]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/percpu.h
percpu,x86: relocate this_cpu_add_return() and friends
[mirror_ubuntu-artful-kernel.git] / include / linux / percpu.h
1 #ifndef __LINUX_PERCPU_H
2 #define __LINUX_PERCPU_H
3
4 #include <linux/preempt.h>
5 #include <linux/smp.h>
6 #include <linux/cpumask.h>
7 #include <linux/pfn.h>
8 #include <linux/init.h>
9
10 #include <asm/percpu.h>
11
12 /* enough to cover all DEFINE_PER_CPUs in modules */
13 #ifdef CONFIG_MODULES
14 #define PERCPU_MODULE_RESERVE (8 << 10)
15 #else
16 #define PERCPU_MODULE_RESERVE 0
17 #endif
18
19 #ifndef PERCPU_ENOUGH_ROOM
20 #define PERCPU_ENOUGH_ROOM \
21 (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \
22 PERCPU_MODULE_RESERVE)
23 #endif
24
25 /*
26 * Must be an lvalue. Since @var must be a simple identifier,
27 * we force a syntax error here if it isn't.
28 */
29 #define get_cpu_var(var) (*({ \
30 preempt_disable(); \
31 &__get_cpu_var(var); }))
32
33 /*
34 * The weird & is necessary because sparse considers (void)(var) to be
35 * a direct dereference of percpu variable (var).
36 */
37 #define put_cpu_var(var) do { \
38 (void)&(var); \
39 preempt_enable(); \
40 } while (0)
41
42 #define get_cpu_ptr(var) ({ \
43 preempt_disable(); \
44 this_cpu_ptr(var); })
45
46 #define put_cpu_ptr(var) do { \
47 (void)(var); \
48 preempt_enable(); \
49 } while (0)
50
51 /* minimum unit size, also is the maximum supported allocation size */
52 #define PCPU_MIN_UNIT_SIZE PFN_ALIGN(32 << 10)
53
54 /*
55 * Percpu allocator can serve percpu allocations before slab is
56 * initialized which allows slab to depend on the percpu allocator.
57 * The following two parameters decide how much resource to
58 * preallocate for this. Keep PERCPU_DYNAMIC_RESERVE equal to or
59 * larger than PERCPU_DYNAMIC_EARLY_SIZE.
60 */
61 #define PERCPU_DYNAMIC_EARLY_SLOTS 128
62 #define PERCPU_DYNAMIC_EARLY_SIZE (12 << 10)
63
64 /*
65 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy
66 * back on the first chunk for dynamic percpu allocation if arch is
67 * manually allocating and mapping it for faster access (as a part of
68 * large page mapping for example).
69 *
70 * The following values give between one and two pages of free space
71 * after typical minimal boot (2-way SMP, single disk and NIC) with
72 * both defconfig and a distro config on x86_64 and 32. More
73 * intelligent way to determine this would be nice.
74 */
75 #if BITS_PER_LONG > 32
76 #define PERCPU_DYNAMIC_RESERVE (20 << 10)
77 #else
78 #define PERCPU_DYNAMIC_RESERVE (12 << 10)
79 #endif
80
81 extern void *pcpu_base_addr;
82 extern const unsigned long *pcpu_unit_offsets;
83
84 struct pcpu_group_info {
85 int nr_units; /* aligned # of units */
86 unsigned long base_offset; /* base address offset */
87 unsigned int *cpu_map; /* unit->cpu map, empty
88 * entries contain NR_CPUS */
89 };
90
91 struct pcpu_alloc_info {
92 size_t static_size;
93 size_t reserved_size;
94 size_t dyn_size;
95 size_t unit_size;
96 size_t atom_size;
97 size_t alloc_size;
98 size_t __ai_size; /* internal, don't use */
99 int nr_groups; /* 0 if grouping unnecessary */
100 struct pcpu_group_info groups[];
101 };
102
103 enum pcpu_fc {
104 PCPU_FC_AUTO,
105 PCPU_FC_EMBED,
106 PCPU_FC_PAGE,
107
108 PCPU_FC_NR,
109 };
110 extern const char *pcpu_fc_names[PCPU_FC_NR];
111
112 extern enum pcpu_fc pcpu_chosen_fc;
113
114 typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size,
115 size_t align);
116 typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size);
117 typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr);
118 typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to);
119
120 extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
121 int nr_units);
122 extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai);
123
124 extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
125 void *base_addr);
126
127 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
128 extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
129 size_t atom_size,
130 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
131 pcpu_fc_alloc_fn_t alloc_fn,
132 pcpu_fc_free_fn_t free_fn);
133 #endif
134
135 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
136 extern int __init pcpu_page_first_chunk(size_t reserved_size,
137 pcpu_fc_alloc_fn_t alloc_fn,
138 pcpu_fc_free_fn_t free_fn,
139 pcpu_fc_populate_pte_fn_t populate_pte_fn);
140 #endif
141
142 /*
143 * Use this to get to a cpu's version of the per-cpu object
144 * dynamically allocated. Non-atomic access to the current CPU's
145 * version should probably be combined with get_cpu()/put_cpu().
146 */
147 #ifdef CONFIG_SMP
148 #define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)))
149 #else
150 #define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); })
151 #endif
152
153 extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align);
154 extern bool is_kernel_percpu_address(unsigned long addr);
155
156 #if !defined(CONFIG_SMP) || !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
157 extern void __init setup_per_cpu_areas(void);
158 #endif
159 extern void __init percpu_init_late(void);
160
161 extern void __percpu *__alloc_percpu(size_t size, size_t align);
162 extern void free_percpu(void __percpu *__pdata);
163 extern phys_addr_t per_cpu_ptr_to_phys(void *addr);
164
165 #define alloc_percpu(type) \
166 (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type))
167
168 /*
169 * Optional methods for optimized non-lvalue per-cpu variable access.
170 *
171 * @var can be a percpu variable or a field of it and its size should
172 * equal char, int or long. percpu_read() evaluates to a lvalue and
173 * all others to void.
174 *
175 * These operations are guaranteed to be atomic w.r.t. preemption.
176 * The generic versions use plain get/put_cpu_var(). Archs are
177 * encouraged to implement single-instruction alternatives which don't
178 * require preemption protection.
179 */
180 #ifndef percpu_read
181 # define percpu_read(var) \
182 ({ \
183 typeof(var) *pr_ptr__ = &(var); \
184 typeof(var) pr_ret__; \
185 pr_ret__ = get_cpu_var(*pr_ptr__); \
186 put_cpu_var(*pr_ptr__); \
187 pr_ret__; \
188 })
189 #endif
190
191 #define __percpu_generic_to_op(var, val, op) \
192 do { \
193 typeof(var) *pgto_ptr__ = &(var); \
194 get_cpu_var(*pgto_ptr__) op val; \
195 put_cpu_var(*pgto_ptr__); \
196 } while (0)
197
198 #ifndef percpu_write
199 # define percpu_write(var, val) __percpu_generic_to_op(var, (val), =)
200 #endif
201
202 #ifndef percpu_add
203 # define percpu_add(var, val) __percpu_generic_to_op(var, (val), +=)
204 #endif
205
206 #ifndef percpu_sub
207 # define percpu_sub(var, val) __percpu_generic_to_op(var, (val), -=)
208 #endif
209
210 #ifndef percpu_and
211 # define percpu_and(var, val) __percpu_generic_to_op(var, (val), &=)
212 #endif
213
214 #ifndef percpu_or
215 # define percpu_or(var, val) __percpu_generic_to_op(var, (val), |=)
216 #endif
217
218 #ifndef percpu_xor
219 # define percpu_xor(var, val) __percpu_generic_to_op(var, (val), ^=)
220 #endif
221
222 /*
223 * Branching function to split up a function into a set of functions that
224 * are called for different scalar sizes of the objects handled.
225 */
226
227 extern void __bad_size_call_parameter(void);
228
229 #define __pcpu_size_call_return(stem, variable) \
230 ({ typeof(variable) pscr_ret__; \
231 __verify_pcpu_ptr(&(variable)); \
232 switch(sizeof(variable)) { \
233 case 1: pscr_ret__ = stem##1(variable);break; \
234 case 2: pscr_ret__ = stem##2(variable);break; \
235 case 4: pscr_ret__ = stem##4(variable);break; \
236 case 8: pscr_ret__ = stem##8(variable);break; \
237 default: \
238 __bad_size_call_parameter();break; \
239 } \
240 pscr_ret__; \
241 })
242
243 #define __pcpu_size_call_return2(stem, variable, ...) \
244 ({ \
245 typeof(variable) pscr2_ret__; \
246 __verify_pcpu_ptr(&(variable)); \
247 switch(sizeof(variable)) { \
248 case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break; \
249 case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break; \
250 case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break; \
251 case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break; \
252 default: \
253 __bad_size_call_parameter(); break; \
254 } \
255 pscr2_ret__; \
256 })
257
258 #define __pcpu_size_call(stem, variable, ...) \
259 do { \
260 __verify_pcpu_ptr(&(variable)); \
261 switch(sizeof(variable)) { \
262 case 1: stem##1(variable, __VA_ARGS__);break; \
263 case 2: stem##2(variable, __VA_ARGS__);break; \
264 case 4: stem##4(variable, __VA_ARGS__);break; \
265 case 8: stem##8(variable, __VA_ARGS__);break; \
266 default: \
267 __bad_size_call_parameter();break; \
268 } \
269 } while (0)
270
271 /*
272 * Optimized manipulation for memory allocated through the per cpu
273 * allocator or for addresses of per cpu variables.
274 *
275 * These operation guarantee exclusivity of access for other operations
276 * on the *same* processor. The assumption is that per cpu data is only
277 * accessed by a single processor instance (the current one).
278 *
279 * The first group is used for accesses that must be done in a
280 * preemption safe way since we know that the context is not preempt
281 * safe. Interrupts may occur. If the interrupt modifies the variable
282 * too then RMW actions will not be reliable.
283 *
284 * The arch code can provide optimized functions in two ways:
285 *
286 * 1. Override the function completely. F.e. define this_cpu_add().
287 * The arch must then ensure that the various scalar format passed
288 * are handled correctly.
289 *
290 * 2. Provide functions for certain scalar sizes. F.e. provide
291 * this_cpu_add_2() to provide per cpu atomic operations for 2 byte
292 * sized RMW actions. If arch code does not provide operations for
293 * a scalar size then the fallback in the generic code will be
294 * used.
295 */
296
297 #define _this_cpu_generic_read(pcp) \
298 ({ typeof(pcp) ret__; \
299 preempt_disable(); \
300 ret__ = *this_cpu_ptr(&(pcp)); \
301 preempt_enable(); \
302 ret__; \
303 })
304
305 #ifndef this_cpu_read
306 # ifndef this_cpu_read_1
307 # define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp)
308 # endif
309 # ifndef this_cpu_read_2
310 # define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp)
311 # endif
312 # ifndef this_cpu_read_4
313 # define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp)
314 # endif
315 # ifndef this_cpu_read_8
316 # define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp)
317 # endif
318 # define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp))
319 #endif
320
321 #define _this_cpu_generic_to_op(pcp, val, op) \
322 do { \
323 preempt_disable(); \
324 *__this_cpu_ptr(&(pcp)) op val; \
325 preempt_enable(); \
326 } while (0)
327
328 #ifndef this_cpu_write
329 # ifndef this_cpu_write_1
330 # define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
331 # endif
332 # ifndef this_cpu_write_2
333 # define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
334 # endif
335 # ifndef this_cpu_write_4
336 # define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
337 # endif
338 # ifndef this_cpu_write_8
339 # define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
340 # endif
341 # define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val))
342 #endif
343
344 #ifndef this_cpu_add
345 # ifndef this_cpu_add_1
346 # define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
347 # endif
348 # ifndef this_cpu_add_2
349 # define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
350 # endif
351 # ifndef this_cpu_add_4
352 # define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
353 # endif
354 # ifndef this_cpu_add_8
355 # define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
356 # endif
357 # define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val))
358 #endif
359
360 #ifndef this_cpu_sub
361 # define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(val))
362 #endif
363
364 #ifndef this_cpu_inc
365 # define this_cpu_inc(pcp) this_cpu_add((pcp), 1)
366 #endif
367
368 #ifndef this_cpu_dec
369 # define this_cpu_dec(pcp) this_cpu_sub((pcp), 1)
370 #endif
371
372 #ifndef this_cpu_and
373 # ifndef this_cpu_and_1
374 # define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
375 # endif
376 # ifndef this_cpu_and_2
377 # define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
378 # endif
379 # ifndef this_cpu_and_4
380 # define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
381 # endif
382 # ifndef this_cpu_and_8
383 # define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
384 # endif
385 # define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val))
386 #endif
387
388 #ifndef this_cpu_or
389 # ifndef this_cpu_or_1
390 # define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
391 # endif
392 # ifndef this_cpu_or_2
393 # define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
394 # endif
395 # ifndef this_cpu_or_4
396 # define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
397 # endif
398 # ifndef this_cpu_or_8
399 # define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
400 # endif
401 # define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val))
402 #endif
403
404 #ifndef this_cpu_xor
405 # ifndef this_cpu_xor_1
406 # define this_cpu_xor_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
407 # endif
408 # ifndef this_cpu_xor_2
409 # define this_cpu_xor_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
410 # endif
411 # ifndef this_cpu_xor_4
412 # define this_cpu_xor_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
413 # endif
414 # ifndef this_cpu_xor_8
415 # define this_cpu_xor_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
416 # endif
417 # define this_cpu_xor(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val))
418 #endif
419
420 #define _this_cpu_generic_add_return(pcp, val) \
421 ({ \
422 typeof(pcp) ret__; \
423 preempt_disable(); \
424 __this_cpu_add(pcp, val); \
425 ret__ = __this_cpu_read(pcp); \
426 preempt_enable(); \
427 ret__; \
428 })
429
430 #ifndef this_cpu_add_return
431 # ifndef this_cpu_add_return_1
432 # define this_cpu_add_return_1(pcp, val) _this_cpu_generic_add_return(pcp, val)
433 # endif
434 # ifndef this_cpu_add_return_2
435 # define this_cpu_add_return_2(pcp, val) _this_cpu_generic_add_return(pcp, val)
436 # endif
437 # ifndef this_cpu_add_return_4
438 # define this_cpu_add_return_4(pcp, val) _this_cpu_generic_add_return(pcp, val)
439 # endif
440 # ifndef this_cpu_add_return_8
441 # define this_cpu_add_return_8(pcp, val) _this_cpu_generic_add_return(pcp, val)
442 # endif
443 # define this_cpu_add_return(pcp, val) __pcpu_size_call_return2(this_cpu_add_return_, pcp, val)
444 #endif
445
446 #define this_cpu_sub_return(pcp, val) this_cpu_add_return(pcp, -(val))
447 #define this_cpu_inc_return(pcp) this_cpu_add_return(pcp, 1)
448 #define this_cpu_dec_return(pcp) this_cpu_add_return(pcp, -1)
449
450 /*
451 * Generic percpu operations that do not require preemption handling.
452 * Either we do not care about races or the caller has the
453 * responsibility of handling preemptions issues. Arch code can still
454 * override these instructions since the arch per cpu code may be more
455 * efficient and may actually get race freeness for free (that is the
456 * case for x86 for example).
457 *
458 * If there is no other protection through preempt disable and/or
459 * disabling interupts then one of these RMW operations can show unexpected
460 * behavior because the execution thread was rescheduled on another processor
461 * or an interrupt occurred and the same percpu variable was modified from
462 * the interrupt context.
463 */
464 #ifndef __this_cpu_read
465 # ifndef __this_cpu_read_1
466 # define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp)))
467 # endif
468 # ifndef __this_cpu_read_2
469 # define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp)))
470 # endif
471 # ifndef __this_cpu_read_4
472 # define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp)))
473 # endif
474 # ifndef __this_cpu_read_8
475 # define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp)))
476 # endif
477 # define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp))
478 #endif
479
480 #define __this_cpu_generic_to_op(pcp, val, op) \
481 do { \
482 *__this_cpu_ptr(&(pcp)) op val; \
483 } while (0)
484
485 #ifndef __this_cpu_write
486 # ifndef __this_cpu_write_1
487 # define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
488 # endif
489 # ifndef __this_cpu_write_2
490 # define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
491 # endif
492 # ifndef __this_cpu_write_4
493 # define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
494 # endif
495 # ifndef __this_cpu_write_8
496 # define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
497 # endif
498 # define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val))
499 #endif
500
501 #ifndef __this_cpu_add
502 # ifndef __this_cpu_add_1
503 # define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
504 # endif
505 # ifndef __this_cpu_add_2
506 # define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
507 # endif
508 # ifndef __this_cpu_add_4
509 # define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
510 # endif
511 # ifndef __this_cpu_add_8
512 # define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
513 # endif
514 # define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val))
515 #endif
516
517 #ifndef __this_cpu_sub
518 # define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(val))
519 #endif
520
521 #ifndef __this_cpu_inc
522 # define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1)
523 #endif
524
525 #ifndef __this_cpu_dec
526 # define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1)
527 #endif
528
529 #ifndef __this_cpu_and
530 # ifndef __this_cpu_and_1
531 # define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
532 # endif
533 # ifndef __this_cpu_and_2
534 # define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
535 # endif
536 # ifndef __this_cpu_and_4
537 # define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
538 # endif
539 # ifndef __this_cpu_and_8
540 # define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
541 # endif
542 # define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val))
543 #endif
544
545 #ifndef __this_cpu_or
546 # ifndef __this_cpu_or_1
547 # define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
548 # endif
549 # ifndef __this_cpu_or_2
550 # define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
551 # endif
552 # ifndef __this_cpu_or_4
553 # define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
554 # endif
555 # ifndef __this_cpu_or_8
556 # define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
557 # endif
558 # define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val))
559 #endif
560
561 #ifndef __this_cpu_xor
562 # ifndef __this_cpu_xor_1
563 # define __this_cpu_xor_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
564 # endif
565 # ifndef __this_cpu_xor_2
566 # define __this_cpu_xor_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
567 # endif
568 # ifndef __this_cpu_xor_4
569 # define __this_cpu_xor_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
570 # endif
571 # ifndef __this_cpu_xor_8
572 # define __this_cpu_xor_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
573 # endif
574 # define __this_cpu_xor(pcp, val) __pcpu_size_call(__this_cpu_xor_, (pcp), (val))
575 #endif
576
577 #define __this_cpu_generic_add_return(pcp, val) \
578 ({ \
579 __this_cpu_add(pcp, val); \
580 __this_cpu_read(pcp); \
581 })
582
583 #ifndef __this_cpu_add_return
584 # ifndef __this_cpu_add_return_1
585 # define __this_cpu_add_return_1(pcp, val) __this_cpu_generic_add_return(pcp, val)
586 # endif
587 # ifndef __this_cpu_add_return_2
588 # define __this_cpu_add_return_2(pcp, val) __this_cpu_generic_add_return(pcp, val)
589 # endif
590 # ifndef __this_cpu_add_return_4
591 # define __this_cpu_add_return_4(pcp, val) __this_cpu_generic_add_return(pcp, val)
592 # endif
593 # ifndef __this_cpu_add_return_8
594 # define __this_cpu_add_return_8(pcp, val) __this_cpu_generic_add_return(pcp, val)
595 # endif
596 # define __this_cpu_add_return(pcp, val) __pcpu_size_call_return2(this_cpu_add_return_, pcp, val)
597 #endif
598
599 #define __this_cpu_sub_return(pcp, val) this_cpu_add_return(pcp, -(val))
600 #define __this_cpu_inc_return(pcp) this_cpu_add_return(pcp, 1)
601 #define __this_cpu_dec_return(pcp) this_cpu_add_return(pcp, -1)
602
603 /*
604 * IRQ safe versions of the per cpu RMW operations. Note that these operations
605 * are *not* safe against modification of the same variable from another
606 * processors (which one gets when using regular atomic operations)
607 . They are guaranteed to be atomic vs. local interrupts and
608 * preemption only.
609 */
610 #define irqsafe_cpu_generic_to_op(pcp, val, op) \
611 do { \
612 unsigned long flags; \
613 local_irq_save(flags); \
614 *__this_cpu_ptr(&(pcp)) op val; \
615 local_irq_restore(flags); \
616 } while (0)
617
618 #ifndef irqsafe_cpu_add
619 # ifndef irqsafe_cpu_add_1
620 # define irqsafe_cpu_add_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
621 # endif
622 # ifndef irqsafe_cpu_add_2
623 # define irqsafe_cpu_add_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
624 # endif
625 # ifndef irqsafe_cpu_add_4
626 # define irqsafe_cpu_add_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
627 # endif
628 # ifndef irqsafe_cpu_add_8
629 # define irqsafe_cpu_add_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
630 # endif
631 # define irqsafe_cpu_add(pcp, val) __pcpu_size_call(irqsafe_cpu_add_, (pcp), (val))
632 #endif
633
634 #ifndef irqsafe_cpu_sub
635 # define irqsafe_cpu_sub(pcp, val) irqsafe_cpu_add((pcp), -(val))
636 #endif
637
638 #ifndef irqsafe_cpu_inc
639 # define irqsafe_cpu_inc(pcp) irqsafe_cpu_add((pcp), 1)
640 #endif
641
642 #ifndef irqsafe_cpu_dec
643 # define irqsafe_cpu_dec(pcp) irqsafe_cpu_sub((pcp), 1)
644 #endif
645
646 #ifndef irqsafe_cpu_and
647 # ifndef irqsafe_cpu_and_1
648 # define irqsafe_cpu_and_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
649 # endif
650 # ifndef irqsafe_cpu_and_2
651 # define irqsafe_cpu_and_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
652 # endif
653 # ifndef irqsafe_cpu_and_4
654 # define irqsafe_cpu_and_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
655 # endif
656 # ifndef irqsafe_cpu_and_8
657 # define irqsafe_cpu_and_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
658 # endif
659 # define irqsafe_cpu_and(pcp, val) __pcpu_size_call(irqsafe_cpu_and_, (val))
660 #endif
661
662 #ifndef irqsafe_cpu_or
663 # ifndef irqsafe_cpu_or_1
664 # define irqsafe_cpu_or_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
665 # endif
666 # ifndef irqsafe_cpu_or_2
667 # define irqsafe_cpu_or_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
668 # endif
669 # ifndef irqsafe_cpu_or_4
670 # define irqsafe_cpu_or_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
671 # endif
672 # ifndef irqsafe_cpu_or_8
673 # define irqsafe_cpu_or_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
674 # endif
675 # define irqsafe_cpu_or(pcp, val) __pcpu_size_call(irqsafe_cpu_or_, (val))
676 #endif
677
678 #ifndef irqsafe_cpu_xor
679 # ifndef irqsafe_cpu_xor_1
680 # define irqsafe_cpu_xor_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
681 # endif
682 # ifndef irqsafe_cpu_xor_2
683 # define irqsafe_cpu_xor_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
684 # endif
685 # ifndef irqsafe_cpu_xor_4
686 # define irqsafe_cpu_xor_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
687 # endif
688 # ifndef irqsafe_cpu_xor_8
689 # define irqsafe_cpu_xor_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
690 # endif
691 # define irqsafe_cpu_xor(pcp, val) __pcpu_size_call(irqsafe_cpu_xor_, (val))
692 #endif
693
694 #endif /* __LINUX_PERCPU_H */