]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/page-flags.h
Merge branch 'pm-cpufreq'
[mirror_ubuntu-bionic-kernel.git] / include / linux / page-flags.h
1 /*
2 * Macros for manipulating and testing page->flags
3 */
4
5 #ifndef PAGE_FLAGS_H
6 #define PAGE_FLAGS_H
7
8 #include <linux/types.h>
9 #include <linux/bug.h>
10 #include <linux/mmdebug.h>
11 #ifndef __GENERATING_BOUNDS_H
12 #include <linux/mm_types.h>
13 #include <generated/bounds.h>
14 #endif /* !__GENERATING_BOUNDS_H */
15
16 /*
17 * Various page->flags bits:
18 *
19 * PG_reserved is set for special pages, which can never be swapped out. Some
20 * of them might not even exist (eg empty_bad_page)...
21 *
22 * The PG_private bitflag is set on pagecache pages if they contain filesystem
23 * specific data (which is normally at page->private). It can be used by
24 * private allocations for its own usage.
25 *
26 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
27 * and cleared when writeback _starts_ or when read _completes_. PG_writeback
28 * is set before writeback starts and cleared when it finishes.
29 *
30 * PG_locked also pins a page in pagecache, and blocks truncation of the file
31 * while it is held.
32 *
33 * page_waitqueue(page) is a wait queue of all tasks waiting for the page
34 * to become unlocked.
35 *
36 * PG_uptodate tells whether the page's contents is valid. When a read
37 * completes, the page becomes uptodate, unless a disk I/O error happened.
38 *
39 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
40 * file-backed pagecache (see mm/vmscan.c).
41 *
42 * PG_error is set to indicate that an I/O error occurred on this page.
43 *
44 * PG_arch_1 is an architecture specific page state bit. The generic code
45 * guarantees that this bit is cleared for a page when it first is entered into
46 * the page cache.
47 *
48 * PG_highmem pages are not permanently mapped into the kernel virtual address
49 * space, they need to be kmapped separately for doing IO on the pages. The
50 * struct page (these bits with information) are always mapped into kernel
51 * address space...
52 *
53 * PG_hwpoison indicates that a page got corrupted in hardware and contains
54 * data with incorrect ECC bits that triggered a machine check. Accessing is
55 * not safe since it may cause another machine check. Don't touch!
56 */
57
58 /*
59 * Don't use the *_dontuse flags. Use the macros. Otherwise you'll break
60 * locked- and dirty-page accounting.
61 *
62 * The page flags field is split into two parts, the main flags area
63 * which extends from the low bits upwards, and the fields area which
64 * extends from the high bits downwards.
65 *
66 * | FIELD | ... | FLAGS |
67 * N-1 ^ 0
68 * (NR_PAGEFLAGS)
69 *
70 * The fields area is reserved for fields mapping zone, node (for NUMA) and
71 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
72 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
73 */
74 enum pageflags {
75 PG_locked, /* Page is locked. Don't touch. */
76 PG_error,
77 PG_referenced,
78 PG_uptodate,
79 PG_dirty,
80 PG_lru,
81 PG_active,
82 PG_waiters, /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
83 PG_slab,
84 PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/
85 PG_arch_1,
86 PG_reserved,
87 PG_private, /* If pagecache, has fs-private data */
88 PG_private_2, /* If pagecache, has fs aux data */
89 PG_writeback, /* Page is under writeback */
90 PG_head, /* A head page */
91 PG_mappedtodisk, /* Has blocks allocated on-disk */
92 PG_reclaim, /* To be reclaimed asap */
93 PG_swapbacked, /* Page is backed by RAM/swap */
94 PG_unevictable, /* Page is "unevictable" */
95 #ifdef CONFIG_MMU
96 PG_mlocked, /* Page is vma mlocked */
97 #endif
98 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
99 PG_uncached, /* Page has been mapped as uncached */
100 #endif
101 #ifdef CONFIG_MEMORY_FAILURE
102 PG_hwpoison, /* hardware poisoned page. Don't touch */
103 #endif
104 #if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
105 PG_young,
106 PG_idle,
107 #endif
108 __NR_PAGEFLAGS,
109
110 /* Filesystems */
111 PG_checked = PG_owner_priv_1,
112
113 /* SwapBacked */
114 PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */
115
116 /* Two page bits are conscripted by FS-Cache to maintain local caching
117 * state. These bits are set on pages belonging to the netfs's inodes
118 * when those inodes are being locally cached.
119 */
120 PG_fscache = PG_private_2, /* page backed by cache */
121
122 /* XEN */
123 /* Pinned in Xen as a read-only pagetable page. */
124 PG_pinned = PG_owner_priv_1,
125 /* Pinned as part of domain save (see xen_mm_pin_all()). */
126 PG_savepinned = PG_dirty,
127 /* Has a grant mapping of another (foreign) domain's page. */
128 PG_foreign = PG_owner_priv_1,
129
130 /* SLOB */
131 PG_slob_free = PG_private,
132
133 /* Compound pages. Stored in first tail page's flags */
134 PG_double_map = PG_private_2,
135
136 /* non-lru isolated movable page */
137 PG_isolated = PG_reclaim,
138 };
139
140 #ifndef __GENERATING_BOUNDS_H
141
142 struct page; /* forward declaration */
143
144 static inline struct page *compound_head(struct page *page)
145 {
146 unsigned long head = READ_ONCE(page->compound_head);
147
148 if (unlikely(head & 1))
149 return (struct page *) (head - 1);
150 return page;
151 }
152
153 static __always_inline int PageTail(struct page *page)
154 {
155 return READ_ONCE(page->compound_head) & 1;
156 }
157
158 static __always_inline int PageCompound(struct page *page)
159 {
160 return test_bit(PG_head, &page->flags) || PageTail(page);
161 }
162
163 /*
164 * Page flags policies wrt compound pages
165 *
166 * PF_ANY:
167 * the page flag is relevant for small, head and tail pages.
168 *
169 * PF_HEAD:
170 * for compound page all operations related to the page flag applied to
171 * head page.
172 *
173 * PF_ONLY_HEAD:
174 * for compound page, callers only ever operate on the head page.
175 *
176 * PF_NO_TAIL:
177 * modifications of the page flag must be done on small or head pages,
178 * checks can be done on tail pages too.
179 *
180 * PF_NO_COMPOUND:
181 * the page flag is not relevant for compound pages.
182 */
183 #define PF_ANY(page, enforce) page
184 #define PF_HEAD(page, enforce) compound_head(page)
185 #define PF_ONLY_HEAD(page, enforce) ({ \
186 VM_BUG_ON_PGFLAGS(PageTail(page), page); \
187 page;})
188 #define PF_NO_TAIL(page, enforce) ({ \
189 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \
190 compound_head(page);})
191 #define PF_NO_COMPOUND(page, enforce) ({ \
192 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \
193 page;})
194
195 /*
196 * Macros to create function definitions for page flags
197 */
198 #define TESTPAGEFLAG(uname, lname, policy) \
199 static __always_inline int Page##uname(struct page *page) \
200 { return test_bit(PG_##lname, &policy(page, 0)->flags); }
201
202 #define SETPAGEFLAG(uname, lname, policy) \
203 static __always_inline void SetPage##uname(struct page *page) \
204 { set_bit(PG_##lname, &policy(page, 1)->flags); }
205
206 #define CLEARPAGEFLAG(uname, lname, policy) \
207 static __always_inline void ClearPage##uname(struct page *page) \
208 { clear_bit(PG_##lname, &policy(page, 1)->flags); }
209
210 #define __SETPAGEFLAG(uname, lname, policy) \
211 static __always_inline void __SetPage##uname(struct page *page) \
212 { __set_bit(PG_##lname, &policy(page, 1)->flags); }
213
214 #define __CLEARPAGEFLAG(uname, lname, policy) \
215 static __always_inline void __ClearPage##uname(struct page *page) \
216 { __clear_bit(PG_##lname, &policy(page, 1)->flags); }
217
218 #define TESTSETFLAG(uname, lname, policy) \
219 static __always_inline int TestSetPage##uname(struct page *page) \
220 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
221
222 #define TESTCLEARFLAG(uname, lname, policy) \
223 static __always_inline int TestClearPage##uname(struct page *page) \
224 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
225
226 #define PAGEFLAG(uname, lname, policy) \
227 TESTPAGEFLAG(uname, lname, policy) \
228 SETPAGEFLAG(uname, lname, policy) \
229 CLEARPAGEFLAG(uname, lname, policy)
230
231 #define __PAGEFLAG(uname, lname, policy) \
232 TESTPAGEFLAG(uname, lname, policy) \
233 __SETPAGEFLAG(uname, lname, policy) \
234 __CLEARPAGEFLAG(uname, lname, policy)
235
236 #define TESTSCFLAG(uname, lname, policy) \
237 TESTSETFLAG(uname, lname, policy) \
238 TESTCLEARFLAG(uname, lname, policy)
239
240 #define TESTPAGEFLAG_FALSE(uname) \
241 static inline int Page##uname(const struct page *page) { return 0; }
242
243 #define SETPAGEFLAG_NOOP(uname) \
244 static inline void SetPage##uname(struct page *page) { }
245
246 #define CLEARPAGEFLAG_NOOP(uname) \
247 static inline void ClearPage##uname(struct page *page) { }
248
249 #define __CLEARPAGEFLAG_NOOP(uname) \
250 static inline void __ClearPage##uname(struct page *page) { }
251
252 #define TESTSETFLAG_FALSE(uname) \
253 static inline int TestSetPage##uname(struct page *page) { return 0; }
254
255 #define TESTCLEARFLAG_FALSE(uname) \
256 static inline int TestClearPage##uname(struct page *page) { return 0; }
257
258 #define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname) \
259 SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname)
260
261 #define TESTSCFLAG_FALSE(uname) \
262 TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname)
263
264 __PAGEFLAG(Locked, locked, PF_NO_TAIL)
265 PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD)
266 PAGEFLAG(Error, error, PF_NO_COMPOUND) TESTCLEARFLAG(Error, error, PF_NO_COMPOUND)
267 PAGEFLAG(Referenced, referenced, PF_HEAD)
268 TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
269 __SETPAGEFLAG(Referenced, referenced, PF_HEAD)
270 PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
271 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
272 PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
273 PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
274 TESTCLEARFLAG(Active, active, PF_HEAD)
275 __PAGEFLAG(Slab, slab, PF_NO_TAIL)
276 __PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL)
277 PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */
278
279 /* Xen */
280 PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
281 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
282 PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
283 PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
284
285 PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
286 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
287 PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
288 __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
289 __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
290
291 /*
292 * Private page markings that may be used by the filesystem that owns the page
293 * for its own purposes.
294 * - PG_private and PG_private_2 cause releasepage() and co to be invoked
295 */
296 PAGEFLAG(Private, private, PF_ANY) __SETPAGEFLAG(Private, private, PF_ANY)
297 __CLEARPAGEFLAG(Private, private, PF_ANY)
298 PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
299 PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
300 TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
301
302 /*
303 * Only test-and-set exist for PG_writeback. The unconditional operators are
304 * risky: they bypass page accounting.
305 */
306 TESTPAGEFLAG(Writeback, writeback, PF_NO_COMPOUND)
307 TESTSCFLAG(Writeback, writeback, PF_NO_COMPOUND)
308 PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
309
310 /* PG_readahead is only used for reads; PG_reclaim is only for writes */
311 PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
312 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
313 PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND)
314 TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND)
315
316 #ifdef CONFIG_HIGHMEM
317 /*
318 * Must use a macro here due to header dependency issues. page_zone() is not
319 * available at this point.
320 */
321 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
322 #else
323 PAGEFLAG_FALSE(HighMem)
324 #endif
325
326 #ifdef CONFIG_SWAP
327 static __always_inline int PageSwapCache(struct page *page)
328 {
329 return PageSwapBacked(page) && test_bit(PG_swapcache, &page->flags);
330
331 }
332 SETPAGEFLAG(SwapCache, swapcache, PF_NO_COMPOUND)
333 CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_COMPOUND)
334 #else
335 PAGEFLAG_FALSE(SwapCache)
336 #endif
337
338 PAGEFLAG(Unevictable, unevictable, PF_HEAD)
339 __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
340 TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
341
342 #ifdef CONFIG_MMU
343 PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
344 __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
345 TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
346 #else
347 PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked)
348 TESTSCFLAG_FALSE(Mlocked)
349 #endif
350
351 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
352 PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
353 #else
354 PAGEFLAG_FALSE(Uncached)
355 #endif
356
357 #ifdef CONFIG_MEMORY_FAILURE
358 PAGEFLAG(HWPoison, hwpoison, PF_ANY)
359 TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
360 #define __PG_HWPOISON (1UL << PG_hwpoison)
361 #else
362 PAGEFLAG_FALSE(HWPoison)
363 #define __PG_HWPOISON 0
364 #endif
365
366 #if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
367 TESTPAGEFLAG(Young, young, PF_ANY)
368 SETPAGEFLAG(Young, young, PF_ANY)
369 TESTCLEARFLAG(Young, young, PF_ANY)
370 PAGEFLAG(Idle, idle, PF_ANY)
371 #endif
372
373 /*
374 * On an anonymous page mapped into a user virtual memory area,
375 * page->mapping points to its anon_vma, not to a struct address_space;
376 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
377 *
378 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
379 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
380 * bit; and then page->mapping points, not to an anon_vma, but to a private
381 * structure which KSM associates with that merged page. See ksm.h.
382 *
383 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
384 * page and then page->mapping points a struct address_space.
385 *
386 * Please note that, confusingly, "page_mapping" refers to the inode
387 * address_space which maps the page from disk; whereas "page_mapped"
388 * refers to user virtual address space into which the page is mapped.
389 */
390 #define PAGE_MAPPING_ANON 0x1
391 #define PAGE_MAPPING_MOVABLE 0x2
392 #define PAGE_MAPPING_KSM (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
393 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
394
395 static __always_inline int PageMappingFlags(struct page *page)
396 {
397 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
398 }
399
400 static __always_inline int PageAnon(struct page *page)
401 {
402 page = compound_head(page);
403 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
404 }
405
406 static __always_inline int __PageMovable(struct page *page)
407 {
408 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
409 PAGE_MAPPING_MOVABLE;
410 }
411
412 #ifdef CONFIG_KSM
413 /*
414 * A KSM page is one of those write-protected "shared pages" or "merged pages"
415 * which KSM maps into multiple mms, wherever identical anonymous page content
416 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any
417 * anon_vma, but to that page's node of the stable tree.
418 */
419 static __always_inline int PageKsm(struct page *page)
420 {
421 page = compound_head(page);
422 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
423 PAGE_MAPPING_KSM;
424 }
425 #else
426 TESTPAGEFLAG_FALSE(Ksm)
427 #endif
428
429 u64 stable_page_flags(struct page *page);
430
431 static inline int PageUptodate(struct page *page)
432 {
433 int ret;
434 page = compound_head(page);
435 ret = test_bit(PG_uptodate, &(page)->flags);
436 /*
437 * Must ensure that the data we read out of the page is loaded
438 * _after_ we've loaded page->flags to check for PageUptodate.
439 * We can skip the barrier if the page is not uptodate, because
440 * we wouldn't be reading anything from it.
441 *
442 * See SetPageUptodate() for the other side of the story.
443 */
444 if (ret)
445 smp_rmb();
446
447 return ret;
448 }
449
450 static __always_inline void __SetPageUptodate(struct page *page)
451 {
452 VM_BUG_ON_PAGE(PageTail(page), page);
453 smp_wmb();
454 __set_bit(PG_uptodate, &page->flags);
455 }
456
457 static __always_inline void SetPageUptodate(struct page *page)
458 {
459 VM_BUG_ON_PAGE(PageTail(page), page);
460 /*
461 * Memory barrier must be issued before setting the PG_uptodate bit,
462 * so that all previous stores issued in order to bring the page
463 * uptodate are actually visible before PageUptodate becomes true.
464 */
465 smp_wmb();
466 set_bit(PG_uptodate, &page->flags);
467 }
468
469 CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
470
471 int test_clear_page_writeback(struct page *page);
472 int __test_set_page_writeback(struct page *page, bool keep_write);
473
474 #define test_set_page_writeback(page) \
475 __test_set_page_writeback(page, false)
476 #define test_set_page_writeback_keepwrite(page) \
477 __test_set_page_writeback(page, true)
478
479 static inline void set_page_writeback(struct page *page)
480 {
481 test_set_page_writeback(page);
482 }
483
484 static inline void set_page_writeback_keepwrite(struct page *page)
485 {
486 test_set_page_writeback_keepwrite(page);
487 }
488
489 __PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY)
490
491 static __always_inline void set_compound_head(struct page *page, struct page *head)
492 {
493 WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
494 }
495
496 static __always_inline void clear_compound_head(struct page *page)
497 {
498 WRITE_ONCE(page->compound_head, 0);
499 }
500
501 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
502 static inline void ClearPageCompound(struct page *page)
503 {
504 BUG_ON(!PageHead(page));
505 ClearPageHead(page);
506 }
507 #endif
508
509 #define PG_head_mask ((1UL << PG_head))
510
511 #ifdef CONFIG_HUGETLB_PAGE
512 int PageHuge(struct page *page);
513 int PageHeadHuge(struct page *page);
514 bool page_huge_active(struct page *page);
515 #else
516 TESTPAGEFLAG_FALSE(Huge)
517 TESTPAGEFLAG_FALSE(HeadHuge)
518
519 static inline bool page_huge_active(struct page *page)
520 {
521 return 0;
522 }
523 #endif
524
525
526 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
527 /*
528 * PageHuge() only returns true for hugetlbfs pages, but not for
529 * normal or transparent huge pages.
530 *
531 * PageTransHuge() returns true for both transparent huge and
532 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
533 * called only in the core VM paths where hugetlbfs pages can't exist.
534 */
535 static inline int PageTransHuge(struct page *page)
536 {
537 VM_BUG_ON_PAGE(PageTail(page), page);
538 return PageHead(page);
539 }
540
541 /*
542 * PageTransCompound returns true for both transparent huge pages
543 * and hugetlbfs pages, so it should only be called when it's known
544 * that hugetlbfs pages aren't involved.
545 */
546 static inline int PageTransCompound(struct page *page)
547 {
548 return PageCompound(page);
549 }
550
551 /*
552 * PageTransCompoundMap is the same as PageTransCompound, but it also
553 * guarantees the primary MMU has the entire compound page mapped
554 * through pmd_trans_huge, which in turn guarantees the secondary MMUs
555 * can also map the entire compound page. This allows the secondary
556 * MMUs to call get_user_pages() only once for each compound page and
557 * to immediately map the entire compound page with a single secondary
558 * MMU fault. If there will be a pmd split later, the secondary MMUs
559 * will get an update through the MMU notifier invalidation through
560 * split_huge_pmd().
561 *
562 * Unlike PageTransCompound, this is safe to be called only while
563 * split_huge_pmd() cannot run from under us, like if protected by the
564 * MMU notifier, otherwise it may result in page->_mapcount < 0 false
565 * positives.
566 */
567 static inline int PageTransCompoundMap(struct page *page)
568 {
569 return PageTransCompound(page) && atomic_read(&page->_mapcount) < 0;
570 }
571
572 /*
573 * PageTransTail returns true for both transparent huge pages
574 * and hugetlbfs pages, so it should only be called when it's known
575 * that hugetlbfs pages aren't involved.
576 */
577 static inline int PageTransTail(struct page *page)
578 {
579 return PageTail(page);
580 }
581
582 /*
583 * PageDoubleMap indicates that the compound page is mapped with PTEs as well
584 * as PMDs.
585 *
586 * This is required for optimization of rmap operations for THP: we can postpone
587 * per small page mapcount accounting (and its overhead from atomic operations)
588 * until the first PMD split.
589 *
590 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up
591 * by one. This reference will go away with last compound_mapcount.
592 *
593 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap().
594 */
595 static inline int PageDoubleMap(struct page *page)
596 {
597 return PageHead(page) && test_bit(PG_double_map, &page[1].flags);
598 }
599
600 static inline void SetPageDoubleMap(struct page *page)
601 {
602 VM_BUG_ON_PAGE(!PageHead(page), page);
603 set_bit(PG_double_map, &page[1].flags);
604 }
605
606 static inline void ClearPageDoubleMap(struct page *page)
607 {
608 VM_BUG_ON_PAGE(!PageHead(page), page);
609 clear_bit(PG_double_map, &page[1].flags);
610 }
611 static inline int TestSetPageDoubleMap(struct page *page)
612 {
613 VM_BUG_ON_PAGE(!PageHead(page), page);
614 return test_and_set_bit(PG_double_map, &page[1].flags);
615 }
616
617 static inline int TestClearPageDoubleMap(struct page *page)
618 {
619 VM_BUG_ON_PAGE(!PageHead(page), page);
620 return test_and_clear_bit(PG_double_map, &page[1].flags);
621 }
622
623 #else
624 TESTPAGEFLAG_FALSE(TransHuge)
625 TESTPAGEFLAG_FALSE(TransCompound)
626 TESTPAGEFLAG_FALSE(TransCompoundMap)
627 TESTPAGEFLAG_FALSE(TransTail)
628 PAGEFLAG_FALSE(DoubleMap)
629 TESTSETFLAG_FALSE(DoubleMap)
630 TESTCLEARFLAG_FALSE(DoubleMap)
631 #endif
632
633 /*
634 * For pages that are never mapped to userspace, page->mapcount may be
635 * used for storing extra information about page type. Any value used
636 * for this purpose must be <= -2, but it's better start not too close
637 * to -2 so that an underflow of the page_mapcount() won't be mistaken
638 * for a special page.
639 */
640 #define PAGE_MAPCOUNT_OPS(uname, lname) \
641 static __always_inline int Page##uname(struct page *page) \
642 { \
643 return atomic_read(&page->_mapcount) == \
644 PAGE_##lname##_MAPCOUNT_VALUE; \
645 } \
646 static __always_inline void __SetPage##uname(struct page *page) \
647 { \
648 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page); \
649 atomic_set(&page->_mapcount, PAGE_##lname##_MAPCOUNT_VALUE); \
650 } \
651 static __always_inline void __ClearPage##uname(struct page *page) \
652 { \
653 VM_BUG_ON_PAGE(!Page##uname(page), page); \
654 atomic_set(&page->_mapcount, -1); \
655 }
656
657 /*
658 * PageBuddy() indicate that the page is free and in the buddy system
659 * (see mm/page_alloc.c).
660 */
661 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
662 PAGE_MAPCOUNT_OPS(Buddy, BUDDY)
663
664 /*
665 * PageBalloon() is set on pages that are on the balloon page list
666 * (see mm/balloon_compaction.c).
667 */
668 #define PAGE_BALLOON_MAPCOUNT_VALUE (-256)
669 PAGE_MAPCOUNT_OPS(Balloon, BALLOON)
670
671 /*
672 * If kmemcg is enabled, the buddy allocator will set PageKmemcg() on
673 * pages allocated with __GFP_ACCOUNT. It gets cleared on page free.
674 */
675 #define PAGE_KMEMCG_MAPCOUNT_VALUE (-512)
676 PAGE_MAPCOUNT_OPS(Kmemcg, KMEMCG)
677
678 extern bool is_free_buddy_page(struct page *page);
679
680 __PAGEFLAG(Isolated, isolated, PF_ANY);
681
682 /*
683 * If network-based swap is enabled, sl*b must keep track of whether pages
684 * were allocated from pfmemalloc reserves.
685 */
686 static inline int PageSlabPfmemalloc(struct page *page)
687 {
688 VM_BUG_ON_PAGE(!PageSlab(page), page);
689 return PageActive(page);
690 }
691
692 static inline void SetPageSlabPfmemalloc(struct page *page)
693 {
694 VM_BUG_ON_PAGE(!PageSlab(page), page);
695 SetPageActive(page);
696 }
697
698 static inline void __ClearPageSlabPfmemalloc(struct page *page)
699 {
700 VM_BUG_ON_PAGE(!PageSlab(page), page);
701 __ClearPageActive(page);
702 }
703
704 static inline void ClearPageSlabPfmemalloc(struct page *page)
705 {
706 VM_BUG_ON_PAGE(!PageSlab(page), page);
707 ClearPageActive(page);
708 }
709
710 #ifdef CONFIG_MMU
711 #define __PG_MLOCKED (1UL << PG_mlocked)
712 #else
713 #define __PG_MLOCKED 0
714 #endif
715
716 /*
717 * Flags checked when a page is freed. Pages being freed should not have
718 * these flags set. It they are, there is a problem.
719 */
720 #define PAGE_FLAGS_CHECK_AT_FREE \
721 (1UL << PG_lru | 1UL << PG_locked | \
722 1UL << PG_private | 1UL << PG_private_2 | \
723 1UL << PG_writeback | 1UL << PG_reserved | \
724 1UL << PG_slab | 1UL << PG_active | \
725 1UL << PG_unevictable | __PG_MLOCKED)
726
727 /*
728 * Flags checked when a page is prepped for return by the page allocator.
729 * Pages being prepped should not have these flags set. It they are set,
730 * there has been a kernel bug or struct page corruption.
731 *
732 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
733 * alloc-free cycle to prevent from reusing the page.
734 */
735 #define PAGE_FLAGS_CHECK_AT_PREP \
736 (((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON)
737
738 #define PAGE_FLAGS_PRIVATE \
739 (1UL << PG_private | 1UL << PG_private_2)
740 /**
741 * page_has_private - Determine if page has private stuff
742 * @page: The page to be checked
743 *
744 * Determine if a page has private stuff, indicating that release routines
745 * should be invoked upon it.
746 */
747 static inline int page_has_private(struct page *page)
748 {
749 return !!(page->flags & PAGE_FLAGS_PRIVATE);
750 }
751
752 #undef PF_ANY
753 #undef PF_HEAD
754 #undef PF_ONLY_HEAD
755 #undef PF_NO_TAIL
756 #undef PF_NO_COMPOUND
757 #endif /* !__GENERATING_BOUNDS_H */
758
759 #endif /* PAGE_FLAGS_H */