]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - include/linux/pagemap.h
mm, fs: remove remaining PAGE_CACHE_* and page_cache_{get,release} usage
[mirror_ubuntu-zesty-kernel.git] / include / linux / pagemap.h
1 #ifndef _LINUX_PAGEMAP_H
2 #define _LINUX_PAGEMAP_H
3
4 /*
5 * Copyright 1995 Linus Torvalds
6 */
7 #include <linux/mm.h>
8 #include <linux/fs.h>
9 #include <linux/list.h>
10 #include <linux/highmem.h>
11 #include <linux/compiler.h>
12 #include <asm/uaccess.h>
13 #include <linux/gfp.h>
14 #include <linux/bitops.h>
15 #include <linux/hardirq.h> /* for in_interrupt() */
16 #include <linux/hugetlb_inline.h>
17
18 /*
19 * Bits in mapping->flags. The lower __GFP_BITS_SHIFT bits are the page
20 * allocation mode flags.
21 */
22 enum mapping_flags {
23 AS_EIO = __GFP_BITS_SHIFT + 0, /* IO error on async write */
24 AS_ENOSPC = __GFP_BITS_SHIFT + 1, /* ENOSPC on async write */
25 AS_MM_ALL_LOCKS = __GFP_BITS_SHIFT + 2, /* under mm_take_all_locks() */
26 AS_UNEVICTABLE = __GFP_BITS_SHIFT + 3, /* e.g., ramdisk, SHM_LOCK */
27 AS_EXITING = __GFP_BITS_SHIFT + 4, /* final truncate in progress */
28 };
29
30 static inline void mapping_set_error(struct address_space *mapping, int error)
31 {
32 if (unlikely(error)) {
33 if (error == -ENOSPC)
34 set_bit(AS_ENOSPC, &mapping->flags);
35 else
36 set_bit(AS_EIO, &mapping->flags);
37 }
38 }
39
40 static inline void mapping_set_unevictable(struct address_space *mapping)
41 {
42 set_bit(AS_UNEVICTABLE, &mapping->flags);
43 }
44
45 static inline void mapping_clear_unevictable(struct address_space *mapping)
46 {
47 clear_bit(AS_UNEVICTABLE, &mapping->flags);
48 }
49
50 static inline int mapping_unevictable(struct address_space *mapping)
51 {
52 if (mapping)
53 return test_bit(AS_UNEVICTABLE, &mapping->flags);
54 return !!mapping;
55 }
56
57 static inline void mapping_set_exiting(struct address_space *mapping)
58 {
59 set_bit(AS_EXITING, &mapping->flags);
60 }
61
62 static inline int mapping_exiting(struct address_space *mapping)
63 {
64 return test_bit(AS_EXITING, &mapping->flags);
65 }
66
67 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
68 {
69 return (__force gfp_t)mapping->flags & __GFP_BITS_MASK;
70 }
71
72 /* Restricts the given gfp_mask to what the mapping allows. */
73 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
74 gfp_t gfp_mask)
75 {
76 return mapping_gfp_mask(mapping) & gfp_mask;
77 }
78
79 /*
80 * This is non-atomic. Only to be used before the mapping is activated.
81 * Probably needs a barrier...
82 */
83 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
84 {
85 m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) |
86 (__force unsigned long)mask;
87 }
88
89 /*
90 * The page cache can be done in larger chunks than
91 * one page, because it allows for more efficient
92 * throughput (it can then be mapped into user
93 * space in smaller chunks for same flexibility).
94 *
95 * Or rather, it _will_ be done in larger chunks.
96 */
97 #define PAGE_CACHE_SHIFT PAGE_SHIFT
98 #define PAGE_CACHE_SIZE PAGE_SIZE
99 #define PAGE_CACHE_MASK PAGE_MASK
100 #define PAGE_CACHE_ALIGN(addr) (((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK)
101
102 #define page_cache_get(page) get_page(page)
103 #define page_cache_release(page) put_page(page)
104 void release_pages(struct page **pages, int nr, bool cold);
105
106 /*
107 * speculatively take a reference to a page.
108 * If the page is free (_count == 0), then _count is untouched, and 0
109 * is returned. Otherwise, _count is incremented by 1 and 1 is returned.
110 *
111 * This function must be called inside the same rcu_read_lock() section as has
112 * been used to lookup the page in the pagecache radix-tree (or page table):
113 * this allows allocators to use a synchronize_rcu() to stabilize _count.
114 *
115 * Unless an RCU grace period has passed, the count of all pages coming out
116 * of the allocator must be considered unstable. page_count may return higher
117 * than expected, and put_page must be able to do the right thing when the
118 * page has been finished with, no matter what it is subsequently allocated
119 * for (because put_page is what is used here to drop an invalid speculative
120 * reference).
121 *
122 * This is the interesting part of the lockless pagecache (and lockless
123 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
124 * has the following pattern:
125 * 1. find page in radix tree
126 * 2. conditionally increment refcount
127 * 3. check the page is still in pagecache (if no, goto 1)
128 *
129 * Remove-side that cares about stability of _count (eg. reclaim) has the
130 * following (with tree_lock held for write):
131 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
132 * B. remove page from pagecache
133 * C. free the page
134 *
135 * There are 2 critical interleavings that matter:
136 * - 2 runs before A: in this case, A sees elevated refcount and bails out
137 * - A runs before 2: in this case, 2 sees zero refcount and retries;
138 * subsequently, B will complete and 1 will find no page, causing the
139 * lookup to return NULL.
140 *
141 * It is possible that between 1 and 2, the page is removed then the exact same
142 * page is inserted into the same position in pagecache. That's OK: the
143 * old find_get_page using tree_lock could equally have run before or after
144 * such a re-insertion, depending on order that locks are granted.
145 *
146 * Lookups racing against pagecache insertion isn't a big problem: either 1
147 * will find the page or it will not. Likewise, the old find_get_page could run
148 * either before the insertion or afterwards, depending on timing.
149 */
150 static inline int page_cache_get_speculative(struct page *page)
151 {
152 VM_BUG_ON(in_interrupt());
153
154 #ifdef CONFIG_TINY_RCU
155 # ifdef CONFIG_PREEMPT_COUNT
156 VM_BUG_ON(!in_atomic());
157 # endif
158 /*
159 * Preempt must be disabled here - we rely on rcu_read_lock doing
160 * this for us.
161 *
162 * Pagecache won't be truncated from interrupt context, so if we have
163 * found a page in the radix tree here, we have pinned its refcount by
164 * disabling preempt, and hence no need for the "speculative get" that
165 * SMP requires.
166 */
167 VM_BUG_ON_PAGE(page_count(page) == 0, page);
168 page_ref_inc(page);
169
170 #else
171 if (unlikely(!get_page_unless_zero(page))) {
172 /*
173 * Either the page has been freed, or will be freed.
174 * In either case, retry here and the caller should
175 * do the right thing (see comments above).
176 */
177 return 0;
178 }
179 #endif
180 VM_BUG_ON_PAGE(PageTail(page), page);
181
182 return 1;
183 }
184
185 /*
186 * Same as above, but add instead of inc (could just be merged)
187 */
188 static inline int page_cache_add_speculative(struct page *page, int count)
189 {
190 VM_BUG_ON(in_interrupt());
191
192 #if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
193 # ifdef CONFIG_PREEMPT_COUNT
194 VM_BUG_ON(!in_atomic());
195 # endif
196 VM_BUG_ON_PAGE(page_count(page) == 0, page);
197 page_ref_add(page, count);
198
199 #else
200 if (unlikely(!page_ref_add_unless(page, count, 0)))
201 return 0;
202 #endif
203 VM_BUG_ON_PAGE(PageCompound(page) && page != compound_head(page), page);
204
205 return 1;
206 }
207
208 #ifdef CONFIG_NUMA
209 extern struct page *__page_cache_alloc(gfp_t gfp);
210 #else
211 static inline struct page *__page_cache_alloc(gfp_t gfp)
212 {
213 return alloc_pages(gfp, 0);
214 }
215 #endif
216
217 static inline struct page *page_cache_alloc(struct address_space *x)
218 {
219 return __page_cache_alloc(mapping_gfp_mask(x));
220 }
221
222 static inline struct page *page_cache_alloc_cold(struct address_space *x)
223 {
224 return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
225 }
226
227 static inline struct page *page_cache_alloc_readahead(struct address_space *x)
228 {
229 return __page_cache_alloc(mapping_gfp_mask(x) |
230 __GFP_COLD | __GFP_NORETRY | __GFP_NOWARN);
231 }
232
233 typedef int filler_t(void *, struct page *);
234
235 pgoff_t page_cache_next_hole(struct address_space *mapping,
236 pgoff_t index, unsigned long max_scan);
237 pgoff_t page_cache_prev_hole(struct address_space *mapping,
238 pgoff_t index, unsigned long max_scan);
239
240 #define FGP_ACCESSED 0x00000001
241 #define FGP_LOCK 0x00000002
242 #define FGP_CREAT 0x00000004
243 #define FGP_WRITE 0x00000008
244 #define FGP_NOFS 0x00000010
245 #define FGP_NOWAIT 0x00000020
246
247 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
248 int fgp_flags, gfp_t cache_gfp_mask);
249
250 /**
251 * find_get_page - find and get a page reference
252 * @mapping: the address_space to search
253 * @offset: the page index
254 *
255 * Looks up the page cache slot at @mapping & @offset. If there is a
256 * page cache page, it is returned with an increased refcount.
257 *
258 * Otherwise, %NULL is returned.
259 */
260 static inline struct page *find_get_page(struct address_space *mapping,
261 pgoff_t offset)
262 {
263 return pagecache_get_page(mapping, offset, 0, 0);
264 }
265
266 static inline struct page *find_get_page_flags(struct address_space *mapping,
267 pgoff_t offset, int fgp_flags)
268 {
269 return pagecache_get_page(mapping, offset, fgp_flags, 0);
270 }
271
272 /**
273 * find_lock_page - locate, pin and lock a pagecache page
274 * pagecache_get_page - find and get a page reference
275 * @mapping: the address_space to search
276 * @offset: the page index
277 *
278 * Looks up the page cache slot at @mapping & @offset. If there is a
279 * page cache page, it is returned locked and with an increased
280 * refcount.
281 *
282 * Otherwise, %NULL is returned.
283 *
284 * find_lock_page() may sleep.
285 */
286 static inline struct page *find_lock_page(struct address_space *mapping,
287 pgoff_t offset)
288 {
289 return pagecache_get_page(mapping, offset, FGP_LOCK, 0);
290 }
291
292 /**
293 * find_or_create_page - locate or add a pagecache page
294 * @mapping: the page's address_space
295 * @index: the page's index into the mapping
296 * @gfp_mask: page allocation mode
297 *
298 * Looks up the page cache slot at @mapping & @offset. If there is a
299 * page cache page, it is returned locked and with an increased
300 * refcount.
301 *
302 * If the page is not present, a new page is allocated using @gfp_mask
303 * and added to the page cache and the VM's LRU list. The page is
304 * returned locked and with an increased refcount.
305 *
306 * On memory exhaustion, %NULL is returned.
307 *
308 * find_or_create_page() may sleep, even if @gfp_flags specifies an
309 * atomic allocation!
310 */
311 static inline struct page *find_or_create_page(struct address_space *mapping,
312 pgoff_t offset, gfp_t gfp_mask)
313 {
314 return pagecache_get_page(mapping, offset,
315 FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
316 gfp_mask);
317 }
318
319 /**
320 * grab_cache_page_nowait - returns locked page at given index in given cache
321 * @mapping: target address_space
322 * @index: the page index
323 *
324 * Same as grab_cache_page(), but do not wait if the page is unavailable.
325 * This is intended for speculative data generators, where the data can
326 * be regenerated if the page couldn't be grabbed. This routine should
327 * be safe to call while holding the lock for another page.
328 *
329 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
330 * and deadlock against the caller's locked page.
331 */
332 static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
333 pgoff_t index)
334 {
335 return pagecache_get_page(mapping, index,
336 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
337 mapping_gfp_mask(mapping));
338 }
339
340 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset);
341 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset);
342 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
343 unsigned int nr_entries, struct page **entries,
344 pgoff_t *indices);
345 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
346 unsigned int nr_pages, struct page **pages);
347 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
348 unsigned int nr_pages, struct page **pages);
349 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
350 int tag, unsigned int nr_pages, struct page **pages);
351 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
352 int tag, unsigned int nr_entries,
353 struct page **entries, pgoff_t *indices);
354
355 struct page *grab_cache_page_write_begin(struct address_space *mapping,
356 pgoff_t index, unsigned flags);
357
358 /*
359 * Returns locked page at given index in given cache, creating it if needed.
360 */
361 static inline struct page *grab_cache_page(struct address_space *mapping,
362 pgoff_t index)
363 {
364 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
365 }
366
367 extern struct page * read_cache_page(struct address_space *mapping,
368 pgoff_t index, filler_t *filler, void *data);
369 extern struct page * read_cache_page_gfp(struct address_space *mapping,
370 pgoff_t index, gfp_t gfp_mask);
371 extern int read_cache_pages(struct address_space *mapping,
372 struct list_head *pages, filler_t *filler, void *data);
373
374 static inline struct page *read_mapping_page(struct address_space *mapping,
375 pgoff_t index, void *data)
376 {
377 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
378 return read_cache_page(mapping, index, filler, data);
379 }
380
381 /*
382 * Get the offset in PAGE_SIZE.
383 * (TODO: hugepage should have ->index in PAGE_SIZE)
384 */
385 static inline pgoff_t page_to_pgoff(struct page *page)
386 {
387 pgoff_t pgoff;
388
389 if (unlikely(PageHeadHuge(page)))
390 return page->index << compound_order(page);
391
392 if (likely(!PageTransTail(page)))
393 return page->index;
394
395 /*
396 * We don't initialize ->index for tail pages: calculate based on
397 * head page
398 */
399 pgoff = compound_head(page)->index;
400 pgoff += page - compound_head(page);
401 return pgoff;
402 }
403
404 /*
405 * Return byte-offset into filesystem object for page.
406 */
407 static inline loff_t page_offset(struct page *page)
408 {
409 return ((loff_t)page->index) << PAGE_SHIFT;
410 }
411
412 static inline loff_t page_file_offset(struct page *page)
413 {
414 return ((loff_t)page_file_index(page)) << PAGE_SHIFT;
415 }
416
417 extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
418 unsigned long address);
419
420 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
421 unsigned long address)
422 {
423 pgoff_t pgoff;
424 if (unlikely(is_vm_hugetlb_page(vma)))
425 return linear_hugepage_index(vma, address);
426 pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
427 pgoff += vma->vm_pgoff;
428 return pgoff;
429 }
430
431 extern void __lock_page(struct page *page);
432 extern int __lock_page_killable(struct page *page);
433 extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
434 unsigned int flags);
435 extern void unlock_page(struct page *page);
436
437 static inline int trylock_page(struct page *page)
438 {
439 page = compound_head(page);
440 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
441 }
442
443 /*
444 * lock_page may only be called if we have the page's inode pinned.
445 */
446 static inline void lock_page(struct page *page)
447 {
448 might_sleep();
449 if (!trylock_page(page))
450 __lock_page(page);
451 }
452
453 /*
454 * lock_page_killable is like lock_page but can be interrupted by fatal
455 * signals. It returns 0 if it locked the page and -EINTR if it was
456 * killed while waiting.
457 */
458 static inline int lock_page_killable(struct page *page)
459 {
460 might_sleep();
461 if (!trylock_page(page))
462 return __lock_page_killable(page);
463 return 0;
464 }
465
466 /*
467 * lock_page_or_retry - Lock the page, unless this would block and the
468 * caller indicated that it can handle a retry.
469 *
470 * Return value and mmap_sem implications depend on flags; see
471 * __lock_page_or_retry().
472 */
473 static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
474 unsigned int flags)
475 {
476 might_sleep();
477 return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
478 }
479
480 /*
481 * This is exported only for wait_on_page_locked/wait_on_page_writeback,
482 * and for filesystems which need to wait on PG_private.
483 */
484 extern void wait_on_page_bit(struct page *page, int bit_nr);
485
486 extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
487 extern int wait_on_page_bit_killable_timeout(struct page *page,
488 int bit_nr, unsigned long timeout);
489
490 static inline int wait_on_page_locked_killable(struct page *page)
491 {
492 if (!PageLocked(page))
493 return 0;
494 return wait_on_page_bit_killable(compound_head(page), PG_locked);
495 }
496
497 extern wait_queue_head_t *page_waitqueue(struct page *page);
498 static inline void wake_up_page(struct page *page, int bit)
499 {
500 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
501 }
502
503 /*
504 * Wait for a page to be unlocked.
505 *
506 * This must be called with the caller "holding" the page,
507 * ie with increased "page->count" so that the page won't
508 * go away during the wait..
509 */
510 static inline void wait_on_page_locked(struct page *page)
511 {
512 if (PageLocked(page))
513 wait_on_page_bit(compound_head(page), PG_locked);
514 }
515
516 /*
517 * Wait for a page to complete writeback
518 */
519 static inline void wait_on_page_writeback(struct page *page)
520 {
521 if (PageWriteback(page))
522 wait_on_page_bit(page, PG_writeback);
523 }
524
525 extern void end_page_writeback(struct page *page);
526 void wait_for_stable_page(struct page *page);
527
528 void page_endio(struct page *page, int rw, int err);
529
530 /*
531 * Add an arbitrary waiter to a page's wait queue
532 */
533 extern void add_page_wait_queue(struct page *page, wait_queue_t *waiter);
534
535 /*
536 * Fault a userspace page into pagetables. Return non-zero on a fault.
537 *
538 * This assumes that two userspace pages are always sufficient.
539 */
540 static inline int fault_in_pages_writeable(char __user *uaddr, int size)
541 {
542 int ret;
543
544 if (unlikely(size == 0))
545 return 0;
546
547 /*
548 * Writing zeroes into userspace here is OK, because we know that if
549 * the zero gets there, we'll be overwriting it.
550 */
551 ret = __put_user(0, uaddr);
552 if (ret == 0) {
553 char __user *end = uaddr + size - 1;
554
555 /*
556 * If the page was already mapped, this will get a cache miss
557 * for sure, so try to avoid doing it.
558 */
559 if (((unsigned long)uaddr & PAGE_MASK) !=
560 ((unsigned long)end & PAGE_MASK))
561 ret = __put_user(0, end);
562 }
563 return ret;
564 }
565
566 static inline int fault_in_pages_readable(const char __user *uaddr, int size)
567 {
568 volatile char c;
569 int ret;
570
571 if (unlikely(size == 0))
572 return 0;
573
574 ret = __get_user(c, uaddr);
575 if (ret == 0) {
576 const char __user *end = uaddr + size - 1;
577
578 if (((unsigned long)uaddr & PAGE_MASK) !=
579 ((unsigned long)end & PAGE_MASK)) {
580 ret = __get_user(c, end);
581 (void)c;
582 }
583 }
584 return ret;
585 }
586
587 /*
588 * Multipage variants of the above prefault helpers, useful if more than
589 * PAGE_SIZE of data needs to be prefaulted. These are separate from the above
590 * functions (which only handle up to PAGE_SIZE) to avoid clobbering the
591 * filemap.c hotpaths.
592 */
593 static inline int fault_in_multipages_writeable(char __user *uaddr, int size)
594 {
595 int ret = 0;
596 char __user *end = uaddr + size - 1;
597
598 if (unlikely(size == 0))
599 return ret;
600
601 /*
602 * Writing zeroes into userspace here is OK, because we know that if
603 * the zero gets there, we'll be overwriting it.
604 */
605 while (uaddr <= end) {
606 ret = __put_user(0, uaddr);
607 if (ret != 0)
608 return ret;
609 uaddr += PAGE_SIZE;
610 }
611
612 /* Check whether the range spilled into the next page. */
613 if (((unsigned long)uaddr & PAGE_MASK) ==
614 ((unsigned long)end & PAGE_MASK))
615 ret = __put_user(0, end);
616
617 return ret;
618 }
619
620 static inline int fault_in_multipages_readable(const char __user *uaddr,
621 int size)
622 {
623 volatile char c;
624 int ret = 0;
625 const char __user *end = uaddr + size - 1;
626
627 if (unlikely(size == 0))
628 return ret;
629
630 while (uaddr <= end) {
631 ret = __get_user(c, uaddr);
632 if (ret != 0)
633 return ret;
634 uaddr += PAGE_SIZE;
635 }
636
637 /* Check whether the range spilled into the next page. */
638 if (((unsigned long)uaddr & PAGE_MASK) ==
639 ((unsigned long)end & PAGE_MASK)) {
640 ret = __get_user(c, end);
641 (void)c;
642 }
643
644 return ret;
645 }
646
647 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
648 pgoff_t index, gfp_t gfp_mask);
649 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
650 pgoff_t index, gfp_t gfp_mask);
651 extern void delete_from_page_cache(struct page *page);
652 extern void __delete_from_page_cache(struct page *page, void *shadow);
653 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
654
655 /*
656 * Like add_to_page_cache_locked, but used to add newly allocated pages:
657 * the page is new, so we can just run __SetPageLocked() against it.
658 */
659 static inline int add_to_page_cache(struct page *page,
660 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
661 {
662 int error;
663
664 __SetPageLocked(page);
665 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
666 if (unlikely(error))
667 __ClearPageLocked(page);
668 return error;
669 }
670
671 static inline unsigned long dir_pages(struct inode *inode)
672 {
673 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
674 PAGE_SHIFT;
675 }
676
677 #endif /* _LINUX_PAGEMAP_H */