]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/linux/page-flags.h
Merge tag 'for-linus-urgent' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[mirror_ubuntu-jammy-kernel.git] / include / linux / page-flags.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Macros for manipulating and testing page->flags
4 */
5
6 #ifndef PAGE_FLAGS_H
7 #define PAGE_FLAGS_H
8
9 #include <linux/types.h>
10 #include <linux/bug.h>
11 #include <linux/mmdebug.h>
12 #ifndef __GENERATING_BOUNDS_H
13 #include <linux/mm_types.h>
14 #include <generated/bounds.h>
15 #endif /* !__GENERATING_BOUNDS_H */
16
17 /*
18 * Various page->flags bits:
19 *
20 * PG_reserved is set for special pages. The "struct page" of such a page
21 * should in general not be touched (e.g. set dirty) except by its owner.
22 * Pages marked as PG_reserved include:
23 * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS,
24 * initrd, HW tables)
25 * - Pages reserved or allocated early during boot (before the page allocator
26 * was initialized). This includes (depending on the architecture) the
27 * initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much
28 * much more. Once (if ever) freed, PG_reserved is cleared and they will
29 * be given to the page allocator.
30 * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying
31 * to read/write these pages might end badly. Don't touch!
32 * - The zero page(s)
33 * - Pages not added to the page allocator when onlining a section because
34 * they were excluded via the online_page_callback() or because they are
35 * PG_hwpoison.
36 * - Pages allocated in the context of kexec/kdump (loaded kernel image,
37 * control pages, vmcoreinfo)
38 * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are
39 * not marked PG_reserved (as they might be in use by somebody else who does
40 * not respect the caching strategy).
41 * - Pages part of an offline section (struct pages of offline sections should
42 * not be trusted as they will be initialized when first onlined).
43 * - MCA pages on ia64
44 * - Pages holding CPU notes for POWER Firmware Assisted Dump
45 * - Device memory (e.g. PMEM, DAX, HMM)
46 * Some PG_reserved pages will be excluded from the hibernation image.
47 * PG_reserved does in general not hinder anybody from dumping or swapping
48 * and is no longer required for remap_pfn_range(). ioremap might require it.
49 * Consequently, PG_reserved for a page mapped into user space can indicate
50 * the zero page, the vDSO, MMIO pages or device memory.
51 *
52 * The PG_private bitflag is set on pagecache pages if they contain filesystem
53 * specific data (which is normally at page->private). It can be used by
54 * private allocations for its own usage.
55 *
56 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
57 * and cleared when writeback _starts_ or when read _completes_. PG_writeback
58 * is set before writeback starts and cleared when it finishes.
59 *
60 * PG_locked also pins a page in pagecache, and blocks truncation of the file
61 * while it is held.
62 *
63 * page_waitqueue(page) is a wait queue of all tasks waiting for the page
64 * to become unlocked.
65 *
66 * PG_swapbacked is set when a page uses swap as a backing storage. This are
67 * usually PageAnon or shmem pages but please note that even anonymous pages
68 * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as
69 * a result of MADV_FREE).
70 *
71 * PG_uptodate tells whether the page's contents is valid. When a read
72 * completes, the page becomes uptodate, unless a disk I/O error happened.
73 *
74 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
75 * file-backed pagecache (see mm/vmscan.c).
76 *
77 * PG_error is set to indicate that an I/O error occurred on this page.
78 *
79 * PG_arch_1 is an architecture specific page state bit. The generic code
80 * guarantees that this bit is cleared for a page when it first is entered into
81 * the page cache.
82 *
83 * PG_hwpoison indicates that a page got corrupted in hardware and contains
84 * data with incorrect ECC bits that triggered a machine check. Accessing is
85 * not safe since it may cause another machine check. Don't touch!
86 */
87
88 /*
89 * Don't use the pageflags directly. Use the PageFoo macros.
90 *
91 * The page flags field is split into two parts, the main flags area
92 * which extends from the low bits upwards, and the fields area which
93 * extends from the high bits downwards.
94 *
95 * | FIELD | ... | FLAGS |
96 * N-1 ^ 0
97 * (NR_PAGEFLAGS)
98 *
99 * The fields area is reserved for fields mapping zone, node (for NUMA) and
100 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
101 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
102 */
103 enum pageflags {
104 PG_locked, /* Page is locked. Don't touch. */
105 PG_referenced,
106 PG_uptodate,
107 PG_dirty,
108 PG_lru,
109 PG_active,
110 PG_workingset,
111 PG_waiters, /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
112 PG_error,
113 PG_slab,
114 PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/
115 PG_arch_1,
116 PG_reserved,
117 PG_private, /* If pagecache, has fs-private data */
118 PG_private_2, /* If pagecache, has fs aux data */
119 PG_writeback, /* Page is under writeback */
120 PG_head, /* A head page */
121 PG_mappedtodisk, /* Has blocks allocated on-disk */
122 PG_reclaim, /* To be reclaimed asap */
123 PG_swapbacked, /* Page is backed by RAM/swap */
124 PG_unevictable, /* Page is "unevictable" */
125 #ifdef CONFIG_MMU
126 PG_mlocked, /* Page is vma mlocked */
127 #endif
128 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
129 PG_uncached, /* Page has been mapped as uncached */
130 #endif
131 #ifdef CONFIG_MEMORY_FAILURE
132 PG_hwpoison, /* hardware poisoned page. Don't touch */
133 #endif
134 #if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
135 PG_young,
136 PG_idle,
137 #endif
138 #ifdef CONFIG_64BIT
139 PG_arch_2,
140 #endif
141 __NR_PAGEFLAGS,
142
143 /* Filesystems */
144 PG_checked = PG_owner_priv_1,
145
146 /* SwapBacked */
147 PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */
148
149 /* Two page bits are conscripted by FS-Cache to maintain local caching
150 * state. These bits are set on pages belonging to the netfs's inodes
151 * when those inodes are being locally cached.
152 */
153 PG_fscache = PG_private_2, /* page backed by cache */
154
155 /* XEN */
156 /* Pinned in Xen as a read-only pagetable page. */
157 PG_pinned = PG_owner_priv_1,
158 /* Pinned as part of domain save (see xen_mm_pin_all()). */
159 PG_savepinned = PG_dirty,
160 /* Has a grant mapping of another (foreign) domain's page. */
161 PG_foreign = PG_owner_priv_1,
162 /* Remapped by swiotlb-xen. */
163 PG_xen_remapped = PG_owner_priv_1,
164
165 /* SLOB */
166 PG_slob_free = PG_private,
167
168 /* Compound pages. Stored in first tail page's flags */
169 PG_double_map = PG_workingset,
170
171 /* non-lru isolated movable page */
172 PG_isolated = PG_reclaim,
173
174 /* Only valid for buddy pages. Used to track pages that are reported */
175 PG_reported = PG_uptodate,
176 };
177
178 #ifndef __GENERATING_BOUNDS_H
179
180 struct page; /* forward declaration */
181
182 static inline struct page *compound_head(struct page *page)
183 {
184 unsigned long head = READ_ONCE(page->compound_head);
185
186 if (unlikely(head & 1))
187 return (struct page *) (head - 1);
188 return page;
189 }
190
191 static __always_inline int PageTail(struct page *page)
192 {
193 return READ_ONCE(page->compound_head) & 1;
194 }
195
196 static __always_inline int PageCompound(struct page *page)
197 {
198 return test_bit(PG_head, &page->flags) || PageTail(page);
199 }
200
201 #define PAGE_POISON_PATTERN -1l
202 static inline int PagePoisoned(const struct page *page)
203 {
204 return page->flags == PAGE_POISON_PATTERN;
205 }
206
207 #ifdef CONFIG_DEBUG_VM
208 void page_init_poison(struct page *page, size_t size);
209 #else
210 static inline void page_init_poison(struct page *page, size_t size)
211 {
212 }
213 #endif
214
215 /*
216 * Page flags policies wrt compound pages
217 *
218 * PF_POISONED_CHECK
219 * check if this struct page poisoned/uninitialized
220 *
221 * PF_ANY:
222 * the page flag is relevant for small, head and tail pages.
223 *
224 * PF_HEAD:
225 * for compound page all operations related to the page flag applied to
226 * head page.
227 *
228 * PF_ONLY_HEAD:
229 * for compound page, callers only ever operate on the head page.
230 *
231 * PF_NO_TAIL:
232 * modifications of the page flag must be done on small or head pages,
233 * checks can be done on tail pages too.
234 *
235 * PF_NO_COMPOUND:
236 * the page flag is not relevant for compound pages.
237 *
238 * PF_SECOND:
239 * the page flag is stored in the first tail page.
240 */
241 #define PF_POISONED_CHECK(page) ({ \
242 VM_BUG_ON_PGFLAGS(PagePoisoned(page), page); \
243 page; })
244 #define PF_ANY(page, enforce) PF_POISONED_CHECK(page)
245 #define PF_HEAD(page, enforce) PF_POISONED_CHECK(compound_head(page))
246 #define PF_ONLY_HEAD(page, enforce) ({ \
247 VM_BUG_ON_PGFLAGS(PageTail(page), page); \
248 PF_POISONED_CHECK(page); })
249 #define PF_NO_TAIL(page, enforce) ({ \
250 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \
251 PF_POISONED_CHECK(compound_head(page)); })
252 #define PF_NO_COMPOUND(page, enforce) ({ \
253 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \
254 PF_POISONED_CHECK(page); })
255 #define PF_SECOND(page, enforce) ({ \
256 VM_BUG_ON_PGFLAGS(!PageHead(page), page); \
257 PF_POISONED_CHECK(&page[1]); })
258
259 /*
260 * Macros to create function definitions for page flags
261 */
262 #define TESTPAGEFLAG(uname, lname, policy) \
263 static __always_inline int Page##uname(struct page *page) \
264 { return test_bit(PG_##lname, &policy(page, 0)->flags); }
265
266 #define SETPAGEFLAG(uname, lname, policy) \
267 static __always_inline void SetPage##uname(struct page *page) \
268 { set_bit(PG_##lname, &policy(page, 1)->flags); }
269
270 #define CLEARPAGEFLAG(uname, lname, policy) \
271 static __always_inline void ClearPage##uname(struct page *page) \
272 { clear_bit(PG_##lname, &policy(page, 1)->flags); }
273
274 #define __SETPAGEFLAG(uname, lname, policy) \
275 static __always_inline void __SetPage##uname(struct page *page) \
276 { __set_bit(PG_##lname, &policy(page, 1)->flags); }
277
278 #define __CLEARPAGEFLAG(uname, lname, policy) \
279 static __always_inline void __ClearPage##uname(struct page *page) \
280 { __clear_bit(PG_##lname, &policy(page, 1)->flags); }
281
282 #define TESTSETFLAG(uname, lname, policy) \
283 static __always_inline int TestSetPage##uname(struct page *page) \
284 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
285
286 #define TESTCLEARFLAG(uname, lname, policy) \
287 static __always_inline int TestClearPage##uname(struct page *page) \
288 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
289
290 #define PAGEFLAG(uname, lname, policy) \
291 TESTPAGEFLAG(uname, lname, policy) \
292 SETPAGEFLAG(uname, lname, policy) \
293 CLEARPAGEFLAG(uname, lname, policy)
294
295 #define __PAGEFLAG(uname, lname, policy) \
296 TESTPAGEFLAG(uname, lname, policy) \
297 __SETPAGEFLAG(uname, lname, policy) \
298 __CLEARPAGEFLAG(uname, lname, policy)
299
300 #define TESTSCFLAG(uname, lname, policy) \
301 TESTSETFLAG(uname, lname, policy) \
302 TESTCLEARFLAG(uname, lname, policy)
303
304 #define TESTPAGEFLAG_FALSE(uname) \
305 static inline int Page##uname(const struct page *page) { return 0; }
306
307 #define SETPAGEFLAG_NOOP(uname) \
308 static inline void SetPage##uname(struct page *page) { }
309
310 #define CLEARPAGEFLAG_NOOP(uname) \
311 static inline void ClearPage##uname(struct page *page) { }
312
313 #define __CLEARPAGEFLAG_NOOP(uname) \
314 static inline void __ClearPage##uname(struct page *page) { }
315
316 #define TESTSETFLAG_FALSE(uname) \
317 static inline int TestSetPage##uname(struct page *page) { return 0; }
318
319 #define TESTCLEARFLAG_FALSE(uname) \
320 static inline int TestClearPage##uname(struct page *page) { return 0; }
321
322 #define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname) \
323 SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname)
324
325 #define TESTSCFLAG_FALSE(uname) \
326 TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname)
327
328 __PAGEFLAG(Locked, locked, PF_NO_TAIL)
329 PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD)
330 PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL)
331 PAGEFLAG(Referenced, referenced, PF_HEAD)
332 TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
333 __SETPAGEFLAG(Referenced, referenced, PF_HEAD)
334 PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
335 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
336 PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
337 TESTCLEARFLAG(LRU, lru, PF_HEAD)
338 PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
339 TESTCLEARFLAG(Active, active, PF_HEAD)
340 PAGEFLAG(Workingset, workingset, PF_HEAD)
341 TESTCLEARFLAG(Workingset, workingset, PF_HEAD)
342 __PAGEFLAG(Slab, slab, PF_NO_TAIL)
343 __PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL)
344 PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */
345
346 /* Xen */
347 PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
348 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
349 PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
350 PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
351 PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
352 TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
353
354 PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
355 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
356 __SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
357 PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
358 __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
359 __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
360
361 /*
362 * Private page markings that may be used by the filesystem that owns the page
363 * for its own purposes.
364 * - PG_private and PG_private_2 cause releasepage() and co to be invoked
365 */
366 PAGEFLAG(Private, private, PF_ANY)
367 PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
368 PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
369 TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
370
371 /*
372 * Only test-and-set exist for PG_writeback. The unconditional operators are
373 * risky: they bypass page accounting.
374 */
375 TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
376 TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
377 PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
378
379 /* PG_readahead is only used for reads; PG_reclaim is only for writes */
380 PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
381 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
382 PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND)
383 TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND)
384
385 #ifdef CONFIG_HIGHMEM
386 /*
387 * Must use a macro here due to header dependency issues. page_zone() is not
388 * available at this point.
389 */
390 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
391 #else
392 PAGEFLAG_FALSE(HighMem)
393 #endif
394
395 #ifdef CONFIG_SWAP
396 static __always_inline int PageSwapCache(struct page *page)
397 {
398 #ifdef CONFIG_THP_SWAP
399 page = compound_head(page);
400 #endif
401 return PageSwapBacked(page) && test_bit(PG_swapcache, &page->flags);
402
403 }
404 SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
405 CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
406 #else
407 PAGEFLAG_FALSE(SwapCache)
408 #endif
409
410 PAGEFLAG(Unevictable, unevictable, PF_HEAD)
411 __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
412 TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
413
414 #ifdef CONFIG_MMU
415 PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
416 __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
417 TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
418 #else
419 PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked)
420 TESTSCFLAG_FALSE(Mlocked)
421 #endif
422
423 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
424 PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
425 #else
426 PAGEFLAG_FALSE(Uncached)
427 #endif
428
429 #ifdef CONFIG_MEMORY_FAILURE
430 PAGEFLAG(HWPoison, hwpoison, PF_ANY)
431 TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
432 #define __PG_HWPOISON (1UL << PG_hwpoison)
433 extern bool take_page_off_buddy(struct page *page);
434 #else
435 PAGEFLAG_FALSE(HWPoison)
436 #define __PG_HWPOISON 0
437 #endif
438
439 #if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
440 TESTPAGEFLAG(Young, young, PF_ANY)
441 SETPAGEFLAG(Young, young, PF_ANY)
442 TESTCLEARFLAG(Young, young, PF_ANY)
443 PAGEFLAG(Idle, idle, PF_ANY)
444 #endif
445
446 /*
447 * PageReported() is used to track reported free pages within the Buddy
448 * allocator. We can use the non-atomic version of the test and set
449 * operations as both should be shielded with the zone lock to prevent
450 * any possible races on the setting or clearing of the bit.
451 */
452 __PAGEFLAG(Reported, reported, PF_NO_COMPOUND)
453
454 /*
455 * On an anonymous page mapped into a user virtual memory area,
456 * page->mapping points to its anon_vma, not to a struct address_space;
457 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
458 *
459 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
460 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
461 * bit; and then page->mapping points, not to an anon_vma, but to a private
462 * structure which KSM associates with that merged page. See ksm.h.
463 *
464 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
465 * page and then page->mapping points a struct address_space.
466 *
467 * Please note that, confusingly, "page_mapping" refers to the inode
468 * address_space which maps the page from disk; whereas "page_mapped"
469 * refers to user virtual address space into which the page is mapped.
470 */
471 #define PAGE_MAPPING_ANON 0x1
472 #define PAGE_MAPPING_MOVABLE 0x2
473 #define PAGE_MAPPING_KSM (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
474 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
475
476 static __always_inline int PageMappingFlags(struct page *page)
477 {
478 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
479 }
480
481 static __always_inline int PageAnon(struct page *page)
482 {
483 page = compound_head(page);
484 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
485 }
486
487 static __always_inline int __PageMovable(struct page *page)
488 {
489 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
490 PAGE_MAPPING_MOVABLE;
491 }
492
493 #ifdef CONFIG_KSM
494 /*
495 * A KSM page is one of those write-protected "shared pages" or "merged pages"
496 * which KSM maps into multiple mms, wherever identical anonymous page content
497 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any
498 * anon_vma, but to that page's node of the stable tree.
499 */
500 static __always_inline int PageKsm(struct page *page)
501 {
502 page = compound_head(page);
503 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
504 PAGE_MAPPING_KSM;
505 }
506 #else
507 TESTPAGEFLAG_FALSE(Ksm)
508 #endif
509
510 u64 stable_page_flags(struct page *page);
511
512 static inline int PageUptodate(struct page *page)
513 {
514 int ret;
515 page = compound_head(page);
516 ret = test_bit(PG_uptodate, &(page)->flags);
517 /*
518 * Must ensure that the data we read out of the page is loaded
519 * _after_ we've loaded page->flags to check for PageUptodate.
520 * We can skip the barrier if the page is not uptodate, because
521 * we wouldn't be reading anything from it.
522 *
523 * See SetPageUptodate() for the other side of the story.
524 */
525 if (ret)
526 smp_rmb();
527
528 return ret;
529 }
530
531 static __always_inline void __SetPageUptodate(struct page *page)
532 {
533 VM_BUG_ON_PAGE(PageTail(page), page);
534 smp_wmb();
535 __set_bit(PG_uptodate, &page->flags);
536 }
537
538 static __always_inline void SetPageUptodate(struct page *page)
539 {
540 VM_BUG_ON_PAGE(PageTail(page), page);
541 /*
542 * Memory barrier must be issued before setting the PG_uptodate bit,
543 * so that all previous stores issued in order to bring the page
544 * uptodate are actually visible before PageUptodate becomes true.
545 */
546 smp_wmb();
547 set_bit(PG_uptodate, &page->flags);
548 }
549
550 CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
551
552 int test_clear_page_writeback(struct page *page);
553 int __test_set_page_writeback(struct page *page, bool keep_write);
554
555 #define test_set_page_writeback(page) \
556 __test_set_page_writeback(page, false)
557 #define test_set_page_writeback_keepwrite(page) \
558 __test_set_page_writeback(page, true)
559
560 static inline void set_page_writeback(struct page *page)
561 {
562 test_set_page_writeback(page);
563 }
564
565 static inline void set_page_writeback_keepwrite(struct page *page)
566 {
567 test_set_page_writeback_keepwrite(page);
568 }
569
570 __PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY)
571
572 static __always_inline void set_compound_head(struct page *page, struct page *head)
573 {
574 WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
575 }
576
577 static __always_inline void clear_compound_head(struct page *page)
578 {
579 WRITE_ONCE(page->compound_head, 0);
580 }
581
582 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
583 static inline void ClearPageCompound(struct page *page)
584 {
585 BUG_ON(!PageHead(page));
586 ClearPageHead(page);
587 }
588 #endif
589
590 #define PG_head_mask ((1UL << PG_head))
591
592 #ifdef CONFIG_HUGETLB_PAGE
593 int PageHuge(struct page *page);
594 int PageHeadHuge(struct page *page);
595 #else
596 TESTPAGEFLAG_FALSE(Huge)
597 TESTPAGEFLAG_FALSE(HeadHuge)
598 #endif
599
600
601 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
602 /*
603 * PageHuge() only returns true for hugetlbfs pages, but not for
604 * normal or transparent huge pages.
605 *
606 * PageTransHuge() returns true for both transparent huge and
607 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
608 * called only in the core VM paths where hugetlbfs pages can't exist.
609 */
610 static inline int PageTransHuge(struct page *page)
611 {
612 VM_BUG_ON_PAGE(PageTail(page), page);
613 return PageHead(page);
614 }
615
616 /*
617 * PageTransCompound returns true for both transparent huge pages
618 * and hugetlbfs pages, so it should only be called when it's known
619 * that hugetlbfs pages aren't involved.
620 */
621 static inline int PageTransCompound(struct page *page)
622 {
623 return PageCompound(page);
624 }
625
626 /*
627 * PageTransCompoundMap is the same as PageTransCompound, but it also
628 * guarantees the primary MMU has the entire compound page mapped
629 * through pmd_trans_huge, which in turn guarantees the secondary MMUs
630 * can also map the entire compound page. This allows the secondary
631 * MMUs to call get_user_pages() only once for each compound page and
632 * to immediately map the entire compound page with a single secondary
633 * MMU fault. If there will be a pmd split later, the secondary MMUs
634 * will get an update through the MMU notifier invalidation through
635 * split_huge_pmd().
636 *
637 * Unlike PageTransCompound, this is safe to be called only while
638 * split_huge_pmd() cannot run from under us, like if protected by the
639 * MMU notifier, otherwise it may result in page->_mapcount check false
640 * positives.
641 *
642 * We have to treat page cache THP differently since every subpage of it
643 * would get _mapcount inc'ed once it is PMD mapped. But, it may be PTE
644 * mapped in the current process so comparing subpage's _mapcount to
645 * compound_mapcount to filter out PTE mapped case.
646 */
647 static inline int PageTransCompoundMap(struct page *page)
648 {
649 struct page *head;
650
651 if (!PageTransCompound(page))
652 return 0;
653
654 if (PageAnon(page))
655 return atomic_read(&page->_mapcount) < 0;
656
657 head = compound_head(page);
658 /* File THP is PMD mapped and not PTE mapped */
659 return atomic_read(&page->_mapcount) ==
660 atomic_read(compound_mapcount_ptr(head));
661 }
662
663 /*
664 * PageTransTail returns true for both transparent huge pages
665 * and hugetlbfs pages, so it should only be called when it's known
666 * that hugetlbfs pages aren't involved.
667 */
668 static inline int PageTransTail(struct page *page)
669 {
670 return PageTail(page);
671 }
672
673 /*
674 * PageDoubleMap indicates that the compound page is mapped with PTEs as well
675 * as PMDs.
676 *
677 * This is required for optimization of rmap operations for THP: we can postpone
678 * per small page mapcount accounting (and its overhead from atomic operations)
679 * until the first PMD split.
680 *
681 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up
682 * by one. This reference will go away with last compound_mapcount.
683 *
684 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap().
685 */
686 PAGEFLAG(DoubleMap, double_map, PF_SECOND)
687 TESTSCFLAG(DoubleMap, double_map, PF_SECOND)
688 #else
689 TESTPAGEFLAG_FALSE(TransHuge)
690 TESTPAGEFLAG_FALSE(TransCompound)
691 TESTPAGEFLAG_FALSE(TransCompoundMap)
692 TESTPAGEFLAG_FALSE(TransTail)
693 PAGEFLAG_FALSE(DoubleMap)
694 TESTSCFLAG_FALSE(DoubleMap)
695 #endif
696
697 /*
698 * For pages that are never mapped to userspace (and aren't PageSlab),
699 * page_type may be used. Because it is initialised to -1, we invert the
700 * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and
701 * __ClearPageFoo *sets* the bit used for PageFoo. We reserve a few high and
702 * low bits so that an underflow or overflow of page_mapcount() won't be
703 * mistaken for a page type value.
704 */
705
706 #define PAGE_TYPE_BASE 0xf0000000
707 /* Reserve 0x0000007f to catch underflows of page_mapcount */
708 #define PAGE_MAPCOUNT_RESERVE -128
709 #define PG_buddy 0x00000080
710 #define PG_offline 0x00000100
711 #define PG_table 0x00000200
712 #define PG_guard 0x00000400
713
714 #define PageType(page, flag) \
715 ((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE)
716
717 static inline int page_has_type(struct page *page)
718 {
719 return (int)page->page_type < PAGE_MAPCOUNT_RESERVE;
720 }
721
722 #define PAGE_TYPE_OPS(uname, lname) \
723 static __always_inline int Page##uname(struct page *page) \
724 { \
725 return PageType(page, PG_##lname); \
726 } \
727 static __always_inline void __SetPage##uname(struct page *page) \
728 { \
729 VM_BUG_ON_PAGE(!PageType(page, 0), page); \
730 page->page_type &= ~PG_##lname; \
731 } \
732 static __always_inline void __ClearPage##uname(struct page *page) \
733 { \
734 VM_BUG_ON_PAGE(!Page##uname(page), page); \
735 page->page_type |= PG_##lname; \
736 }
737
738 /*
739 * PageBuddy() indicates that the page is free and in the buddy system
740 * (see mm/page_alloc.c).
741 */
742 PAGE_TYPE_OPS(Buddy, buddy)
743
744 /*
745 * PageOffline() indicates that the page is logically offline although the
746 * containing section is online. (e.g. inflated in a balloon driver or
747 * not onlined when onlining the section).
748 * The content of these pages is effectively stale. Such pages should not
749 * be touched (read/write/dump/save) except by their owner.
750 *
751 * If a driver wants to allow to offline unmovable PageOffline() pages without
752 * putting them back to the buddy, it can do so via the memory notifier by
753 * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the
754 * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline()
755 * pages (now with a reference count of zero) are treated like free pages,
756 * allowing the containing memory block to get offlined. A driver that
757 * relies on this feature is aware that re-onlining the memory block will
758 * require to re-set the pages PageOffline() and not giving them to the
759 * buddy via online_page_callback_t.
760 */
761 PAGE_TYPE_OPS(Offline, offline)
762
763 /*
764 * Marks pages in use as page tables.
765 */
766 PAGE_TYPE_OPS(Table, table)
767
768 /*
769 * Marks guardpages used with debug_pagealloc.
770 */
771 PAGE_TYPE_OPS(Guard, guard)
772
773 extern bool is_free_buddy_page(struct page *page);
774
775 __PAGEFLAG(Isolated, isolated, PF_ANY);
776
777 /*
778 * If network-based swap is enabled, sl*b must keep track of whether pages
779 * were allocated from pfmemalloc reserves.
780 */
781 static inline int PageSlabPfmemalloc(struct page *page)
782 {
783 VM_BUG_ON_PAGE(!PageSlab(page), page);
784 return PageActive(page);
785 }
786
787 static inline void SetPageSlabPfmemalloc(struct page *page)
788 {
789 VM_BUG_ON_PAGE(!PageSlab(page), page);
790 SetPageActive(page);
791 }
792
793 static inline void __ClearPageSlabPfmemalloc(struct page *page)
794 {
795 VM_BUG_ON_PAGE(!PageSlab(page), page);
796 __ClearPageActive(page);
797 }
798
799 static inline void ClearPageSlabPfmemalloc(struct page *page)
800 {
801 VM_BUG_ON_PAGE(!PageSlab(page), page);
802 ClearPageActive(page);
803 }
804
805 #ifdef CONFIG_MMU
806 #define __PG_MLOCKED (1UL << PG_mlocked)
807 #else
808 #define __PG_MLOCKED 0
809 #endif
810
811 /*
812 * Flags checked when a page is freed. Pages being freed should not have
813 * these flags set. If they are, there is a problem.
814 */
815 #define PAGE_FLAGS_CHECK_AT_FREE \
816 (1UL << PG_lru | 1UL << PG_locked | \
817 1UL << PG_private | 1UL << PG_private_2 | \
818 1UL << PG_writeback | 1UL << PG_reserved | \
819 1UL << PG_slab | 1UL << PG_active | \
820 1UL << PG_unevictable | __PG_MLOCKED)
821
822 /*
823 * Flags checked when a page is prepped for return by the page allocator.
824 * Pages being prepped should not have these flags set. If they are set,
825 * there has been a kernel bug or struct page corruption.
826 *
827 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
828 * alloc-free cycle to prevent from reusing the page.
829 */
830 #define PAGE_FLAGS_CHECK_AT_PREP \
831 (((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON)
832
833 #define PAGE_FLAGS_PRIVATE \
834 (1UL << PG_private | 1UL << PG_private_2)
835 /**
836 * page_has_private - Determine if page has private stuff
837 * @page: The page to be checked
838 *
839 * Determine if a page has private stuff, indicating that release routines
840 * should be invoked upon it.
841 */
842 static inline int page_has_private(struct page *page)
843 {
844 return !!(page->flags & PAGE_FLAGS_PRIVATE);
845 }
846
847 #undef PF_ANY
848 #undef PF_HEAD
849 #undef PF_ONLY_HEAD
850 #undef PF_NO_TAIL
851 #undef PF_NO_COMPOUND
852 #undef PF_SECOND
853 #endif /* !__GENERATING_BOUNDS_H */
854
855 #endif /* PAGE_FLAGS_H */