]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - include/linux/pagemap.h
mm: rename page trylock
[mirror_ubuntu-zesty-kernel.git] / include / linux / pagemap.h
1 #ifndef _LINUX_PAGEMAP_H
2 #define _LINUX_PAGEMAP_H
3
4 /*
5 * Copyright 1995 Linus Torvalds
6 */
7 #include <linux/mm.h>
8 #include <linux/fs.h>
9 #include <linux/list.h>
10 #include <linux/highmem.h>
11 #include <linux/compiler.h>
12 #include <asm/uaccess.h>
13 #include <linux/gfp.h>
14 #include <linux/bitops.h>
15 #include <linux/hardirq.h> /* for in_interrupt() */
16
17 /*
18 * Bits in mapping->flags. The lower __GFP_BITS_SHIFT bits are the page
19 * allocation mode flags.
20 */
21 #define AS_EIO (__GFP_BITS_SHIFT + 0) /* IO error on async write */
22 #define AS_ENOSPC (__GFP_BITS_SHIFT + 1) /* ENOSPC on async write */
23 #define AS_MM_ALL_LOCKS (__GFP_BITS_SHIFT + 2) /* under mm_take_all_locks() */
24
25 static inline void mapping_set_error(struct address_space *mapping, int error)
26 {
27 if (unlikely(error)) {
28 if (error == -ENOSPC)
29 set_bit(AS_ENOSPC, &mapping->flags);
30 else
31 set_bit(AS_EIO, &mapping->flags);
32 }
33 }
34
35 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
36 {
37 return (__force gfp_t)mapping->flags & __GFP_BITS_MASK;
38 }
39
40 /*
41 * This is non-atomic. Only to be used before the mapping is activated.
42 * Probably needs a barrier...
43 */
44 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
45 {
46 m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) |
47 (__force unsigned long)mask;
48 }
49
50 /*
51 * The page cache can done in larger chunks than
52 * one page, because it allows for more efficient
53 * throughput (it can then be mapped into user
54 * space in smaller chunks for same flexibility).
55 *
56 * Or rather, it _will_ be done in larger chunks.
57 */
58 #define PAGE_CACHE_SHIFT PAGE_SHIFT
59 #define PAGE_CACHE_SIZE PAGE_SIZE
60 #define PAGE_CACHE_MASK PAGE_MASK
61 #define PAGE_CACHE_ALIGN(addr) (((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK)
62
63 #define page_cache_get(page) get_page(page)
64 #define page_cache_release(page) put_page(page)
65 void release_pages(struct page **pages, int nr, int cold);
66
67 /*
68 * speculatively take a reference to a page.
69 * If the page is free (_count == 0), then _count is untouched, and 0
70 * is returned. Otherwise, _count is incremented by 1 and 1 is returned.
71 *
72 * This function must be called inside the same rcu_read_lock() section as has
73 * been used to lookup the page in the pagecache radix-tree (or page table):
74 * this allows allocators to use a synchronize_rcu() to stabilize _count.
75 *
76 * Unless an RCU grace period has passed, the count of all pages coming out
77 * of the allocator must be considered unstable. page_count may return higher
78 * than expected, and put_page must be able to do the right thing when the
79 * page has been finished with, no matter what it is subsequently allocated
80 * for (because put_page is what is used here to drop an invalid speculative
81 * reference).
82 *
83 * This is the interesting part of the lockless pagecache (and lockless
84 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
85 * has the following pattern:
86 * 1. find page in radix tree
87 * 2. conditionally increment refcount
88 * 3. check the page is still in pagecache (if no, goto 1)
89 *
90 * Remove-side that cares about stability of _count (eg. reclaim) has the
91 * following (with tree_lock held for write):
92 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
93 * B. remove page from pagecache
94 * C. free the page
95 *
96 * There are 2 critical interleavings that matter:
97 * - 2 runs before A: in this case, A sees elevated refcount and bails out
98 * - A runs before 2: in this case, 2 sees zero refcount and retries;
99 * subsequently, B will complete and 1 will find no page, causing the
100 * lookup to return NULL.
101 *
102 * It is possible that between 1 and 2, the page is removed then the exact same
103 * page is inserted into the same position in pagecache. That's OK: the
104 * old find_get_page using tree_lock could equally have run before or after
105 * such a re-insertion, depending on order that locks are granted.
106 *
107 * Lookups racing against pagecache insertion isn't a big problem: either 1
108 * will find the page or it will not. Likewise, the old find_get_page could run
109 * either before the insertion or afterwards, depending on timing.
110 */
111 static inline int page_cache_get_speculative(struct page *page)
112 {
113 VM_BUG_ON(in_interrupt());
114
115 #if !defined(CONFIG_SMP) && defined(CONFIG_CLASSIC_RCU)
116 # ifdef CONFIG_PREEMPT
117 VM_BUG_ON(!in_atomic());
118 # endif
119 /*
120 * Preempt must be disabled here - we rely on rcu_read_lock doing
121 * this for us.
122 *
123 * Pagecache won't be truncated from interrupt context, so if we have
124 * found a page in the radix tree here, we have pinned its refcount by
125 * disabling preempt, and hence no need for the "speculative get" that
126 * SMP requires.
127 */
128 VM_BUG_ON(page_count(page) == 0);
129 atomic_inc(&page->_count);
130
131 #else
132 if (unlikely(!get_page_unless_zero(page))) {
133 /*
134 * Either the page has been freed, or will be freed.
135 * In either case, retry here and the caller should
136 * do the right thing (see comments above).
137 */
138 return 0;
139 }
140 #endif
141 VM_BUG_ON(PageTail(page));
142
143 return 1;
144 }
145
146 /*
147 * Same as above, but add instead of inc (could just be merged)
148 */
149 static inline int page_cache_add_speculative(struct page *page, int count)
150 {
151 VM_BUG_ON(in_interrupt());
152
153 #if !defined(CONFIG_SMP) && defined(CONFIG_CLASSIC_RCU)
154 # ifdef CONFIG_PREEMPT
155 VM_BUG_ON(!in_atomic());
156 # endif
157 VM_BUG_ON(page_count(page) == 0);
158 atomic_add(count, &page->_count);
159
160 #else
161 if (unlikely(!atomic_add_unless(&page->_count, count, 0)))
162 return 0;
163 #endif
164 VM_BUG_ON(PageCompound(page) && page != compound_head(page));
165
166 return 1;
167 }
168
169 static inline int page_freeze_refs(struct page *page, int count)
170 {
171 return likely(atomic_cmpxchg(&page->_count, count, 0) == count);
172 }
173
174 static inline void page_unfreeze_refs(struct page *page, int count)
175 {
176 VM_BUG_ON(page_count(page) != 0);
177 VM_BUG_ON(count == 0);
178
179 atomic_set(&page->_count, count);
180 }
181
182 #ifdef CONFIG_NUMA
183 extern struct page *__page_cache_alloc(gfp_t gfp);
184 #else
185 static inline struct page *__page_cache_alloc(gfp_t gfp)
186 {
187 return alloc_pages(gfp, 0);
188 }
189 #endif
190
191 static inline struct page *page_cache_alloc(struct address_space *x)
192 {
193 return __page_cache_alloc(mapping_gfp_mask(x));
194 }
195
196 static inline struct page *page_cache_alloc_cold(struct address_space *x)
197 {
198 return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
199 }
200
201 typedef int filler_t(void *, struct page *);
202
203 extern struct page * find_get_page(struct address_space *mapping,
204 pgoff_t index);
205 extern struct page * find_lock_page(struct address_space *mapping,
206 pgoff_t index);
207 extern struct page * find_or_create_page(struct address_space *mapping,
208 pgoff_t index, gfp_t gfp_mask);
209 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
210 unsigned int nr_pages, struct page **pages);
211 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
212 unsigned int nr_pages, struct page **pages);
213 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
214 int tag, unsigned int nr_pages, struct page **pages);
215
216 struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index);
217
218 /*
219 * Returns locked page at given index in given cache, creating it if needed.
220 */
221 static inline struct page *grab_cache_page(struct address_space *mapping,
222 pgoff_t index)
223 {
224 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
225 }
226
227 extern struct page * grab_cache_page_nowait(struct address_space *mapping,
228 pgoff_t index);
229 extern struct page * read_cache_page_async(struct address_space *mapping,
230 pgoff_t index, filler_t *filler,
231 void *data);
232 extern struct page * read_cache_page(struct address_space *mapping,
233 pgoff_t index, filler_t *filler,
234 void *data);
235 extern int read_cache_pages(struct address_space *mapping,
236 struct list_head *pages, filler_t *filler, void *data);
237
238 static inline struct page *read_mapping_page_async(
239 struct address_space *mapping,
240 pgoff_t index, void *data)
241 {
242 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
243 return read_cache_page_async(mapping, index, filler, data);
244 }
245
246 static inline struct page *read_mapping_page(struct address_space *mapping,
247 pgoff_t index, void *data)
248 {
249 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
250 return read_cache_page(mapping, index, filler, data);
251 }
252
253 /*
254 * Return byte-offset into filesystem object for page.
255 */
256 static inline loff_t page_offset(struct page *page)
257 {
258 return ((loff_t)page->index) << PAGE_CACHE_SHIFT;
259 }
260
261 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
262 unsigned long address)
263 {
264 pgoff_t pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
265 pgoff += vma->vm_pgoff;
266 return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT);
267 }
268
269 extern void __lock_page(struct page *page);
270 extern int __lock_page_killable(struct page *page);
271 extern void __lock_page_nosync(struct page *page);
272 extern void unlock_page(struct page *page);
273
274 static inline void set_page_locked(struct page *page)
275 {
276 set_bit(PG_locked, &page->flags);
277 }
278
279 static inline void clear_page_locked(struct page *page)
280 {
281 clear_bit(PG_locked, &page->flags);
282 }
283
284 static inline int trylock_page(struct page *page)
285 {
286 return !test_and_set_bit(PG_locked, &page->flags);
287 }
288
289 /*
290 * lock_page may only be called if we have the page's inode pinned.
291 */
292 static inline void lock_page(struct page *page)
293 {
294 might_sleep();
295 if (!trylock_page(page))
296 __lock_page(page);
297 }
298
299 /*
300 * lock_page_killable is like lock_page but can be interrupted by fatal
301 * signals. It returns 0 if it locked the page and -EINTR if it was
302 * killed while waiting.
303 */
304 static inline int lock_page_killable(struct page *page)
305 {
306 might_sleep();
307 if (!trylock_page(page))
308 return __lock_page_killable(page);
309 return 0;
310 }
311
312 /*
313 * lock_page_nosync should only be used if we can't pin the page's inode.
314 * Doesn't play quite so well with block device plugging.
315 */
316 static inline void lock_page_nosync(struct page *page)
317 {
318 might_sleep();
319 if (!trylock_page(page))
320 __lock_page_nosync(page);
321 }
322
323 /*
324 * This is exported only for wait_on_page_locked/wait_on_page_writeback.
325 * Never use this directly!
326 */
327 extern void wait_on_page_bit(struct page *page, int bit_nr);
328
329 /*
330 * Wait for a page to be unlocked.
331 *
332 * This must be called with the caller "holding" the page,
333 * ie with increased "page->count" so that the page won't
334 * go away during the wait..
335 */
336 static inline void wait_on_page_locked(struct page *page)
337 {
338 if (PageLocked(page))
339 wait_on_page_bit(page, PG_locked);
340 }
341
342 /*
343 * Wait for a page to complete writeback
344 */
345 static inline void wait_on_page_writeback(struct page *page)
346 {
347 if (PageWriteback(page))
348 wait_on_page_bit(page, PG_writeback);
349 }
350
351 extern void end_page_writeback(struct page *page);
352
353 /*
354 * Fault a userspace page into pagetables. Return non-zero on a fault.
355 *
356 * This assumes that two userspace pages are always sufficient. That's
357 * not true if PAGE_CACHE_SIZE > PAGE_SIZE.
358 */
359 static inline int fault_in_pages_writeable(char __user *uaddr, int size)
360 {
361 int ret;
362
363 if (unlikely(size == 0))
364 return 0;
365
366 /*
367 * Writing zeroes into userspace here is OK, because we know that if
368 * the zero gets there, we'll be overwriting it.
369 */
370 ret = __put_user(0, uaddr);
371 if (ret == 0) {
372 char __user *end = uaddr + size - 1;
373
374 /*
375 * If the page was already mapped, this will get a cache miss
376 * for sure, so try to avoid doing it.
377 */
378 if (((unsigned long)uaddr & PAGE_MASK) !=
379 ((unsigned long)end & PAGE_MASK))
380 ret = __put_user(0, end);
381 }
382 return ret;
383 }
384
385 static inline int fault_in_pages_readable(const char __user *uaddr, int size)
386 {
387 volatile char c;
388 int ret;
389
390 if (unlikely(size == 0))
391 return 0;
392
393 ret = __get_user(c, uaddr);
394 if (ret == 0) {
395 const char __user *end = uaddr + size - 1;
396
397 if (((unsigned long)uaddr & PAGE_MASK) !=
398 ((unsigned long)end & PAGE_MASK))
399 ret = __get_user(c, end);
400 }
401 return ret;
402 }
403
404 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
405 pgoff_t index, gfp_t gfp_mask);
406 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
407 pgoff_t index, gfp_t gfp_mask);
408 extern void remove_from_page_cache(struct page *page);
409 extern void __remove_from_page_cache(struct page *page);
410
411 /*
412 * Like add_to_page_cache_locked, but used to add newly allocated pages:
413 * the page is new, so we can just run set_page_locked() against it.
414 */
415 static inline int add_to_page_cache(struct page *page,
416 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
417 {
418 int error;
419
420 set_page_locked(page);
421 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
422 if (unlikely(error))
423 clear_page_locked(page);
424 return error;
425 }
426
427 #endif /* _LINUX_PAGEMAP_H */