]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/pagemap.h
netfilter: nft_ct: add zone id set support
[mirror_ubuntu-artful-kernel.git] / include / linux / pagemap.h
1 #ifndef _LINUX_PAGEMAP_H
2 #define _LINUX_PAGEMAP_H
3
4 /*
5 * Copyright 1995 Linus Torvalds
6 */
7 #include <linux/mm.h>
8 #include <linux/fs.h>
9 #include <linux/list.h>
10 #include <linux/highmem.h>
11 #include <linux/compiler.h>
12 #include <linux/uaccess.h>
13 #include <linux/gfp.h>
14 #include <linux/bitops.h>
15 #include <linux/hardirq.h> /* for in_interrupt() */
16 #include <linux/hugetlb_inline.h>
17
18 /*
19 * Bits in mapping->flags.
20 */
21 enum mapping_flags {
22 AS_EIO = 0, /* IO error on async write */
23 AS_ENOSPC = 1, /* ENOSPC on async write */
24 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */
25 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */
26 AS_EXITING = 4, /* final truncate in progress */
27 /* writeback related tags are not used */
28 AS_NO_WRITEBACK_TAGS = 5,
29 };
30
31 static inline void mapping_set_error(struct address_space *mapping, int error)
32 {
33 if (unlikely(error)) {
34 if (error == -ENOSPC)
35 set_bit(AS_ENOSPC, &mapping->flags);
36 else
37 set_bit(AS_EIO, &mapping->flags);
38 }
39 }
40
41 static inline void mapping_set_unevictable(struct address_space *mapping)
42 {
43 set_bit(AS_UNEVICTABLE, &mapping->flags);
44 }
45
46 static inline void mapping_clear_unevictable(struct address_space *mapping)
47 {
48 clear_bit(AS_UNEVICTABLE, &mapping->flags);
49 }
50
51 static inline int mapping_unevictable(struct address_space *mapping)
52 {
53 if (mapping)
54 return test_bit(AS_UNEVICTABLE, &mapping->flags);
55 return !!mapping;
56 }
57
58 static inline void mapping_set_exiting(struct address_space *mapping)
59 {
60 set_bit(AS_EXITING, &mapping->flags);
61 }
62
63 static inline int mapping_exiting(struct address_space *mapping)
64 {
65 return test_bit(AS_EXITING, &mapping->flags);
66 }
67
68 static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
69 {
70 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
71 }
72
73 static inline int mapping_use_writeback_tags(struct address_space *mapping)
74 {
75 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
76 }
77
78 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
79 {
80 return mapping->gfp_mask;
81 }
82
83 /* Restricts the given gfp_mask to what the mapping allows. */
84 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
85 gfp_t gfp_mask)
86 {
87 return mapping_gfp_mask(mapping) & gfp_mask;
88 }
89
90 /*
91 * This is non-atomic. Only to be used before the mapping is activated.
92 * Probably needs a barrier...
93 */
94 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
95 {
96 m->gfp_mask = mask;
97 }
98
99 void release_pages(struct page **pages, int nr, bool cold);
100
101 /*
102 * speculatively take a reference to a page.
103 * If the page is free (_refcount == 0), then _refcount is untouched, and 0
104 * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned.
105 *
106 * This function must be called inside the same rcu_read_lock() section as has
107 * been used to lookup the page in the pagecache radix-tree (or page table):
108 * this allows allocators to use a synchronize_rcu() to stabilize _refcount.
109 *
110 * Unless an RCU grace period has passed, the count of all pages coming out
111 * of the allocator must be considered unstable. page_count may return higher
112 * than expected, and put_page must be able to do the right thing when the
113 * page has been finished with, no matter what it is subsequently allocated
114 * for (because put_page is what is used here to drop an invalid speculative
115 * reference).
116 *
117 * This is the interesting part of the lockless pagecache (and lockless
118 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
119 * has the following pattern:
120 * 1. find page in radix tree
121 * 2. conditionally increment refcount
122 * 3. check the page is still in pagecache (if no, goto 1)
123 *
124 * Remove-side that cares about stability of _refcount (eg. reclaim) has the
125 * following (with tree_lock held for write):
126 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
127 * B. remove page from pagecache
128 * C. free the page
129 *
130 * There are 2 critical interleavings that matter:
131 * - 2 runs before A: in this case, A sees elevated refcount and bails out
132 * - A runs before 2: in this case, 2 sees zero refcount and retries;
133 * subsequently, B will complete and 1 will find no page, causing the
134 * lookup to return NULL.
135 *
136 * It is possible that between 1 and 2, the page is removed then the exact same
137 * page is inserted into the same position in pagecache. That's OK: the
138 * old find_get_page using tree_lock could equally have run before or after
139 * such a re-insertion, depending on order that locks are granted.
140 *
141 * Lookups racing against pagecache insertion isn't a big problem: either 1
142 * will find the page or it will not. Likewise, the old find_get_page could run
143 * either before the insertion or afterwards, depending on timing.
144 */
145 static inline int page_cache_get_speculative(struct page *page)
146 {
147 VM_BUG_ON(in_interrupt());
148
149 #ifdef CONFIG_TINY_RCU
150 # ifdef CONFIG_PREEMPT_COUNT
151 VM_BUG_ON(!in_atomic());
152 # endif
153 /*
154 * Preempt must be disabled here - we rely on rcu_read_lock doing
155 * this for us.
156 *
157 * Pagecache won't be truncated from interrupt context, so if we have
158 * found a page in the radix tree here, we have pinned its refcount by
159 * disabling preempt, and hence no need for the "speculative get" that
160 * SMP requires.
161 */
162 VM_BUG_ON_PAGE(page_count(page) == 0, page);
163 page_ref_inc(page);
164
165 #else
166 if (unlikely(!get_page_unless_zero(page))) {
167 /*
168 * Either the page has been freed, or will be freed.
169 * In either case, retry here and the caller should
170 * do the right thing (see comments above).
171 */
172 return 0;
173 }
174 #endif
175 VM_BUG_ON_PAGE(PageTail(page), page);
176
177 return 1;
178 }
179
180 /*
181 * Same as above, but add instead of inc (could just be merged)
182 */
183 static inline int page_cache_add_speculative(struct page *page, int count)
184 {
185 VM_BUG_ON(in_interrupt());
186
187 #if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
188 # ifdef CONFIG_PREEMPT_COUNT
189 VM_BUG_ON(!in_atomic());
190 # endif
191 VM_BUG_ON_PAGE(page_count(page) == 0, page);
192 page_ref_add(page, count);
193
194 #else
195 if (unlikely(!page_ref_add_unless(page, count, 0)))
196 return 0;
197 #endif
198 VM_BUG_ON_PAGE(PageCompound(page) && page != compound_head(page), page);
199
200 return 1;
201 }
202
203 #ifdef CONFIG_NUMA
204 extern struct page *__page_cache_alloc(gfp_t gfp);
205 #else
206 static inline struct page *__page_cache_alloc(gfp_t gfp)
207 {
208 return alloc_pages(gfp, 0);
209 }
210 #endif
211
212 static inline struct page *page_cache_alloc(struct address_space *x)
213 {
214 return __page_cache_alloc(mapping_gfp_mask(x));
215 }
216
217 static inline struct page *page_cache_alloc_cold(struct address_space *x)
218 {
219 return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
220 }
221
222 static inline gfp_t readahead_gfp_mask(struct address_space *x)
223 {
224 return mapping_gfp_mask(x) |
225 __GFP_COLD | __GFP_NORETRY | __GFP_NOWARN;
226 }
227
228 typedef int filler_t(void *, struct page *);
229
230 pgoff_t page_cache_next_hole(struct address_space *mapping,
231 pgoff_t index, unsigned long max_scan);
232 pgoff_t page_cache_prev_hole(struct address_space *mapping,
233 pgoff_t index, unsigned long max_scan);
234
235 #define FGP_ACCESSED 0x00000001
236 #define FGP_LOCK 0x00000002
237 #define FGP_CREAT 0x00000004
238 #define FGP_WRITE 0x00000008
239 #define FGP_NOFS 0x00000010
240 #define FGP_NOWAIT 0x00000020
241
242 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
243 int fgp_flags, gfp_t cache_gfp_mask);
244
245 /**
246 * find_get_page - find and get a page reference
247 * @mapping: the address_space to search
248 * @offset: the page index
249 *
250 * Looks up the page cache slot at @mapping & @offset. If there is a
251 * page cache page, it is returned with an increased refcount.
252 *
253 * Otherwise, %NULL is returned.
254 */
255 static inline struct page *find_get_page(struct address_space *mapping,
256 pgoff_t offset)
257 {
258 return pagecache_get_page(mapping, offset, 0, 0);
259 }
260
261 static inline struct page *find_get_page_flags(struct address_space *mapping,
262 pgoff_t offset, int fgp_flags)
263 {
264 return pagecache_get_page(mapping, offset, fgp_flags, 0);
265 }
266
267 /**
268 * find_lock_page - locate, pin and lock a pagecache page
269 * pagecache_get_page - find and get a page reference
270 * @mapping: the address_space to search
271 * @offset: the page index
272 *
273 * Looks up the page cache slot at @mapping & @offset. If there is a
274 * page cache page, it is returned locked and with an increased
275 * refcount.
276 *
277 * Otherwise, %NULL is returned.
278 *
279 * find_lock_page() may sleep.
280 */
281 static inline struct page *find_lock_page(struct address_space *mapping,
282 pgoff_t offset)
283 {
284 return pagecache_get_page(mapping, offset, FGP_LOCK, 0);
285 }
286
287 /**
288 * find_or_create_page - locate or add a pagecache page
289 * @mapping: the page's address_space
290 * @index: the page's index into the mapping
291 * @gfp_mask: page allocation mode
292 *
293 * Looks up the page cache slot at @mapping & @offset. If there is a
294 * page cache page, it is returned locked and with an increased
295 * refcount.
296 *
297 * If the page is not present, a new page is allocated using @gfp_mask
298 * and added to the page cache and the VM's LRU list. The page is
299 * returned locked and with an increased refcount.
300 *
301 * On memory exhaustion, %NULL is returned.
302 *
303 * find_or_create_page() may sleep, even if @gfp_flags specifies an
304 * atomic allocation!
305 */
306 static inline struct page *find_or_create_page(struct address_space *mapping,
307 pgoff_t offset, gfp_t gfp_mask)
308 {
309 return pagecache_get_page(mapping, offset,
310 FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
311 gfp_mask);
312 }
313
314 /**
315 * grab_cache_page_nowait - returns locked page at given index in given cache
316 * @mapping: target address_space
317 * @index: the page index
318 *
319 * Same as grab_cache_page(), but do not wait if the page is unavailable.
320 * This is intended for speculative data generators, where the data can
321 * be regenerated if the page couldn't be grabbed. This routine should
322 * be safe to call while holding the lock for another page.
323 *
324 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
325 * and deadlock against the caller's locked page.
326 */
327 static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
328 pgoff_t index)
329 {
330 return pagecache_get_page(mapping, index,
331 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
332 mapping_gfp_mask(mapping));
333 }
334
335 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset);
336 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset);
337 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
338 unsigned int nr_entries, struct page **entries,
339 pgoff_t *indices);
340 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
341 unsigned int nr_pages, struct page **pages);
342 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
343 unsigned int nr_pages, struct page **pages);
344 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
345 int tag, unsigned int nr_pages, struct page **pages);
346 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
347 int tag, unsigned int nr_entries,
348 struct page **entries, pgoff_t *indices);
349
350 struct page *grab_cache_page_write_begin(struct address_space *mapping,
351 pgoff_t index, unsigned flags);
352
353 /*
354 * Returns locked page at given index in given cache, creating it if needed.
355 */
356 static inline struct page *grab_cache_page(struct address_space *mapping,
357 pgoff_t index)
358 {
359 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
360 }
361
362 extern struct page * read_cache_page(struct address_space *mapping,
363 pgoff_t index, filler_t *filler, void *data);
364 extern struct page * read_cache_page_gfp(struct address_space *mapping,
365 pgoff_t index, gfp_t gfp_mask);
366 extern int read_cache_pages(struct address_space *mapping,
367 struct list_head *pages, filler_t *filler, void *data);
368
369 static inline struct page *read_mapping_page(struct address_space *mapping,
370 pgoff_t index, void *data)
371 {
372 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
373 return read_cache_page(mapping, index, filler, data);
374 }
375
376 /*
377 * Get index of the page with in radix-tree
378 * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE)
379 */
380 static inline pgoff_t page_to_index(struct page *page)
381 {
382 pgoff_t pgoff;
383
384 if (likely(!PageTransTail(page)))
385 return page->index;
386
387 /*
388 * We don't initialize ->index for tail pages: calculate based on
389 * head page
390 */
391 pgoff = compound_head(page)->index;
392 pgoff += page - compound_head(page);
393 return pgoff;
394 }
395
396 /*
397 * Get the offset in PAGE_SIZE.
398 * (TODO: hugepage should have ->index in PAGE_SIZE)
399 */
400 static inline pgoff_t page_to_pgoff(struct page *page)
401 {
402 if (unlikely(PageHeadHuge(page)))
403 return page->index << compound_order(page);
404
405 return page_to_index(page);
406 }
407
408 /*
409 * Return byte-offset into filesystem object for page.
410 */
411 static inline loff_t page_offset(struct page *page)
412 {
413 return ((loff_t)page->index) << PAGE_SHIFT;
414 }
415
416 static inline loff_t page_file_offset(struct page *page)
417 {
418 return ((loff_t)page_index(page)) << PAGE_SHIFT;
419 }
420
421 extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
422 unsigned long address);
423
424 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
425 unsigned long address)
426 {
427 pgoff_t pgoff;
428 if (unlikely(is_vm_hugetlb_page(vma)))
429 return linear_hugepage_index(vma, address);
430 pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
431 pgoff += vma->vm_pgoff;
432 return pgoff;
433 }
434
435 extern void __lock_page(struct page *page);
436 extern int __lock_page_killable(struct page *page);
437 extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
438 unsigned int flags);
439 extern void unlock_page(struct page *page);
440
441 static inline int trylock_page(struct page *page)
442 {
443 page = compound_head(page);
444 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
445 }
446
447 /*
448 * lock_page may only be called if we have the page's inode pinned.
449 */
450 static inline void lock_page(struct page *page)
451 {
452 might_sleep();
453 if (!trylock_page(page))
454 __lock_page(page);
455 }
456
457 /*
458 * lock_page_killable is like lock_page but can be interrupted by fatal
459 * signals. It returns 0 if it locked the page and -EINTR if it was
460 * killed while waiting.
461 */
462 static inline int lock_page_killable(struct page *page)
463 {
464 might_sleep();
465 if (!trylock_page(page))
466 return __lock_page_killable(page);
467 return 0;
468 }
469
470 /*
471 * lock_page_or_retry - Lock the page, unless this would block and the
472 * caller indicated that it can handle a retry.
473 *
474 * Return value and mmap_sem implications depend on flags; see
475 * __lock_page_or_retry().
476 */
477 static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
478 unsigned int flags)
479 {
480 might_sleep();
481 return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
482 }
483
484 /*
485 * This is exported only for wait_on_page_locked/wait_on_page_writeback,
486 * and for filesystems which need to wait on PG_private.
487 */
488 extern void wait_on_page_bit(struct page *page, int bit_nr);
489 extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
490 extern void wake_up_page_bit(struct page *page, int bit_nr);
491
492 static inline void wake_up_page(struct page *page, int bit)
493 {
494 if (!PageWaiters(page))
495 return;
496 wake_up_page_bit(page, bit);
497 }
498
499 /*
500 * Wait for a page to be unlocked.
501 *
502 * This must be called with the caller "holding" the page,
503 * ie with increased "page->count" so that the page won't
504 * go away during the wait..
505 */
506 static inline void wait_on_page_locked(struct page *page)
507 {
508 if (PageLocked(page))
509 wait_on_page_bit(compound_head(page), PG_locked);
510 }
511
512 static inline int wait_on_page_locked_killable(struct page *page)
513 {
514 if (!PageLocked(page))
515 return 0;
516 return wait_on_page_bit_killable(compound_head(page), PG_locked);
517 }
518
519 /*
520 * Wait for a page to complete writeback
521 */
522 static inline void wait_on_page_writeback(struct page *page)
523 {
524 if (PageWriteback(page))
525 wait_on_page_bit(page, PG_writeback);
526 }
527
528 extern void end_page_writeback(struct page *page);
529 void wait_for_stable_page(struct page *page);
530
531 void page_endio(struct page *page, bool is_write, int err);
532
533 /*
534 * Add an arbitrary waiter to a page's wait queue
535 */
536 extern void add_page_wait_queue(struct page *page, wait_queue_t *waiter);
537
538 /*
539 * Fault everything in given userspace address range in.
540 */
541 static inline int fault_in_pages_writeable(char __user *uaddr, int size)
542 {
543 char __user *end = uaddr + size - 1;
544
545 if (unlikely(size == 0))
546 return 0;
547
548 if (unlikely(uaddr > end))
549 return -EFAULT;
550 /*
551 * Writing zeroes into userspace here is OK, because we know that if
552 * the zero gets there, we'll be overwriting it.
553 */
554 do {
555 if (unlikely(__put_user(0, uaddr) != 0))
556 return -EFAULT;
557 uaddr += PAGE_SIZE;
558 } while (uaddr <= end);
559
560 /* Check whether the range spilled into the next page. */
561 if (((unsigned long)uaddr & PAGE_MASK) ==
562 ((unsigned long)end & PAGE_MASK))
563 return __put_user(0, end);
564
565 return 0;
566 }
567
568 static inline int fault_in_pages_readable(const char __user *uaddr, int size)
569 {
570 volatile char c;
571 const char __user *end = uaddr + size - 1;
572
573 if (unlikely(size == 0))
574 return 0;
575
576 if (unlikely(uaddr > end))
577 return -EFAULT;
578
579 do {
580 if (unlikely(__get_user(c, uaddr) != 0))
581 return -EFAULT;
582 uaddr += PAGE_SIZE;
583 } while (uaddr <= end);
584
585 /* Check whether the range spilled into the next page. */
586 if (((unsigned long)uaddr & PAGE_MASK) ==
587 ((unsigned long)end & PAGE_MASK)) {
588 return __get_user(c, end);
589 }
590
591 (void)c;
592 return 0;
593 }
594
595 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
596 pgoff_t index, gfp_t gfp_mask);
597 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
598 pgoff_t index, gfp_t gfp_mask);
599 extern void delete_from_page_cache(struct page *page);
600 extern void __delete_from_page_cache(struct page *page, void *shadow);
601 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
602
603 /*
604 * Like add_to_page_cache_locked, but used to add newly allocated pages:
605 * the page is new, so we can just run __SetPageLocked() against it.
606 */
607 static inline int add_to_page_cache(struct page *page,
608 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
609 {
610 int error;
611
612 __SetPageLocked(page);
613 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
614 if (unlikely(error))
615 __ClearPageLocked(page);
616 return error;
617 }
618
619 static inline unsigned long dir_pages(struct inode *inode)
620 {
621 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
622 PAGE_SHIFT;
623 }
624
625 #endif /* _LINUX_PAGEMAP_H */