]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/pagemap.h
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64...
[mirror_ubuntu-bionic-kernel.git] / include / linux / pagemap.h
1 #ifndef _LINUX_PAGEMAP_H
2 #define _LINUX_PAGEMAP_H
3
4 /*
5 * Copyright 1995 Linus Torvalds
6 */
7 #include <linux/mm.h>
8 #include <linux/fs.h>
9 #include <linux/list.h>
10 #include <linux/highmem.h>
11 #include <linux/compiler.h>
12 #include <asm/uaccess.h>
13 #include <linux/gfp.h>
14 #include <linux/bitops.h>
15 #include <linux/hardirq.h> /* for in_interrupt() */
16 #include <linux/hugetlb_inline.h>
17
18 /*
19 * Bits in mapping->flags. The lower __GFP_BITS_SHIFT bits are the page
20 * allocation mode flags.
21 */
22 enum mapping_flags {
23 AS_EIO = __GFP_BITS_SHIFT + 0, /* IO error on async write */
24 AS_ENOSPC = __GFP_BITS_SHIFT + 1, /* ENOSPC on async write */
25 AS_MM_ALL_LOCKS = __GFP_BITS_SHIFT + 2, /* under mm_take_all_locks() */
26 AS_UNEVICTABLE = __GFP_BITS_SHIFT + 3, /* e.g., ramdisk, SHM_LOCK */
27 AS_BALLOON_MAP = __GFP_BITS_SHIFT + 4, /* balloon page special map */
28 AS_EXITING = __GFP_BITS_SHIFT + 5, /* final truncate in progress */
29 };
30
31 static inline void mapping_set_error(struct address_space *mapping, int error)
32 {
33 if (unlikely(error)) {
34 if (error == -ENOSPC)
35 set_bit(AS_ENOSPC, &mapping->flags);
36 else
37 set_bit(AS_EIO, &mapping->flags);
38 }
39 }
40
41 static inline void mapping_set_unevictable(struct address_space *mapping)
42 {
43 set_bit(AS_UNEVICTABLE, &mapping->flags);
44 }
45
46 static inline void mapping_clear_unevictable(struct address_space *mapping)
47 {
48 clear_bit(AS_UNEVICTABLE, &mapping->flags);
49 }
50
51 static inline int mapping_unevictable(struct address_space *mapping)
52 {
53 if (mapping)
54 return test_bit(AS_UNEVICTABLE, &mapping->flags);
55 return !!mapping;
56 }
57
58 static inline void mapping_set_balloon(struct address_space *mapping)
59 {
60 set_bit(AS_BALLOON_MAP, &mapping->flags);
61 }
62
63 static inline void mapping_clear_balloon(struct address_space *mapping)
64 {
65 clear_bit(AS_BALLOON_MAP, &mapping->flags);
66 }
67
68 static inline int mapping_balloon(struct address_space *mapping)
69 {
70 return mapping && test_bit(AS_BALLOON_MAP, &mapping->flags);
71 }
72
73 static inline void mapping_set_exiting(struct address_space *mapping)
74 {
75 set_bit(AS_EXITING, &mapping->flags);
76 }
77
78 static inline int mapping_exiting(struct address_space *mapping)
79 {
80 return test_bit(AS_EXITING, &mapping->flags);
81 }
82
83 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
84 {
85 return (__force gfp_t)mapping->flags & __GFP_BITS_MASK;
86 }
87
88 /*
89 * This is non-atomic. Only to be used before the mapping is activated.
90 * Probably needs a barrier...
91 */
92 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
93 {
94 m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) |
95 (__force unsigned long)mask;
96 }
97
98 /*
99 * The page cache can done in larger chunks than
100 * one page, because it allows for more efficient
101 * throughput (it can then be mapped into user
102 * space in smaller chunks for same flexibility).
103 *
104 * Or rather, it _will_ be done in larger chunks.
105 */
106 #define PAGE_CACHE_SHIFT PAGE_SHIFT
107 #define PAGE_CACHE_SIZE PAGE_SIZE
108 #define PAGE_CACHE_MASK PAGE_MASK
109 #define PAGE_CACHE_ALIGN(addr) (((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK)
110
111 #define page_cache_get(page) get_page(page)
112 #define page_cache_release(page) put_page(page)
113 void release_pages(struct page **pages, int nr, bool cold);
114
115 /*
116 * speculatively take a reference to a page.
117 * If the page is free (_count == 0), then _count is untouched, and 0
118 * is returned. Otherwise, _count is incremented by 1 and 1 is returned.
119 *
120 * This function must be called inside the same rcu_read_lock() section as has
121 * been used to lookup the page in the pagecache radix-tree (or page table):
122 * this allows allocators to use a synchronize_rcu() to stabilize _count.
123 *
124 * Unless an RCU grace period has passed, the count of all pages coming out
125 * of the allocator must be considered unstable. page_count may return higher
126 * than expected, and put_page must be able to do the right thing when the
127 * page has been finished with, no matter what it is subsequently allocated
128 * for (because put_page is what is used here to drop an invalid speculative
129 * reference).
130 *
131 * This is the interesting part of the lockless pagecache (and lockless
132 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
133 * has the following pattern:
134 * 1. find page in radix tree
135 * 2. conditionally increment refcount
136 * 3. check the page is still in pagecache (if no, goto 1)
137 *
138 * Remove-side that cares about stability of _count (eg. reclaim) has the
139 * following (with tree_lock held for write):
140 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
141 * B. remove page from pagecache
142 * C. free the page
143 *
144 * There are 2 critical interleavings that matter:
145 * - 2 runs before A: in this case, A sees elevated refcount and bails out
146 * - A runs before 2: in this case, 2 sees zero refcount and retries;
147 * subsequently, B will complete and 1 will find no page, causing the
148 * lookup to return NULL.
149 *
150 * It is possible that between 1 and 2, the page is removed then the exact same
151 * page is inserted into the same position in pagecache. That's OK: the
152 * old find_get_page using tree_lock could equally have run before or after
153 * such a re-insertion, depending on order that locks are granted.
154 *
155 * Lookups racing against pagecache insertion isn't a big problem: either 1
156 * will find the page or it will not. Likewise, the old find_get_page could run
157 * either before the insertion or afterwards, depending on timing.
158 */
159 static inline int page_cache_get_speculative(struct page *page)
160 {
161 VM_BUG_ON(in_interrupt());
162
163 #ifdef CONFIG_TINY_RCU
164 # ifdef CONFIG_PREEMPT_COUNT
165 VM_BUG_ON(!in_atomic());
166 # endif
167 /*
168 * Preempt must be disabled here - we rely on rcu_read_lock doing
169 * this for us.
170 *
171 * Pagecache won't be truncated from interrupt context, so if we have
172 * found a page in the radix tree here, we have pinned its refcount by
173 * disabling preempt, and hence no need for the "speculative get" that
174 * SMP requires.
175 */
176 VM_BUG_ON_PAGE(page_count(page) == 0, page);
177 atomic_inc(&page->_count);
178
179 #else
180 if (unlikely(!get_page_unless_zero(page))) {
181 /*
182 * Either the page has been freed, or will be freed.
183 * In either case, retry here and the caller should
184 * do the right thing (see comments above).
185 */
186 return 0;
187 }
188 #endif
189 VM_BUG_ON_PAGE(PageTail(page), page);
190
191 return 1;
192 }
193
194 /*
195 * Same as above, but add instead of inc (could just be merged)
196 */
197 static inline int page_cache_add_speculative(struct page *page, int count)
198 {
199 VM_BUG_ON(in_interrupt());
200
201 #if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
202 # ifdef CONFIG_PREEMPT_COUNT
203 VM_BUG_ON(!in_atomic());
204 # endif
205 VM_BUG_ON_PAGE(page_count(page) == 0, page);
206 atomic_add(count, &page->_count);
207
208 #else
209 if (unlikely(!atomic_add_unless(&page->_count, count, 0)))
210 return 0;
211 #endif
212 VM_BUG_ON_PAGE(PageCompound(page) && page != compound_head(page), page);
213
214 return 1;
215 }
216
217 static inline int page_freeze_refs(struct page *page, int count)
218 {
219 return likely(atomic_cmpxchg(&page->_count, count, 0) == count);
220 }
221
222 static inline void page_unfreeze_refs(struct page *page, int count)
223 {
224 VM_BUG_ON_PAGE(page_count(page) != 0, page);
225 VM_BUG_ON(count == 0);
226
227 atomic_set(&page->_count, count);
228 }
229
230 #ifdef CONFIG_NUMA
231 extern struct page *__page_cache_alloc(gfp_t gfp);
232 #else
233 static inline struct page *__page_cache_alloc(gfp_t gfp)
234 {
235 return alloc_pages(gfp, 0);
236 }
237 #endif
238
239 static inline struct page *page_cache_alloc(struct address_space *x)
240 {
241 return __page_cache_alloc(mapping_gfp_mask(x));
242 }
243
244 static inline struct page *page_cache_alloc_cold(struct address_space *x)
245 {
246 return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
247 }
248
249 static inline struct page *page_cache_alloc_readahead(struct address_space *x)
250 {
251 return __page_cache_alloc(mapping_gfp_mask(x) |
252 __GFP_COLD | __GFP_NORETRY | __GFP_NOWARN);
253 }
254
255 typedef int filler_t(void *, struct page *);
256
257 pgoff_t page_cache_next_hole(struct address_space *mapping,
258 pgoff_t index, unsigned long max_scan);
259 pgoff_t page_cache_prev_hole(struct address_space *mapping,
260 pgoff_t index, unsigned long max_scan);
261
262 #define FGP_ACCESSED 0x00000001
263 #define FGP_LOCK 0x00000002
264 #define FGP_CREAT 0x00000004
265 #define FGP_WRITE 0x00000008
266 #define FGP_NOFS 0x00000010
267 #define FGP_NOWAIT 0x00000020
268
269 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
270 int fgp_flags, gfp_t cache_gfp_mask, gfp_t radix_gfp_mask);
271
272 /**
273 * find_get_page - find and get a page reference
274 * @mapping: the address_space to search
275 * @offset: the page index
276 *
277 * Looks up the page cache slot at @mapping & @offset. If there is a
278 * page cache page, it is returned with an increased refcount.
279 *
280 * Otherwise, %NULL is returned.
281 */
282 static inline struct page *find_get_page(struct address_space *mapping,
283 pgoff_t offset)
284 {
285 return pagecache_get_page(mapping, offset, 0, 0, 0);
286 }
287
288 static inline struct page *find_get_page_flags(struct address_space *mapping,
289 pgoff_t offset, int fgp_flags)
290 {
291 return pagecache_get_page(mapping, offset, fgp_flags, 0, 0);
292 }
293
294 /**
295 * find_lock_page - locate, pin and lock a pagecache page
296 * pagecache_get_page - find and get a page reference
297 * @mapping: the address_space to search
298 * @offset: the page index
299 *
300 * Looks up the page cache slot at @mapping & @offset. If there is a
301 * page cache page, it is returned locked and with an increased
302 * refcount.
303 *
304 * Otherwise, %NULL is returned.
305 *
306 * find_lock_page() may sleep.
307 */
308 static inline struct page *find_lock_page(struct address_space *mapping,
309 pgoff_t offset)
310 {
311 return pagecache_get_page(mapping, offset, FGP_LOCK, 0, 0);
312 }
313
314 /**
315 * find_or_create_page - locate or add a pagecache page
316 * @mapping: the page's address_space
317 * @index: the page's index into the mapping
318 * @gfp_mask: page allocation mode
319 *
320 * Looks up the page cache slot at @mapping & @offset. If there is a
321 * page cache page, it is returned locked and with an increased
322 * refcount.
323 *
324 * If the page is not present, a new page is allocated using @gfp_mask
325 * and added to the page cache and the VM's LRU list. The page is
326 * returned locked and with an increased refcount.
327 *
328 * On memory exhaustion, %NULL is returned.
329 *
330 * find_or_create_page() may sleep, even if @gfp_flags specifies an
331 * atomic allocation!
332 */
333 static inline struct page *find_or_create_page(struct address_space *mapping,
334 pgoff_t offset, gfp_t gfp_mask)
335 {
336 return pagecache_get_page(mapping, offset,
337 FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
338 gfp_mask, gfp_mask & GFP_RECLAIM_MASK);
339 }
340
341 /**
342 * grab_cache_page_nowait - returns locked page at given index in given cache
343 * @mapping: target address_space
344 * @index: the page index
345 *
346 * Same as grab_cache_page(), but do not wait if the page is unavailable.
347 * This is intended for speculative data generators, where the data can
348 * be regenerated if the page couldn't be grabbed. This routine should
349 * be safe to call while holding the lock for another page.
350 *
351 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
352 * and deadlock against the caller's locked page.
353 */
354 static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
355 pgoff_t index)
356 {
357 return pagecache_get_page(mapping, index,
358 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
359 mapping_gfp_mask(mapping),
360 GFP_NOFS);
361 }
362
363 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset);
364 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset);
365 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
366 unsigned int nr_entries, struct page **entries,
367 pgoff_t *indices);
368 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
369 unsigned int nr_pages, struct page **pages);
370 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
371 unsigned int nr_pages, struct page **pages);
372 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
373 int tag, unsigned int nr_pages, struct page **pages);
374
375 struct page *grab_cache_page_write_begin(struct address_space *mapping,
376 pgoff_t index, unsigned flags);
377
378 /*
379 * Returns locked page at given index in given cache, creating it if needed.
380 */
381 static inline struct page *grab_cache_page(struct address_space *mapping,
382 pgoff_t index)
383 {
384 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
385 }
386
387 extern struct page * read_cache_page(struct address_space *mapping,
388 pgoff_t index, filler_t *filler, void *data);
389 extern struct page * read_cache_page_gfp(struct address_space *mapping,
390 pgoff_t index, gfp_t gfp_mask);
391 extern int read_cache_pages(struct address_space *mapping,
392 struct list_head *pages, filler_t *filler, void *data);
393
394 static inline struct page *read_mapping_page(struct address_space *mapping,
395 pgoff_t index, void *data)
396 {
397 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
398 return read_cache_page(mapping, index, filler, data);
399 }
400
401 /*
402 * Return byte-offset into filesystem object for page.
403 */
404 static inline loff_t page_offset(struct page *page)
405 {
406 return ((loff_t)page->index) << PAGE_CACHE_SHIFT;
407 }
408
409 static inline loff_t page_file_offset(struct page *page)
410 {
411 return ((loff_t)page_file_index(page)) << PAGE_CACHE_SHIFT;
412 }
413
414 extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
415 unsigned long address);
416
417 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
418 unsigned long address)
419 {
420 pgoff_t pgoff;
421 if (unlikely(is_vm_hugetlb_page(vma)))
422 return linear_hugepage_index(vma, address);
423 pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
424 pgoff += vma->vm_pgoff;
425 return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT);
426 }
427
428 extern void __lock_page(struct page *page);
429 extern int __lock_page_killable(struct page *page);
430 extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
431 unsigned int flags);
432 extern void unlock_page(struct page *page);
433
434 static inline void __set_page_locked(struct page *page)
435 {
436 __set_bit(PG_locked, &page->flags);
437 }
438
439 static inline void __clear_page_locked(struct page *page)
440 {
441 __clear_bit(PG_locked, &page->flags);
442 }
443
444 static inline int trylock_page(struct page *page)
445 {
446 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
447 }
448
449 /*
450 * lock_page may only be called if we have the page's inode pinned.
451 */
452 static inline void lock_page(struct page *page)
453 {
454 might_sleep();
455 if (!trylock_page(page))
456 __lock_page(page);
457 }
458
459 /*
460 * lock_page_killable is like lock_page but can be interrupted by fatal
461 * signals. It returns 0 if it locked the page and -EINTR if it was
462 * killed while waiting.
463 */
464 static inline int lock_page_killable(struct page *page)
465 {
466 might_sleep();
467 if (!trylock_page(page))
468 return __lock_page_killable(page);
469 return 0;
470 }
471
472 /*
473 * lock_page_or_retry - Lock the page, unless this would block and the
474 * caller indicated that it can handle a retry.
475 */
476 static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
477 unsigned int flags)
478 {
479 might_sleep();
480 return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
481 }
482
483 /*
484 * This is exported only for wait_on_page_locked/wait_on_page_writeback.
485 * Never use this directly!
486 */
487 extern void wait_on_page_bit(struct page *page, int bit_nr);
488
489 extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
490
491 static inline int wait_on_page_locked_killable(struct page *page)
492 {
493 if (PageLocked(page))
494 return wait_on_page_bit_killable(page, PG_locked);
495 return 0;
496 }
497
498 /*
499 * Wait for a page to be unlocked.
500 *
501 * This must be called with the caller "holding" the page,
502 * ie with increased "page->count" so that the page won't
503 * go away during the wait..
504 */
505 static inline void wait_on_page_locked(struct page *page)
506 {
507 if (PageLocked(page))
508 wait_on_page_bit(page, PG_locked);
509 }
510
511 /*
512 * Wait for a page to complete writeback
513 */
514 static inline void wait_on_page_writeback(struct page *page)
515 {
516 if (PageWriteback(page))
517 wait_on_page_bit(page, PG_writeback);
518 }
519
520 extern void end_page_writeback(struct page *page);
521 void wait_for_stable_page(struct page *page);
522
523 void page_endio(struct page *page, int rw, int err);
524
525 /*
526 * Add an arbitrary waiter to a page's wait queue
527 */
528 extern void add_page_wait_queue(struct page *page, wait_queue_t *waiter);
529
530 /*
531 * Fault a userspace page into pagetables. Return non-zero on a fault.
532 *
533 * This assumes that two userspace pages are always sufficient. That's
534 * not true if PAGE_CACHE_SIZE > PAGE_SIZE.
535 */
536 static inline int fault_in_pages_writeable(char __user *uaddr, int size)
537 {
538 int ret;
539
540 if (unlikely(size == 0))
541 return 0;
542
543 /*
544 * Writing zeroes into userspace here is OK, because we know that if
545 * the zero gets there, we'll be overwriting it.
546 */
547 ret = __put_user(0, uaddr);
548 if (ret == 0) {
549 char __user *end = uaddr + size - 1;
550
551 /*
552 * If the page was already mapped, this will get a cache miss
553 * for sure, so try to avoid doing it.
554 */
555 if (((unsigned long)uaddr & PAGE_MASK) !=
556 ((unsigned long)end & PAGE_MASK))
557 ret = __put_user(0, end);
558 }
559 return ret;
560 }
561
562 static inline int fault_in_pages_readable(const char __user *uaddr, int size)
563 {
564 volatile char c;
565 int ret;
566
567 if (unlikely(size == 0))
568 return 0;
569
570 ret = __get_user(c, uaddr);
571 if (ret == 0) {
572 const char __user *end = uaddr + size - 1;
573
574 if (((unsigned long)uaddr & PAGE_MASK) !=
575 ((unsigned long)end & PAGE_MASK)) {
576 ret = __get_user(c, end);
577 (void)c;
578 }
579 }
580 return ret;
581 }
582
583 /*
584 * Multipage variants of the above prefault helpers, useful if more than
585 * PAGE_SIZE of data needs to be prefaulted. These are separate from the above
586 * functions (which only handle up to PAGE_SIZE) to avoid clobbering the
587 * filemap.c hotpaths.
588 */
589 static inline int fault_in_multipages_writeable(char __user *uaddr, int size)
590 {
591 int ret = 0;
592 char __user *end = uaddr + size - 1;
593
594 if (unlikely(size == 0))
595 return ret;
596
597 /*
598 * Writing zeroes into userspace here is OK, because we know that if
599 * the zero gets there, we'll be overwriting it.
600 */
601 while (uaddr <= end) {
602 ret = __put_user(0, uaddr);
603 if (ret != 0)
604 return ret;
605 uaddr += PAGE_SIZE;
606 }
607
608 /* Check whether the range spilled into the next page. */
609 if (((unsigned long)uaddr & PAGE_MASK) ==
610 ((unsigned long)end & PAGE_MASK))
611 ret = __put_user(0, end);
612
613 return ret;
614 }
615
616 static inline int fault_in_multipages_readable(const char __user *uaddr,
617 int size)
618 {
619 volatile char c;
620 int ret = 0;
621 const char __user *end = uaddr + size - 1;
622
623 if (unlikely(size == 0))
624 return ret;
625
626 while (uaddr <= end) {
627 ret = __get_user(c, uaddr);
628 if (ret != 0)
629 return ret;
630 uaddr += PAGE_SIZE;
631 }
632
633 /* Check whether the range spilled into the next page. */
634 if (((unsigned long)uaddr & PAGE_MASK) ==
635 ((unsigned long)end & PAGE_MASK)) {
636 ret = __get_user(c, end);
637 (void)c;
638 }
639
640 return ret;
641 }
642
643 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
644 pgoff_t index, gfp_t gfp_mask);
645 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
646 pgoff_t index, gfp_t gfp_mask);
647 extern void delete_from_page_cache(struct page *page);
648 extern void __delete_from_page_cache(struct page *page, void *shadow);
649 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
650
651 /*
652 * Like add_to_page_cache_locked, but used to add newly allocated pages:
653 * the page is new, so we can just run __set_page_locked() against it.
654 */
655 static inline int add_to_page_cache(struct page *page,
656 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
657 {
658 int error;
659
660 __set_page_locked(page);
661 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
662 if (unlikely(error))
663 __clear_page_locked(page);
664 return error;
665 }
666
667 #endif /* _LINUX_PAGEMAP_H */