX_SEGS 65535
1879 u16 gso_max_segs;
1880
1881 #ifdef CONFIG_DCB
1882 const struct dcbnl_rtnl_ops *dcbnl_ops;
1883 #endif
1884 u8 num_tc;
1885 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1886 u8 prio_tc_map[TC_BITMASK + 1];
1887
1888 #if IS_ENABLED(CONFIG_FCOE)
1889 unsigned int fcoe_ddp_xid;
1890 #endif
1891 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1892 struct netprio_map __rcu *priomap;
1893 #endif
1894 struct phy_device *phydev;
1895 struct lock_class_key *qdisc_tx_busylock;
1896 struct lock_class_key *qdisc_running_key;
1897 bool proto_down;
1898 };
1899 #define to_net_dev(d) container_of(d, struct net_device, dev)
1900
1901 #define NETDEV_ALIGN 32
1902
1903 static inline
1904 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1905 {
1906 return dev->prio_tc_map[prio & TC_BITMASK];
1907 }
1908
1909 static inline
1910 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1911 {
1912 if (tc >= dev->num_tc)
1913 return -EINVAL;
1914
1915 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1916 return 0;
1917 }
1918
1919 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
1920 void netdev_reset_tc(struct net_device *dev);
1921 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
1922 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
1923
1924 static inline
1925 int netdev_get_num_tc(struct net_device *dev)
1926 {
1927 return dev->num_tc;
1928 }
1929
1930 static inline
1931 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1932 unsigned int index)
1933 {
1934 return &dev->_tx[index];
1935 }
1936
1937 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1938 const struct sk_buff *skb)
1939 {
1940 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1941 }
1942
1943 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1944 void (*f)(struct net_device *,
1945 struct netdev_queue *,
1946 void *),
1947 void *arg)
1948 {
1949 unsigned int i;
1950
1951 for (i = 0; i < dev->num_tx_queues; i++)
1952 f(dev, &dev->_tx[i], arg);
1953 }
1954
1955 #define netdev_lockdep_set_classes(dev) \
1956 { \
1957 static struct lock_class_key qdisc_tx_busylock_key; \
1958 static struct lock_class_key qdisc_running_key; \
1959 static struct lock_class_key qdisc_xmit_lock_key; \
1960 static struct lock_class_key dev_addr_list_lock_key; \
1961 unsigned int i; \
1962 \
1963 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \
1964 (dev)->qdisc_running_key = &qdisc_running_key; \
1965 lockdep_set_class(&(dev)->addr_list_lock, \
1966 &dev_addr_list_lock_key); \
1967 for (i = 0; i < (dev)->num_tx_queues; i++) \
1968 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \
1969 &qdisc_xmit_lock_key); \
1970 }
1971
1972 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1973 struct sk_buff *skb,
1974 void *accel_priv);
1975
1976 /* returns the headroom that the master device needs to take in account
1977 * when forwarding to this dev
1978 */
1979 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
1980 {
1981 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
1982 }
1983
1984 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
1985 {
1986 if (dev->netdev_ops->ndo_set_rx_headroom)
1987 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
1988 }
1989
1990 /* set the device rx headroom to the dev's default */
1991 static inline void netdev_reset_rx_headroom(struct net_device *dev)
1992 {
1993 netdev_set_rx_headroom(dev, -1);
1994 }
1995
1996 /*
1997 * Net namespace inlines
1998 */
1999 static inline
2000 struct net *dev_net(const struct net_device *dev)
2001 {
2002 return read_pnet(&dev->nd_net);
2003 }
2004
2005 static inline
2006 void dev_net_set(struct net_device *dev, struct net *net)
2007 {
2008 write_pnet(&dev->nd_net, net);
2009 }
2010
2011 static inline bool netdev_uses_dsa(struct net_device *dev)
2012 {
2013 #if IS_ENABLED(CONFIG_NET_DSA)
2014 if (dev->dsa_ptr != NULL)
2015 return dsa_uses_tagged_protocol(dev->dsa_ptr);
2016 #endif
2017 return false;
2018 }
2019
2020 /**
2021 * netdev_priv - access network device private data
2022 * @dev: network device
2023 *
2024 * Get network device private data
2025 */
2026 static inline void *netdev_priv(const struct net_device *dev)
2027 {
2028 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2029 }
2030
2031 /* Set the sysfs physical device reference for the network logical device
2032 * if set prior to registration will cause a symlink during initialization.
2033 */
2034 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
2035
2036 /* Set the sysfs device type for the network logical device to allow
2037 * fine-grained identification of different network device types. For
2038 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2039 */
2040 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
2041
2042 /* Default NAPI poll() weight
2043 * Device drivers are strongly advised to not use bigger value
2044 */
2045 #define NAPI_POLL_WEIGHT 64
2046
2047 /**
2048 * netif_napi_add - initialize a NAPI context
2049 * @dev: network device
2050 * @napi: NAPI context
2051 * @poll: polling function
2052 * @weight: default weight
2053 *
2054 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2055 * *any* of the other NAPI-related functions.
2056 */
2057 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2058 int (*poll)(struct napi_struct *, int), int weight);
2059
2060 /**
2061 * netif_tx_napi_add - initialize a NAPI context
2062 * @dev: network device
2063 * @napi: NAPI context
2064 * @poll: polling function
2065 * @weight: default weight
2066 *
2067 * This variant of netif_napi_add() should be used from drivers using NAPI
2068 * to exclusively poll a TX queue.
2069 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2070 */
2071 static inline void netif_tx_napi_add(struct net_device *dev,
2072 struct napi_struct *napi,
2073 int (*poll)(struct napi_struct *, int),
2074 int weight)
2075 {
2076 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2077 netif_napi_add(dev, napi, poll, weight);
2078 }
2079
2080 /**
2081 * netif_napi_del - remove a NAPI context
2082 * @napi: NAPI context
2083 *
2084 * netif_napi_del() removes a NAPI context from the network device NAPI list
2085 */
2086 void netif_napi_del(struct napi_struct *napi);
2087
2088 struct napi_gro_cb {
2089 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2090 void *frag0;
2091
2092 /* Length of frag0. */
2093 unsigned int frag0_len;
2094
2095 /* This indicates where we are processing relative to skb->data. */
2096 int data_offset;
2097
2098 /* This is non-zero if the packet cannot be merged with the new skb. */
2099 u16 flush;
2100
2101 /* Save the IP ID here and check when we get to the transport layer */
2102 u16 flush_id;
2103
2104 /* Number of segments aggregated. */
2105 u16 count;
2106
2107 /* Start offset for remote checksum offload */
2108 u16 gro_remcsum_start;
2109
2110 /* jiffies when first packet was created/queued */
2111 unsigned long age;
2112
2113 /* Used in ipv6_gro_receive() and foo-over-udp */
2114 u16 proto;
2115
2116 /* This is non-zero if the packet may be of the same flow. */
2117 u8 same_flow:1;
2118
2119 /* Used in tunnel GRO receive */
2120 u8 encap_mark:1;
2121
2122 /* GRO checksum is valid */
2123 u8 csum_valid:1;
2124
2125 /* Number of checksums via CHECKSUM_UNNECESSARY */
2126 u8 csum_cnt:3;
2127
2128 /* Free the skb? */
2129 u8 free:2;
2130 #define NAPI_GRO_FREE 1
2131 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2132
2133 /* Used in foo-over-udp, set in udp[46]_gro_receive */
2134 u8 is_ipv6:1;
2135
2136 /* Used in GRE, set in fou/gue_gro_receive */
2137 u8 is_fou:1;
2138
2139 /* Used to determine if flush_id can be ignored */
2140 u8 is_atomic:1;
2141
2142 /* Number of gro_receive callbacks this packet already went through */
2143 u8 recursion_counter:4;
2144
2145 /* 1 bit hole */
2146
2147 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2148 __wsum csum;
2149
2150 /* used in skb_gro_receive() slow path */
2151 struct sk_buff *last;
2152 };
2153
2154 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2155
2156 #define GRO_RECURSION_LIMIT 15
2157 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2158 {
2159 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2160 }
2161
2162 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *);
2163 static inline struct sk_buff **call_gro_receive(gro_receive_t cb,
2164 struct sk_buff **head,
2165 struct sk_buff *skb)
2166 {
2167 if (unlikely(gro_recursion_inc_test(skb))) {
2168 NAPI_GRO_CB(skb)->flush |= 1;
2169 return NULL;
2170 }
2171
2172 return cb(head, skb);
2173 }
2174
2175 typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **,
2176 struct sk_buff *);
2177 static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb,
2178 struct sock *sk,
2179 struct sk_buff **head,
2180 struct sk_buff *skb)
2181 {
2182 if (unlikely(gro_recursion_inc_test(skb))) {
2183 NAPI_GRO_CB(skb)->flush |= 1;
2184 return NULL;
2185 }
2186
2187 return cb(sk, head, skb);
2188 }
2189
2190 struct packet_type {
2191 __be16 type; /* This is really htons(ether_type). */
2192 struct net_device *dev; /* NULL is wildcarded here */
2193 int (*func) (struct sk_buff *,
2194 struct net_device *,
2195 struct packet_type *,
2196 struct net_device *);
2197 bool (*id_match)(struct packet_type *ptype,
2198 struct sock *sk);
2199 void *af_packet_priv;
2200 struct list_head list;
2201 };
2202
2203 struct offload_callbacks {
2204 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2205 netdev_features_t features);
2206 struct sk_buff **(*gro_receive)(struct sk_buff **head,
2207 struct sk_buff *skb);
2208 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2209 };
2210
2211 struct packet_offload {
2212 __be16 type; /* This is really htons(ether_type). */
2213 u16 priority;
2214 struct offload_callbacks callbacks;
2215 struct list_head list;
2216 };
2217
2218 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2219 struct pcpu_sw_netstats {
2220 u64 rx_packets;
2221 u64 rx_bytes;
2222 u64 tx_packets;
2223 u64 tx_bytes;
2224 struct u64_stats_sync syncp;
2225 };
2226
2227 #define __netdev_alloc_pcpu_stats(type, gfp) \
2228 ({ \
2229 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2230 if (pcpu_stats) { \
2231 int __cpu; \
2232 for_each_possible_cpu(__cpu) { \
2233 typeof(type) *stat; \
2234 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2235 u64_stats_init(&stat->syncp); \
2236 } \
2237 } \
2238 pcpu_stats; \
2239 })
2240
2241 #define netdev_alloc_pcpu_stats(type) \
2242 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2243
2244 enum netdev_lag_tx_type {
2245 NETDEV_LAG_TX_TYPE_UNKNOWN,
2246 NETDEV_LAG_TX_TYPE_RANDOM,
2247 NETDEV_LAG_TX_TYPE_BROADCAST,
2248 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2249 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2250 NETDEV_LAG_TX_TYPE_HASH,
2251 };
2252
2253 struct netdev_lag_upper_info {
2254 enum netdev_lag_tx_type tx_type;
2255 };
2256
2257 struct netdev_lag_lower_state_info {
2258 u8 link_up : 1,
2259 tx_enabled : 1;
2260 };
2261
2262 #include <linux/notifier.h>
2263
2264 /* netdevice notifier chain. Please remember to update the rtnetlink
2265 * notification exclusion list in rtnetlink_event() when adding new
2266 * types.
2267 */
2268 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
2269 #define NETDEV_DOWN 0x0002
2270 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
2271 detected a hardware crash and restarted
2272 - we can use this eg to kick tcp sessions
2273 once done */
2274 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
2275 #define NETDEV_REGISTER 0x0005
2276 #define NETDEV_UNREGISTER 0x0006
2277 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */
2278 #define NETDEV_CHANGEADDR 0x0008
2279 #define NETDEV_GOING_DOWN 0x0009
2280 #define NETDEV_CHANGENAME 0x000A
2281 #define NETDEV_FEAT_CHANGE 0x000B
2282 #define NETDEV_BONDING_FAILOVER 0x000C
2283 #define NETDEV_PRE_UP 0x000D
2284 #define NETDEV_PRE_TYPE_CHANGE 0x000E
2285 #define NETDEV_POST_TYPE_CHANGE 0x000F
2286 #define NETDEV_POST_INIT 0x0010
2287 #define NETDEV_UNREGISTER_FINAL 0x0011
2288 #define NETDEV_RELEASE 0x0012
2289 #define NETDEV_NOTIFY_PEERS 0x0013
2290 #define NETDEV_JOIN 0x0014
2291 #define NETDEV_CHANGEUPPER 0x0015
2292 #define NETDEV_RESEND_IGMP 0x0016
2293 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */
2294 #define NETDEV_CHANGEINFODATA 0x0018
2295 #define NETDEV_BONDING_INFO 0x0019
2296 #define NETDEV_PRECHANGEUPPER 0x001A
2297 #define NETDEV_CHANGELOWERSTATE 0x001B
2298 #define NETDEV_UDP_TUNNEL_PUSH_INFO 0x001C
2299 #define NETDEV_CHANGE_TX_QUEUE_LEN 0x001E
2300
2301 int register_netdevice_notifier(struct notifier_block *nb);
2302 int unregister_netdevice_notifier(struct notifier_block *nb);
2303
2304 struct netdev_notifier_info {
2305 struct net_device *dev;
2306 };
2307
2308 struct netdev_notifier_change_info {
2309 struct netdev_notifier_info info; /* must be first */
2310 unsigned int flags_changed;
2311 };
2312
2313 struct netdev_notifier_changeupper_info {
2314 struct netdev_notifier_info info; /* must be first */
2315 struct net_device *upper_dev; /* new upper dev */
2316 bool master; /* is upper dev master */
2317 bool linking; /* is the notification for link or unlink */
2318 void *upper_info; /* upper dev info */
2319 };
2320
2321 struct netdev_notifier_changelowerstate_info {
2322 struct netdev_notifier_info info; /* must be first */
2323 void *lower_state_info; /* is lower dev state */
2324 };
2325
2326 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2327 struct net_device *dev)
2328 {
2329 info->dev = dev;
2330 }
2331
2332 static inline struct net_device *
2333 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2334 {
2335 return info->dev;
2336 }
2337
2338 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2339
2340
2341 extern rwlock_t dev_base_lock; /* Device list lock */
2342
2343 #define for_each_netdev(net, d) \
2344 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2345 #define for_each_netdev_reverse(net, d) \
2346 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2347 #define for_each_netdev_rcu(net, d) \
2348 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2349 #define for_each_netdev_safe(net, d, n) \
2350 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2351 #define for_each_netdev_continue(net, d) \
2352 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2353 #define for_each_netdev_continue_rcu(net, d) \
2354 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2355 #define for_each_netdev_in_bond_rcu(bond, slave) \
2356 for_each_netdev_rcu(&init_net, slave) \
2357 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2358 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2359
2360 static inline struct net_device *next_net_device(struct net_device *dev)
2361 {
2362 struct list_head *lh;
2363 struct net *net;
2364
2365 net = dev_net(dev);
2366 lh = dev->dev_list.next;
2367 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2368 }
2369
2370 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2371 {
2372 struct list_head *lh;
2373 struct net *net;
2374
2375 net = dev_net(dev);
2376 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2377 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2378 }
2379
2380 static inline struct net_device *first_net_device(struct net *net)
2381 {
2382 return list_empty(&net->dev_base_head) ? NULL :
2383 net_device_entry(net->dev_base_head.next);
2384 }
2385
2386 static inline struct net_device *first_net_device_rcu(struct net *net)
2387 {
2388 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2389
2390 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2391 }
2392
2393 int netdev_boot_setup_check(struct net_device *dev);
2394 unsigned long netdev_boot_base(const char *prefix, int unit);
2395 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2396 const char *hwaddr);
2397 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2398 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2399 void dev_add_pack(struct packet_type *pt);
2400 void dev_remove_pack(struct packet_type *pt);
2401 void __dev_remove_pack(struct packet_type *pt);
2402 void dev_add_offload(struct packet_offload *po);
2403 void dev_remove_offload(struct packet_offload *po);
2404
2405 int dev_get_iflink(const struct net_device *dev);
2406 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2407 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2408 unsigned short mask);
2409 struct net_device *dev_get_by_name(struct net *net, const char *name);
2410 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2411 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2412 int dev_alloc_name(struct net_device *dev, const char *name);
2413 int dev_open(struct net_device *dev);
2414 int dev_close(struct net_device *dev);
2415 int dev_close_many(struct list_head *head, bool unlink);
2416 void dev_disable_lro(struct net_device *dev);
2417 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2418 int dev_queue_xmit(struct sk_buff *skb);
2419 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2420 int register_netdevice(struct net_device *dev);
2421 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2422 void unregister_netdevice_many(struct list_head *head);
2423 static inline void unregister_netdevice(struct net_device *dev)
2424 {
2425 unregister_netdevice_queue(dev, NULL);
2426 }
2427
2428 int netdev_refcnt_read(const struct net_device *dev);
2429 void free_netdev(struct net_device *dev);
2430 void netdev_freemem(struct net_device *dev);
2431 void synchronize_net(void);
2432 int init_dummy_netdev(struct net_device *dev);
2433
2434 DECLARE_PER_CPU(int, xmit_recursion);
2435 #define XMIT_RECURSION_LIMIT 10
2436
2437 static inline int dev_recursion_level(void)
2438 {
2439 return this_cpu_read(xmit_recursion);
2440 }
2441
2442 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2443 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2444 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2445 int netdev_get_name(struct net *net, char *name, int ifindex);
2446 int dev_restart(struct net_device *dev);
2447 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2448
2449 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2450 {
2451 return NAPI_GRO_CB(skb)->data_offset;
2452 }
2453
2454 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2455 {
2456 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2457 }
2458
2459 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2460 {
2461 NAPI_GRO_CB(skb)->data_offset += len;
2462 }
2463
2464 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2465 unsigned int offset)
2466 {
2467 return NAPI_GRO_CB(skb)->frag0 + offset;
2468 }
2469
2470 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2471 {
2472 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2473 }
2474
2475 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2476 {
2477 NAPI_GRO_CB(skb)->frag0 = NULL;
2478 NAPI_GRO_CB(skb)->frag0_len = 0;
2479 }
2480
2481 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2482 unsigned int offset)
2483 {
2484 if (!pskb_may_pull(skb, hlen))
2485 return NULL;
2486
2487 skb_gro_frag0_invalidate(skb);
2488 return skb->data + offset;
2489 }
2490
2491 static inline void *skb_gro_network_header(struct sk_buff *skb)
2492 {
2493 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2494 skb_network_offset(skb);
2495 }
2496
2497 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2498 const void *start, unsigned int len)
2499 {
2500 if (NAPI_GRO_CB(skb)->csum_valid)
2501 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2502 csum_partial(start, len, 0));
2503 }
2504
2505 /* GRO checksum functions. These are logical equivalents of the normal
2506 * checksum functions (in skbuff.h) except that they operate on the GRO
2507 * offsets and fields in sk_buff.
2508 */
2509
2510 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2511
2512 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2513 {
2514 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2515 }
2516
2517 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2518 bool zero_okay,
2519 __sum16 check)
2520 {
2521 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2522 skb_checksum_start_offset(skb) <
2523 skb_gro_offset(skb)) &&
2524 !skb_at_gro_remcsum_start(skb) &&
2525 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2526 (!zero_okay || check));
2527 }
2528
2529 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2530 __wsum psum)
2531 {
2532 if (NAPI_GRO_CB(skb)->csum_valid &&
2533 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2534 return 0;
2535
2536 NAPI_GRO_CB(skb)->csum = psum;
2537
2538 return __skb_gro_checksum_complete(skb);
2539 }
2540
2541 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2542 {
2543 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2544 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2545 NAPI_GRO_CB(skb)->csum_cnt--;
2546 } else {
2547 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2548 * verified a new top level checksum or an encapsulated one
2549 * during GRO. This saves work if we fallback to normal path.
2550 */
2551 __skb_incr_checksum_unnecessary(skb);
2552 }
2553 }
2554
2555 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2556 compute_pseudo) \
2557 ({ \
2558 __sum16 __ret = 0; \
2559 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2560 __ret = __skb_gro_checksum_validate_complete(skb, \
2561 compute_pseudo(skb, proto)); \
2562 if (__ret) \
2563 __skb_mark_checksum_bad(skb); \
2564 else \
2565 skb_gro_incr_csum_unnecessary(skb); \
2566 __ret; \
2567 })
2568
2569 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2570 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2571
2572 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2573 compute_pseudo) \
2574 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2575
2576 #define skb_gro_checksum_simple_validate(skb) \
2577 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2578
2579 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2580 {
2581 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2582 !NAPI_GRO_CB(skb)->csum_valid);
2583 }
2584
2585 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2586 __sum16 check, __wsum pseudo)
2587 {
2588 NAPI_GRO_CB(skb)->csum = ~pseudo;
2589 NAPI_GRO_CB(skb)->csum_valid = 1;
2590 }
2591
2592 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2593 do { \
2594 if (__skb_gro_checksum_convert_check(skb)) \
2595 __skb_gro_checksum_convert(skb, check, \
2596 compute_pseudo(skb, proto)); \
2597 } while (0)
2598
2599 struct gro_remcsum {
2600 int offset;
2601 __wsum delta;
2602 };
2603
2604 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2605 {
2606 grc->offset = 0;
2607 grc->delta = 0;
2608 }
2609
2610 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2611 unsigned int off, size_t hdrlen,
2612 int start, int offset,
2613 struct gro_remcsum *grc,
2614 bool nopartial)
2615 {
2616 __wsum delta;
2617 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2618
2619 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2620
2621 if (!nopartial) {
2622 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2623 return ptr;
2624 }
2625
2626 ptr = skb_gro_header_fast(skb, off);
2627 if (skb_gro_header_hard(skb, off + plen)) {
2628 ptr = skb_gro_header_slow(skb, off + plen, off);
2629 if (!ptr)
2630 return NULL;
2631 }
2632
2633 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2634 start, offset);
2635
2636 /* Adjust skb->csum since we changed the packet */
2637 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2638
2639 grc->offset = off + hdrlen + offset;
2640 grc->delta = delta;
2641
2642 return ptr;
2643 }
2644
2645 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2646 struct gro_remcsum *grc)
2647 {
2648 void *ptr;
2649 size_t plen = grc->offset + sizeof(u16);
2650
2651 if (!grc->delta)
2652 return;
2653
2654 ptr = skb_gro_header_fast(skb, grc->offset);
2655 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2656 ptr = skb_gro_header_slow(skb, plen, grc->offset);
2657 if (!ptr)
2658 return;
2659 }
2660
2661 remcsum_unadjust((__sum16 *)ptr, grc->delta);
2662 }
2663
2664 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2665 unsigned short type,
2666 const void *daddr, const void *saddr,
2667 unsigned int len)
2668 {
2669 if (!dev->header_ops || !dev->header_ops->create)
2670 return 0;
2671
2672 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2673 }
2674
2675 static inline int dev_parse_header(const struct sk_buff *skb,
2676 unsigned char *haddr)
2677 {
2678 const struct net_device *dev = skb->dev;
2679
2680 if (!dev->header_ops || !dev->header_ops->parse)
2681 return 0;
2682 return dev->header_ops->parse(skb, haddr);
2683 }
2684
2685 /* ll_header must have at least hard_header_len allocated */
2686 static inline bool dev_validate_header(const struct net_device *dev,
2687 char *ll_header, int len)
2688 {
2689 if (likely(len >= dev->hard_header_len))
2690 return true;
2691
2692 if (capable(CAP_SYS_RAWIO)) {
2693 memset(ll_header + len, 0, dev->hard_header_len - len);
2694 return true;
2695 }
2696
2697 if (dev->header_ops && dev->header_ops->validate)
2698 return dev->header_ops->validate(ll_header, len);
2699
2700 return false;
2701 }
2702
2703 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2704 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2705 static inline int unregister_gifconf(unsigned int family)
2706 {
2707 return register_gifconf(family, NULL);
2708 }
2709
2710 #ifdef CONFIG_NET_FLOW_LIMIT
2711 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
2712 struct sd_flow_limit {
2713 u64 count;
2714 unsigned int num_buckets;
2715 unsigned int history_head;
2716 u16 history[FLOW_LIMIT_HISTORY];
2717 u8 buckets[];
2718 };
2719
2720 extern int netdev_flow_limit_table_len;
2721 #endif /* CONFIG_NET_FLOW_LIMIT */
2722
2723 /*
2724 * Incoming packets are placed on per-CPU queues
2725 */
2726 struct softnet_data {
2727 struct list_head poll_list;
2728 struct sk_buff_head process_queue;
2729
2730 /* stats */
2731 unsigned int processed;
2732 unsigned int time_squeeze;
2733 unsigned int received_rps;
2734 #ifdef CONFIG_RPS
2735 struct softnet_data *rps_ipi_list;
2736 #endif
2737 #ifdef CONFIG_NET_FLOW_LIMIT
2738 struct sd_flow_limit __rcu *flow_limit;
2739 #endif
2740 struct Qdisc *output_queue;
2741 struct Qdisc **output_queue_tailp;
2742 struct sk_buff *completion_queue;
2743
2744 #ifdef CONFIG_RPS
2745 /* input_queue_head should be written by cpu owning this struct,
2746 * and only read by other cpus. Worth using a cache line.
2747 */
2748 unsigned int input_queue_head ____cacheline_aligned_in_smp;
2749
2750 /* Elements below can be accessed between CPUs for RPS/RFS */
2751 struct call_single_data csd ____cacheline_aligned_in_smp;
2752 struct softnet_data *rps_ipi_next;
2753 unsigned int cpu;
2754 unsigned int input_queue_tail;
2755 #endif
2756 unsigned int dropped;
2757 struct sk_buff_head input_pkt_queue;
2758 struct napi_struct backlog;
2759
2760 };
2761
2762 static inline void input_queue_head_incr(struct softnet_data *sd)
2763 {
2764 #ifdef CONFIG_RPS
2765 sd->input_queue_head++;
2766 #endif
2767 }
2768
2769 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2770 unsigned int *qtail)
2771 {
2772 #ifdef CONFIG_RPS
2773 *qtail = ++sd->input_queue_tail;
2774 #endif
2775 }
2776
2777 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2778
2779 void __netif_schedule(struct Qdisc *q);
2780 void netif_schedule_queue(struct netdev_queue *txq);
2781
2782 static inline void netif_tx_schedule_all(struct net_device *dev)
2783 {
2784 unsigned int i;
2785
2786 for (i = 0; i < dev->num_tx_queues; i++)
2787 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2788 }
2789
2790 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2791 {
2792 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2793 }
2794
2795 /**
2796 * netif_start_queue - allow transmit
2797 * @dev: network device
2798 *
2799 * Allow upper layers to call the device hard_start_xmit routine.
2800 */
2801 static inline void netif_start_queue(struct net_device *dev)
2802 {
2803 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2804 }
2805
2806 static inline void netif_tx_start_all_queues(struct net_device *dev)
2807 {
2808 unsigned int i;
2809
2810 for (i = 0; i < dev->num_tx_queues; i++) {
2811 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2812 netif_tx_start_queue(txq);
2813 }
2814 }
2815
2816 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2817
2818 /**
2819 * netif_wake_queue - restart transmit
2820 * @dev: network device
2821 *
2822 * Allow upper layers to call the device hard_start_xmit routine.
2823 * Used for flow control when transmit resources are available.
2824 */
2825 static inline void netif_wake_queue(struct net_device *dev)
2826 {
2827 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2828 }
2829
2830 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2831 {
2832 unsigned int i;
2833
2834 for (i = 0; i < dev->num_tx_queues; i++) {
2835 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2836 netif_tx_wake_queue(txq);
2837 }
2838 }
2839
2840 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2841 {
2842 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2843 }
2844
2845 /**
2846 * netif_stop_queue - stop transmitted packets
2847 * @dev: network device
2848 *
2849 * Stop upper layers calling the device hard_start_xmit routine.
2850 * Used for flow control when transmit resources are unavailable.
2851 */
2852 static inline void netif_stop_queue(struct net_device *dev)
2853 {
2854 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2855 }
2856
2857 void netif_tx_stop_all_queues(struct net_device *dev);
2858
2859 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2860 {
2861 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2862 }
2863
2864 /**
2865 * netif_queue_stopped - test if transmit queue is flowblocked
2866 * @dev: network device
2867 *
2868 * Test if transmit queue on device is currently unable to send.
2869 */
2870 static inline bool netif_queue_stopped(const struct net_device *dev)
2871 {
2872 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2873 }
2874
2875 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2876 {
2877 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2878 }
2879
2880 static inline bool
2881 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2882 {
2883 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2884 }
2885
2886 static inline bool
2887 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2888 {
2889 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2890 }
2891
2892 /**
2893 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2894 * @dev_queue: pointer to transmit queue
2895 *
2896 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2897 * to give appropriate hint to the CPU.
2898 */
2899 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2900 {
2901 #ifdef CONFIG_BQL
2902 prefetchw(&dev_queue->dql.num_queued);
2903 #endif
2904 }
2905
2906 /**
2907 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2908 * @dev_queue: pointer to transmit queue
2909 *
2910 * BQL enabled drivers might use this helper in their TX completion path,
2911 * to give appropriate hint to the CPU.
2912 */
2913 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2914 {
2915 #ifdef CONFIG_BQL
2916 prefetchw(&dev_queue->dql.limit);
2917 #endif
2918 }
2919
2920 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2921 unsigned int bytes)
2922 {
2923 #ifdef CONFIG_BQL
2924 dql_queued(&dev_queue->dql, bytes);
2925
2926 if (likely(dql_avail(&dev_queue->dql) >= 0))
2927 return;
2928
2929 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2930
2931 /*
2932 * The XOFF flag must be set before checking the dql_avail below,
2933 * because in netdev_tx_completed_queue we update the dql_completed
2934 * before checking the XOFF flag.
2935 */
2936 smp_mb();
2937
2938 /* check again in case another CPU has just made room avail */
2939 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2940 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2941 #endif
2942 }
2943
2944 /**
2945 * netdev_sent_queue - report the number of bytes queued to hardware
2946 * @dev: network device
2947 * @bytes: number of bytes queued to the hardware device queue
2948 *
2949 * Report the number of bytes queued for sending/completion to the network
2950 * device hardware queue. @bytes should be a good approximation and should
2951 * exactly match netdev_completed_queue() @bytes
2952 */
2953 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2954 {
2955 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2956 }
2957
2958 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2959 unsigned int pkts, unsigned int bytes)
2960 {
2961 #ifdef CONFIG_BQL
2962 if (unlikely(!bytes))
2963 return;
2964
2965 dql_completed(&dev_queue->dql, bytes);
2966
2967 /*
2968 * Without the memory barrier there is a small possiblity that
2969 * netdev_tx_sent_queue will miss the update and cause the queue to
2970 * be stopped forever
2971 */
2972 smp_mb();
2973
2974 if (dql_avail(&dev_queue->dql) < 0)
2975 return;
2976
2977 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2978 netif_schedule_queue(dev_queue);
2979 #endif
2980 }
2981
2982 /**
2983 * netdev_completed_queue - report bytes and packets completed by device
2984 * @dev: network device
2985 * @pkts: actual number of packets sent over the medium
2986 * @bytes: actual number of bytes sent over the medium
2987 *
2988 * Report the number of bytes and packets transmitted by the network device
2989 * hardware queue over the physical medium, @bytes must exactly match the
2990 * @bytes amount passed to netdev_sent_queue()
2991 */
2992 static inline void netdev_completed_queue(struct net_device *dev,
2993 unsigned int pkts, unsigned int bytes)
2994 {
2995 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2996 }
2997
2998 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2999 {
3000 #ifdef CONFIG_BQL
3001 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3002 dql_reset(&q->dql);
3003 #endif
3004 }
3005
3006 /**
3007 * netdev_reset_queue - reset the packets and bytes count of a network device
3008 * @dev_queue: network device
3009 *
3010 * Reset the bytes and packet count of a network device and clear the
3011 * software flow control OFF bit for this network device
3012 */
3013 static inline void netdev_reset_queue(struct net_device *dev_queue)
3014 {
3015 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3016 }
3017
3018 /**
3019 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
3020 * @dev: network device
3021 * @queue_index: given tx queue index
3022 *
3023 * Returns 0 if given tx queue index >= number of device tx queues,
3024 * otherwise returns the originally passed tx queue index.
3025 */
3026 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3027 {
3028 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3029 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3030 dev->name, queue_index,
3031 dev->real_num_tx_queues);
3032 return 0;
3033 }
3034
3035 return queue_index;
3036 }
3037
3038 /**
3039 * netif_running - test if up
3040 * @dev: network device
3041 *
3042 * Test if the device has been brought up.
3043 */
3044 static inline bool netif_running(const struct net_device *dev)
3045 {
3046 return test_bit(__LINK_STATE_START, &dev->state);
3047 }
3048
3049 /*
3050 * Routines to manage the subqueues on a device. We only need start,
3051 * stop, and a check if it's stopped. All other device management is
3052 * done at the overall netdevice level.
3053 * Also test the device if we're multiqueue.
3054 */
3055
3056 /**
3057 * netif_start_subqueue - allow sending packets on subqueue
3058 * @dev: network device
3059 * @queue_index: sub queue index
3060 *
3061 * Start individual transmit queue of a device with multiple transmit queues.
3062 */
3063 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3064 {
3065 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3066
3067 netif_tx_start_queue(txq);
3068 }
3069
3070 /**
3071 * netif_stop_subqueue - stop sending packets on subqueue
3072 * @dev: network device
3073 * @queue_index: sub queue index
3074 *
3075 * Stop individual transmit queue of a device with multiple transmit queues.
3076 */
3077 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3078 {
3079 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3080 netif_tx_stop_queue(txq);
3081 }
3082
3083 /**
3084 * netif_subqueue_stopped - test status of subqueue
3085 * @dev: network device
3086 * @queue_index: sub queue index
3087 *
3088 * Check individual transmit queue of a device with multiple transmit queues.
3089 */
3090 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3091 u16 queue_index)
3092 {
3093 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3094
3095 return netif_tx_queue_stopped(txq);
3096 }
3097
3098 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3099 struct sk_buff *skb)
3100 {
3101 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3102 }
3103
3104 /**
3105 * netif_wake_subqueue - allow sending packets on subqueue
3106 * @dev: network device
3107 * @queue_index: sub queue index
3108 *
3109 * Resume individual transmit queue of a device with multiple transmit queues.
3110 */
3111 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3112 {
3113 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3114
3115 netif_tx_wake_queue(txq);
3116 }
3117
3118 #ifdef CONFIG_XPS
3119 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3120 u16 index);
3121 #else
3122 static inline int netif_set_xps_queue(struct net_device *dev,
3123 const struct cpumask *mask,
3124 u16 index)
3125 {
3126 return 0;
3127 }
3128 #endif
3129
3130 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3131 unsigned int num_tx_queues);
3132
3133 /*
3134 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3135 * as a distribution range limit for the returned value.
3136 */
3137 static inline u16 skb_tx_hash(const struct net_device *dev,
3138 struct sk_buff *skb)
3139 {
3140 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3141 }
3142
3143 /**
3144 * netif_is_multiqueue - test if device has multiple transmit queues
3145 * @dev: network device
3146 *
3147 * Check if device has multiple transmit queues
3148 */
3149 static inline bool netif_is_multiqueue(const struct net_device *dev)
3150 {
3151 return dev->num_tx_queues > 1;
3152 }
3153
3154 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3155
3156 #ifdef CONFIG_SYSFS
3157 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3158 #else
3159 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3160 unsigned int rxq)
3161 {
3162 return 0;
3163 }
3164 #endif
3165
3166 #ifdef CONFIG_SYSFS
3167 static inline unsigned int get_netdev_rx_queue_index(
3168 struct netdev_rx_queue *queue)
3169 {
3170 struct net_device *dev = queue->dev;
3171 int index = queue - dev->_rx;
3172
3173 BUG_ON(index >= dev->num_rx_queues);
3174 return index;
3175 }
3176 #endif
3177
3178 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
3179 int netif_get_num_default_rss_queues(void);
3180
3181 enum skb_free_reason {
3182 SKB_REASON_CONSUMED,
3183 SKB_REASON_DROPPED,
3184 };
3185
3186 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3187 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3188
3189 /*
3190 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3191 * interrupt context or with hardware interrupts being disabled.
3192 * (in_irq() || irqs_disabled())
3193 *
3194 * We provide four helpers that can be used in following contexts :
3195 *
3196 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3197 * replacing kfree_skb(skb)
3198 *
3199 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3200 * Typically used in place of consume_skb(skb) in TX completion path
3201 *
3202 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3203 * replacing kfree_skb(skb)
3204 *
3205 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3206 * and consumed a packet. Used in place of consume_skb(skb)
3207 */
3208 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3209 {
3210 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3211 }
3212
3213 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3214 {
3215 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3216 }
3217
3218 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3219 {
3220 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3221 }
3222
3223 static inline void dev_consume_skb_any(struct sk_buff *skb)
3224 {
3225 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3226 }
3227
3228 int netif_rx(struct sk_buff *skb);
3229 int netif_rx_ni(struct sk_buff *skb);
3230 int netif_receive_skb(struct sk_buff *skb);
3231 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3232 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3233 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3234 gro_result_t napi_gro_frags(struct napi_struct *napi);
3235 struct packet_offload *gro_find_receive_by_type(__be16 type);
3236 struct packet_offload *gro_find_complete_by_type(__be16 type);
3237
3238 static inline void napi_free_frags(struct napi_struct *napi)
3239 {
3240 kfree_skb(napi->skb);
3241 napi->skb = NULL;
3242 }
3243
3244 bool netdev_is_rx_handler_busy(struct net_device *dev);
3245 int netdev_rx_handler_register(struct net_device *dev,
3246 rx_handler_func_t *rx_handler,
3247 void *rx_handler_data);
3248 void netdev_rx_handler_unregister(struct net_device *dev);
3249
3250 bool dev_valid_name(const char *name);
3251 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3252 int dev_ethtool(struct net *net, struct ifreq *);
3253 unsigned int dev_get_flags(const struct net_device *);
3254 int __dev_change_flags(struct net_device *, unsigned int flags);
3255 int dev_change_flags(struct net_device *, unsigned int);
3256 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3257 unsigned int gchanges);
3258 int dev_change_name(struct net_device *, const char *);
3259 int dev_set_alias(struct net_device *, const char *, size_t);
3260 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3261 int dev_set_mtu(struct net_device *, int);
3262 void dev_set_group(struct net_device *, int);
3263 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3264 int dev_change_carrier(struct net_device *, bool new_carrier);
3265 int dev_get_phys_port_id(struct net_device *dev,
3266 struct netdev_phys_item_id *ppid);
3267 int dev_get_phys_port_name(struct net_device *dev,
3268 char *name, size_t len);
3269 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3270 int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags);
3271 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3272 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3273 struct netdev_queue *txq, int *ret);
3274 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3275 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3276 bool is_skb_forwardable(const struct net_device *dev,
3277 const struct sk_buff *skb);
3278
3279 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3280 struct sk_buff *skb)
3281 {
3282 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3283 unlikely(!is_skb_forwardable(dev, skb))) {
3284 atomic_long_inc(&dev->rx_dropped);
3285 kfree_skb(skb);
3286 return NET_RX_DROP;
3287 }
3288
3289 skb_scrub_packet(skb, true);
3290 skb->priority = 0;
3291 return 0;
3292 }
3293
3294 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3295
3296 extern int netdev_budget;
3297
3298 /* Called by rtnetlink.c:rtnl_unlock() */
3299 void netdev_run_todo(void);
3300
3301 /**
3302 * dev_put - release reference to device
3303 * @dev: network device
3304 *
3305 * Release reference to device to allow it to be freed.
3306 */
3307 static inline void dev_put(struct net_device *dev)
3308 {
3309 this_cpu_dec(*dev->pcpu_refcnt);
3310 }
3311
3312 /**
3313 * dev_hold - get reference to device
3314 * @dev: network device
3315 *
3316 * Hold reference to device to keep it from being freed.
3317 */
3318 static inline void dev_hold(struct net_device *dev)
3319 {
3320 this_cpu_inc(*dev->pcpu_refcnt);
3321 }
3322
3323 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3324 * and _off may be called from IRQ context, but it is caller
3325 * who is responsible for serialization of these calls.
3326 *
3327 * The name carrier is inappropriate, these functions should really be
3328 * called netif_lowerlayer_*() because they represent the state of any
3329 * kind of lower layer not just hardware media.
3330 */
3331
3332 void linkwatch_init_dev(struct net_device *dev);
3333 void linkwatch_fire_event(struct net_device *dev);
3334 void linkwatch_forget_dev(struct net_device *dev);
3335
3336 /**
3337 * netif_carrier_ok - test if carrier present
3338 * @dev: network device
3339 *
3340 * Check if carrier is present on device
3341 */
3342 static inline bool netif_carrier_ok(const struct net_device *dev)
3343 {
3344 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3345 }
3346
3347 unsigned long dev_trans_start(struct net_device *dev);
3348
3349 void __netdev_watchdog_up(struct net_device *dev);
3350
3351 void netif_carrier_on(struct net_device *dev);
3352
3353 void netif_carrier_off(struct net_device *dev);
3354
3355 /**
3356 * netif_dormant_on - mark device as dormant.
3357 * @dev: network device
3358 *
3359 * Mark device as dormant (as per RFC2863).
3360 *
3361 * The dormant state indicates that the relevant interface is not
3362 * actually in a condition to pass packets (i.e., it is not 'up') but is
3363 * in a "pending" state, waiting for some external event. For "on-
3364 * demand" interfaces, this new state identifies the situation where the
3365 * interface is waiting for events to place it in the up state.
3366 */
3367 static inline void netif_dormant_on(struct net_device *dev)
3368 {
3369 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3370 linkwatch_fire_event(dev);
3371 }
3372
3373 /**
3374 * netif_dormant_off - set device as not dormant.
3375 * @dev: network device
3376 *
3377 * Device is not in dormant state.
3378 */
3379 static inline void netif_dormant_off(struct net_device *dev)
3380 {
3381 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3382 linkwatch_fire_event(dev);
3383 }
3384
3385 /**
3386 * netif_dormant - test if carrier present
3387 * @dev: network device
3388 *
3389 * Check if carrier is present on device
3390 */
3391 static inline bool netif_dormant(const struct net_device *dev)
3392 {
3393 return test_bit(__LINK_STATE_DORMANT, &dev->state);
3394 }
3395
3396
3397 /**
3398 * netif_oper_up - test if device is operational
3399 * @dev: network device
3400 *
3401 * Check if carrier is operational
3402 */
3403 static inline bool netif_oper_up(const struct net_device *dev)
3404 {
3405 return (dev->operstate == IF_OPER_UP ||
3406 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3407 }
3408
3409 /**
3410 * netif_device_present - is device available or removed
3411 * @dev: network device
3412 *
3413 * Check if device has not been removed from system.
3414 */
3415 static inline bool netif_device_present(struct net_device *dev)
3416 {
3417 return test_bit(__LINK_STATE_PRESENT, &dev->state);
3418 }
3419
3420 void netif_device_detach(struct net_device *dev);
3421
3422 void netif_device_attach(struct net_device *dev);
3423
3424 /*
3425 * Network interface message level settings
3426 */
3427
3428 enum {
3429 NETIF_MSG_DRV = 0x0001,
3430 NETIF_MSG_PROBE = 0x0002,
3431 NETIF_MSG_LINK = 0x0004,
3432 NETIF_MSG_TIMER = 0x0008,
3433 NETIF_MSG_IFDOWN = 0x0010,
3434 NETIF_MSG_IFUP = 0x0020,
3435 NETIF_MSG_RX_ERR = 0x0040,
3436 NETIF_MSG_TX_ERR = 0x0080,
3437 NETIF_MSG_TX_QUEUED = 0x0100,
3438 NETIF_MSG_INTR = 0x0200,
3439 NETIF_MSG_TX_DONE = 0x0400,
3440 NETIF_MSG_RX_STATUS = 0x0800,
3441 NETIF_MSG_PKTDATA = 0x1000,
3442 NETIF_MSG_HW = 0x2000,
3443 NETIF_MSG_WOL = 0x4000,
3444 };
3445
3446 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
3447 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
3448 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
3449 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
3450 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
3451 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
3452 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
3453 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
3454 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3455 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
3456 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
3457 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3458 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
3459 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
3460 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
3461
3462 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3463 {
3464 /* use default */
3465 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3466 return default_msg_enable_bits;
3467 if (debug_value == 0) /* no output */
3468 return 0;
3469 /* set low N bits */
3470 return (1 << debug_value) - 1;
3471 }
3472
3473 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3474 {
3475 spin_lock(&txq->_xmit_lock);
3476 txq->xmit_lock_owner = cpu;
3477 }
3478
3479 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3480 {
3481 __acquire(&txq->_xmit_lock);
3482 return true;
3483 }
3484
3485 static inline void __netif_tx_release(struct netdev_queue *txq)
3486 {
3487 __release(&txq->_xmit_lock);
3488 }
3489
3490 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3491 {
3492 spin_lock_bh(&txq->_xmit_lock);
3493 txq->xmit_lock_owner = smp_processor_id();
3494 }
3495
3496 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3497 {
3498 bool ok = spin_trylock(&txq->_xmit_lock);
3499 if (likely(ok))
3500 txq->xmit_lock_owner = smp_processor_id();
3501 return ok;
3502 }
3503
3504 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3505 {
3506 txq->xmit_lock_owner = -1;
3507 spin_unlock(&txq->_xmit_lock);
3508 }
3509
3510 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3511 {
3512 txq->xmit_lock_owner = -1;
3513 spin_unlock_bh(&txq->_xmit_lock);
3514 }
3515
3516 static inline void txq_trans_update(struct netdev_queue *txq)
3517 {
3518 if (txq->xmit_lock_owner != -1)
3519 txq->trans_start = jiffies;
3520 }
3521
3522 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3523 static inline void netif_trans_update(struct net_device *dev)
3524 {
3525 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3526
3527 if (txq->trans_start != jiffies)
3528 txq->trans_start = jiffies;
3529 }
3530
3531 /**
3532 * netif_tx_lock - grab network device transmit lock
3533 * @dev: network device
3534 *
3535 * Get network device transmit lock
3536 */
3537 static inline void netif_tx_lock(struct net_device *dev)
3538 {
3539 unsigned int i;
3540 int cpu;
3541
3542 spin_lock(&dev->tx_global_lock);
3543 cpu = smp_processor_id();
3544 for (i = 0; i < dev->num_tx_queues; i++) {
3545 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3546
3547 /* We are the only thread of execution doing a
3548 * freeze, but we have to grab the _xmit_lock in
3549 * order to synchronize with threads which are in
3550 * the ->hard_start_xmit() handler and already
3551 * checked the frozen bit.
3552 */
3553 __netif_tx_lock(txq, cpu);
3554 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3555 __netif_tx_unlock(txq);
3556 }
3557 }
3558
3559 static inline void netif_tx_lock_bh(struct net_device *dev)
3560 {
3561 local_bh_disable();
3562 netif_tx_lock(dev);
3563 }
3564
3565 static inline void netif_tx_unlock(struct net_device *dev)
3566 {
3567 unsigned int i;
3568
3569 for (i = 0; i < dev->num_tx_queues; i++) {
3570 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3571
3572 /* No need to grab the _xmit_lock here. If the
3573 * queue is not stopped for another reason, we
3574 * force a schedule.
3575 */
3576 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3577 netif_schedule_queue(txq);
3578 }
3579 spin_unlock(&dev->tx_global_lock);
3580 }
3581
3582 static inline void netif_tx_unlock_bh(struct net_device *dev)
3583 {
3584 netif_tx_unlock(dev);
3585 local_bh_enable();
3586 }
3587
3588 #define HARD_TX_LOCK(dev, txq, cpu) { \
3589 if ((dev->features & NETIF_F_LLTX) == 0) { \
3590 __netif_tx_lock(txq, cpu); \
3591 } else { \
3592 __netif_tx_acquire(txq); \
3593 } \
3594 }
3595
3596 #define HARD_TX_TRYLOCK(dev, txq) \
3597 (((dev->features & NETIF_F_LLTX) == 0) ? \
3598 __netif_tx_trylock(txq) : \
3599 __netif_tx_acquire(txq))
3600
3601 #define HARD_TX_UNLOCK(dev, txq) { \
3602 if ((dev->features & NETIF_F_LLTX) == 0) { \
3603 __netif_tx_unlock(txq); \
3604 } else { \
3605 __netif_tx_release(txq); \
3606 } \
3607 }
3608
3609 static inline void netif_tx_disable(struct net_device *dev)
3610 {
3611 unsigned int i;
3612 int cpu;
3613
3614 local_bh_disable();
3615 cpu = smp_processor_id();
3616 for (i = 0; i < dev->num_tx_queues; i++) {
3617 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3618
3619 __netif_tx_lock(txq, cpu);
3620 netif_tx_stop_queue(txq);
3621 __netif_tx_unlock(txq);
3622 }
3623 local_bh_enable();
3624 }
3625
3626 static inline void netif_addr_lock(struct net_device *dev)
3627 {
3628 spin_lock(&dev->addr_list_lock);
3629 }
3630
3631 static inline void netif_addr_lock_nested(struct net_device *dev)
3632 {
3633 int subclass = SINGLE_DEPTH_NESTING;
3634
3635 if (dev->netdev_ops->ndo_get_lock_subclass)
3636 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3637
3638 spin_lock_nested(&dev->addr_list_lock, subclass);
3639 }
3640
3641 static inline void netif_addr_lock_bh(struct net_device *dev)
3642 {
3643 spin_lock_bh(&dev->addr_list_lock);
3644 }
3645
3646 static inline void netif_addr_unlock(struct net_device *dev)
3647 {
3648 spin_unlock(&dev->addr_list_lock);
3649 }
3650
3651 static inline void netif_addr_unlock_bh(struct net_device *dev)
3652 {
3653 spin_unlock_bh(&dev->addr_list_lock);
3654 }
3655
3656 /*
3657 * dev_addrs walker. Should be used only for read access. Call with
3658 * rcu_read_lock held.
3659 */
3660 #define for_each_dev_addr(dev, ha) \
3661 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3662
3663 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3664
3665 void ether_setup(struct net_device *dev);
3666
3667 /* Support for loadable net-drivers */
3668 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3669 unsigned char name_assign_type,
3670 void (*setup)(struct net_device *),
3671 unsigned int txqs, unsigned int rxqs);
3672 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3673 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3674
3675 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3676 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3677 count)
3678
3679 int register_netdev(struct net_device *dev);
3680 void unregister_netdev(struct net_device *dev);
3681
3682 /* General hardware address lists handling functions */
3683 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3684 struct netdev_hw_addr_list *from_list, int addr_len);
3685 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3686 struct netdev_hw_addr_list *from_list, int addr_len);
3687 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3688 struct net_device *dev,
3689 int (*sync)(struct net_device *, const unsigned char *),
3690 int (*unsync)(struct net_device *,
3691 const unsigned char *));
3692 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3693 struct net_device *dev,
3694 int (*unsync)(struct net_device *,
3695 const unsigned char *));
3696 void __hw_addr_init(struct netdev_hw_addr_list *list);
3697
3698 /* Functions used for device addresses handling */
3699 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3700 unsigned char addr_type);
3701 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3702 unsigned char addr_type);
3703 void dev_addr_flush(struct net_device *dev);
3704 int dev_addr_init(struct net_device *dev);
3705
3706 /* Functions used for unicast addresses handling */
3707 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3708 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3709 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3710 int dev_uc_sync(struct net_device *to, struct net_device *from);
3711 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3712 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3713 void dev_uc_flush(struct net_device *dev);
3714 void dev_uc_init(struct net_device *dev);
3715
3716 /**
3717 * __dev_uc_sync - Synchonize device's unicast list
3718 * @dev: device to sync
3719 * @sync: function to call if address should be added
3720 * @unsync: function to call if address should be removed
3721 *
3722 * Add newly added addresses to the interface, and release
3723 * addresses that have been deleted.
3724 */
3725 static inline int __dev_uc_sync(struct net_device *dev,
3726 int (*sync)(struct net_device *,
3727 const unsigned char *),
3728 int (*unsync)(struct net_device *,
3729 const unsigned char *))
3730 {
3731 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3732 }
3733
3734 /**
3735 * __dev_uc_unsync - Remove synchronized addresses from device
3736 * @dev: device to sync
3737 * @unsync: function to call if address should be removed
3738 *
3739 * Remove all addresses that were added to the device by dev_uc_sync().
3740 */
3741 static inline void __dev_uc_unsync(struct net_device *dev,
3742 int (*unsync)(struct net_device *,
3743 const unsigned char *))
3744 {
3745 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3746 }
3747
3748 /* Functions used for multicast addresses handling */
3749 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3750 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3751 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3752 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3753 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3754 int dev_mc_sync(struct net_device *to, struct net_device *from);
3755 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3756 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3757 void dev_mc_flush(struct net_device *dev);
3758 void dev_mc_init(struct net_device *dev);
3759
3760 /**
3761 * __dev_mc_sync - Synchonize device's multicast list
3762 * @dev: device to sync
3763 * @sync: function to call if address should be added
3764 * @unsync: function to call if address should be removed
3765 *
3766 * Add newly added addresses to the interface, and release
3767 * addresses that have been deleted.
3768 */
3769 static inline int __dev_mc_sync(struct net_device *dev,
3770 int (*sync)(struct net_device *,
3771 const unsigned char *),
3772 int (*unsync)(struct net_device *,
3773 const unsigned char *))
3774 {
3775 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3776 }
3777
3778 /**
3779 * __dev_mc_unsync - Remove synchronized addresses from device
3780 * @dev: device to sync
3781 * @unsync: function to call if address should be removed
3782 *
3783 * Remove all addresses that were added to the device by dev_mc_sync().
3784 */
3785 static inline void __dev_mc_unsync(struct net_device *dev,
3786 int (*unsync)(struct net_device *,
3787 const unsigned char *))
3788 {
3789 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3790 }
3791
3792 /* Functions used for secondary unicast and multicast support */
3793 void dev_set_rx_mode(struct net_device *dev);
3794 void __dev_set_rx_mode(struct net_device *dev);
3795 int dev_set_promiscuity(struct net_device *dev, int inc);
3796 int dev_set_allmulti(struct net_device *dev, int inc);
3797 void netdev_state_change(struct net_device *dev);
3798 void netdev_notify_peers(struct net_device *dev);
3799 void netdev_features_change(struct net_device *dev);
3800 /* Load a device via the kmod */
3801 void dev_load(struct net *net, const char *name);
3802 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3803 struct rtnl_link_stats64 *storage);
3804 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3805 const struct net_device_stats *netdev_stats);
3806
3807 extern int netdev_max_backlog;
3808 extern int netdev_tstamp_prequeue;
3809 extern int weight_p;
3810 extern int dev_weight_rx_bias;
3811 extern int dev_weight_tx_bias;
3812 extern int dev_rx_weight;
3813 extern int dev_tx_weight;
3814
3815 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3816 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3817 struct list_head **iter);
3818 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3819 struct list_head **iter);
3820
3821 /* iterate through upper list, must be called under RCU read lock */
3822 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3823 for (iter = &(dev)->adj_list.upper, \
3824 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3825 updev; \
3826 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3827
3828 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
3829 int (*fn)(struct net_device *upper_dev,
3830 void *data),
3831 void *data);
3832
3833 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
3834 struct net_device *upper_dev);
3835
3836 void *netdev_lower_get_next_private(struct net_device *dev,
3837 struct list_head **iter);
3838 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3839 struct list_head **iter);
3840
3841 #define netdev_for_each_lower_private(dev, priv, iter) \
3842 for (iter = (dev)->adj_list.lower.next, \
3843 priv = netdev_lower_get_next_private(dev, &(iter)); \
3844 priv; \
3845 priv = netdev_lower_get_next_private(dev, &(iter)))
3846
3847 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3848 for (iter = &(dev)->adj_list.lower, \
3849 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3850 priv; \
3851 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3852
3853 void *netdev_lower_get_next(struct net_device *dev,
3854 struct list_head **iter);
3855
3856 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3857 for (iter = (dev)->adj_list.lower.next, \
3858 ldev = netdev_lower_get_next(dev, &(iter)); \
3859 ldev; \
3860 ldev = netdev_lower_get_next(dev, &(iter)))
3861
3862 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
3863 struct list_head **iter);
3864 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
3865 struct list_head **iter);
3866
3867 int netdev_walk_all_lower_dev(struct net_device *dev,
3868 int (*fn)(struct net_device *lower_dev,
3869 void *data),
3870 void *data);
3871 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
3872 int (*fn)(struct net_device *lower_dev,
3873 void *data),
3874 void *data);
3875
3876 void *netdev_adjacent_get_private(struct list_head *adj_list);
3877 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3878 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3879 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3880 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3881 int netdev_master_upper_dev_link(struct net_device *dev,
3882 struct net_device *upper_dev,
3883 void *upper_priv, void *upper_info);
3884 void netdev_upper_dev_unlink(struct net_device *dev,
3885 struct net_device *upper_dev);
3886 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3887 void *netdev_lower_dev_get_private(struct net_device *dev,
3888 struct net_device *lower_dev);
3889 void netdev_lower_state_changed(struct net_device *lower_dev,
3890 void *lower_state_info);
3891
3892 /* RSS keys are 40 or 52 bytes long */
3893 #define NETDEV_RSS_KEY_LEN 52
3894 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
3895 void netdev_rss_key_fill(void *buffer, size_t len);
3896
3897 int dev_get_nest_level(struct net_device *dev);
3898 int skb_checksum_help(struct sk_buff *skb);
3899 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3900 netdev_features_t features, bool tx_path);
3901 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3902 netdev_features_t features);
3903
3904 struct netdev_bonding_info {
3905 ifslave slave;
3906 ifbond master;
3907 };
3908
3909 struct netdev_notifier_bonding_info {
3910 struct netdev_notifier_info info; /* must be first */
3911 struct netdev_bonding_info bonding_info;
3912 };
3913
3914 void netdev_bonding_info_change(struct net_device *dev,
3915 struct netdev_bonding_info *bonding_info);
3916
3917 static inline
3918 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3919 {
3920 return __skb_gso_segment(skb, features, true);
3921 }
3922 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3923
3924 static inline bool can_checksum_protocol(netdev_features_t features,
3925 __be16 protocol)
3926 {
3927 if (protocol == htons(ETH_P_FCOE))
3928 return !!(features & NETIF_F_FCOE_CRC);
3929
3930 /* Assume this is an IP checksum (not SCTP CRC) */
3931
3932 if (features & NETIF_F_HW_CSUM) {
3933 /* Can checksum everything */
3934 return true;
3935 }
3936
3937 switch (protocol) {
3938 case htons(ETH_P_IP):
3939 return !!(features & NETIF_F_IP_CSUM);
3940 case htons(ETH_P_IPV6):
3941 return !!(features & NETIF_F_IPV6_CSUM);
3942 default:
3943 return false;
3944 }
3945 }
3946
3947 #ifdef CONFIG_BUG
3948 void netdev_rx_csum_fault(struct net_device *dev);
3949 #else
3950 static inline void netdev_rx_csum_fault(struct net_device *dev)
3951 {
3952 }
3953 #endif
3954 /* rx skb timestamps */
3955 void net_enable_timestamp(void);
3956 void net_disable_timestamp(void);
3957
3958 #ifdef CONFIG_PROC_FS
3959 int __init dev_proc_init(void);
3960 #else
3961 #define dev_proc_init() 0
3962 #endif
3963
3964 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3965 struct sk_buff *skb, struct net_device *dev,
3966 bool more)
3967 {
3968 skb->xmit_more = more ? 1 : 0;
3969 return ops->ndo_start_xmit(skb, dev);
3970 }
3971
3972 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3973 struct netdev_queue *txq, bool more)
3974 {
3975 const struct net_device_ops *ops = dev->netdev_ops;
3976 int rc;
3977
3978 rc = __netdev_start_xmit(ops, skb, dev, more);
3979 if (rc == NETDEV_TX_OK)
3980 txq_trans_update(txq);
3981
3982 return rc;
3983 }
3984
3985 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3986 const void *ns);
3987 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3988 const void *ns);
3989
3990 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3991 {
3992 return netdev_class_create_file_ns(class_attr, NULL);
3993 }
3994
3995 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3996 {
3997 netdev_class_remove_file_ns(class_attr, NULL);
3998 }
3999
4000 extern struct kobj_ns_type_operations net_ns_type_operations;
4001
4002 const char *netdev_drivername(const struct net_device *dev);
4003
4004 void linkwatch_run_queue(void);
4005
4006 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4007 netdev_features_t f2)
4008 {
4009 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4010 if (f1 & NETIF_F_HW_CSUM)
4011 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4012 else
4013 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4014 }
4015
4016 return f1 & f2;
4017 }
4018
4019 static inline netdev_features_t netdev_get_wanted_features(
4020 struct net_device *dev)
4021 {
4022 return (dev->features & ~dev->hw_features) | dev->wanted_features;
4023 }
4024 netdev_features_t netdev_increment_features(netdev_features_t all,
4025 netdev_features_t one, netdev_features_t mask);
4026
4027 /* Allow TSO being used on stacked device :
4028 * Performing the GSO segmentation before last device
4029 * is a performance improvement.
4030 */
4031 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4032 netdev_features_t mask)
4033 {
4034 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4035 }
4036
4037 int __netdev_update_features(struct net_device *dev);
4038 void netdev_update_features(struct net_device *dev);
4039 void netdev_change_features(struct net_device *dev);
4040
4041 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4042 struct net_device *dev);
4043
4044 netdev_features_t passthru_features_check(struct sk_buff *skb,
4045 struct net_device *dev,
4046 netdev_features_t features);
4047 netdev_features_t netif_skb_features(struct sk_buff *skb);
4048
4049 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4050 {
4051 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4052
4053 /* check flags correspondence */
4054 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4055 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
4056 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4057 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4058 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4059 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4060 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4061 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4062 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4063 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4064 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4065 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4066 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4067 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4068 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4069 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4070
4071 return (features & feature) == feature;
4072 }
4073
4074 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4075 {
4076 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4077 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4078 }
4079
4080 static inline bool netif_needs_gso(struct sk_buff *skb,
4081 netdev_features_t features)
4082 {
4083 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4084 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4085 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4086 }
4087
4088 static inline void netif_set_gso_max_size(struct net_device *dev,
4089 unsigned int size)
4090 {
4091 dev->gso_max_size = size;
4092 }
4093
4094 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4095 int pulled_hlen, u16 mac_offset,
4096 int mac_len)
4097 {
4098 skb->protocol = protocol;
4099 skb->encapsulation = 1;
4100 skb_push(skb, pulled_hlen);
4101 skb_reset_transport_header(skb);
4102 skb->mac_header = mac_offset;
4103 skb->network_header = skb->mac_header + mac_len;
4104 skb->mac_len = mac_len;
4105 }
4106
4107 static inline bool netif_is_macsec(const struct net_device *dev)
4108 {
4109 return dev->priv_flags & IFF_MACSEC;
4110 }
4111
4112 static inline bool netif_is_macvlan(const struct net_device *dev)
4113 {
4114 return dev->priv_flags & IFF_MACVLAN;
4115 }
4116
4117 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4118 {
4119 return dev->priv_flags & IFF_MACVLAN_PORT;
4120 }
4121
4122 static inline bool netif_is_ipvlan(const struct net_device *dev)
4123 {
4124 return dev->priv_flags & IFF_IPVLAN_SLAVE;
4125 }
4126
4127 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
4128 {
4129 return dev->priv_flags & IFF_IPVLAN_MASTER;
4130 }
4131
4132 static inline bool netif_is_bond_master(const struct net_device *dev)
4133 {
4134 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4135 }
4136
4137 static inline bool netif_is_bond_slave(const struct net_device *dev)
4138 {
4139 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4140 }
4141
4142 static inline bool netif_supports_nofcs(struct net_device *dev)
4143 {
4144 return dev->priv_flags & IFF_SUPP_NOFCS;
4145 }
4146
4147 static inline bool netif_is_l3_master(const struct net_device *dev)
4148 {
4149 return dev->priv_flags & IFF_L3MDEV_MASTER;
4150 }
4151
4152 static inline bool netif_is_l3_slave(const struct net_device *dev)
4153 {
4154 return dev->priv_flags & IFF_L3MDEV_SLAVE;
4155 }
4156
4157 static inline bool netif_is_bridge_master(const struct net_device *dev)
4158 {
4159 return dev->priv_flags & IFF_EBRIDGE;
4160 }
4161
4162 static inline bool netif_is_bridge_port(const struct net_device *dev)
4163 {
4164 return dev->priv_flags & IFF_BRIDGE_PORT;
4165 }
4166
4167 static inline bool netif_is_ovs_master(const struct net_device *dev)
4168 {
4169 return dev->priv_flags & IFF_OPENVSWITCH;
4170 }
4171
4172 static inline bool netif_is_team_master(const struct net_device *dev)
4173 {
4174 return dev->priv_flags & IFF_TEAM;
4175 }
4176
4177 static inline bool netif_is_team_port(const struct net_device *dev)
4178 {
4179 return dev->priv_flags & IFF_TEAM_PORT;
4180 }
4181
4182 static inline bool netif_is_lag_master(const struct net_device *dev)
4183 {
4184 return netif_is_bond_master(dev) || netif_is_team_master(dev);
4185 }
4186
4187 static inline bool netif_is_lag_port(const struct net_device *dev)
4188 {
4189 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4190 }
4191
4192 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4193 {
4194 return dev->priv_flags & IFF_RXFH_CONFIGURED;
4195 }
4196
4197 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4198 static inline void netif_keep_dst(struct net_device *dev)
4199 {
4200 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4201 }
4202
4203 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4204 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4205 {
4206 /* TODO: reserve and use an additional IFF bit, if we get more users */
4207 return dev->priv_flags & IFF_MACSEC;
4208 }
4209
4210 extern struct pernet_operations __net_initdata loopback_net_ops;
4211
4212 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4213
4214 /* netdev_printk helpers, similar to dev_printk */
4215
4216 static inline const char *netdev_name(const struct net_device *dev)
4217 {
4218 if (!dev->name[0] || strchr(dev->name, '%'))
4219 return "(unnamed net_device)";
4220 return dev->name;
4221 }
4222
4223 static inline const char *netdev_reg_state(const struct net_device *dev)
4224 {
4225 switch (dev->reg_state) {
4226 case NETREG_UNINITIALIZED: return " (uninitialized)";
4227 case NETREG_REGISTERED: return "";
4228 case NETREG_UNREGISTERING: return " (unregistering)";
4229 case NETREG_UNREGISTERED: return " (unregistered)";
4230 case NETREG_RELEASED: return " (released)";
4231 case NETREG_DUMMY: return " (dummy)";
4232 }
4233
4234 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4235 return " (unknown)";
4236 }
4237
4238 __printf(3, 4)
4239 void netdev_printk(const char *level, const struct net_device *dev,
4240 const char *format, ...);
4241 __printf(2, 3)
4242 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4243 __printf(2, 3)
4244 void netdev_alert(const struct net_device *dev, const char *format, ...);
4245 __printf(2, 3)
4246 void netdev_crit(const struct net_device *dev, const char *format, ...);
4247 __printf(2, 3)
4248 void netdev_err(const struct net_device *dev, const char *format, ...);
4249 __printf(2, 3)
4250 void netdev_warn(const struct net_device *dev, const char *format, ...);
4251 __printf(2, 3)
4252 void netdev_notice(const struct net_device *dev, const char *format, ...);
4253 __printf(2, 3)
4254 void netdev_info(const struct net_device *dev, const char *format, ...);
4255
4256 #define MODULE_ALIAS_NETDEV(device) \
4257 MODULE_ALIAS("netdev-" device)
4258
4259 #if defined(CONFIG_DYNAMIC_DEBUG)
4260 #define netdev_dbg(__dev, format, args...) \
4261 do { \
4262 dynamic_netdev_dbg(__dev, format, ##args); \
4263 } while (0)
4264 #elif defined(DEBUG)
4265 #define netdev_dbg(__dev, format, args...) \
4266 netdev_printk(KERN_DEBUG, __dev, format, ##args)
4267 #else
4268 #define netdev_dbg(__dev, format, args...) \
4269 ({ \
4270 if (0) \
4271 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4272 })
4273 #endif
4274
4275 #if defined(VERBOSE_DEBUG)
4276 #define netdev_vdbg netdev_dbg
4277 #else
4278
4279 #define netdev_vdbg(dev, format, args...) \
4280 ({ \
4281 if (0) \
4282 netdev_printk(KERN_DEBUG, dev, format, ##args); \
4283 0; \
4284 })
4285 #endif
4286
4287 /*
4288 * netdev_WARN() acts like dev_printk(), but with the key difference
4289 * of using a WARN/WARN_ON to get the message out, including the
4290 * file/line information and a backtrace.
4291 */
4292 #define netdev_WARN(dev, format, args...) \
4293 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \
4294 netdev_reg_state(dev), ##args)
4295
4296 /* netif printk helpers, similar to netdev_printk */
4297
4298 #define netif_printk(priv, type, level, dev, fmt, args...) \
4299 do { \
4300 if (netif_msg_##type(priv)) \
4301 netdev_printk(level, (dev), fmt, ##args); \
4302 } while (0)
4303
4304 #define netif_level(level, priv, type, dev, fmt, args...) \
4305 do { \
4306 if (netif_msg_##type(priv)) \
4307 netdev_##level(dev, fmt, ##args); \
4308 } while (0)
4309
4310 #define netif_emerg(priv, type, dev, fmt, args...) \
4311 netif_level(emerg, priv, type, dev, fmt, ##args)
4312 #define netif_alert(priv, type, dev, fmt, args...) \
4313 netif_level(alert, priv, type, dev, fmt, ##args)
4314 #define netif_crit(priv, type, dev, fmt, args...) \
4315 netif_level(crit, priv, type, dev, fmt, ##args)
4316 #define netif_err(priv, type, dev, fmt, args...) \
4317 netif_level(err, priv, type, dev, fmt, ##args)
4318 #define netif_warn(priv, type, dev, fmt, args...) \
4319 netif_level(warn, priv, type, dev, fmt, ##args)
4320 #define netif_notice(priv, type, dev, fmt, args...) \
4321 netif_level(notice, priv, type, dev, fmt, ##args)
4322 #define netif_info(priv, type, dev, fmt, args...) \
4323 netif_level(info, priv, type, dev, fmt, ##args)
4324
4325 #if defined(CONFIG_DYNAMIC_DEBUG)
4326 #define netif_dbg(priv, type, netdev, format, args...) \
4327 do { \
4328 if (netif_msg_##type(priv)) \
4329 dynamic_netdev_dbg(netdev, format, ##args); \
4330 } while (0)
4331 #elif defined(DEBUG)
4332 #define netif_dbg(priv, type, dev, format, args...) \
4333 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4334 #else
4335 #define netif_dbg(priv, type, dev, format, args...) \
4336 ({ \
4337 if (0) \
4338 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4339 0; \
4340 })
4341 #endif
4342
4343 /* if @cond then downgrade to debug, else print at @level */
4344 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \
4345 do { \
4346 if (cond) \
4347 netif_dbg(priv, type, netdev, fmt, ##args); \
4348 else \
4349 netif_ ## level(priv, type, netdev, fmt, ##args); \
4350 } while (0)
4351
4352 #if defined(VERBOSE_DEBUG)
4353 #define netif_vdbg netif_dbg
4354 #else
4355 #define netif_vdbg(priv, type, dev, format, args...) \
4356 ({ \
4357 if (0) \
4358 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4359 0; \
4360 })
4361 #endif
4362
4363 /*
4364 * The list of packet types we will receive (as opposed to discard)
4365 * and the routines to invoke.
4366 *
4367 * Why 16. Because with 16 the only overlap we get on a hash of the
4368 * low nibble of the protocol value is RARP/SNAP/X.25.
4369 *
4370 * NOTE: That is no longer true with the addition of VLAN tags. Not
4371 * sure which should go first, but I bet it won't make much
4372 * difference if we are running VLANs. The good news is that
4373 * this protocol won't be in the list unless compiled in, so
4374 * the average user (w/out VLANs) will not be adversely affected.
4375 * --BLG
4376 *
4377 * 0800 IP
4378 * 8100 802.1Q VLAN
4379 * 0001 802.3
4380 * 0002 AX.25
4381 * 0004 802.2
4382 * 8035 RARP
4383 * 0005 SNAP
4384 * 0805 X.25
4385 * 0806 ARP
4386 * 8137 IPX
4387 * 0009 Localtalk
4388 * 86DD IPv6
4389 */
4390 #define PTYPE_HASH_SIZE (16)
4391 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4392
4393 #endif /* _LINUX_NETDEVICE_H */