]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/linux/pagemap.h
Merge tag 'irqchip-fixes-5.13-2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-jammy-kernel.git] / include / linux / pagemap.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PAGEMAP_H
3 #define _LINUX_PAGEMAP_H
4
5 /*
6 * Copyright 1995 Linus Torvalds
7 */
8 #include <linux/mm.h>
9 #include <linux/fs.h>
10 #include <linux/list.h>
11 #include <linux/highmem.h>
12 #include <linux/compiler.h>
13 #include <linux/uaccess.h>
14 #include <linux/gfp.h>
15 #include <linux/bitops.h>
16 #include <linux/hardirq.h> /* for in_interrupt() */
17 #include <linux/hugetlb_inline.h>
18
19 struct pagevec;
20
21 static inline bool mapping_empty(struct address_space *mapping)
22 {
23 return xa_empty(&mapping->i_pages);
24 }
25
26 /*
27 * Bits in mapping->flags.
28 */
29 enum mapping_flags {
30 AS_EIO = 0, /* IO error on async write */
31 AS_ENOSPC = 1, /* ENOSPC on async write */
32 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */
33 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */
34 AS_EXITING = 4, /* final truncate in progress */
35 /* writeback related tags are not used */
36 AS_NO_WRITEBACK_TAGS = 5,
37 AS_THP_SUPPORT = 6, /* THPs supported */
38 };
39
40 /**
41 * mapping_set_error - record a writeback error in the address_space
42 * @mapping: the mapping in which an error should be set
43 * @error: the error to set in the mapping
44 *
45 * When writeback fails in some way, we must record that error so that
46 * userspace can be informed when fsync and the like are called. We endeavor
47 * to report errors on any file that was open at the time of the error. Some
48 * internal callers also need to know when writeback errors have occurred.
49 *
50 * When a writeback error occurs, most filesystems will want to call
51 * mapping_set_error to record the error in the mapping so that it can be
52 * reported when the application calls fsync(2).
53 */
54 static inline void mapping_set_error(struct address_space *mapping, int error)
55 {
56 if (likely(!error))
57 return;
58
59 /* Record in wb_err for checkers using errseq_t based tracking */
60 __filemap_set_wb_err(mapping, error);
61
62 /* Record it in superblock */
63 if (mapping->host)
64 errseq_set(&mapping->host->i_sb->s_wb_err, error);
65
66 /* Record it in flags for now, for legacy callers */
67 if (error == -ENOSPC)
68 set_bit(AS_ENOSPC, &mapping->flags);
69 else
70 set_bit(AS_EIO, &mapping->flags);
71 }
72
73 static inline void mapping_set_unevictable(struct address_space *mapping)
74 {
75 set_bit(AS_UNEVICTABLE, &mapping->flags);
76 }
77
78 static inline void mapping_clear_unevictable(struct address_space *mapping)
79 {
80 clear_bit(AS_UNEVICTABLE, &mapping->flags);
81 }
82
83 static inline bool mapping_unevictable(struct address_space *mapping)
84 {
85 return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
86 }
87
88 static inline void mapping_set_exiting(struct address_space *mapping)
89 {
90 set_bit(AS_EXITING, &mapping->flags);
91 }
92
93 static inline int mapping_exiting(struct address_space *mapping)
94 {
95 return test_bit(AS_EXITING, &mapping->flags);
96 }
97
98 static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
99 {
100 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
101 }
102
103 static inline int mapping_use_writeback_tags(struct address_space *mapping)
104 {
105 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
106 }
107
108 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
109 {
110 return mapping->gfp_mask;
111 }
112
113 /* Restricts the given gfp_mask to what the mapping allows. */
114 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
115 gfp_t gfp_mask)
116 {
117 return mapping_gfp_mask(mapping) & gfp_mask;
118 }
119
120 /*
121 * This is non-atomic. Only to be used before the mapping is activated.
122 * Probably needs a barrier...
123 */
124 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
125 {
126 m->gfp_mask = mask;
127 }
128
129 static inline bool mapping_thp_support(struct address_space *mapping)
130 {
131 return test_bit(AS_THP_SUPPORT, &mapping->flags);
132 }
133
134 static inline int filemap_nr_thps(struct address_space *mapping)
135 {
136 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
137 return atomic_read(&mapping->nr_thps);
138 #else
139 return 0;
140 #endif
141 }
142
143 static inline void filemap_nr_thps_inc(struct address_space *mapping)
144 {
145 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
146 if (!mapping_thp_support(mapping))
147 atomic_inc(&mapping->nr_thps);
148 #else
149 WARN_ON_ONCE(1);
150 #endif
151 }
152
153 static inline void filemap_nr_thps_dec(struct address_space *mapping)
154 {
155 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
156 if (!mapping_thp_support(mapping))
157 atomic_dec(&mapping->nr_thps);
158 #else
159 WARN_ON_ONCE(1);
160 #endif
161 }
162
163 void release_pages(struct page **pages, int nr);
164
165 /*
166 * For file cache pages, return the address_space, otherwise return NULL
167 */
168 static inline struct address_space *page_mapping_file(struct page *page)
169 {
170 if (unlikely(PageSwapCache(page)))
171 return NULL;
172 return page_mapping(page);
173 }
174
175 /*
176 * speculatively take a reference to a page.
177 * If the page is free (_refcount == 0), then _refcount is untouched, and 0
178 * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned.
179 *
180 * This function must be called inside the same rcu_read_lock() section as has
181 * been used to lookup the page in the pagecache radix-tree (or page table):
182 * this allows allocators to use a synchronize_rcu() to stabilize _refcount.
183 *
184 * Unless an RCU grace period has passed, the count of all pages coming out
185 * of the allocator must be considered unstable. page_count may return higher
186 * than expected, and put_page must be able to do the right thing when the
187 * page has been finished with, no matter what it is subsequently allocated
188 * for (because put_page is what is used here to drop an invalid speculative
189 * reference).
190 *
191 * This is the interesting part of the lockless pagecache (and lockless
192 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
193 * has the following pattern:
194 * 1. find page in radix tree
195 * 2. conditionally increment refcount
196 * 3. check the page is still in pagecache (if no, goto 1)
197 *
198 * Remove-side that cares about stability of _refcount (eg. reclaim) has the
199 * following (with the i_pages lock held):
200 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
201 * B. remove page from pagecache
202 * C. free the page
203 *
204 * There are 2 critical interleavings that matter:
205 * - 2 runs before A: in this case, A sees elevated refcount and bails out
206 * - A runs before 2: in this case, 2 sees zero refcount and retries;
207 * subsequently, B will complete and 1 will find no page, causing the
208 * lookup to return NULL.
209 *
210 * It is possible that between 1 and 2, the page is removed then the exact same
211 * page is inserted into the same position in pagecache. That's OK: the
212 * old find_get_page using a lock could equally have run before or after
213 * such a re-insertion, depending on order that locks are granted.
214 *
215 * Lookups racing against pagecache insertion isn't a big problem: either 1
216 * will find the page or it will not. Likewise, the old find_get_page could run
217 * either before the insertion or afterwards, depending on timing.
218 */
219 static inline int __page_cache_add_speculative(struct page *page, int count)
220 {
221 #ifdef CONFIG_TINY_RCU
222 # ifdef CONFIG_PREEMPT_COUNT
223 VM_BUG_ON(!in_atomic() && !irqs_disabled());
224 # endif
225 /*
226 * Preempt must be disabled here - we rely on rcu_read_lock doing
227 * this for us.
228 *
229 * Pagecache won't be truncated from interrupt context, so if we have
230 * found a page in the radix tree here, we have pinned its refcount by
231 * disabling preempt, and hence no need for the "speculative get" that
232 * SMP requires.
233 */
234 VM_BUG_ON_PAGE(page_count(page) == 0, page);
235 page_ref_add(page, count);
236
237 #else
238 if (unlikely(!page_ref_add_unless(page, count, 0))) {
239 /*
240 * Either the page has been freed, or will be freed.
241 * In either case, retry here and the caller should
242 * do the right thing (see comments above).
243 */
244 return 0;
245 }
246 #endif
247 VM_BUG_ON_PAGE(PageTail(page), page);
248
249 return 1;
250 }
251
252 static inline int page_cache_get_speculative(struct page *page)
253 {
254 return __page_cache_add_speculative(page, 1);
255 }
256
257 static inline int page_cache_add_speculative(struct page *page, int count)
258 {
259 return __page_cache_add_speculative(page, count);
260 }
261
262 /**
263 * attach_page_private - Attach private data to a page.
264 * @page: Page to attach data to.
265 * @data: Data to attach to page.
266 *
267 * Attaching private data to a page increments the page's reference count.
268 * The data must be detached before the page will be freed.
269 */
270 static inline void attach_page_private(struct page *page, void *data)
271 {
272 get_page(page);
273 set_page_private(page, (unsigned long)data);
274 SetPagePrivate(page);
275 }
276
277 /**
278 * detach_page_private - Detach private data from a page.
279 * @page: Page to detach data from.
280 *
281 * Removes the data that was previously attached to the page and decrements
282 * the refcount on the page.
283 *
284 * Return: Data that was attached to the page.
285 */
286 static inline void *detach_page_private(struct page *page)
287 {
288 void *data = (void *)page_private(page);
289
290 if (!PagePrivate(page))
291 return NULL;
292 ClearPagePrivate(page);
293 set_page_private(page, 0);
294 put_page(page);
295
296 return data;
297 }
298
299 #ifdef CONFIG_NUMA
300 extern struct page *__page_cache_alloc(gfp_t gfp);
301 #else
302 static inline struct page *__page_cache_alloc(gfp_t gfp)
303 {
304 return alloc_pages(gfp, 0);
305 }
306 #endif
307
308 static inline struct page *page_cache_alloc(struct address_space *x)
309 {
310 return __page_cache_alloc(mapping_gfp_mask(x));
311 }
312
313 static inline gfp_t readahead_gfp_mask(struct address_space *x)
314 {
315 return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
316 }
317
318 typedef int filler_t(void *, struct page *);
319
320 pgoff_t page_cache_next_miss(struct address_space *mapping,
321 pgoff_t index, unsigned long max_scan);
322 pgoff_t page_cache_prev_miss(struct address_space *mapping,
323 pgoff_t index, unsigned long max_scan);
324
325 #define FGP_ACCESSED 0x00000001
326 #define FGP_LOCK 0x00000002
327 #define FGP_CREAT 0x00000004
328 #define FGP_WRITE 0x00000008
329 #define FGP_NOFS 0x00000010
330 #define FGP_NOWAIT 0x00000020
331 #define FGP_FOR_MMAP 0x00000040
332 #define FGP_HEAD 0x00000080
333 #define FGP_ENTRY 0x00000100
334
335 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
336 int fgp_flags, gfp_t cache_gfp_mask);
337
338 /**
339 * find_get_page - find and get a page reference
340 * @mapping: the address_space to search
341 * @offset: the page index
342 *
343 * Looks up the page cache slot at @mapping & @offset. If there is a
344 * page cache page, it is returned with an increased refcount.
345 *
346 * Otherwise, %NULL is returned.
347 */
348 static inline struct page *find_get_page(struct address_space *mapping,
349 pgoff_t offset)
350 {
351 return pagecache_get_page(mapping, offset, 0, 0);
352 }
353
354 static inline struct page *find_get_page_flags(struct address_space *mapping,
355 pgoff_t offset, int fgp_flags)
356 {
357 return pagecache_get_page(mapping, offset, fgp_flags, 0);
358 }
359
360 /**
361 * find_lock_page - locate, pin and lock a pagecache page
362 * @mapping: the address_space to search
363 * @index: the page index
364 *
365 * Looks up the page cache entry at @mapping & @index. If there is a
366 * page cache page, it is returned locked and with an increased
367 * refcount.
368 *
369 * Context: May sleep.
370 * Return: A struct page or %NULL if there is no page in the cache for this
371 * index.
372 */
373 static inline struct page *find_lock_page(struct address_space *mapping,
374 pgoff_t index)
375 {
376 return pagecache_get_page(mapping, index, FGP_LOCK, 0);
377 }
378
379 /**
380 * find_lock_head - Locate, pin and lock a pagecache page.
381 * @mapping: The address_space to search.
382 * @index: The page index.
383 *
384 * Looks up the page cache entry at @mapping & @index. If there is a
385 * page cache page, its head page is returned locked and with an increased
386 * refcount.
387 *
388 * Context: May sleep.
389 * Return: A struct page which is !PageTail, or %NULL if there is no page
390 * in the cache for this index.
391 */
392 static inline struct page *find_lock_head(struct address_space *mapping,
393 pgoff_t index)
394 {
395 return pagecache_get_page(mapping, index, FGP_LOCK | FGP_HEAD, 0);
396 }
397
398 /**
399 * find_or_create_page - locate or add a pagecache page
400 * @mapping: the page's address_space
401 * @index: the page's index into the mapping
402 * @gfp_mask: page allocation mode
403 *
404 * Looks up the page cache slot at @mapping & @offset. If there is a
405 * page cache page, it is returned locked and with an increased
406 * refcount.
407 *
408 * If the page is not present, a new page is allocated using @gfp_mask
409 * and added to the page cache and the VM's LRU list. The page is
410 * returned locked and with an increased refcount.
411 *
412 * On memory exhaustion, %NULL is returned.
413 *
414 * find_or_create_page() may sleep, even if @gfp_flags specifies an
415 * atomic allocation!
416 */
417 static inline struct page *find_or_create_page(struct address_space *mapping,
418 pgoff_t index, gfp_t gfp_mask)
419 {
420 return pagecache_get_page(mapping, index,
421 FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
422 gfp_mask);
423 }
424
425 /**
426 * grab_cache_page_nowait - returns locked page at given index in given cache
427 * @mapping: target address_space
428 * @index: the page index
429 *
430 * Same as grab_cache_page(), but do not wait if the page is unavailable.
431 * This is intended for speculative data generators, where the data can
432 * be regenerated if the page couldn't be grabbed. This routine should
433 * be safe to call while holding the lock for another page.
434 *
435 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
436 * and deadlock against the caller's locked page.
437 */
438 static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
439 pgoff_t index)
440 {
441 return pagecache_get_page(mapping, index,
442 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
443 mapping_gfp_mask(mapping));
444 }
445
446 /* Does this page contain this index? */
447 static inline bool thp_contains(struct page *head, pgoff_t index)
448 {
449 /* HugeTLBfs indexes the page cache in units of hpage_size */
450 if (PageHuge(head))
451 return head->index == index;
452 return page_index(head) == (index & ~(thp_nr_pages(head) - 1UL));
453 }
454
455 /*
456 * Given the page we found in the page cache, return the page corresponding
457 * to this index in the file
458 */
459 static inline struct page *find_subpage(struct page *head, pgoff_t index)
460 {
461 /* HugeTLBfs wants the head page regardless */
462 if (PageHuge(head))
463 return head;
464
465 return head + (index & (thp_nr_pages(head) - 1));
466 }
467
468 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
469 pgoff_t end, struct pagevec *pvec, pgoff_t *indices);
470 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
471 pgoff_t end, unsigned int nr_pages,
472 struct page **pages);
473 static inline unsigned find_get_pages(struct address_space *mapping,
474 pgoff_t *start, unsigned int nr_pages,
475 struct page **pages)
476 {
477 return find_get_pages_range(mapping, start, (pgoff_t)-1, nr_pages,
478 pages);
479 }
480 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
481 unsigned int nr_pages, struct page **pages);
482 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
483 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
484 struct page **pages);
485 static inline unsigned find_get_pages_tag(struct address_space *mapping,
486 pgoff_t *index, xa_mark_t tag, unsigned int nr_pages,
487 struct page **pages)
488 {
489 return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag,
490 nr_pages, pages);
491 }
492
493 struct page *grab_cache_page_write_begin(struct address_space *mapping,
494 pgoff_t index, unsigned flags);
495
496 /*
497 * Returns locked page at given index in given cache, creating it if needed.
498 */
499 static inline struct page *grab_cache_page(struct address_space *mapping,
500 pgoff_t index)
501 {
502 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
503 }
504
505 extern struct page * read_cache_page(struct address_space *mapping,
506 pgoff_t index, filler_t *filler, void *data);
507 extern struct page * read_cache_page_gfp(struct address_space *mapping,
508 pgoff_t index, gfp_t gfp_mask);
509 extern int read_cache_pages(struct address_space *mapping,
510 struct list_head *pages, filler_t *filler, void *data);
511
512 static inline struct page *read_mapping_page(struct address_space *mapping,
513 pgoff_t index, void *data)
514 {
515 return read_cache_page(mapping, index, NULL, data);
516 }
517
518 /*
519 * Get index of the page with in radix-tree
520 * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE)
521 */
522 static inline pgoff_t page_to_index(struct page *page)
523 {
524 pgoff_t pgoff;
525
526 if (likely(!PageTransTail(page)))
527 return page->index;
528
529 /*
530 * We don't initialize ->index for tail pages: calculate based on
531 * head page
532 */
533 pgoff = compound_head(page)->index;
534 pgoff += page - compound_head(page);
535 return pgoff;
536 }
537
538 /*
539 * Get the offset in PAGE_SIZE.
540 * (TODO: hugepage should have ->index in PAGE_SIZE)
541 */
542 static inline pgoff_t page_to_pgoff(struct page *page)
543 {
544 if (unlikely(PageHeadHuge(page)))
545 return page->index << compound_order(page);
546
547 return page_to_index(page);
548 }
549
550 /*
551 * Return byte-offset into filesystem object for page.
552 */
553 static inline loff_t page_offset(struct page *page)
554 {
555 return ((loff_t)page->index) << PAGE_SHIFT;
556 }
557
558 static inline loff_t page_file_offset(struct page *page)
559 {
560 return ((loff_t)page_index(page)) << PAGE_SHIFT;
561 }
562
563 extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
564 unsigned long address);
565
566 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
567 unsigned long address)
568 {
569 pgoff_t pgoff;
570 if (unlikely(is_vm_hugetlb_page(vma)))
571 return linear_hugepage_index(vma, address);
572 pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
573 pgoff += vma->vm_pgoff;
574 return pgoff;
575 }
576
577 struct wait_page_key {
578 struct page *page;
579 int bit_nr;
580 int page_match;
581 };
582
583 struct wait_page_queue {
584 struct page *page;
585 int bit_nr;
586 wait_queue_entry_t wait;
587 };
588
589 static inline bool wake_page_match(struct wait_page_queue *wait_page,
590 struct wait_page_key *key)
591 {
592 if (wait_page->page != key->page)
593 return false;
594 key->page_match = 1;
595
596 if (wait_page->bit_nr != key->bit_nr)
597 return false;
598
599 return true;
600 }
601
602 extern void __lock_page(struct page *page);
603 extern int __lock_page_killable(struct page *page);
604 extern int __lock_page_async(struct page *page, struct wait_page_queue *wait);
605 extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
606 unsigned int flags);
607 extern void unlock_page(struct page *page);
608
609 /*
610 * Return true if the page was successfully locked
611 */
612 static inline int trylock_page(struct page *page)
613 {
614 page = compound_head(page);
615 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
616 }
617
618 /*
619 * lock_page may only be called if we have the page's inode pinned.
620 */
621 static inline void lock_page(struct page *page)
622 {
623 might_sleep();
624 if (!trylock_page(page))
625 __lock_page(page);
626 }
627
628 /*
629 * lock_page_killable is like lock_page but can be interrupted by fatal
630 * signals. It returns 0 if it locked the page and -EINTR if it was
631 * killed while waiting.
632 */
633 static inline int lock_page_killable(struct page *page)
634 {
635 might_sleep();
636 if (!trylock_page(page))
637 return __lock_page_killable(page);
638 return 0;
639 }
640
641 /*
642 * lock_page_async - Lock the page, unless this would block. If the page
643 * is already locked, then queue a callback when the page becomes unlocked.
644 * This callback can then retry the operation.
645 *
646 * Returns 0 if the page is locked successfully, or -EIOCBQUEUED if the page
647 * was already locked and the callback defined in 'wait' was queued.
648 */
649 static inline int lock_page_async(struct page *page,
650 struct wait_page_queue *wait)
651 {
652 if (!trylock_page(page))
653 return __lock_page_async(page, wait);
654 return 0;
655 }
656
657 /*
658 * lock_page_or_retry - Lock the page, unless this would block and the
659 * caller indicated that it can handle a retry.
660 *
661 * Return value and mmap_lock implications depend on flags; see
662 * __lock_page_or_retry().
663 */
664 static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
665 unsigned int flags)
666 {
667 might_sleep();
668 return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
669 }
670
671 /*
672 * This is exported only for wait_on_page_locked/wait_on_page_writeback, etc.,
673 * and should not be used directly.
674 */
675 extern void wait_on_page_bit(struct page *page, int bit_nr);
676 extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
677
678 /*
679 * Wait for a page to be unlocked.
680 *
681 * This must be called with the caller "holding" the page,
682 * ie with increased "page->count" so that the page won't
683 * go away during the wait..
684 */
685 static inline void wait_on_page_locked(struct page *page)
686 {
687 if (PageLocked(page))
688 wait_on_page_bit(compound_head(page), PG_locked);
689 }
690
691 static inline int wait_on_page_locked_killable(struct page *page)
692 {
693 if (!PageLocked(page))
694 return 0;
695 return wait_on_page_bit_killable(compound_head(page), PG_locked);
696 }
697
698 int put_and_wait_on_page_locked(struct page *page, int state);
699 void wait_on_page_writeback(struct page *page);
700 int wait_on_page_writeback_killable(struct page *page);
701 extern void end_page_writeback(struct page *page);
702 void wait_for_stable_page(struct page *page);
703
704 void page_endio(struct page *page, bool is_write, int err);
705
706 /**
707 * set_page_private_2 - Set PG_private_2 on a page and take a ref
708 * @page: The page.
709 *
710 * Set the PG_private_2 flag on a page and take the reference needed for the VM
711 * to handle its lifetime correctly. This sets the flag and takes the
712 * reference unconditionally, so care must be taken not to set the flag again
713 * if it's already set.
714 */
715 static inline void set_page_private_2(struct page *page)
716 {
717 page = compound_head(page);
718 get_page(page);
719 SetPagePrivate2(page);
720 }
721
722 void end_page_private_2(struct page *page);
723 void wait_on_page_private_2(struct page *page);
724 int wait_on_page_private_2_killable(struct page *page);
725
726 /*
727 * Add an arbitrary waiter to a page's wait queue
728 */
729 extern void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter);
730
731 /*
732 * Fault everything in given userspace address range in.
733 */
734 static inline int fault_in_pages_writeable(char __user *uaddr, int size)
735 {
736 char __user *end = uaddr + size - 1;
737
738 if (unlikely(size == 0))
739 return 0;
740
741 if (unlikely(uaddr > end))
742 return -EFAULT;
743 /*
744 * Writing zeroes into userspace here is OK, because we know that if
745 * the zero gets there, we'll be overwriting it.
746 */
747 do {
748 if (unlikely(__put_user(0, uaddr) != 0))
749 return -EFAULT;
750 uaddr += PAGE_SIZE;
751 } while (uaddr <= end);
752
753 /* Check whether the range spilled into the next page. */
754 if (((unsigned long)uaddr & PAGE_MASK) ==
755 ((unsigned long)end & PAGE_MASK))
756 return __put_user(0, end);
757
758 return 0;
759 }
760
761 static inline int fault_in_pages_readable(const char __user *uaddr, int size)
762 {
763 volatile char c;
764 const char __user *end = uaddr + size - 1;
765
766 if (unlikely(size == 0))
767 return 0;
768
769 if (unlikely(uaddr > end))
770 return -EFAULT;
771
772 do {
773 if (unlikely(__get_user(c, uaddr) != 0))
774 return -EFAULT;
775 uaddr += PAGE_SIZE;
776 } while (uaddr <= end);
777
778 /* Check whether the range spilled into the next page. */
779 if (((unsigned long)uaddr & PAGE_MASK) ==
780 ((unsigned long)end & PAGE_MASK)) {
781 return __get_user(c, end);
782 }
783
784 (void)c;
785 return 0;
786 }
787
788 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
789 pgoff_t index, gfp_t gfp_mask);
790 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
791 pgoff_t index, gfp_t gfp_mask);
792 extern void delete_from_page_cache(struct page *page);
793 extern void __delete_from_page_cache(struct page *page, void *shadow);
794 void replace_page_cache_page(struct page *old, struct page *new);
795 void delete_from_page_cache_batch(struct address_space *mapping,
796 struct pagevec *pvec);
797 loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end,
798 int whence);
799
800 /*
801 * Like add_to_page_cache_locked, but used to add newly allocated pages:
802 * the page is new, so we can just run __SetPageLocked() against it.
803 */
804 static inline int add_to_page_cache(struct page *page,
805 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
806 {
807 int error;
808
809 __SetPageLocked(page);
810 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
811 if (unlikely(error))
812 __ClearPageLocked(page);
813 return error;
814 }
815
816 /**
817 * struct readahead_control - Describes a readahead request.
818 *
819 * A readahead request is for consecutive pages. Filesystems which
820 * implement the ->readahead method should call readahead_page() or
821 * readahead_page_batch() in a loop and attempt to start I/O against
822 * each page in the request.
823 *
824 * Most of the fields in this struct are private and should be accessed
825 * by the functions below.
826 *
827 * @file: The file, used primarily by network filesystems for authentication.
828 * May be NULL if invoked internally by the filesystem.
829 * @mapping: Readahead this filesystem object.
830 * @ra: File readahead state. May be NULL.
831 */
832 struct readahead_control {
833 struct file *file;
834 struct address_space *mapping;
835 struct file_ra_state *ra;
836 /* private: use the readahead_* accessors instead */
837 pgoff_t _index;
838 unsigned int _nr_pages;
839 unsigned int _batch_count;
840 };
841
842 #define DEFINE_READAHEAD(ractl, f, r, m, i) \
843 struct readahead_control ractl = { \
844 .file = f, \
845 .mapping = m, \
846 .ra = r, \
847 ._index = i, \
848 }
849
850 #define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE)
851
852 void page_cache_ra_unbounded(struct readahead_control *,
853 unsigned long nr_to_read, unsigned long lookahead_count);
854 void page_cache_sync_ra(struct readahead_control *, unsigned long req_count);
855 void page_cache_async_ra(struct readahead_control *, struct page *,
856 unsigned long req_count);
857 void readahead_expand(struct readahead_control *ractl,
858 loff_t new_start, size_t new_len);
859
860 /**
861 * page_cache_sync_readahead - generic file readahead
862 * @mapping: address_space which holds the pagecache and I/O vectors
863 * @ra: file_ra_state which holds the readahead state
864 * @file: Used by the filesystem for authentication.
865 * @index: Index of first page to be read.
866 * @req_count: Total number of pages being read by the caller.
867 *
868 * page_cache_sync_readahead() should be called when a cache miss happened:
869 * it will submit the read. The readahead logic may decide to piggyback more
870 * pages onto the read request if access patterns suggest it will improve
871 * performance.
872 */
873 static inline
874 void page_cache_sync_readahead(struct address_space *mapping,
875 struct file_ra_state *ra, struct file *file, pgoff_t index,
876 unsigned long req_count)
877 {
878 DEFINE_READAHEAD(ractl, file, ra, mapping, index);
879 page_cache_sync_ra(&ractl, req_count);
880 }
881
882 /**
883 * page_cache_async_readahead - file readahead for marked pages
884 * @mapping: address_space which holds the pagecache and I/O vectors
885 * @ra: file_ra_state which holds the readahead state
886 * @file: Used by the filesystem for authentication.
887 * @page: The page at @index which triggered the readahead call.
888 * @index: Index of first page to be read.
889 * @req_count: Total number of pages being read by the caller.
890 *
891 * page_cache_async_readahead() should be called when a page is used which
892 * is marked as PageReadahead; this is a marker to suggest that the application
893 * has used up enough of the readahead window that we should start pulling in
894 * more pages.
895 */
896 static inline
897 void page_cache_async_readahead(struct address_space *mapping,
898 struct file_ra_state *ra, struct file *file,
899 struct page *page, pgoff_t index, unsigned long req_count)
900 {
901 DEFINE_READAHEAD(ractl, file, ra, mapping, index);
902 page_cache_async_ra(&ractl, page, req_count);
903 }
904
905 /**
906 * readahead_page - Get the next page to read.
907 * @rac: The current readahead request.
908 *
909 * Context: The page is locked and has an elevated refcount. The caller
910 * should decreases the refcount once the page has been submitted for I/O
911 * and unlock the page once all I/O to that page has completed.
912 * Return: A pointer to the next page, or %NULL if we are done.
913 */
914 static inline struct page *readahead_page(struct readahead_control *rac)
915 {
916 struct page *page;
917
918 BUG_ON(rac->_batch_count > rac->_nr_pages);
919 rac->_nr_pages -= rac->_batch_count;
920 rac->_index += rac->_batch_count;
921
922 if (!rac->_nr_pages) {
923 rac->_batch_count = 0;
924 return NULL;
925 }
926
927 page = xa_load(&rac->mapping->i_pages, rac->_index);
928 VM_BUG_ON_PAGE(!PageLocked(page), page);
929 rac->_batch_count = thp_nr_pages(page);
930
931 return page;
932 }
933
934 static inline unsigned int __readahead_batch(struct readahead_control *rac,
935 struct page **array, unsigned int array_sz)
936 {
937 unsigned int i = 0;
938 XA_STATE(xas, &rac->mapping->i_pages, 0);
939 struct page *page;
940
941 BUG_ON(rac->_batch_count > rac->_nr_pages);
942 rac->_nr_pages -= rac->_batch_count;
943 rac->_index += rac->_batch_count;
944 rac->_batch_count = 0;
945
946 xas_set(&xas, rac->_index);
947 rcu_read_lock();
948 xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) {
949 if (xas_retry(&xas, page))
950 continue;
951 VM_BUG_ON_PAGE(!PageLocked(page), page);
952 VM_BUG_ON_PAGE(PageTail(page), page);
953 array[i++] = page;
954 rac->_batch_count += thp_nr_pages(page);
955
956 /*
957 * The page cache isn't using multi-index entries yet,
958 * so the xas cursor needs to be manually moved to the
959 * next index. This can be removed once the page cache
960 * is converted.
961 */
962 if (PageHead(page))
963 xas_set(&xas, rac->_index + rac->_batch_count);
964
965 if (i == array_sz)
966 break;
967 }
968 rcu_read_unlock();
969
970 return i;
971 }
972
973 /**
974 * readahead_page_batch - Get a batch of pages to read.
975 * @rac: The current readahead request.
976 * @array: An array of pointers to struct page.
977 *
978 * Context: The pages are locked and have an elevated refcount. The caller
979 * should decreases the refcount once the page has been submitted for I/O
980 * and unlock the page once all I/O to that page has completed.
981 * Return: The number of pages placed in the array. 0 indicates the request
982 * is complete.
983 */
984 #define readahead_page_batch(rac, array) \
985 __readahead_batch(rac, array, ARRAY_SIZE(array))
986
987 /**
988 * readahead_pos - The byte offset into the file of this readahead request.
989 * @rac: The readahead request.
990 */
991 static inline loff_t readahead_pos(struct readahead_control *rac)
992 {
993 return (loff_t)rac->_index * PAGE_SIZE;
994 }
995
996 /**
997 * readahead_length - The number of bytes in this readahead request.
998 * @rac: The readahead request.
999 */
1000 static inline size_t readahead_length(struct readahead_control *rac)
1001 {
1002 return rac->_nr_pages * PAGE_SIZE;
1003 }
1004
1005 /**
1006 * readahead_index - The index of the first page in this readahead request.
1007 * @rac: The readahead request.
1008 */
1009 static inline pgoff_t readahead_index(struct readahead_control *rac)
1010 {
1011 return rac->_index;
1012 }
1013
1014 /**
1015 * readahead_count - The number of pages in this readahead request.
1016 * @rac: The readahead request.
1017 */
1018 static inline unsigned int readahead_count(struct readahead_control *rac)
1019 {
1020 return rac->_nr_pages;
1021 }
1022
1023 /**
1024 * readahead_batch_length - The number of bytes in the current batch.
1025 * @rac: The readahead request.
1026 */
1027 static inline size_t readahead_batch_length(struct readahead_control *rac)
1028 {
1029 return rac->_batch_count * PAGE_SIZE;
1030 }
1031
1032 static inline unsigned long dir_pages(struct inode *inode)
1033 {
1034 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
1035 PAGE_SHIFT;
1036 }
1037
1038 /**
1039 * page_mkwrite_check_truncate - check if page was truncated
1040 * @page: the page to check
1041 * @inode: the inode to check the page against
1042 *
1043 * Returns the number of bytes in the page up to EOF,
1044 * or -EFAULT if the page was truncated.
1045 */
1046 static inline int page_mkwrite_check_truncate(struct page *page,
1047 struct inode *inode)
1048 {
1049 loff_t size = i_size_read(inode);
1050 pgoff_t index = size >> PAGE_SHIFT;
1051 int offset = offset_in_page(size);
1052
1053 if (page->mapping != inode->i_mapping)
1054 return -EFAULT;
1055
1056 /* page is wholly inside EOF */
1057 if (page->index < index)
1058 return PAGE_SIZE;
1059 /* page is wholly past EOF */
1060 if (page->index > index || !offset)
1061 return -EFAULT;
1062 /* page is partially inside EOF */
1063 return offset;
1064 }
1065
1066 /**
1067 * i_blocks_per_page - How many blocks fit in this page.
1068 * @inode: The inode which contains the blocks.
1069 * @page: The page (head page if the page is a THP).
1070 *
1071 * If the block size is larger than the size of this page, return zero.
1072 *
1073 * Context: The caller should hold a refcount on the page to prevent it
1074 * from being split.
1075 * Return: The number of filesystem blocks covered by this page.
1076 */
1077 static inline
1078 unsigned int i_blocks_per_page(struct inode *inode, struct page *page)
1079 {
1080 return thp_size(page) >> inode->i_blkbits;
1081 }
1082 #endif /* _LINUX_PAGEMAP_H */