]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/pagemap.h
mm: implement find_get_pages_range_tag()
[mirror_ubuntu-bionic-kernel.git] / include / linux / pagemap.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PAGEMAP_H
3 #define _LINUX_PAGEMAP_H
4
5 /*
6 * Copyright 1995 Linus Torvalds
7 */
8 #include <linux/mm.h>
9 #include <linux/fs.h>
10 #include <linux/list.h>
11 #include <linux/highmem.h>
12 #include <linux/compiler.h>
13 #include <linux/uaccess.h>
14 #include <linux/gfp.h>
15 #include <linux/bitops.h>
16 #include <linux/hardirq.h> /* for in_interrupt() */
17 #include <linux/hugetlb_inline.h>
18
19 /*
20 * Bits in mapping->flags.
21 */
22 enum mapping_flags {
23 AS_EIO = 0, /* IO error on async write */
24 AS_ENOSPC = 1, /* ENOSPC on async write */
25 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */
26 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */
27 AS_EXITING = 4, /* final truncate in progress */
28 /* writeback related tags are not used */
29 AS_NO_WRITEBACK_TAGS = 5,
30 };
31
32 /**
33 * mapping_set_error - record a writeback error in the address_space
34 * @mapping - the mapping in which an error should be set
35 * @error - the error to set in the mapping
36 *
37 * When writeback fails in some way, we must record that error so that
38 * userspace can be informed when fsync and the like are called. We endeavor
39 * to report errors on any file that was open at the time of the error. Some
40 * internal callers also need to know when writeback errors have occurred.
41 *
42 * When a writeback error occurs, most filesystems will want to call
43 * mapping_set_error to record the error in the mapping so that it can be
44 * reported when the application calls fsync(2).
45 */
46 static inline void mapping_set_error(struct address_space *mapping, int error)
47 {
48 if (likely(!error))
49 return;
50
51 /* Record in wb_err for checkers using errseq_t based tracking */
52 filemap_set_wb_err(mapping, error);
53
54 /* Record it in flags for now, for legacy callers */
55 if (error == -ENOSPC)
56 set_bit(AS_ENOSPC, &mapping->flags);
57 else
58 set_bit(AS_EIO, &mapping->flags);
59 }
60
61 static inline void mapping_set_unevictable(struct address_space *mapping)
62 {
63 set_bit(AS_UNEVICTABLE, &mapping->flags);
64 }
65
66 static inline void mapping_clear_unevictable(struct address_space *mapping)
67 {
68 clear_bit(AS_UNEVICTABLE, &mapping->flags);
69 }
70
71 static inline int mapping_unevictable(struct address_space *mapping)
72 {
73 if (mapping)
74 return test_bit(AS_UNEVICTABLE, &mapping->flags);
75 return !!mapping;
76 }
77
78 static inline void mapping_set_exiting(struct address_space *mapping)
79 {
80 set_bit(AS_EXITING, &mapping->flags);
81 }
82
83 static inline int mapping_exiting(struct address_space *mapping)
84 {
85 return test_bit(AS_EXITING, &mapping->flags);
86 }
87
88 static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
89 {
90 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
91 }
92
93 static inline int mapping_use_writeback_tags(struct address_space *mapping)
94 {
95 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
96 }
97
98 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
99 {
100 return mapping->gfp_mask;
101 }
102
103 /* Restricts the given gfp_mask to what the mapping allows. */
104 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
105 gfp_t gfp_mask)
106 {
107 return mapping_gfp_mask(mapping) & gfp_mask;
108 }
109
110 /*
111 * This is non-atomic. Only to be used before the mapping is activated.
112 * Probably needs a barrier...
113 */
114 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
115 {
116 m->gfp_mask = mask;
117 }
118
119 void release_pages(struct page **pages, int nr, bool cold);
120
121 /*
122 * speculatively take a reference to a page.
123 * If the page is free (_refcount == 0), then _refcount is untouched, and 0
124 * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned.
125 *
126 * This function must be called inside the same rcu_read_lock() section as has
127 * been used to lookup the page in the pagecache radix-tree (or page table):
128 * this allows allocators to use a synchronize_rcu() to stabilize _refcount.
129 *
130 * Unless an RCU grace period has passed, the count of all pages coming out
131 * of the allocator must be considered unstable. page_count may return higher
132 * than expected, and put_page must be able to do the right thing when the
133 * page has been finished with, no matter what it is subsequently allocated
134 * for (because put_page is what is used here to drop an invalid speculative
135 * reference).
136 *
137 * This is the interesting part of the lockless pagecache (and lockless
138 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
139 * has the following pattern:
140 * 1. find page in radix tree
141 * 2. conditionally increment refcount
142 * 3. check the page is still in pagecache (if no, goto 1)
143 *
144 * Remove-side that cares about stability of _refcount (eg. reclaim) has the
145 * following (with tree_lock held for write):
146 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
147 * B. remove page from pagecache
148 * C. free the page
149 *
150 * There are 2 critical interleavings that matter:
151 * - 2 runs before A: in this case, A sees elevated refcount and bails out
152 * - A runs before 2: in this case, 2 sees zero refcount and retries;
153 * subsequently, B will complete and 1 will find no page, causing the
154 * lookup to return NULL.
155 *
156 * It is possible that between 1 and 2, the page is removed then the exact same
157 * page is inserted into the same position in pagecache. That's OK: the
158 * old find_get_page using tree_lock could equally have run before or after
159 * such a re-insertion, depending on order that locks are granted.
160 *
161 * Lookups racing against pagecache insertion isn't a big problem: either 1
162 * will find the page or it will not. Likewise, the old find_get_page could run
163 * either before the insertion or afterwards, depending on timing.
164 */
165 static inline int page_cache_get_speculative(struct page *page)
166 {
167 #ifdef CONFIG_TINY_RCU
168 # ifdef CONFIG_PREEMPT_COUNT
169 VM_BUG_ON(!in_atomic() && !irqs_disabled());
170 # endif
171 /*
172 * Preempt must be disabled here - we rely on rcu_read_lock doing
173 * this for us.
174 *
175 * Pagecache won't be truncated from interrupt context, so if we have
176 * found a page in the radix tree here, we have pinned its refcount by
177 * disabling preempt, and hence no need for the "speculative get" that
178 * SMP requires.
179 */
180 VM_BUG_ON_PAGE(page_count(page) == 0, page);
181 page_ref_inc(page);
182
183 #else
184 if (unlikely(!get_page_unless_zero(page))) {
185 /*
186 * Either the page has been freed, or will be freed.
187 * In either case, retry here and the caller should
188 * do the right thing (see comments above).
189 */
190 return 0;
191 }
192 #endif
193 VM_BUG_ON_PAGE(PageTail(page), page);
194
195 return 1;
196 }
197
198 /*
199 * Same as above, but add instead of inc (could just be merged)
200 */
201 static inline int page_cache_add_speculative(struct page *page, int count)
202 {
203 VM_BUG_ON(in_interrupt());
204
205 #if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
206 # ifdef CONFIG_PREEMPT_COUNT
207 VM_BUG_ON(!in_atomic() && !irqs_disabled());
208 # endif
209 VM_BUG_ON_PAGE(page_count(page) == 0, page);
210 page_ref_add(page, count);
211
212 #else
213 if (unlikely(!page_ref_add_unless(page, count, 0)))
214 return 0;
215 #endif
216 VM_BUG_ON_PAGE(PageCompound(page) && page != compound_head(page), page);
217
218 return 1;
219 }
220
221 #ifdef CONFIG_NUMA
222 extern struct page *__page_cache_alloc(gfp_t gfp);
223 #else
224 static inline struct page *__page_cache_alloc(gfp_t gfp)
225 {
226 return alloc_pages(gfp, 0);
227 }
228 #endif
229
230 static inline struct page *page_cache_alloc(struct address_space *x)
231 {
232 return __page_cache_alloc(mapping_gfp_mask(x));
233 }
234
235 static inline struct page *page_cache_alloc_cold(struct address_space *x)
236 {
237 return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
238 }
239
240 static inline gfp_t readahead_gfp_mask(struct address_space *x)
241 {
242 return mapping_gfp_mask(x) |
243 __GFP_COLD | __GFP_NORETRY | __GFP_NOWARN;
244 }
245
246 typedef int filler_t(void *, struct page *);
247
248 pgoff_t page_cache_next_hole(struct address_space *mapping,
249 pgoff_t index, unsigned long max_scan);
250 pgoff_t page_cache_prev_hole(struct address_space *mapping,
251 pgoff_t index, unsigned long max_scan);
252
253 #define FGP_ACCESSED 0x00000001
254 #define FGP_LOCK 0x00000002
255 #define FGP_CREAT 0x00000004
256 #define FGP_WRITE 0x00000008
257 #define FGP_NOFS 0x00000010
258 #define FGP_NOWAIT 0x00000020
259
260 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
261 int fgp_flags, gfp_t cache_gfp_mask);
262
263 /**
264 * find_get_page - find and get a page reference
265 * @mapping: the address_space to search
266 * @offset: the page index
267 *
268 * Looks up the page cache slot at @mapping & @offset. If there is a
269 * page cache page, it is returned with an increased refcount.
270 *
271 * Otherwise, %NULL is returned.
272 */
273 static inline struct page *find_get_page(struct address_space *mapping,
274 pgoff_t offset)
275 {
276 return pagecache_get_page(mapping, offset, 0, 0);
277 }
278
279 static inline struct page *find_get_page_flags(struct address_space *mapping,
280 pgoff_t offset, int fgp_flags)
281 {
282 return pagecache_get_page(mapping, offset, fgp_flags, 0);
283 }
284
285 /**
286 * find_lock_page - locate, pin and lock a pagecache page
287 * @mapping: the address_space to search
288 * @offset: the page index
289 *
290 * Looks up the page cache slot at @mapping & @offset. If there is a
291 * page cache page, it is returned locked and with an increased
292 * refcount.
293 *
294 * Otherwise, %NULL is returned.
295 *
296 * find_lock_page() may sleep.
297 */
298 static inline struct page *find_lock_page(struct address_space *mapping,
299 pgoff_t offset)
300 {
301 return pagecache_get_page(mapping, offset, FGP_LOCK, 0);
302 }
303
304 /**
305 * find_or_create_page - locate or add a pagecache page
306 * @mapping: the page's address_space
307 * @index: the page's index into the mapping
308 * @gfp_mask: page allocation mode
309 *
310 * Looks up the page cache slot at @mapping & @offset. If there is a
311 * page cache page, it is returned locked and with an increased
312 * refcount.
313 *
314 * If the page is not present, a new page is allocated using @gfp_mask
315 * and added to the page cache and the VM's LRU list. The page is
316 * returned locked and with an increased refcount.
317 *
318 * On memory exhaustion, %NULL is returned.
319 *
320 * find_or_create_page() may sleep, even if @gfp_flags specifies an
321 * atomic allocation!
322 */
323 static inline struct page *find_or_create_page(struct address_space *mapping,
324 pgoff_t offset, gfp_t gfp_mask)
325 {
326 return pagecache_get_page(mapping, offset,
327 FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
328 gfp_mask);
329 }
330
331 /**
332 * grab_cache_page_nowait - returns locked page at given index in given cache
333 * @mapping: target address_space
334 * @index: the page index
335 *
336 * Same as grab_cache_page(), but do not wait if the page is unavailable.
337 * This is intended for speculative data generators, where the data can
338 * be regenerated if the page couldn't be grabbed. This routine should
339 * be safe to call while holding the lock for another page.
340 *
341 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
342 * and deadlock against the caller's locked page.
343 */
344 static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
345 pgoff_t index)
346 {
347 return pagecache_get_page(mapping, index,
348 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
349 mapping_gfp_mask(mapping));
350 }
351
352 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset);
353 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset);
354 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
355 unsigned int nr_entries, struct page **entries,
356 pgoff_t *indices);
357 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
358 pgoff_t end, unsigned int nr_pages,
359 struct page **pages);
360 static inline unsigned find_get_pages(struct address_space *mapping,
361 pgoff_t *start, unsigned int nr_pages,
362 struct page **pages)
363 {
364 return find_get_pages_range(mapping, start, (pgoff_t)-1, nr_pages,
365 pages);
366 }
367 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
368 unsigned int nr_pages, struct page **pages);
369 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
370 pgoff_t end, int tag, unsigned int nr_pages,
371 struct page **pages);
372 static inline unsigned find_get_pages_tag(struct address_space *mapping,
373 pgoff_t *index, int tag, unsigned int nr_pages,
374 struct page **pages)
375 {
376 return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag,
377 nr_pages, pages);
378 }
379 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
380 int tag, unsigned int nr_entries,
381 struct page **entries, pgoff_t *indices);
382
383 struct page *grab_cache_page_write_begin(struct address_space *mapping,
384 pgoff_t index, unsigned flags);
385
386 /*
387 * Returns locked page at given index in given cache, creating it if needed.
388 */
389 static inline struct page *grab_cache_page(struct address_space *mapping,
390 pgoff_t index)
391 {
392 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
393 }
394
395 extern struct page * read_cache_page(struct address_space *mapping,
396 pgoff_t index, filler_t *filler, void *data);
397 extern struct page * read_cache_page_gfp(struct address_space *mapping,
398 pgoff_t index, gfp_t gfp_mask);
399 extern int read_cache_pages(struct address_space *mapping,
400 struct list_head *pages, filler_t *filler, void *data);
401
402 static inline struct page *read_mapping_page(struct address_space *mapping,
403 pgoff_t index, void *data)
404 {
405 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
406 return read_cache_page(mapping, index, filler, data);
407 }
408
409 /*
410 * Get index of the page with in radix-tree
411 * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE)
412 */
413 static inline pgoff_t page_to_index(struct page *page)
414 {
415 pgoff_t pgoff;
416
417 if (likely(!PageTransTail(page)))
418 return page->index;
419
420 /*
421 * We don't initialize ->index for tail pages: calculate based on
422 * head page
423 */
424 pgoff = compound_head(page)->index;
425 pgoff += page - compound_head(page);
426 return pgoff;
427 }
428
429 /*
430 * Get the offset in PAGE_SIZE.
431 * (TODO: hugepage should have ->index in PAGE_SIZE)
432 */
433 static inline pgoff_t page_to_pgoff(struct page *page)
434 {
435 if (unlikely(PageHeadHuge(page)))
436 return page->index << compound_order(page);
437
438 return page_to_index(page);
439 }
440
441 /*
442 * Return byte-offset into filesystem object for page.
443 */
444 static inline loff_t page_offset(struct page *page)
445 {
446 return ((loff_t)page->index) << PAGE_SHIFT;
447 }
448
449 static inline loff_t page_file_offset(struct page *page)
450 {
451 return ((loff_t)page_index(page)) << PAGE_SHIFT;
452 }
453
454 extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
455 unsigned long address);
456
457 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
458 unsigned long address)
459 {
460 pgoff_t pgoff;
461 if (unlikely(is_vm_hugetlb_page(vma)))
462 return linear_hugepage_index(vma, address);
463 pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
464 pgoff += vma->vm_pgoff;
465 return pgoff;
466 }
467
468 extern void __lock_page(struct page *page);
469 extern int __lock_page_killable(struct page *page);
470 extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
471 unsigned int flags);
472 extern void unlock_page(struct page *page);
473
474 static inline int trylock_page(struct page *page)
475 {
476 page = compound_head(page);
477 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
478 }
479
480 /*
481 * lock_page may only be called if we have the page's inode pinned.
482 */
483 static inline void lock_page(struct page *page)
484 {
485 might_sleep();
486 if (!trylock_page(page))
487 __lock_page(page);
488 }
489
490 /*
491 * lock_page_killable is like lock_page but can be interrupted by fatal
492 * signals. It returns 0 if it locked the page and -EINTR if it was
493 * killed while waiting.
494 */
495 static inline int lock_page_killable(struct page *page)
496 {
497 might_sleep();
498 if (!trylock_page(page))
499 return __lock_page_killable(page);
500 return 0;
501 }
502
503 /*
504 * lock_page_or_retry - Lock the page, unless this would block and the
505 * caller indicated that it can handle a retry.
506 *
507 * Return value and mmap_sem implications depend on flags; see
508 * __lock_page_or_retry().
509 */
510 static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
511 unsigned int flags)
512 {
513 might_sleep();
514 return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
515 }
516
517 /*
518 * This is exported only for wait_on_page_locked/wait_on_page_writeback, etc.,
519 * and should not be used directly.
520 */
521 extern void wait_on_page_bit(struct page *page, int bit_nr);
522 extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
523
524 /*
525 * Wait for a page to be unlocked.
526 *
527 * This must be called with the caller "holding" the page,
528 * ie with increased "page->count" so that the page won't
529 * go away during the wait..
530 */
531 static inline void wait_on_page_locked(struct page *page)
532 {
533 if (PageLocked(page))
534 wait_on_page_bit(compound_head(page), PG_locked);
535 }
536
537 static inline int wait_on_page_locked_killable(struct page *page)
538 {
539 if (!PageLocked(page))
540 return 0;
541 return wait_on_page_bit_killable(compound_head(page), PG_locked);
542 }
543
544 /*
545 * Wait for a page to complete writeback
546 */
547 static inline void wait_on_page_writeback(struct page *page)
548 {
549 if (PageWriteback(page))
550 wait_on_page_bit(page, PG_writeback);
551 }
552
553 extern void end_page_writeback(struct page *page);
554 void wait_for_stable_page(struct page *page);
555
556 void page_endio(struct page *page, bool is_write, int err);
557
558 /*
559 * Add an arbitrary waiter to a page's wait queue
560 */
561 extern void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter);
562
563 /*
564 * Fault everything in given userspace address range in.
565 */
566 static inline int fault_in_pages_writeable(char __user *uaddr, int size)
567 {
568 char __user *end = uaddr + size - 1;
569
570 if (unlikely(size == 0))
571 return 0;
572
573 if (unlikely(uaddr > end))
574 return -EFAULT;
575 /*
576 * Writing zeroes into userspace here is OK, because we know that if
577 * the zero gets there, we'll be overwriting it.
578 */
579 do {
580 if (unlikely(__put_user(0, uaddr) != 0))
581 return -EFAULT;
582 uaddr += PAGE_SIZE;
583 } while (uaddr <= end);
584
585 /* Check whether the range spilled into the next page. */
586 if (((unsigned long)uaddr & PAGE_MASK) ==
587 ((unsigned long)end & PAGE_MASK))
588 return __put_user(0, end);
589
590 return 0;
591 }
592
593 static inline int fault_in_pages_readable(const char __user *uaddr, int size)
594 {
595 volatile char c;
596 const char __user *end = uaddr + size - 1;
597
598 if (unlikely(size == 0))
599 return 0;
600
601 if (unlikely(uaddr > end))
602 return -EFAULT;
603
604 do {
605 if (unlikely(__get_user(c, uaddr) != 0))
606 return -EFAULT;
607 uaddr += PAGE_SIZE;
608 } while (uaddr <= end);
609
610 /* Check whether the range spilled into the next page. */
611 if (((unsigned long)uaddr & PAGE_MASK) ==
612 ((unsigned long)end & PAGE_MASK)) {
613 return __get_user(c, end);
614 }
615
616 (void)c;
617 return 0;
618 }
619
620 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
621 pgoff_t index, gfp_t gfp_mask);
622 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
623 pgoff_t index, gfp_t gfp_mask);
624 extern void delete_from_page_cache(struct page *page);
625 extern void __delete_from_page_cache(struct page *page, void *shadow);
626 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
627
628 /*
629 * Like add_to_page_cache_locked, but used to add newly allocated pages:
630 * the page is new, so we can just run __SetPageLocked() against it.
631 */
632 static inline int add_to_page_cache(struct page *page,
633 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
634 {
635 int error;
636
637 __SetPageLocked(page);
638 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
639 if (unlikely(error))
640 __ClearPageLocked(page);
641 return error;
642 }
643
644 static inline unsigned long dir_pages(struct inode *inode)
645 {
646 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
647 PAGE_SHIFT;
648 }
649
650 #endif /* _LINUX_PAGEMAP_H */