]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/netdevice.h
net: remove the unnecessary dance around skb_bond_should_drop
[mirror_ubuntu-artful-kernel.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/if.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_link.h>
32
33 #ifdef __KERNEL__
34 #include <linux/pm_qos_params.h>
35 #include <linux/timer.h>
36 #include <linux/delay.h>
37 #include <linux/mm.h>
38 #include <asm/atomic.h>
39 #include <asm/cache.h>
40 #include <asm/byteorder.h>
41
42 #include <linux/device.h>
43 #include <linux/percpu.h>
44 #include <linux/rculist.h>
45 #include <linux/dmaengine.h>
46 #include <linux/workqueue.h>
47
48 #include <linux/ethtool.h>
49 #include <net/net_namespace.h>
50 #include <net/dsa.h>
51 #ifdef CONFIG_DCB
52 #include <net/dcbnl.h>
53 #endif
54
55 struct vlan_group;
56 struct netpoll_info;
57 struct phy_device;
58 /* 802.11 specific */
59 struct wireless_dev;
60 /* source back-compat hooks */
61 #define SET_ETHTOOL_OPS(netdev,ops) \
62 ( (netdev)->ethtool_ops = (ops) )
63
64 #define HAVE_ALLOC_NETDEV /* feature macro: alloc_xxxdev
65 functions are available. */
66 #define HAVE_FREE_NETDEV /* free_netdev() */
67 #define HAVE_NETDEV_PRIV /* netdev_priv() */
68
69 /* hardware address assignment types */
70 #define NET_ADDR_PERM 0 /* address is permanent (default) */
71 #define NET_ADDR_RANDOM 1 /* address is generated randomly */
72 #define NET_ADDR_STOLEN 2 /* address is stolen from other device */
73
74 /* Backlog congestion levels */
75 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
76 #define NET_RX_DROP 1 /* packet dropped */
77
78 /* Initial net device group. All devices belong to group 0 by default. */
79 #define INIT_NETDEV_GROUP 0
80
81 /*
82 * Transmit return codes: transmit return codes originate from three different
83 * namespaces:
84 *
85 * - qdisc return codes
86 * - driver transmit return codes
87 * - errno values
88 *
89 * Drivers are allowed to return any one of those in their hard_start_xmit()
90 * function. Real network devices commonly used with qdiscs should only return
91 * the driver transmit return codes though - when qdiscs are used, the actual
92 * transmission happens asynchronously, so the value is not propagated to
93 * higher layers. Virtual network devices transmit synchronously, in this case
94 * the driver transmit return codes are consumed by dev_queue_xmit(), all
95 * others are propagated to higher layers.
96 */
97
98 /* qdisc ->enqueue() return codes. */
99 #define NET_XMIT_SUCCESS 0x00
100 #define NET_XMIT_DROP 0x01 /* skb dropped */
101 #define NET_XMIT_CN 0x02 /* congestion notification */
102 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
103 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
104
105 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
106 * indicates that the device will soon be dropping packets, or already drops
107 * some packets of the same priority; prompting us to send less aggressively. */
108 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
109 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
110
111 /* Driver transmit return codes */
112 #define NETDEV_TX_MASK 0xf0
113
114 enum netdev_tx {
115 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
116 NETDEV_TX_OK = 0x00, /* driver took care of packet */
117 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
118 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
119 };
120 typedef enum netdev_tx netdev_tx_t;
121
122 /*
123 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
124 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
125 */
126 static inline bool dev_xmit_complete(int rc)
127 {
128 /*
129 * Positive cases with an skb consumed by a driver:
130 * - successful transmission (rc == NETDEV_TX_OK)
131 * - error while transmitting (rc < 0)
132 * - error while queueing to a different device (rc & NET_XMIT_MASK)
133 */
134 if (likely(rc < NET_XMIT_MASK))
135 return true;
136
137 return false;
138 }
139
140 #endif
141
142 #define MAX_ADDR_LEN 32 /* Largest hardware address length */
143
144 #ifdef __KERNEL__
145 /*
146 * Compute the worst case header length according to the protocols
147 * used.
148 */
149
150 #if defined(CONFIG_WLAN) || defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
151 # if defined(CONFIG_MAC80211_MESH)
152 # define LL_MAX_HEADER 128
153 # else
154 # define LL_MAX_HEADER 96
155 # endif
156 #elif defined(CONFIG_TR) || defined(CONFIG_TR_MODULE)
157 # define LL_MAX_HEADER 48
158 #else
159 # define LL_MAX_HEADER 32
160 #endif
161
162 #if !defined(CONFIG_NET_IPIP) && !defined(CONFIG_NET_IPIP_MODULE) && \
163 !defined(CONFIG_NET_IPGRE) && !defined(CONFIG_NET_IPGRE_MODULE) && \
164 !defined(CONFIG_IPV6_SIT) && !defined(CONFIG_IPV6_SIT_MODULE) && \
165 !defined(CONFIG_IPV6_TUNNEL) && !defined(CONFIG_IPV6_TUNNEL_MODULE)
166 #define MAX_HEADER LL_MAX_HEADER
167 #else
168 #define MAX_HEADER (LL_MAX_HEADER + 48)
169 #endif
170
171 /*
172 * Old network device statistics. Fields are native words
173 * (unsigned long) so they can be read and written atomically.
174 */
175
176 struct net_device_stats {
177 unsigned long rx_packets;
178 unsigned long tx_packets;
179 unsigned long rx_bytes;
180 unsigned long tx_bytes;
181 unsigned long rx_errors;
182 unsigned long tx_errors;
183 unsigned long rx_dropped;
184 unsigned long tx_dropped;
185 unsigned long multicast;
186 unsigned long collisions;
187 unsigned long rx_length_errors;
188 unsigned long rx_over_errors;
189 unsigned long rx_crc_errors;
190 unsigned long rx_frame_errors;
191 unsigned long rx_fifo_errors;
192 unsigned long rx_missed_errors;
193 unsigned long tx_aborted_errors;
194 unsigned long tx_carrier_errors;
195 unsigned long tx_fifo_errors;
196 unsigned long tx_heartbeat_errors;
197 unsigned long tx_window_errors;
198 unsigned long rx_compressed;
199 unsigned long tx_compressed;
200 };
201
202 #endif /* __KERNEL__ */
203
204
205 /* Media selection options. */
206 enum {
207 IF_PORT_UNKNOWN = 0,
208 IF_PORT_10BASE2,
209 IF_PORT_10BASET,
210 IF_PORT_AUI,
211 IF_PORT_100BASET,
212 IF_PORT_100BASETX,
213 IF_PORT_100BASEFX
214 };
215
216 #ifdef __KERNEL__
217
218 #include <linux/cache.h>
219 #include <linux/skbuff.h>
220
221 struct neighbour;
222 struct neigh_parms;
223 struct sk_buff;
224
225 struct netdev_hw_addr {
226 struct list_head list;
227 unsigned char addr[MAX_ADDR_LEN];
228 unsigned char type;
229 #define NETDEV_HW_ADDR_T_LAN 1
230 #define NETDEV_HW_ADDR_T_SAN 2
231 #define NETDEV_HW_ADDR_T_SLAVE 3
232 #define NETDEV_HW_ADDR_T_UNICAST 4
233 #define NETDEV_HW_ADDR_T_MULTICAST 5
234 bool synced;
235 bool global_use;
236 int refcount;
237 struct rcu_head rcu_head;
238 };
239
240 struct netdev_hw_addr_list {
241 struct list_head list;
242 int count;
243 };
244
245 #define netdev_hw_addr_list_count(l) ((l)->count)
246 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
247 #define netdev_hw_addr_list_for_each(ha, l) \
248 list_for_each_entry(ha, &(l)->list, list)
249
250 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
251 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
252 #define netdev_for_each_uc_addr(ha, dev) \
253 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
254
255 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
256 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
257 #define netdev_for_each_mc_addr(ha, dev) \
258 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
259
260 struct hh_cache {
261 struct hh_cache *hh_next; /* Next entry */
262 atomic_t hh_refcnt; /* number of users */
263 /*
264 * We want hh_output, hh_len, hh_lock and hh_data be a in a separate
265 * cache line on SMP.
266 * They are mostly read, but hh_refcnt may be changed quite frequently,
267 * incurring cache line ping pongs.
268 */
269 __be16 hh_type ____cacheline_aligned_in_smp;
270 /* protocol identifier, f.e ETH_P_IP
271 * NOTE: For VLANs, this will be the
272 * encapuslated type. --BLG
273 */
274 u16 hh_len; /* length of header */
275 int (*hh_output)(struct sk_buff *skb);
276 seqlock_t hh_lock;
277
278 /* cached hardware header; allow for machine alignment needs. */
279 #define HH_DATA_MOD 16
280 #define HH_DATA_OFF(__len) \
281 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
282 #define HH_DATA_ALIGN(__len) \
283 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
284 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
285 };
286
287 static inline void hh_cache_put(struct hh_cache *hh)
288 {
289 if (atomic_dec_and_test(&hh->hh_refcnt))
290 kfree(hh);
291 }
292
293 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
294 * Alternative is:
295 * dev->hard_header_len ? (dev->hard_header_len +
296 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
297 *
298 * We could use other alignment values, but we must maintain the
299 * relationship HH alignment <= LL alignment.
300 *
301 * LL_ALLOCATED_SPACE also takes into account the tailroom the device
302 * may need.
303 */
304 #define LL_RESERVED_SPACE(dev) \
305 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
306 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
307 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
308 #define LL_ALLOCATED_SPACE(dev) \
309 ((((dev)->hard_header_len+(dev)->needed_headroom+(dev)->needed_tailroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
310
311 struct header_ops {
312 int (*create) (struct sk_buff *skb, struct net_device *dev,
313 unsigned short type, const void *daddr,
314 const void *saddr, unsigned len);
315 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
316 int (*rebuild)(struct sk_buff *skb);
317 #define HAVE_HEADER_CACHE
318 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh);
319 void (*cache_update)(struct hh_cache *hh,
320 const struct net_device *dev,
321 const unsigned char *haddr);
322 };
323
324 /* These flag bits are private to the generic network queueing
325 * layer, they may not be explicitly referenced by any other
326 * code.
327 */
328
329 enum netdev_state_t {
330 __LINK_STATE_START,
331 __LINK_STATE_PRESENT,
332 __LINK_STATE_NOCARRIER,
333 __LINK_STATE_LINKWATCH_PENDING,
334 __LINK_STATE_DORMANT,
335 };
336
337
338 /*
339 * This structure holds at boot time configured netdevice settings. They
340 * are then used in the device probing.
341 */
342 struct netdev_boot_setup {
343 char name[IFNAMSIZ];
344 struct ifmap map;
345 };
346 #define NETDEV_BOOT_SETUP_MAX 8
347
348 extern int __init netdev_boot_setup(char *str);
349
350 /*
351 * Structure for NAPI scheduling similar to tasklet but with weighting
352 */
353 struct napi_struct {
354 /* The poll_list must only be managed by the entity which
355 * changes the state of the NAPI_STATE_SCHED bit. This means
356 * whoever atomically sets that bit can add this napi_struct
357 * to the per-cpu poll_list, and whoever clears that bit
358 * can remove from the list right before clearing the bit.
359 */
360 struct list_head poll_list;
361
362 unsigned long state;
363 int weight;
364 int (*poll)(struct napi_struct *, int);
365 #ifdef CONFIG_NETPOLL
366 spinlock_t poll_lock;
367 int poll_owner;
368 #endif
369
370 unsigned int gro_count;
371
372 struct net_device *dev;
373 struct list_head dev_list;
374 struct sk_buff *gro_list;
375 struct sk_buff *skb;
376 };
377
378 enum {
379 NAPI_STATE_SCHED, /* Poll is scheduled */
380 NAPI_STATE_DISABLE, /* Disable pending */
381 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
382 };
383
384 enum gro_result {
385 GRO_MERGED,
386 GRO_MERGED_FREE,
387 GRO_HELD,
388 GRO_NORMAL,
389 GRO_DROP,
390 };
391 typedef enum gro_result gro_result_t;
392
393 typedef struct sk_buff *rx_handler_func_t(struct sk_buff *skb);
394
395 extern void __napi_schedule(struct napi_struct *n);
396
397 static inline int napi_disable_pending(struct napi_struct *n)
398 {
399 return test_bit(NAPI_STATE_DISABLE, &n->state);
400 }
401
402 /**
403 * napi_schedule_prep - check if napi can be scheduled
404 * @n: napi context
405 *
406 * Test if NAPI routine is already running, and if not mark
407 * it as running. This is used as a condition variable
408 * insure only one NAPI poll instance runs. We also make
409 * sure there is no pending NAPI disable.
410 */
411 static inline int napi_schedule_prep(struct napi_struct *n)
412 {
413 return !napi_disable_pending(n) &&
414 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
415 }
416
417 /**
418 * napi_schedule - schedule NAPI poll
419 * @n: napi context
420 *
421 * Schedule NAPI poll routine to be called if it is not already
422 * running.
423 */
424 static inline void napi_schedule(struct napi_struct *n)
425 {
426 if (napi_schedule_prep(n))
427 __napi_schedule(n);
428 }
429
430 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
431 static inline int napi_reschedule(struct napi_struct *napi)
432 {
433 if (napi_schedule_prep(napi)) {
434 __napi_schedule(napi);
435 return 1;
436 }
437 return 0;
438 }
439
440 /**
441 * napi_complete - NAPI processing complete
442 * @n: napi context
443 *
444 * Mark NAPI processing as complete.
445 */
446 extern void __napi_complete(struct napi_struct *n);
447 extern void napi_complete(struct napi_struct *n);
448
449 /**
450 * napi_disable - prevent NAPI from scheduling
451 * @n: napi context
452 *
453 * Stop NAPI from being scheduled on this context.
454 * Waits till any outstanding processing completes.
455 */
456 static inline void napi_disable(struct napi_struct *n)
457 {
458 set_bit(NAPI_STATE_DISABLE, &n->state);
459 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
460 msleep(1);
461 clear_bit(NAPI_STATE_DISABLE, &n->state);
462 }
463
464 /**
465 * napi_enable - enable NAPI scheduling
466 * @n: napi context
467 *
468 * Resume NAPI from being scheduled on this context.
469 * Must be paired with napi_disable.
470 */
471 static inline void napi_enable(struct napi_struct *n)
472 {
473 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
474 smp_mb__before_clear_bit();
475 clear_bit(NAPI_STATE_SCHED, &n->state);
476 }
477
478 #ifdef CONFIG_SMP
479 /**
480 * napi_synchronize - wait until NAPI is not running
481 * @n: napi context
482 *
483 * Wait until NAPI is done being scheduled on this context.
484 * Waits till any outstanding processing completes but
485 * does not disable future activations.
486 */
487 static inline void napi_synchronize(const struct napi_struct *n)
488 {
489 while (test_bit(NAPI_STATE_SCHED, &n->state))
490 msleep(1);
491 }
492 #else
493 # define napi_synchronize(n) barrier()
494 #endif
495
496 enum netdev_queue_state_t {
497 __QUEUE_STATE_XOFF,
498 __QUEUE_STATE_FROZEN,
499 #define QUEUE_STATE_XOFF_OR_FROZEN ((1 << __QUEUE_STATE_XOFF) | \
500 (1 << __QUEUE_STATE_FROZEN))
501 };
502
503 struct netdev_queue {
504 /*
505 * read mostly part
506 */
507 struct net_device *dev;
508 struct Qdisc *qdisc;
509 unsigned long state;
510 struct Qdisc *qdisc_sleeping;
511 #ifdef CONFIG_RPS
512 struct kobject kobj;
513 #endif
514 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
515 int numa_node;
516 #endif
517 /*
518 * write mostly part
519 */
520 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
521 int xmit_lock_owner;
522 /*
523 * please use this field instead of dev->trans_start
524 */
525 unsigned long trans_start;
526 } ____cacheline_aligned_in_smp;
527
528 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
529 {
530 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
531 return q->numa_node;
532 #else
533 return NUMA_NO_NODE;
534 #endif
535 }
536
537 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
538 {
539 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
540 q->numa_node = node;
541 #endif
542 }
543
544 #ifdef CONFIG_RPS
545 /*
546 * This structure holds an RPS map which can be of variable length. The
547 * map is an array of CPUs.
548 */
549 struct rps_map {
550 unsigned int len;
551 struct rcu_head rcu;
552 u16 cpus[0];
553 };
554 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + (_num * sizeof(u16)))
555
556 /*
557 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
558 * tail pointer for that CPU's input queue at the time of last enqueue, and
559 * a hardware filter index.
560 */
561 struct rps_dev_flow {
562 u16 cpu;
563 u16 filter;
564 unsigned int last_qtail;
565 };
566 #define RPS_NO_FILTER 0xffff
567
568 /*
569 * The rps_dev_flow_table structure contains a table of flow mappings.
570 */
571 struct rps_dev_flow_table {
572 unsigned int mask;
573 struct rcu_head rcu;
574 struct work_struct free_work;
575 struct rps_dev_flow flows[0];
576 };
577 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
578 (_num * sizeof(struct rps_dev_flow)))
579
580 /*
581 * The rps_sock_flow_table contains mappings of flows to the last CPU
582 * on which they were processed by the application (set in recvmsg).
583 */
584 struct rps_sock_flow_table {
585 unsigned int mask;
586 u16 ents[0];
587 };
588 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
589 (_num * sizeof(u16)))
590
591 #define RPS_NO_CPU 0xffff
592
593 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
594 u32 hash)
595 {
596 if (table && hash) {
597 unsigned int cpu, index = hash & table->mask;
598
599 /* We only give a hint, preemption can change cpu under us */
600 cpu = raw_smp_processor_id();
601
602 if (table->ents[index] != cpu)
603 table->ents[index] = cpu;
604 }
605 }
606
607 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
608 u32 hash)
609 {
610 if (table && hash)
611 table->ents[hash & table->mask] = RPS_NO_CPU;
612 }
613
614 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
615
616 #ifdef CONFIG_RFS_ACCEL
617 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
618 u32 flow_id, u16 filter_id);
619 #endif
620
621 /* This structure contains an instance of an RX queue. */
622 struct netdev_rx_queue {
623 struct rps_map __rcu *rps_map;
624 struct rps_dev_flow_table __rcu *rps_flow_table;
625 struct kobject kobj;
626 struct net_device *dev;
627 } ____cacheline_aligned_in_smp;
628 #endif /* CONFIG_RPS */
629
630 #ifdef CONFIG_XPS
631 /*
632 * This structure holds an XPS map which can be of variable length. The
633 * map is an array of queues.
634 */
635 struct xps_map {
636 unsigned int len;
637 unsigned int alloc_len;
638 struct rcu_head rcu;
639 u16 queues[0];
640 };
641 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + (_num * sizeof(u16)))
642 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
643 / sizeof(u16))
644
645 /*
646 * This structure holds all XPS maps for device. Maps are indexed by CPU.
647 */
648 struct xps_dev_maps {
649 struct rcu_head rcu;
650 struct xps_map __rcu *cpu_map[0];
651 };
652 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
653 (nr_cpu_ids * sizeof(struct xps_map *)))
654 #endif /* CONFIG_XPS */
655
656 #define TC_MAX_QUEUE 16
657 #define TC_BITMASK 15
658 /* HW offloaded queuing disciplines txq count and offset maps */
659 struct netdev_tc_txq {
660 u16 count;
661 u16 offset;
662 };
663
664 /*
665 * This structure defines the management hooks for network devices.
666 * The following hooks can be defined; unless noted otherwise, they are
667 * optional and can be filled with a null pointer.
668 *
669 * int (*ndo_init)(struct net_device *dev);
670 * This function is called once when network device is registered.
671 * The network device can use this to any late stage initializaton
672 * or semantic validattion. It can fail with an error code which will
673 * be propogated back to register_netdev
674 *
675 * void (*ndo_uninit)(struct net_device *dev);
676 * This function is called when device is unregistered or when registration
677 * fails. It is not called if init fails.
678 *
679 * int (*ndo_open)(struct net_device *dev);
680 * This function is called when network device transistions to the up
681 * state.
682 *
683 * int (*ndo_stop)(struct net_device *dev);
684 * This function is called when network device transistions to the down
685 * state.
686 *
687 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
688 * struct net_device *dev);
689 * Called when a packet needs to be transmitted.
690 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
691 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
692 * Required can not be NULL.
693 *
694 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
695 * Called to decide which queue to when device supports multiple
696 * transmit queues.
697 *
698 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
699 * This function is called to allow device receiver to make
700 * changes to configuration when multicast or promiscious is enabled.
701 *
702 * void (*ndo_set_rx_mode)(struct net_device *dev);
703 * This function is called device changes address list filtering.
704 *
705 * void (*ndo_set_multicast_list)(struct net_device *dev);
706 * This function is called when the multicast address list changes.
707 *
708 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
709 * This function is called when the Media Access Control address
710 * needs to be changed. If this interface is not defined, the
711 * mac address can not be changed.
712 *
713 * int (*ndo_validate_addr)(struct net_device *dev);
714 * Test if Media Access Control address is valid for the device.
715 *
716 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
717 * Called when a user request an ioctl which can't be handled by
718 * the generic interface code. If not defined ioctl's return
719 * not supported error code.
720 *
721 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
722 * Used to set network devices bus interface parameters. This interface
723 * is retained for legacy reason, new devices should use the bus
724 * interface (PCI) for low level management.
725 *
726 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
727 * Called when a user wants to change the Maximum Transfer Unit
728 * of a device. If not defined, any request to change MTU will
729 * will return an error.
730 *
731 * void (*ndo_tx_timeout)(struct net_device *dev);
732 * Callback uses when the transmitter has not made any progress
733 * for dev->watchdog ticks.
734 *
735 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
736 * struct rtnl_link_stats64 *storage);
737 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
738 * Called when a user wants to get the network device usage
739 * statistics. Drivers must do one of the following:
740 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
741 * rtnl_link_stats64 structure passed by the caller.
742 * 2. Define @ndo_get_stats to update a net_device_stats structure
743 * (which should normally be dev->stats) and return a pointer to
744 * it. The structure may be changed asynchronously only if each
745 * field is written atomically.
746 * 3. Update dev->stats asynchronously and atomically, and define
747 * neither operation.
748 *
749 * void (*ndo_vlan_rx_register)(struct net_device *dev, struct vlan_group *grp);
750 * If device support VLAN receive acceleration
751 * (ie. dev->features & NETIF_F_HW_VLAN_RX), then this function is called
752 * when vlan groups for the device changes. Note: grp is NULL
753 * if no vlan's groups are being used.
754 *
755 * void (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
756 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
757 * this function is called when a VLAN id is registered.
758 *
759 * void (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
760 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
761 * this function is called when a VLAN id is unregistered.
762 *
763 * void (*ndo_poll_controller)(struct net_device *dev);
764 *
765 * SR-IOV management functions.
766 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
767 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
768 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
769 * int (*ndo_get_vf_config)(struct net_device *dev,
770 * int vf, struct ifla_vf_info *ivf);
771 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
772 * struct nlattr *port[]);
773 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
774 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
775 * Called to setup 'tc' number of traffic classes in the net device. This
776 * is always called from the stack with the rtnl lock held and netif tx
777 * queues stopped. This allows the netdevice to perform queue management
778 * safely.
779 *
780 * RFS acceleration.
781 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
782 * u16 rxq_index, u32 flow_id);
783 * Set hardware filter for RFS. rxq_index is the target queue index;
784 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
785 * Return the filter ID on success, or a negative error code.
786 */
787 #define HAVE_NET_DEVICE_OPS
788 struct net_device_ops {
789 int (*ndo_init)(struct net_device *dev);
790 void (*ndo_uninit)(struct net_device *dev);
791 int (*ndo_open)(struct net_device *dev);
792 int (*ndo_stop)(struct net_device *dev);
793 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
794 struct net_device *dev);
795 u16 (*ndo_select_queue)(struct net_device *dev,
796 struct sk_buff *skb);
797 void (*ndo_change_rx_flags)(struct net_device *dev,
798 int flags);
799 void (*ndo_set_rx_mode)(struct net_device *dev);
800 void (*ndo_set_multicast_list)(struct net_device *dev);
801 int (*ndo_set_mac_address)(struct net_device *dev,
802 void *addr);
803 int (*ndo_validate_addr)(struct net_device *dev);
804 int (*ndo_do_ioctl)(struct net_device *dev,
805 struct ifreq *ifr, int cmd);
806 int (*ndo_set_config)(struct net_device *dev,
807 struct ifmap *map);
808 int (*ndo_change_mtu)(struct net_device *dev,
809 int new_mtu);
810 int (*ndo_neigh_setup)(struct net_device *dev,
811 struct neigh_parms *);
812 void (*ndo_tx_timeout) (struct net_device *dev);
813
814 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
815 struct rtnl_link_stats64 *storage);
816 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
817
818 void (*ndo_vlan_rx_register)(struct net_device *dev,
819 struct vlan_group *grp);
820 void (*ndo_vlan_rx_add_vid)(struct net_device *dev,
821 unsigned short vid);
822 void (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
823 unsigned short vid);
824 #ifdef CONFIG_NET_POLL_CONTROLLER
825 void (*ndo_poll_controller)(struct net_device *dev);
826 int (*ndo_netpoll_setup)(struct net_device *dev,
827 struct netpoll_info *info);
828 void (*ndo_netpoll_cleanup)(struct net_device *dev);
829 #endif
830 int (*ndo_set_vf_mac)(struct net_device *dev,
831 int queue, u8 *mac);
832 int (*ndo_set_vf_vlan)(struct net_device *dev,
833 int queue, u16 vlan, u8 qos);
834 int (*ndo_set_vf_tx_rate)(struct net_device *dev,
835 int vf, int rate);
836 int (*ndo_get_vf_config)(struct net_device *dev,
837 int vf,
838 struct ifla_vf_info *ivf);
839 int (*ndo_set_vf_port)(struct net_device *dev,
840 int vf,
841 struct nlattr *port[]);
842 int (*ndo_get_vf_port)(struct net_device *dev,
843 int vf, struct sk_buff *skb);
844 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
845 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
846 int (*ndo_fcoe_enable)(struct net_device *dev);
847 int (*ndo_fcoe_disable)(struct net_device *dev);
848 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
849 u16 xid,
850 struct scatterlist *sgl,
851 unsigned int sgc);
852 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
853 u16 xid);
854 #define NETDEV_FCOE_WWNN 0
855 #define NETDEV_FCOE_WWPN 1
856 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
857 u64 *wwn, int type);
858 #endif
859 #ifdef CONFIG_RFS_ACCEL
860 int (*ndo_rx_flow_steer)(struct net_device *dev,
861 const struct sk_buff *skb,
862 u16 rxq_index,
863 u32 flow_id);
864 #endif
865 };
866
867 /*
868 * The DEVICE structure.
869 * Actually, this whole structure is a big mistake. It mixes I/O
870 * data with strictly "high-level" data, and it has to know about
871 * almost every data structure used in the INET module.
872 *
873 * FIXME: cleanup struct net_device such that network protocol info
874 * moves out.
875 */
876
877 struct net_device {
878
879 /*
880 * This is the first field of the "visible" part of this structure
881 * (i.e. as seen by users in the "Space.c" file). It is the name
882 * of the interface.
883 */
884 char name[IFNAMSIZ];
885
886 struct pm_qos_request_list pm_qos_req;
887
888 /* device name hash chain */
889 struct hlist_node name_hlist;
890 /* snmp alias */
891 char *ifalias;
892
893 /*
894 * I/O specific fields
895 * FIXME: Merge these and struct ifmap into one
896 */
897 unsigned long mem_end; /* shared mem end */
898 unsigned long mem_start; /* shared mem start */
899 unsigned long base_addr; /* device I/O address */
900 unsigned int irq; /* device IRQ number */
901
902 /*
903 * Some hardware also needs these fields, but they are not
904 * part of the usual set specified in Space.c.
905 */
906
907 unsigned char if_port; /* Selectable AUI, TP,..*/
908 unsigned char dma; /* DMA channel */
909
910 unsigned long state;
911
912 struct list_head dev_list;
913 struct list_head napi_list;
914 struct list_head unreg_list;
915
916 /* Net device features */
917 u32 features;
918
919 /* VLAN feature mask */
920 u32 vlan_features;
921
922 #define NETIF_F_SG 1 /* Scatter/gather IO. */
923 #define NETIF_F_IP_CSUM 2 /* Can checksum TCP/UDP over IPv4. */
924 #define NETIF_F_NO_CSUM 4 /* Does not require checksum. F.e. loopack. */
925 #define NETIF_F_HW_CSUM 8 /* Can checksum all the packets. */
926 #define NETIF_F_IPV6_CSUM 16 /* Can checksum TCP/UDP over IPV6 */
927 #define NETIF_F_HIGHDMA 32 /* Can DMA to high memory. */
928 #define NETIF_F_FRAGLIST 64 /* Scatter/gather IO. */
929 #define NETIF_F_HW_VLAN_TX 128 /* Transmit VLAN hw acceleration */
930 #define NETIF_F_HW_VLAN_RX 256 /* Receive VLAN hw acceleration */
931 #define NETIF_F_HW_VLAN_FILTER 512 /* Receive filtering on VLAN */
932 #define NETIF_F_VLAN_CHALLENGED 1024 /* Device cannot handle VLAN packets */
933 #define NETIF_F_GSO 2048 /* Enable software GSO. */
934 #define NETIF_F_LLTX 4096 /* LockLess TX - deprecated. Please */
935 /* do not use LLTX in new drivers */
936 #define NETIF_F_NETNS_LOCAL 8192 /* Does not change network namespaces */
937 #define NETIF_F_GRO 16384 /* Generic receive offload */
938 #define NETIF_F_LRO 32768 /* large receive offload */
939
940 /* the GSO_MASK reserves bits 16 through 23 */
941 #define NETIF_F_FCOE_CRC (1 << 24) /* FCoE CRC32 */
942 #define NETIF_F_SCTP_CSUM (1 << 25) /* SCTP checksum offload */
943 #define NETIF_F_FCOE_MTU (1 << 26) /* Supports max FCoE MTU, 2158 bytes*/
944 #define NETIF_F_NTUPLE (1 << 27) /* N-tuple filters supported */
945 #define NETIF_F_RXHASH (1 << 28) /* Receive hashing offload */
946
947 /* Segmentation offload features */
948 #define NETIF_F_GSO_SHIFT 16
949 #define NETIF_F_GSO_MASK 0x00ff0000
950 #define NETIF_F_TSO (SKB_GSO_TCPV4 << NETIF_F_GSO_SHIFT)
951 #define NETIF_F_UFO (SKB_GSO_UDP << NETIF_F_GSO_SHIFT)
952 #define NETIF_F_GSO_ROBUST (SKB_GSO_DODGY << NETIF_F_GSO_SHIFT)
953 #define NETIF_F_TSO_ECN (SKB_GSO_TCP_ECN << NETIF_F_GSO_SHIFT)
954 #define NETIF_F_TSO6 (SKB_GSO_TCPV6 << NETIF_F_GSO_SHIFT)
955 #define NETIF_F_FSO (SKB_GSO_FCOE << NETIF_F_GSO_SHIFT)
956
957 /* List of features with software fallbacks. */
958 #define NETIF_F_GSO_SOFTWARE (NETIF_F_TSO | NETIF_F_TSO_ECN | \
959 NETIF_F_TSO6 | NETIF_F_UFO)
960
961
962 #define NETIF_F_GEN_CSUM (NETIF_F_NO_CSUM | NETIF_F_HW_CSUM)
963 #define NETIF_F_V4_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IP_CSUM)
964 #define NETIF_F_V6_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IPV6_CSUM)
965 #define NETIF_F_ALL_CSUM (NETIF_F_V4_CSUM | NETIF_F_V6_CSUM)
966
967 /*
968 * If one device supports one of these features, then enable them
969 * for all in netdev_increment_features.
970 */
971 #define NETIF_F_ONE_FOR_ALL (NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ROBUST | \
972 NETIF_F_SG | NETIF_F_HIGHDMA | \
973 NETIF_F_FRAGLIST)
974
975 /* Interface index. Unique device identifier */
976 int ifindex;
977 int iflink;
978
979 struct net_device_stats stats;
980 atomic_long_t rx_dropped; /* dropped packets by core network
981 * Do not use this in drivers.
982 */
983
984 #ifdef CONFIG_WIRELESS_EXT
985 /* List of functions to handle Wireless Extensions (instead of ioctl).
986 * See <net/iw_handler.h> for details. Jean II */
987 const struct iw_handler_def * wireless_handlers;
988 /* Instance data managed by the core of Wireless Extensions. */
989 struct iw_public_data * wireless_data;
990 #endif
991 /* Management operations */
992 const struct net_device_ops *netdev_ops;
993 const struct ethtool_ops *ethtool_ops;
994
995 /* Hardware header description */
996 const struct header_ops *header_ops;
997
998 unsigned int flags; /* interface flags (a la BSD) */
999 unsigned short gflags;
1000 unsigned int priv_flags; /* Like 'flags' but invisible to userspace. */
1001 unsigned short padded; /* How much padding added by alloc_netdev() */
1002
1003 unsigned char operstate; /* RFC2863 operstate */
1004 unsigned char link_mode; /* mapping policy to operstate */
1005
1006 unsigned int mtu; /* interface MTU value */
1007 unsigned short type; /* interface hardware type */
1008 unsigned short hard_header_len; /* hardware hdr length */
1009
1010 /* extra head- and tailroom the hardware may need, but not in all cases
1011 * can this be guaranteed, especially tailroom. Some cases also use
1012 * LL_MAX_HEADER instead to allocate the skb.
1013 */
1014 unsigned short needed_headroom;
1015 unsigned short needed_tailroom;
1016
1017 /* Interface address info. */
1018 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1019 unsigned char addr_assign_type; /* hw address assignment type */
1020 unsigned char addr_len; /* hardware address length */
1021 unsigned short dev_id; /* for shared network cards */
1022
1023 spinlock_t addr_list_lock;
1024 struct netdev_hw_addr_list uc; /* Unicast mac addresses */
1025 struct netdev_hw_addr_list mc; /* Multicast mac addresses */
1026 int uc_promisc;
1027 unsigned int promiscuity;
1028 unsigned int allmulti;
1029
1030
1031 /* Protocol specific pointers */
1032
1033 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1034 struct vlan_group __rcu *vlgrp; /* VLAN group */
1035 #endif
1036 #ifdef CONFIG_NET_DSA
1037 void *dsa_ptr; /* dsa specific data */
1038 #endif
1039 void *atalk_ptr; /* AppleTalk link */
1040 struct in_device __rcu *ip_ptr; /* IPv4 specific data */
1041 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */
1042 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */
1043 void *ec_ptr; /* Econet specific data */
1044 void *ax25_ptr; /* AX.25 specific data */
1045 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data,
1046 assign before registering */
1047
1048 /*
1049 * Cache lines mostly used on receive path (including eth_type_trans())
1050 */
1051 unsigned long last_rx; /* Time of last Rx
1052 * This should not be set in
1053 * drivers, unless really needed,
1054 * because network stack (bonding)
1055 * use it if/when necessary, to
1056 * avoid dirtying this cache line.
1057 */
1058
1059 struct net_device *master; /* Pointer to master device of a group,
1060 * which this device is member of.
1061 */
1062
1063 /* Interface address info used in eth_type_trans() */
1064 unsigned char *dev_addr; /* hw address, (before bcast
1065 because most packets are
1066 unicast) */
1067
1068 struct netdev_hw_addr_list dev_addrs; /* list of device
1069 hw addresses */
1070
1071 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */
1072
1073 #ifdef CONFIG_RPS
1074 struct kset *queues_kset;
1075
1076 struct netdev_rx_queue *_rx;
1077
1078 /* Number of RX queues allocated at register_netdev() time */
1079 unsigned int num_rx_queues;
1080
1081 /* Number of RX queues currently active in device */
1082 unsigned int real_num_rx_queues;
1083
1084 #ifdef CONFIG_RFS_ACCEL
1085 /* CPU reverse-mapping for RX completion interrupts, indexed
1086 * by RX queue number. Assigned by driver. This must only be
1087 * set if the ndo_rx_flow_steer operation is defined. */
1088 struct cpu_rmap *rx_cpu_rmap;
1089 #endif
1090 #endif
1091
1092 rx_handler_func_t __rcu *rx_handler;
1093 void __rcu *rx_handler_data;
1094
1095 struct netdev_queue __rcu *ingress_queue;
1096
1097 /*
1098 * Cache lines mostly used on transmit path
1099 */
1100 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1101
1102 /* Number of TX queues allocated at alloc_netdev_mq() time */
1103 unsigned int num_tx_queues;
1104
1105 /* Number of TX queues currently active in device */
1106 unsigned int real_num_tx_queues;
1107
1108 /* root qdisc from userspace point of view */
1109 struct Qdisc *qdisc;
1110
1111 unsigned long tx_queue_len; /* Max frames per queue allowed */
1112 spinlock_t tx_global_lock;
1113
1114 #ifdef CONFIG_XPS
1115 struct xps_dev_maps __rcu *xps_maps;
1116 #endif
1117
1118 /* These may be needed for future network-power-down code. */
1119
1120 /*
1121 * trans_start here is expensive for high speed devices on SMP,
1122 * please use netdev_queue->trans_start instead.
1123 */
1124 unsigned long trans_start; /* Time (in jiffies) of last Tx */
1125
1126 int watchdog_timeo; /* used by dev_watchdog() */
1127 struct timer_list watchdog_timer;
1128
1129 /* Number of references to this device */
1130 int __percpu *pcpu_refcnt;
1131
1132 /* delayed register/unregister */
1133 struct list_head todo_list;
1134 /* device index hash chain */
1135 struct hlist_node index_hlist;
1136
1137 struct list_head link_watch_list;
1138
1139 /* register/unregister state machine */
1140 enum { NETREG_UNINITIALIZED=0,
1141 NETREG_REGISTERED, /* completed register_netdevice */
1142 NETREG_UNREGISTERING, /* called unregister_netdevice */
1143 NETREG_UNREGISTERED, /* completed unregister todo */
1144 NETREG_RELEASED, /* called free_netdev */
1145 NETREG_DUMMY, /* dummy device for NAPI poll */
1146 } reg_state:16;
1147
1148 enum {
1149 RTNL_LINK_INITIALIZED,
1150 RTNL_LINK_INITIALIZING,
1151 } rtnl_link_state:16;
1152
1153 /* Called from unregister, can be used to call free_netdev */
1154 void (*destructor)(struct net_device *dev);
1155
1156 #ifdef CONFIG_NETPOLL
1157 struct netpoll_info *npinfo;
1158 #endif
1159
1160 #ifdef CONFIG_NET_NS
1161 /* Network namespace this network device is inside */
1162 struct net *nd_net;
1163 #endif
1164
1165 /* mid-layer private */
1166 union {
1167 void *ml_priv;
1168 struct pcpu_lstats __percpu *lstats; /* loopback stats */
1169 struct pcpu_tstats __percpu *tstats; /* tunnel stats */
1170 struct pcpu_dstats __percpu *dstats; /* dummy stats */
1171 };
1172 /* GARP */
1173 struct garp_port __rcu *garp_port;
1174
1175 /* class/net/name entry */
1176 struct device dev;
1177 /* space for optional device, statistics, and wireless sysfs groups */
1178 const struct attribute_group *sysfs_groups[4];
1179
1180 /* rtnetlink link ops */
1181 const struct rtnl_link_ops *rtnl_link_ops;
1182
1183 /* for setting kernel sock attribute on TCP connection setup */
1184 #define GSO_MAX_SIZE 65536
1185 unsigned int gso_max_size;
1186
1187 #ifdef CONFIG_DCB
1188 /* Data Center Bridging netlink ops */
1189 const struct dcbnl_rtnl_ops *dcbnl_ops;
1190 #endif
1191 u8 num_tc;
1192 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1193 u8 prio_tc_map[TC_BITMASK + 1];
1194
1195 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
1196 /* max exchange id for FCoE LRO by ddp */
1197 unsigned int fcoe_ddp_xid;
1198 #endif
1199 /* n-tuple filter list attached to this device */
1200 struct ethtool_rx_ntuple_list ethtool_ntuple_list;
1201
1202 /* phy device may attach itself for hardware timestamping */
1203 struct phy_device *phydev;
1204
1205 /* group the device belongs to */
1206 int group;
1207 };
1208 #define to_net_dev(d) container_of(d, struct net_device, dev)
1209
1210 #define NETDEV_ALIGN 32
1211
1212 static inline
1213 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1214 {
1215 return dev->prio_tc_map[prio & TC_BITMASK];
1216 }
1217
1218 static inline
1219 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1220 {
1221 if (tc >= dev->num_tc)
1222 return -EINVAL;
1223
1224 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1225 return 0;
1226 }
1227
1228 static inline
1229 void netdev_reset_tc(struct net_device *dev)
1230 {
1231 dev->num_tc = 0;
1232 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1233 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1234 }
1235
1236 static inline
1237 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1238 {
1239 if (tc >= dev->num_tc)
1240 return -EINVAL;
1241
1242 dev->tc_to_txq[tc].count = count;
1243 dev->tc_to_txq[tc].offset = offset;
1244 return 0;
1245 }
1246
1247 static inline
1248 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1249 {
1250 if (num_tc > TC_MAX_QUEUE)
1251 return -EINVAL;
1252
1253 dev->num_tc = num_tc;
1254 return 0;
1255 }
1256
1257 static inline
1258 int netdev_get_num_tc(struct net_device *dev)
1259 {
1260 return dev->num_tc;
1261 }
1262
1263 static inline
1264 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1265 unsigned int index)
1266 {
1267 return &dev->_tx[index];
1268 }
1269
1270 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1271 void (*f)(struct net_device *,
1272 struct netdev_queue *,
1273 void *),
1274 void *arg)
1275 {
1276 unsigned int i;
1277
1278 for (i = 0; i < dev->num_tx_queues; i++)
1279 f(dev, &dev->_tx[i], arg);
1280 }
1281
1282 /*
1283 * Net namespace inlines
1284 */
1285 static inline
1286 struct net *dev_net(const struct net_device *dev)
1287 {
1288 return read_pnet(&dev->nd_net);
1289 }
1290
1291 static inline
1292 void dev_net_set(struct net_device *dev, struct net *net)
1293 {
1294 #ifdef CONFIG_NET_NS
1295 release_net(dev->nd_net);
1296 dev->nd_net = hold_net(net);
1297 #endif
1298 }
1299
1300 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1301 {
1302 #ifdef CONFIG_NET_DSA_TAG_DSA
1303 if (dev->dsa_ptr != NULL)
1304 return dsa_uses_dsa_tags(dev->dsa_ptr);
1305 #endif
1306
1307 return 0;
1308 }
1309
1310 #ifndef CONFIG_NET_NS
1311 static inline void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1312 {
1313 skb->dev = dev;
1314 }
1315 #else /* CONFIG_NET_NS */
1316 void skb_set_dev(struct sk_buff *skb, struct net_device *dev);
1317 #endif
1318
1319 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1320 {
1321 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1322 if (dev->dsa_ptr != NULL)
1323 return dsa_uses_trailer_tags(dev->dsa_ptr);
1324 #endif
1325
1326 return 0;
1327 }
1328
1329 /**
1330 * netdev_priv - access network device private data
1331 * @dev: network device
1332 *
1333 * Get network device private data
1334 */
1335 static inline void *netdev_priv(const struct net_device *dev)
1336 {
1337 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1338 }
1339
1340 /* Set the sysfs physical device reference for the network logical device
1341 * if set prior to registration will cause a symlink during initialization.
1342 */
1343 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1344
1345 /* Set the sysfs device type for the network logical device to allow
1346 * fin grained indentification of different network device types. For
1347 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1348 */
1349 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1350
1351 /**
1352 * netif_napi_add - initialize a napi context
1353 * @dev: network device
1354 * @napi: napi context
1355 * @poll: polling function
1356 * @weight: default weight
1357 *
1358 * netif_napi_add() must be used to initialize a napi context prior to calling
1359 * *any* of the other napi related functions.
1360 */
1361 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1362 int (*poll)(struct napi_struct *, int), int weight);
1363
1364 /**
1365 * netif_napi_del - remove a napi context
1366 * @napi: napi context
1367 *
1368 * netif_napi_del() removes a napi context from the network device napi list
1369 */
1370 void netif_napi_del(struct napi_struct *napi);
1371
1372 struct napi_gro_cb {
1373 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1374 void *frag0;
1375
1376 /* Length of frag0. */
1377 unsigned int frag0_len;
1378
1379 /* This indicates where we are processing relative to skb->data. */
1380 int data_offset;
1381
1382 /* This is non-zero if the packet may be of the same flow. */
1383 int same_flow;
1384
1385 /* This is non-zero if the packet cannot be merged with the new skb. */
1386 int flush;
1387
1388 /* Number of segments aggregated. */
1389 int count;
1390
1391 /* Free the skb? */
1392 int free;
1393 };
1394
1395 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1396
1397 struct packet_type {
1398 __be16 type; /* This is really htons(ether_type). */
1399 struct net_device *dev; /* NULL is wildcarded here */
1400 int (*func) (struct sk_buff *,
1401 struct net_device *,
1402 struct packet_type *,
1403 struct net_device *);
1404 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1405 u32 features);
1406 int (*gso_send_check)(struct sk_buff *skb);
1407 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1408 struct sk_buff *skb);
1409 int (*gro_complete)(struct sk_buff *skb);
1410 void *af_packet_priv;
1411 struct list_head list;
1412 };
1413
1414 #include <linux/interrupt.h>
1415 #include <linux/notifier.h>
1416
1417 extern rwlock_t dev_base_lock; /* Device list lock */
1418
1419
1420 #define for_each_netdev(net, d) \
1421 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1422 #define for_each_netdev_reverse(net, d) \
1423 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1424 #define for_each_netdev_rcu(net, d) \
1425 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1426 #define for_each_netdev_safe(net, d, n) \
1427 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1428 #define for_each_netdev_continue(net, d) \
1429 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1430 #define for_each_netdev_continue_rcu(net, d) \
1431 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1432 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
1433
1434 static inline struct net_device *next_net_device(struct net_device *dev)
1435 {
1436 struct list_head *lh;
1437 struct net *net;
1438
1439 net = dev_net(dev);
1440 lh = dev->dev_list.next;
1441 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1442 }
1443
1444 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1445 {
1446 struct list_head *lh;
1447 struct net *net;
1448
1449 net = dev_net(dev);
1450 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1451 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1452 }
1453
1454 static inline struct net_device *first_net_device(struct net *net)
1455 {
1456 return list_empty(&net->dev_base_head) ? NULL :
1457 net_device_entry(net->dev_base_head.next);
1458 }
1459
1460 static inline struct net_device *first_net_device_rcu(struct net *net)
1461 {
1462 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1463
1464 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1465 }
1466
1467 extern int netdev_boot_setup_check(struct net_device *dev);
1468 extern unsigned long netdev_boot_base(const char *prefix, int unit);
1469 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1470 const char *hwaddr);
1471 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1472 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1473 extern void dev_add_pack(struct packet_type *pt);
1474 extern void dev_remove_pack(struct packet_type *pt);
1475 extern void __dev_remove_pack(struct packet_type *pt);
1476
1477 extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1478 unsigned short mask);
1479 extern struct net_device *dev_get_by_name(struct net *net, const char *name);
1480 extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1481 extern struct net_device *__dev_get_by_name(struct net *net, const char *name);
1482 extern int dev_alloc_name(struct net_device *dev, const char *name);
1483 extern int dev_open(struct net_device *dev);
1484 extern int dev_close(struct net_device *dev);
1485 extern void dev_disable_lro(struct net_device *dev);
1486 extern int dev_queue_xmit(struct sk_buff *skb);
1487 extern int register_netdevice(struct net_device *dev);
1488 extern void unregister_netdevice_queue(struct net_device *dev,
1489 struct list_head *head);
1490 extern void unregister_netdevice_many(struct list_head *head);
1491 static inline void unregister_netdevice(struct net_device *dev)
1492 {
1493 unregister_netdevice_queue(dev, NULL);
1494 }
1495
1496 extern int netdev_refcnt_read(const struct net_device *dev);
1497 extern void free_netdev(struct net_device *dev);
1498 extern void synchronize_net(void);
1499 extern int register_netdevice_notifier(struct notifier_block *nb);
1500 extern int unregister_netdevice_notifier(struct notifier_block *nb);
1501 extern int init_dummy_netdev(struct net_device *dev);
1502 extern void netdev_resync_ops(struct net_device *dev);
1503
1504 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1505 extern struct net_device *dev_get_by_index(struct net *net, int ifindex);
1506 extern struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1507 extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1508 extern int dev_restart(struct net_device *dev);
1509 #ifdef CONFIG_NETPOLL_TRAP
1510 extern int netpoll_trap(void);
1511 #endif
1512 extern int skb_gro_receive(struct sk_buff **head,
1513 struct sk_buff *skb);
1514 extern void skb_gro_reset_offset(struct sk_buff *skb);
1515
1516 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1517 {
1518 return NAPI_GRO_CB(skb)->data_offset;
1519 }
1520
1521 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1522 {
1523 return skb->len - NAPI_GRO_CB(skb)->data_offset;
1524 }
1525
1526 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1527 {
1528 NAPI_GRO_CB(skb)->data_offset += len;
1529 }
1530
1531 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1532 unsigned int offset)
1533 {
1534 return NAPI_GRO_CB(skb)->frag0 + offset;
1535 }
1536
1537 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1538 {
1539 return NAPI_GRO_CB(skb)->frag0_len < hlen;
1540 }
1541
1542 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1543 unsigned int offset)
1544 {
1545 NAPI_GRO_CB(skb)->frag0 = NULL;
1546 NAPI_GRO_CB(skb)->frag0_len = 0;
1547 return pskb_may_pull(skb, hlen) ? skb->data + offset : NULL;
1548 }
1549
1550 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1551 {
1552 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1553 }
1554
1555 static inline void *skb_gro_network_header(struct sk_buff *skb)
1556 {
1557 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1558 skb_network_offset(skb);
1559 }
1560
1561 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1562 unsigned short type,
1563 const void *daddr, const void *saddr,
1564 unsigned len)
1565 {
1566 if (!dev->header_ops || !dev->header_ops->create)
1567 return 0;
1568
1569 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1570 }
1571
1572 static inline int dev_parse_header(const struct sk_buff *skb,
1573 unsigned char *haddr)
1574 {
1575 const struct net_device *dev = skb->dev;
1576
1577 if (!dev->header_ops || !dev->header_ops->parse)
1578 return 0;
1579 return dev->header_ops->parse(skb, haddr);
1580 }
1581
1582 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1583 extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1584 static inline int unregister_gifconf(unsigned int family)
1585 {
1586 return register_gifconf(family, NULL);
1587 }
1588
1589 /*
1590 * Incoming packets are placed on per-cpu queues
1591 */
1592 struct softnet_data {
1593 struct Qdisc *output_queue;
1594 struct Qdisc **output_queue_tailp;
1595 struct list_head poll_list;
1596 struct sk_buff *completion_queue;
1597 struct sk_buff_head process_queue;
1598
1599 /* stats */
1600 unsigned int processed;
1601 unsigned int time_squeeze;
1602 unsigned int cpu_collision;
1603 unsigned int received_rps;
1604
1605 #ifdef CONFIG_RPS
1606 struct softnet_data *rps_ipi_list;
1607
1608 /* Elements below can be accessed between CPUs for RPS */
1609 struct call_single_data csd ____cacheline_aligned_in_smp;
1610 struct softnet_data *rps_ipi_next;
1611 unsigned int cpu;
1612 unsigned int input_queue_head;
1613 unsigned int input_queue_tail;
1614 #endif
1615 unsigned dropped;
1616 struct sk_buff_head input_pkt_queue;
1617 struct napi_struct backlog;
1618 };
1619
1620 static inline void input_queue_head_incr(struct softnet_data *sd)
1621 {
1622 #ifdef CONFIG_RPS
1623 sd->input_queue_head++;
1624 #endif
1625 }
1626
1627 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1628 unsigned int *qtail)
1629 {
1630 #ifdef CONFIG_RPS
1631 *qtail = ++sd->input_queue_tail;
1632 #endif
1633 }
1634
1635 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1636
1637 #define HAVE_NETIF_QUEUE
1638
1639 extern void __netif_schedule(struct Qdisc *q);
1640
1641 static inline void netif_schedule_queue(struct netdev_queue *txq)
1642 {
1643 if (!test_bit(__QUEUE_STATE_XOFF, &txq->state))
1644 __netif_schedule(txq->qdisc);
1645 }
1646
1647 static inline void netif_tx_schedule_all(struct net_device *dev)
1648 {
1649 unsigned int i;
1650
1651 for (i = 0; i < dev->num_tx_queues; i++)
1652 netif_schedule_queue(netdev_get_tx_queue(dev, i));
1653 }
1654
1655 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1656 {
1657 clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1658 }
1659
1660 /**
1661 * netif_start_queue - allow transmit
1662 * @dev: network device
1663 *
1664 * Allow upper layers to call the device hard_start_xmit routine.
1665 */
1666 static inline void netif_start_queue(struct net_device *dev)
1667 {
1668 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1669 }
1670
1671 static inline void netif_tx_start_all_queues(struct net_device *dev)
1672 {
1673 unsigned int i;
1674
1675 for (i = 0; i < dev->num_tx_queues; i++) {
1676 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1677 netif_tx_start_queue(txq);
1678 }
1679 }
1680
1681 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1682 {
1683 #ifdef CONFIG_NETPOLL_TRAP
1684 if (netpoll_trap()) {
1685 netif_tx_start_queue(dev_queue);
1686 return;
1687 }
1688 #endif
1689 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state))
1690 __netif_schedule(dev_queue->qdisc);
1691 }
1692
1693 /**
1694 * netif_wake_queue - restart transmit
1695 * @dev: network device
1696 *
1697 * Allow upper layers to call the device hard_start_xmit routine.
1698 * Used for flow control when transmit resources are available.
1699 */
1700 static inline void netif_wake_queue(struct net_device *dev)
1701 {
1702 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1703 }
1704
1705 static inline void netif_tx_wake_all_queues(struct net_device *dev)
1706 {
1707 unsigned int i;
1708
1709 for (i = 0; i < dev->num_tx_queues; i++) {
1710 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1711 netif_tx_wake_queue(txq);
1712 }
1713 }
1714
1715 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1716 {
1717 if (WARN_ON(!dev_queue)) {
1718 printk(KERN_INFO "netif_stop_queue() cannot be called before "
1719 "register_netdev()");
1720 return;
1721 }
1722 set_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1723 }
1724
1725 /**
1726 * netif_stop_queue - stop transmitted packets
1727 * @dev: network device
1728 *
1729 * Stop upper layers calling the device hard_start_xmit routine.
1730 * Used for flow control when transmit resources are unavailable.
1731 */
1732 static inline void netif_stop_queue(struct net_device *dev)
1733 {
1734 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1735 }
1736
1737 static inline void netif_tx_stop_all_queues(struct net_device *dev)
1738 {
1739 unsigned int i;
1740
1741 for (i = 0; i < dev->num_tx_queues; i++) {
1742 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1743 netif_tx_stop_queue(txq);
1744 }
1745 }
1746
1747 static inline int netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1748 {
1749 return test_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1750 }
1751
1752 /**
1753 * netif_queue_stopped - test if transmit queue is flowblocked
1754 * @dev: network device
1755 *
1756 * Test if transmit queue on device is currently unable to send.
1757 */
1758 static inline int netif_queue_stopped(const struct net_device *dev)
1759 {
1760 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1761 }
1762
1763 static inline int netif_tx_queue_frozen_or_stopped(const struct netdev_queue *dev_queue)
1764 {
1765 return dev_queue->state & QUEUE_STATE_XOFF_OR_FROZEN;
1766 }
1767
1768 /**
1769 * netif_running - test if up
1770 * @dev: network device
1771 *
1772 * Test if the device has been brought up.
1773 */
1774 static inline int netif_running(const struct net_device *dev)
1775 {
1776 return test_bit(__LINK_STATE_START, &dev->state);
1777 }
1778
1779 /*
1780 * Routines to manage the subqueues on a device. We only need start
1781 * stop, and a check if it's stopped. All other device management is
1782 * done at the overall netdevice level.
1783 * Also test the device if we're multiqueue.
1784 */
1785
1786 /**
1787 * netif_start_subqueue - allow sending packets on subqueue
1788 * @dev: network device
1789 * @queue_index: sub queue index
1790 *
1791 * Start individual transmit queue of a device with multiple transmit queues.
1792 */
1793 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
1794 {
1795 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1796
1797 netif_tx_start_queue(txq);
1798 }
1799
1800 /**
1801 * netif_stop_subqueue - stop sending packets on subqueue
1802 * @dev: network device
1803 * @queue_index: sub queue index
1804 *
1805 * Stop individual transmit queue of a device with multiple transmit queues.
1806 */
1807 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
1808 {
1809 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1810 #ifdef CONFIG_NETPOLL_TRAP
1811 if (netpoll_trap())
1812 return;
1813 #endif
1814 netif_tx_stop_queue(txq);
1815 }
1816
1817 /**
1818 * netif_subqueue_stopped - test status of subqueue
1819 * @dev: network device
1820 * @queue_index: sub queue index
1821 *
1822 * Check individual transmit queue of a device with multiple transmit queues.
1823 */
1824 static inline int __netif_subqueue_stopped(const struct net_device *dev,
1825 u16 queue_index)
1826 {
1827 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1828
1829 return netif_tx_queue_stopped(txq);
1830 }
1831
1832 static inline int netif_subqueue_stopped(const struct net_device *dev,
1833 struct sk_buff *skb)
1834 {
1835 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
1836 }
1837
1838 /**
1839 * netif_wake_subqueue - allow sending packets on subqueue
1840 * @dev: network device
1841 * @queue_index: sub queue index
1842 *
1843 * Resume individual transmit queue of a device with multiple transmit queues.
1844 */
1845 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
1846 {
1847 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1848 #ifdef CONFIG_NETPOLL_TRAP
1849 if (netpoll_trap())
1850 return;
1851 #endif
1852 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &txq->state))
1853 __netif_schedule(txq->qdisc);
1854 }
1855
1856 /*
1857 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
1858 * as a distribution range limit for the returned value.
1859 */
1860 static inline u16 skb_tx_hash(const struct net_device *dev,
1861 const struct sk_buff *skb)
1862 {
1863 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
1864 }
1865
1866 /**
1867 * netif_is_multiqueue - test if device has multiple transmit queues
1868 * @dev: network device
1869 *
1870 * Check if device has multiple transmit queues
1871 */
1872 static inline int netif_is_multiqueue(const struct net_device *dev)
1873 {
1874 return dev->num_tx_queues > 1;
1875 }
1876
1877 extern int netif_set_real_num_tx_queues(struct net_device *dev,
1878 unsigned int txq);
1879
1880 #ifdef CONFIG_RPS
1881 extern int netif_set_real_num_rx_queues(struct net_device *dev,
1882 unsigned int rxq);
1883 #else
1884 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
1885 unsigned int rxq)
1886 {
1887 return 0;
1888 }
1889 #endif
1890
1891 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
1892 const struct net_device *from_dev)
1893 {
1894 netif_set_real_num_tx_queues(to_dev, from_dev->real_num_tx_queues);
1895 #ifdef CONFIG_RPS
1896 return netif_set_real_num_rx_queues(to_dev,
1897 from_dev->real_num_rx_queues);
1898 #else
1899 return 0;
1900 #endif
1901 }
1902
1903 /* Use this variant when it is known for sure that it
1904 * is executing from hardware interrupt context or with hardware interrupts
1905 * disabled.
1906 */
1907 extern void dev_kfree_skb_irq(struct sk_buff *skb);
1908
1909 /* Use this variant in places where it could be invoked
1910 * from either hardware interrupt or other context, with hardware interrupts
1911 * either disabled or enabled.
1912 */
1913 extern void dev_kfree_skb_any(struct sk_buff *skb);
1914
1915 #define HAVE_NETIF_RX 1
1916 extern int netif_rx(struct sk_buff *skb);
1917 extern int netif_rx_ni(struct sk_buff *skb);
1918 #define HAVE_NETIF_RECEIVE_SKB 1
1919 extern int netif_receive_skb(struct sk_buff *skb);
1920 extern gro_result_t dev_gro_receive(struct napi_struct *napi,
1921 struct sk_buff *skb);
1922 extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb);
1923 extern gro_result_t napi_gro_receive(struct napi_struct *napi,
1924 struct sk_buff *skb);
1925 extern void napi_gro_flush(struct napi_struct *napi);
1926 extern struct sk_buff * napi_get_frags(struct napi_struct *napi);
1927 extern gro_result_t napi_frags_finish(struct napi_struct *napi,
1928 struct sk_buff *skb,
1929 gro_result_t ret);
1930 extern struct sk_buff * napi_frags_skb(struct napi_struct *napi);
1931 extern gro_result_t napi_gro_frags(struct napi_struct *napi);
1932
1933 static inline void napi_free_frags(struct napi_struct *napi)
1934 {
1935 kfree_skb(napi->skb);
1936 napi->skb = NULL;
1937 }
1938
1939 extern int netdev_rx_handler_register(struct net_device *dev,
1940 rx_handler_func_t *rx_handler,
1941 void *rx_handler_data);
1942 extern void netdev_rx_handler_unregister(struct net_device *dev);
1943
1944 extern int dev_valid_name(const char *name);
1945 extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
1946 extern int dev_ethtool(struct net *net, struct ifreq *);
1947 extern unsigned dev_get_flags(const struct net_device *);
1948 extern int __dev_change_flags(struct net_device *, unsigned int flags);
1949 extern int dev_change_flags(struct net_device *, unsigned);
1950 extern void __dev_notify_flags(struct net_device *, unsigned int old_flags);
1951 extern int dev_change_name(struct net_device *, const char *);
1952 extern int dev_set_alias(struct net_device *, const char *, size_t);
1953 extern int dev_change_net_namespace(struct net_device *,
1954 struct net *, const char *);
1955 extern int dev_set_mtu(struct net_device *, int);
1956 extern void dev_set_group(struct net_device *, int);
1957 extern int dev_set_mac_address(struct net_device *,
1958 struct sockaddr *);
1959 extern int dev_hard_start_xmit(struct sk_buff *skb,
1960 struct net_device *dev,
1961 struct netdev_queue *txq);
1962 extern int dev_forward_skb(struct net_device *dev,
1963 struct sk_buff *skb);
1964
1965 extern int netdev_budget;
1966
1967 /* Called by rtnetlink.c:rtnl_unlock() */
1968 extern void netdev_run_todo(void);
1969
1970 /**
1971 * dev_put - release reference to device
1972 * @dev: network device
1973 *
1974 * Release reference to device to allow it to be freed.
1975 */
1976 static inline void dev_put(struct net_device *dev)
1977 {
1978 irqsafe_cpu_dec(*dev->pcpu_refcnt);
1979 }
1980
1981 /**
1982 * dev_hold - get reference to device
1983 * @dev: network device
1984 *
1985 * Hold reference to device to keep it from being freed.
1986 */
1987 static inline void dev_hold(struct net_device *dev)
1988 {
1989 irqsafe_cpu_inc(*dev->pcpu_refcnt);
1990 }
1991
1992 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
1993 * and _off may be called from IRQ context, but it is caller
1994 * who is responsible for serialization of these calls.
1995 *
1996 * The name carrier is inappropriate, these functions should really be
1997 * called netif_lowerlayer_*() because they represent the state of any
1998 * kind of lower layer not just hardware media.
1999 */
2000
2001 extern void linkwatch_fire_event(struct net_device *dev);
2002 extern void linkwatch_forget_dev(struct net_device *dev);
2003
2004 /**
2005 * netif_carrier_ok - test if carrier present
2006 * @dev: network device
2007 *
2008 * Check if carrier is present on device
2009 */
2010 static inline int netif_carrier_ok(const struct net_device *dev)
2011 {
2012 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2013 }
2014
2015 extern unsigned long dev_trans_start(struct net_device *dev);
2016
2017 extern void __netdev_watchdog_up(struct net_device *dev);
2018
2019 extern void netif_carrier_on(struct net_device *dev);
2020
2021 extern void netif_carrier_off(struct net_device *dev);
2022
2023 extern void netif_notify_peers(struct net_device *dev);
2024
2025 /**
2026 * netif_dormant_on - mark device as dormant.
2027 * @dev: network device
2028 *
2029 * Mark device as dormant (as per RFC2863).
2030 *
2031 * The dormant state indicates that the relevant interface is not
2032 * actually in a condition to pass packets (i.e., it is not 'up') but is
2033 * in a "pending" state, waiting for some external event. For "on-
2034 * demand" interfaces, this new state identifies the situation where the
2035 * interface is waiting for events to place it in the up state.
2036 *
2037 */
2038 static inline void netif_dormant_on(struct net_device *dev)
2039 {
2040 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2041 linkwatch_fire_event(dev);
2042 }
2043
2044 /**
2045 * netif_dormant_off - set device as not dormant.
2046 * @dev: network device
2047 *
2048 * Device is not in dormant state.
2049 */
2050 static inline void netif_dormant_off(struct net_device *dev)
2051 {
2052 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2053 linkwatch_fire_event(dev);
2054 }
2055
2056 /**
2057 * netif_dormant - test if carrier present
2058 * @dev: network device
2059 *
2060 * Check if carrier is present on device
2061 */
2062 static inline int netif_dormant(const struct net_device *dev)
2063 {
2064 return test_bit(__LINK_STATE_DORMANT, &dev->state);
2065 }
2066
2067
2068 /**
2069 * netif_oper_up - test if device is operational
2070 * @dev: network device
2071 *
2072 * Check if carrier is operational
2073 */
2074 static inline int netif_oper_up(const struct net_device *dev)
2075 {
2076 return (dev->operstate == IF_OPER_UP ||
2077 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2078 }
2079
2080 /**
2081 * netif_device_present - is device available or removed
2082 * @dev: network device
2083 *
2084 * Check if device has not been removed from system.
2085 */
2086 static inline int netif_device_present(struct net_device *dev)
2087 {
2088 return test_bit(__LINK_STATE_PRESENT, &dev->state);
2089 }
2090
2091 extern void netif_device_detach(struct net_device *dev);
2092
2093 extern void netif_device_attach(struct net_device *dev);
2094
2095 /*
2096 * Network interface message level settings
2097 */
2098 #define HAVE_NETIF_MSG 1
2099
2100 enum {
2101 NETIF_MSG_DRV = 0x0001,
2102 NETIF_MSG_PROBE = 0x0002,
2103 NETIF_MSG_LINK = 0x0004,
2104 NETIF_MSG_TIMER = 0x0008,
2105 NETIF_MSG_IFDOWN = 0x0010,
2106 NETIF_MSG_IFUP = 0x0020,
2107 NETIF_MSG_RX_ERR = 0x0040,
2108 NETIF_MSG_TX_ERR = 0x0080,
2109 NETIF_MSG_TX_QUEUED = 0x0100,
2110 NETIF_MSG_INTR = 0x0200,
2111 NETIF_MSG_TX_DONE = 0x0400,
2112 NETIF_MSG_RX_STATUS = 0x0800,
2113 NETIF_MSG_PKTDATA = 0x1000,
2114 NETIF_MSG_HW = 0x2000,
2115 NETIF_MSG_WOL = 0x4000,
2116 };
2117
2118 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
2119 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
2120 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
2121 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
2122 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
2123 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
2124 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
2125 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
2126 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2127 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
2128 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
2129 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
2130 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
2131 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
2132 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
2133
2134 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2135 {
2136 /* use default */
2137 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2138 return default_msg_enable_bits;
2139 if (debug_value == 0) /* no output */
2140 return 0;
2141 /* set low N bits */
2142 return (1 << debug_value) - 1;
2143 }
2144
2145 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2146 {
2147 spin_lock(&txq->_xmit_lock);
2148 txq->xmit_lock_owner = cpu;
2149 }
2150
2151 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2152 {
2153 spin_lock_bh(&txq->_xmit_lock);
2154 txq->xmit_lock_owner = smp_processor_id();
2155 }
2156
2157 static inline int __netif_tx_trylock(struct netdev_queue *txq)
2158 {
2159 int ok = spin_trylock(&txq->_xmit_lock);
2160 if (likely(ok))
2161 txq->xmit_lock_owner = smp_processor_id();
2162 return ok;
2163 }
2164
2165 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2166 {
2167 txq->xmit_lock_owner = -1;
2168 spin_unlock(&txq->_xmit_lock);
2169 }
2170
2171 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2172 {
2173 txq->xmit_lock_owner = -1;
2174 spin_unlock_bh(&txq->_xmit_lock);
2175 }
2176
2177 static inline void txq_trans_update(struct netdev_queue *txq)
2178 {
2179 if (txq->xmit_lock_owner != -1)
2180 txq->trans_start = jiffies;
2181 }
2182
2183 /**
2184 * netif_tx_lock - grab network device transmit lock
2185 * @dev: network device
2186 *
2187 * Get network device transmit lock
2188 */
2189 static inline void netif_tx_lock(struct net_device *dev)
2190 {
2191 unsigned int i;
2192 int cpu;
2193
2194 spin_lock(&dev->tx_global_lock);
2195 cpu = smp_processor_id();
2196 for (i = 0; i < dev->num_tx_queues; i++) {
2197 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2198
2199 /* We are the only thread of execution doing a
2200 * freeze, but we have to grab the _xmit_lock in
2201 * order to synchronize with threads which are in
2202 * the ->hard_start_xmit() handler and already
2203 * checked the frozen bit.
2204 */
2205 __netif_tx_lock(txq, cpu);
2206 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2207 __netif_tx_unlock(txq);
2208 }
2209 }
2210
2211 static inline void netif_tx_lock_bh(struct net_device *dev)
2212 {
2213 local_bh_disable();
2214 netif_tx_lock(dev);
2215 }
2216
2217 static inline void netif_tx_unlock(struct net_device *dev)
2218 {
2219 unsigned int i;
2220
2221 for (i = 0; i < dev->num_tx_queues; i++) {
2222 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2223
2224 /* No need to grab the _xmit_lock here. If the
2225 * queue is not stopped for another reason, we
2226 * force a schedule.
2227 */
2228 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2229 netif_schedule_queue(txq);
2230 }
2231 spin_unlock(&dev->tx_global_lock);
2232 }
2233
2234 static inline void netif_tx_unlock_bh(struct net_device *dev)
2235 {
2236 netif_tx_unlock(dev);
2237 local_bh_enable();
2238 }
2239
2240 #define HARD_TX_LOCK(dev, txq, cpu) { \
2241 if ((dev->features & NETIF_F_LLTX) == 0) { \
2242 __netif_tx_lock(txq, cpu); \
2243 } \
2244 }
2245
2246 #define HARD_TX_UNLOCK(dev, txq) { \
2247 if ((dev->features & NETIF_F_LLTX) == 0) { \
2248 __netif_tx_unlock(txq); \
2249 } \
2250 }
2251
2252 static inline void netif_tx_disable(struct net_device *dev)
2253 {
2254 unsigned int i;
2255 int cpu;
2256
2257 local_bh_disable();
2258 cpu = smp_processor_id();
2259 for (i = 0; i < dev->num_tx_queues; i++) {
2260 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2261
2262 __netif_tx_lock(txq, cpu);
2263 netif_tx_stop_queue(txq);
2264 __netif_tx_unlock(txq);
2265 }
2266 local_bh_enable();
2267 }
2268
2269 static inline void netif_addr_lock(struct net_device *dev)
2270 {
2271 spin_lock(&dev->addr_list_lock);
2272 }
2273
2274 static inline void netif_addr_lock_bh(struct net_device *dev)
2275 {
2276 spin_lock_bh(&dev->addr_list_lock);
2277 }
2278
2279 static inline void netif_addr_unlock(struct net_device *dev)
2280 {
2281 spin_unlock(&dev->addr_list_lock);
2282 }
2283
2284 static inline void netif_addr_unlock_bh(struct net_device *dev)
2285 {
2286 spin_unlock_bh(&dev->addr_list_lock);
2287 }
2288
2289 /*
2290 * dev_addrs walker. Should be used only for read access. Call with
2291 * rcu_read_lock held.
2292 */
2293 #define for_each_dev_addr(dev, ha) \
2294 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2295
2296 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2297
2298 extern void ether_setup(struct net_device *dev);
2299
2300 /* Support for loadable net-drivers */
2301 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2302 void (*setup)(struct net_device *),
2303 unsigned int txqs, unsigned int rxqs);
2304 #define alloc_netdev(sizeof_priv, name, setup) \
2305 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2306
2307 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2308 alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2309
2310 extern int register_netdev(struct net_device *dev);
2311 extern void unregister_netdev(struct net_device *dev);
2312
2313 /* General hardware address lists handling functions */
2314 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2315 struct netdev_hw_addr_list *from_list,
2316 int addr_len, unsigned char addr_type);
2317 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2318 struct netdev_hw_addr_list *from_list,
2319 int addr_len, unsigned char addr_type);
2320 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2321 struct netdev_hw_addr_list *from_list,
2322 int addr_len);
2323 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2324 struct netdev_hw_addr_list *from_list,
2325 int addr_len);
2326 extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2327 extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2328
2329 /* Functions used for device addresses handling */
2330 extern int dev_addr_add(struct net_device *dev, unsigned char *addr,
2331 unsigned char addr_type);
2332 extern int dev_addr_del(struct net_device *dev, unsigned char *addr,
2333 unsigned char addr_type);
2334 extern int dev_addr_add_multiple(struct net_device *to_dev,
2335 struct net_device *from_dev,
2336 unsigned char addr_type);
2337 extern int dev_addr_del_multiple(struct net_device *to_dev,
2338 struct net_device *from_dev,
2339 unsigned char addr_type);
2340 extern void dev_addr_flush(struct net_device *dev);
2341 extern int dev_addr_init(struct net_device *dev);
2342
2343 /* Functions used for unicast addresses handling */
2344 extern int dev_uc_add(struct net_device *dev, unsigned char *addr);
2345 extern int dev_uc_del(struct net_device *dev, unsigned char *addr);
2346 extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2347 extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2348 extern void dev_uc_flush(struct net_device *dev);
2349 extern void dev_uc_init(struct net_device *dev);
2350
2351 /* Functions used for multicast addresses handling */
2352 extern int dev_mc_add(struct net_device *dev, unsigned char *addr);
2353 extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr);
2354 extern int dev_mc_del(struct net_device *dev, unsigned char *addr);
2355 extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr);
2356 extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2357 extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2358 extern void dev_mc_flush(struct net_device *dev);
2359 extern void dev_mc_init(struct net_device *dev);
2360
2361 /* Functions used for secondary unicast and multicast support */
2362 extern void dev_set_rx_mode(struct net_device *dev);
2363 extern void __dev_set_rx_mode(struct net_device *dev);
2364 extern int dev_set_promiscuity(struct net_device *dev, int inc);
2365 extern int dev_set_allmulti(struct net_device *dev, int inc);
2366 extern void netdev_state_change(struct net_device *dev);
2367 extern int netdev_bonding_change(struct net_device *dev,
2368 unsigned long event);
2369 extern void netdev_features_change(struct net_device *dev);
2370 /* Load a device via the kmod */
2371 extern void dev_load(struct net *net, const char *name);
2372 extern void dev_mcast_init(void);
2373 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2374 struct rtnl_link_stats64 *storage);
2375
2376 extern int netdev_max_backlog;
2377 extern int netdev_tstamp_prequeue;
2378 extern int weight_p;
2379 extern int netdev_set_master(struct net_device *dev, struct net_device *master);
2380 extern int skb_checksum_help(struct sk_buff *skb);
2381 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features);
2382 #ifdef CONFIG_BUG
2383 extern void netdev_rx_csum_fault(struct net_device *dev);
2384 #else
2385 static inline void netdev_rx_csum_fault(struct net_device *dev)
2386 {
2387 }
2388 #endif
2389 /* rx skb timestamps */
2390 extern void net_enable_timestamp(void);
2391 extern void net_disable_timestamp(void);
2392
2393 #ifdef CONFIG_PROC_FS
2394 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
2395 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2396 extern void dev_seq_stop(struct seq_file *seq, void *v);
2397 #endif
2398
2399 extern int netdev_class_create_file(struct class_attribute *class_attr);
2400 extern void netdev_class_remove_file(struct class_attribute *class_attr);
2401
2402 extern struct kobj_ns_type_operations net_ns_type_operations;
2403
2404 extern char *netdev_drivername(const struct net_device *dev, char *buffer, int len);
2405
2406 extern void linkwatch_run_queue(void);
2407
2408 u32 netdev_increment_features(u32 all, u32 one, u32 mask);
2409 u32 netdev_fix_features(struct net_device *dev, u32 features);
2410
2411 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2412 struct net_device *dev);
2413
2414 u32 netif_skb_features(struct sk_buff *skb);
2415
2416 static inline int net_gso_ok(u32 features, int gso_type)
2417 {
2418 int feature = gso_type << NETIF_F_GSO_SHIFT;
2419 return (features & feature) == feature;
2420 }
2421
2422 static inline int skb_gso_ok(struct sk_buff *skb, u32 features)
2423 {
2424 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2425 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2426 }
2427
2428 static inline int netif_needs_gso(struct sk_buff *skb, int features)
2429 {
2430 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2431 unlikely(skb->ip_summed != CHECKSUM_PARTIAL));
2432 }
2433
2434 static inline void netif_set_gso_max_size(struct net_device *dev,
2435 unsigned int size)
2436 {
2437 dev->gso_max_size = size;
2438 }
2439
2440 extern struct pernet_operations __net_initdata loopback_net_ops;
2441
2442 static inline int dev_ethtool_get_settings(struct net_device *dev,
2443 struct ethtool_cmd *cmd)
2444 {
2445 if (!dev->ethtool_ops || !dev->ethtool_ops->get_settings)
2446 return -EOPNOTSUPP;
2447 return dev->ethtool_ops->get_settings(dev, cmd);
2448 }
2449
2450 static inline u32 dev_ethtool_get_rx_csum(struct net_device *dev)
2451 {
2452 if (!dev->ethtool_ops || !dev->ethtool_ops->get_rx_csum)
2453 return 0;
2454 return dev->ethtool_ops->get_rx_csum(dev);
2455 }
2456
2457 static inline u32 dev_ethtool_get_flags(struct net_device *dev)
2458 {
2459 if (!dev->ethtool_ops || !dev->ethtool_ops->get_flags)
2460 return 0;
2461 return dev->ethtool_ops->get_flags(dev);
2462 }
2463
2464 /* Logging, debugging and troubleshooting/diagnostic helpers. */
2465
2466 /* netdev_printk helpers, similar to dev_printk */
2467
2468 static inline const char *netdev_name(const struct net_device *dev)
2469 {
2470 if (dev->reg_state != NETREG_REGISTERED)
2471 return "(unregistered net_device)";
2472 return dev->name;
2473 }
2474
2475 extern int netdev_printk(const char *level, const struct net_device *dev,
2476 const char *format, ...)
2477 __attribute__ ((format (printf, 3, 4)));
2478 extern int netdev_emerg(const struct net_device *dev, const char *format, ...)
2479 __attribute__ ((format (printf, 2, 3)));
2480 extern int netdev_alert(const struct net_device *dev, const char *format, ...)
2481 __attribute__ ((format (printf, 2, 3)));
2482 extern int netdev_crit(const struct net_device *dev, const char *format, ...)
2483 __attribute__ ((format (printf, 2, 3)));
2484 extern int netdev_err(const struct net_device *dev, const char *format, ...)
2485 __attribute__ ((format (printf, 2, 3)));
2486 extern int netdev_warn(const struct net_device *dev, const char *format, ...)
2487 __attribute__ ((format (printf, 2, 3)));
2488 extern int netdev_notice(const struct net_device *dev, const char *format, ...)
2489 __attribute__ ((format (printf, 2, 3)));
2490 extern int netdev_info(const struct net_device *dev, const char *format, ...)
2491 __attribute__ ((format (printf, 2, 3)));
2492
2493 #if defined(DEBUG)
2494 #define netdev_dbg(__dev, format, args...) \
2495 netdev_printk(KERN_DEBUG, __dev, format, ##args)
2496 #elif defined(CONFIG_DYNAMIC_DEBUG)
2497 #define netdev_dbg(__dev, format, args...) \
2498 do { \
2499 dynamic_dev_dbg((__dev)->dev.parent, "%s: " format, \
2500 netdev_name(__dev), ##args); \
2501 } while (0)
2502 #else
2503 #define netdev_dbg(__dev, format, args...) \
2504 ({ \
2505 if (0) \
2506 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2507 0; \
2508 })
2509 #endif
2510
2511 #if defined(VERBOSE_DEBUG)
2512 #define netdev_vdbg netdev_dbg
2513 #else
2514
2515 #define netdev_vdbg(dev, format, args...) \
2516 ({ \
2517 if (0) \
2518 netdev_printk(KERN_DEBUG, dev, format, ##args); \
2519 0; \
2520 })
2521 #endif
2522
2523 /*
2524 * netdev_WARN() acts like dev_printk(), but with the key difference
2525 * of using a WARN/WARN_ON to get the message out, including the
2526 * file/line information and a backtrace.
2527 */
2528 #define netdev_WARN(dev, format, args...) \
2529 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2530
2531 /* netif printk helpers, similar to netdev_printk */
2532
2533 #define netif_printk(priv, type, level, dev, fmt, args...) \
2534 do { \
2535 if (netif_msg_##type(priv)) \
2536 netdev_printk(level, (dev), fmt, ##args); \
2537 } while (0)
2538
2539 #define netif_level(level, priv, type, dev, fmt, args...) \
2540 do { \
2541 if (netif_msg_##type(priv)) \
2542 netdev_##level(dev, fmt, ##args); \
2543 } while (0)
2544
2545 #define netif_emerg(priv, type, dev, fmt, args...) \
2546 netif_level(emerg, priv, type, dev, fmt, ##args)
2547 #define netif_alert(priv, type, dev, fmt, args...) \
2548 netif_level(alert, priv, type, dev, fmt, ##args)
2549 #define netif_crit(priv, type, dev, fmt, args...) \
2550 netif_level(crit, priv, type, dev, fmt, ##args)
2551 #define netif_err(priv, type, dev, fmt, args...) \
2552 netif_level(err, priv, type, dev, fmt, ##args)
2553 #define netif_warn(priv, type, dev, fmt, args...) \
2554 netif_level(warn, priv, type, dev, fmt, ##args)
2555 #define netif_notice(priv, type, dev, fmt, args...) \
2556 netif_level(notice, priv, type, dev, fmt, ##args)
2557 #define netif_info(priv, type, dev, fmt, args...) \
2558 netif_level(info, priv, type, dev, fmt, ##args)
2559
2560 #if defined(DEBUG)
2561 #define netif_dbg(priv, type, dev, format, args...) \
2562 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2563 #elif defined(CONFIG_DYNAMIC_DEBUG)
2564 #define netif_dbg(priv, type, netdev, format, args...) \
2565 do { \
2566 if (netif_msg_##type(priv)) \
2567 dynamic_dev_dbg((netdev)->dev.parent, \
2568 "%s: " format, \
2569 netdev_name(netdev), ##args); \
2570 } while (0)
2571 #else
2572 #define netif_dbg(priv, type, dev, format, args...) \
2573 ({ \
2574 if (0) \
2575 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2576 0; \
2577 })
2578 #endif
2579
2580 #if defined(VERBOSE_DEBUG)
2581 #define netif_vdbg netif_dbg
2582 #else
2583 #define netif_vdbg(priv, type, dev, format, args...) \
2584 ({ \
2585 if (0) \
2586 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2587 0; \
2588 })
2589 #endif
2590
2591 #endif /* __KERNEL__ */
2592
2593 #endif /* _LINUX_NETDEVICE_H */