]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - include/linux/percpu.h
Merge branch 'acpi-config'
[mirror_ubuntu-hirsute-kernel.git] / include / linux / percpu.h
1 #ifndef __LINUX_PERCPU_H
2 #define __LINUX_PERCPU_H
3
4 #include <linux/mmdebug.h>
5 #include <linux/preempt.h>
6 #include <linux/smp.h>
7 #include <linux/cpumask.h>
8 #include <linux/pfn.h>
9 #include <linux/init.h>
10
11 #include <asm/percpu.h>
12
13 /* enough to cover all DEFINE_PER_CPUs in modules */
14 #ifdef CONFIG_MODULES
15 #define PERCPU_MODULE_RESERVE (8 << 10)
16 #else
17 #define PERCPU_MODULE_RESERVE 0
18 #endif
19
20 #ifndef PERCPU_ENOUGH_ROOM
21 #define PERCPU_ENOUGH_ROOM \
22 (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \
23 PERCPU_MODULE_RESERVE)
24 #endif
25
26 /*
27 * Must be an lvalue. Since @var must be a simple identifier,
28 * we force a syntax error here if it isn't.
29 */
30 #define get_cpu_var(var) (*({ \
31 preempt_disable(); \
32 &__get_cpu_var(var); }))
33
34 /*
35 * The weird & is necessary because sparse considers (void)(var) to be
36 * a direct dereference of percpu variable (var).
37 */
38 #define put_cpu_var(var) do { \
39 (void)&(var); \
40 preempt_enable(); \
41 } while (0)
42
43 #define get_cpu_ptr(var) ({ \
44 preempt_disable(); \
45 this_cpu_ptr(var); })
46
47 #define put_cpu_ptr(var) do { \
48 (void)(var); \
49 preempt_enable(); \
50 } while (0)
51
52 /* minimum unit size, also is the maximum supported allocation size */
53 #define PCPU_MIN_UNIT_SIZE PFN_ALIGN(32 << 10)
54
55 /*
56 * Percpu allocator can serve percpu allocations before slab is
57 * initialized which allows slab to depend on the percpu allocator.
58 * The following two parameters decide how much resource to
59 * preallocate for this. Keep PERCPU_DYNAMIC_RESERVE equal to or
60 * larger than PERCPU_DYNAMIC_EARLY_SIZE.
61 */
62 #define PERCPU_DYNAMIC_EARLY_SLOTS 128
63 #define PERCPU_DYNAMIC_EARLY_SIZE (12 << 10)
64
65 /*
66 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy
67 * back on the first chunk for dynamic percpu allocation if arch is
68 * manually allocating and mapping it for faster access (as a part of
69 * large page mapping for example).
70 *
71 * The following values give between one and two pages of free space
72 * after typical minimal boot (2-way SMP, single disk and NIC) with
73 * both defconfig and a distro config on x86_64 and 32. More
74 * intelligent way to determine this would be nice.
75 */
76 #if BITS_PER_LONG > 32
77 #define PERCPU_DYNAMIC_RESERVE (20 << 10)
78 #else
79 #define PERCPU_DYNAMIC_RESERVE (12 << 10)
80 #endif
81
82 extern void *pcpu_base_addr;
83 extern const unsigned long *pcpu_unit_offsets;
84
85 struct pcpu_group_info {
86 int nr_units; /* aligned # of units */
87 unsigned long base_offset; /* base address offset */
88 unsigned int *cpu_map; /* unit->cpu map, empty
89 * entries contain NR_CPUS */
90 };
91
92 struct pcpu_alloc_info {
93 size_t static_size;
94 size_t reserved_size;
95 size_t dyn_size;
96 size_t unit_size;
97 size_t atom_size;
98 size_t alloc_size;
99 size_t __ai_size; /* internal, don't use */
100 int nr_groups; /* 0 if grouping unnecessary */
101 struct pcpu_group_info groups[];
102 };
103
104 enum pcpu_fc {
105 PCPU_FC_AUTO,
106 PCPU_FC_EMBED,
107 PCPU_FC_PAGE,
108
109 PCPU_FC_NR,
110 };
111 extern const char * const pcpu_fc_names[PCPU_FC_NR];
112
113 extern enum pcpu_fc pcpu_chosen_fc;
114
115 typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size,
116 size_t align);
117 typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size);
118 typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr);
119 typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to);
120
121 extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
122 int nr_units);
123 extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai);
124
125 extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
126 void *base_addr);
127
128 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
129 extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
130 size_t atom_size,
131 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
132 pcpu_fc_alloc_fn_t alloc_fn,
133 pcpu_fc_free_fn_t free_fn);
134 #endif
135
136 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
137 extern int __init pcpu_page_first_chunk(size_t reserved_size,
138 pcpu_fc_alloc_fn_t alloc_fn,
139 pcpu_fc_free_fn_t free_fn,
140 pcpu_fc_populate_pte_fn_t populate_pte_fn);
141 #endif
142
143 /*
144 * Use this to get to a cpu's version of the per-cpu object
145 * dynamically allocated. Non-atomic access to the current CPU's
146 * version should probably be combined with get_cpu()/put_cpu().
147 */
148 #ifdef CONFIG_SMP
149 #define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)))
150 #else
151 #define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); })
152 #endif
153
154 extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align);
155 extern bool is_kernel_percpu_address(unsigned long addr);
156
157 #if !defined(CONFIG_SMP) || !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
158 extern void __init setup_per_cpu_areas(void);
159 #endif
160 extern void __init percpu_init_late(void);
161
162 extern void __percpu *__alloc_percpu(size_t size, size_t align);
163 extern void free_percpu(void __percpu *__pdata);
164 extern phys_addr_t per_cpu_ptr_to_phys(void *addr);
165
166 #define alloc_percpu(type) \
167 (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type))
168
169 /*
170 * Branching function to split up a function into a set of functions that
171 * are called for different scalar sizes of the objects handled.
172 */
173
174 extern void __bad_size_call_parameter(void);
175
176 #define __pcpu_size_call_return(stem, variable) \
177 ({ typeof(variable) pscr_ret__; \
178 __verify_pcpu_ptr(&(variable)); \
179 switch(sizeof(variable)) { \
180 case 1: pscr_ret__ = stem##1(variable);break; \
181 case 2: pscr_ret__ = stem##2(variable);break; \
182 case 4: pscr_ret__ = stem##4(variable);break; \
183 case 8: pscr_ret__ = stem##8(variable);break; \
184 default: \
185 __bad_size_call_parameter();break; \
186 } \
187 pscr_ret__; \
188 })
189
190 #define __pcpu_size_call_return2(stem, variable, ...) \
191 ({ \
192 typeof(variable) pscr2_ret__; \
193 __verify_pcpu_ptr(&(variable)); \
194 switch(sizeof(variable)) { \
195 case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break; \
196 case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break; \
197 case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break; \
198 case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break; \
199 default: \
200 __bad_size_call_parameter(); break; \
201 } \
202 pscr2_ret__; \
203 })
204
205 /*
206 * Special handling for cmpxchg_double. cmpxchg_double is passed two
207 * percpu variables. The first has to be aligned to a double word
208 * boundary and the second has to follow directly thereafter.
209 * We enforce this on all architectures even if they don't support
210 * a double cmpxchg instruction, since it's a cheap requirement, and it
211 * avoids breaking the requirement for architectures with the instruction.
212 */
213 #define __pcpu_double_call_return_bool(stem, pcp1, pcp2, ...) \
214 ({ \
215 bool pdcrb_ret__; \
216 __verify_pcpu_ptr(&pcp1); \
217 BUILD_BUG_ON(sizeof(pcp1) != sizeof(pcp2)); \
218 VM_BUG_ON((unsigned long)(&pcp1) % (2 * sizeof(pcp1))); \
219 VM_BUG_ON((unsigned long)(&pcp2) != \
220 (unsigned long)(&pcp1) + sizeof(pcp1)); \
221 switch(sizeof(pcp1)) { \
222 case 1: pdcrb_ret__ = stem##1(pcp1, pcp2, __VA_ARGS__); break; \
223 case 2: pdcrb_ret__ = stem##2(pcp1, pcp2, __VA_ARGS__); break; \
224 case 4: pdcrb_ret__ = stem##4(pcp1, pcp2, __VA_ARGS__); break; \
225 case 8: pdcrb_ret__ = stem##8(pcp1, pcp2, __VA_ARGS__); break; \
226 default: \
227 __bad_size_call_parameter(); break; \
228 } \
229 pdcrb_ret__; \
230 })
231
232 #define __pcpu_size_call(stem, variable, ...) \
233 do { \
234 __verify_pcpu_ptr(&(variable)); \
235 switch(sizeof(variable)) { \
236 case 1: stem##1(variable, __VA_ARGS__);break; \
237 case 2: stem##2(variable, __VA_ARGS__);break; \
238 case 4: stem##4(variable, __VA_ARGS__);break; \
239 case 8: stem##8(variable, __VA_ARGS__);break; \
240 default: \
241 __bad_size_call_parameter();break; \
242 } \
243 } while (0)
244
245 /*
246 * Optimized manipulation for memory allocated through the per cpu
247 * allocator or for addresses of per cpu variables.
248 *
249 * These operation guarantee exclusivity of access for other operations
250 * on the *same* processor. The assumption is that per cpu data is only
251 * accessed by a single processor instance (the current one).
252 *
253 * The first group is used for accesses that must be done in a
254 * preemption safe way since we know that the context is not preempt
255 * safe. Interrupts may occur. If the interrupt modifies the variable
256 * too then RMW actions will not be reliable.
257 *
258 * The arch code can provide optimized functions in two ways:
259 *
260 * 1. Override the function completely. F.e. define this_cpu_add().
261 * The arch must then ensure that the various scalar format passed
262 * are handled correctly.
263 *
264 * 2. Provide functions for certain scalar sizes. F.e. provide
265 * this_cpu_add_2() to provide per cpu atomic operations for 2 byte
266 * sized RMW actions. If arch code does not provide operations for
267 * a scalar size then the fallback in the generic code will be
268 * used.
269 */
270
271 #define _this_cpu_generic_read(pcp) \
272 ({ typeof(pcp) ret__; \
273 preempt_disable(); \
274 ret__ = *this_cpu_ptr(&(pcp)); \
275 preempt_enable(); \
276 ret__; \
277 })
278
279 #ifndef this_cpu_read
280 # ifndef this_cpu_read_1
281 # define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp)
282 # endif
283 # ifndef this_cpu_read_2
284 # define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp)
285 # endif
286 # ifndef this_cpu_read_4
287 # define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp)
288 # endif
289 # ifndef this_cpu_read_8
290 # define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp)
291 # endif
292 # define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp))
293 #endif
294
295 #define _this_cpu_generic_to_op(pcp, val, op) \
296 do { \
297 unsigned long flags; \
298 raw_local_irq_save(flags); \
299 *__this_cpu_ptr(&(pcp)) op val; \
300 raw_local_irq_restore(flags); \
301 } while (0)
302
303 #ifndef this_cpu_write
304 # ifndef this_cpu_write_1
305 # define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
306 # endif
307 # ifndef this_cpu_write_2
308 # define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
309 # endif
310 # ifndef this_cpu_write_4
311 # define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
312 # endif
313 # ifndef this_cpu_write_8
314 # define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
315 # endif
316 # define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val))
317 #endif
318
319 #ifndef this_cpu_add
320 # ifndef this_cpu_add_1
321 # define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
322 # endif
323 # ifndef this_cpu_add_2
324 # define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
325 # endif
326 # ifndef this_cpu_add_4
327 # define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
328 # endif
329 # ifndef this_cpu_add_8
330 # define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
331 # endif
332 # define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val))
333 #endif
334
335 #ifndef this_cpu_sub
336 # define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(typeof(pcp))(val))
337 #endif
338
339 #ifndef this_cpu_inc
340 # define this_cpu_inc(pcp) this_cpu_add((pcp), 1)
341 #endif
342
343 #ifndef this_cpu_dec
344 # define this_cpu_dec(pcp) this_cpu_sub((pcp), 1)
345 #endif
346
347 #ifndef this_cpu_and
348 # ifndef this_cpu_and_1
349 # define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
350 # endif
351 # ifndef this_cpu_and_2
352 # define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
353 # endif
354 # ifndef this_cpu_and_4
355 # define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
356 # endif
357 # ifndef this_cpu_and_8
358 # define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
359 # endif
360 # define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val))
361 #endif
362
363 #ifndef this_cpu_or
364 # ifndef this_cpu_or_1
365 # define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
366 # endif
367 # ifndef this_cpu_or_2
368 # define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
369 # endif
370 # ifndef this_cpu_or_4
371 # define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
372 # endif
373 # ifndef this_cpu_or_8
374 # define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
375 # endif
376 # define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val))
377 #endif
378
379 #define _this_cpu_generic_add_return(pcp, val) \
380 ({ \
381 typeof(pcp) ret__; \
382 unsigned long flags; \
383 raw_local_irq_save(flags); \
384 __this_cpu_add(pcp, val); \
385 ret__ = __this_cpu_read(pcp); \
386 raw_local_irq_restore(flags); \
387 ret__; \
388 })
389
390 #ifndef this_cpu_add_return
391 # ifndef this_cpu_add_return_1
392 # define this_cpu_add_return_1(pcp, val) _this_cpu_generic_add_return(pcp, val)
393 # endif
394 # ifndef this_cpu_add_return_2
395 # define this_cpu_add_return_2(pcp, val) _this_cpu_generic_add_return(pcp, val)
396 # endif
397 # ifndef this_cpu_add_return_4
398 # define this_cpu_add_return_4(pcp, val) _this_cpu_generic_add_return(pcp, val)
399 # endif
400 # ifndef this_cpu_add_return_8
401 # define this_cpu_add_return_8(pcp, val) _this_cpu_generic_add_return(pcp, val)
402 # endif
403 # define this_cpu_add_return(pcp, val) __pcpu_size_call_return2(this_cpu_add_return_, pcp, val)
404 #endif
405
406 #define this_cpu_sub_return(pcp, val) this_cpu_add_return(pcp, -(typeof(pcp))(val))
407 #define this_cpu_inc_return(pcp) this_cpu_add_return(pcp, 1)
408 #define this_cpu_dec_return(pcp) this_cpu_add_return(pcp, -1)
409
410 #define _this_cpu_generic_xchg(pcp, nval) \
411 ({ typeof(pcp) ret__; \
412 unsigned long flags; \
413 raw_local_irq_save(flags); \
414 ret__ = __this_cpu_read(pcp); \
415 __this_cpu_write(pcp, nval); \
416 raw_local_irq_restore(flags); \
417 ret__; \
418 })
419
420 #ifndef this_cpu_xchg
421 # ifndef this_cpu_xchg_1
422 # define this_cpu_xchg_1(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
423 # endif
424 # ifndef this_cpu_xchg_2
425 # define this_cpu_xchg_2(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
426 # endif
427 # ifndef this_cpu_xchg_4
428 # define this_cpu_xchg_4(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
429 # endif
430 # ifndef this_cpu_xchg_8
431 # define this_cpu_xchg_8(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
432 # endif
433 # define this_cpu_xchg(pcp, nval) \
434 __pcpu_size_call_return2(this_cpu_xchg_, (pcp), nval)
435 #endif
436
437 #define _this_cpu_generic_cmpxchg(pcp, oval, nval) \
438 ({ \
439 typeof(pcp) ret__; \
440 unsigned long flags; \
441 raw_local_irq_save(flags); \
442 ret__ = __this_cpu_read(pcp); \
443 if (ret__ == (oval)) \
444 __this_cpu_write(pcp, nval); \
445 raw_local_irq_restore(flags); \
446 ret__; \
447 })
448
449 #ifndef this_cpu_cmpxchg
450 # ifndef this_cpu_cmpxchg_1
451 # define this_cpu_cmpxchg_1(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
452 # endif
453 # ifndef this_cpu_cmpxchg_2
454 # define this_cpu_cmpxchg_2(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
455 # endif
456 # ifndef this_cpu_cmpxchg_4
457 # define this_cpu_cmpxchg_4(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
458 # endif
459 # ifndef this_cpu_cmpxchg_8
460 # define this_cpu_cmpxchg_8(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
461 # endif
462 # define this_cpu_cmpxchg(pcp, oval, nval) \
463 __pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval)
464 #endif
465
466 /*
467 * cmpxchg_double replaces two adjacent scalars at once. The first
468 * two parameters are per cpu variables which have to be of the same
469 * size. A truth value is returned to indicate success or failure
470 * (since a double register result is difficult to handle). There is
471 * very limited hardware support for these operations, so only certain
472 * sizes may work.
473 */
474 #define _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
475 ({ \
476 int ret__; \
477 unsigned long flags; \
478 raw_local_irq_save(flags); \
479 ret__ = __this_cpu_generic_cmpxchg_double(pcp1, pcp2, \
480 oval1, oval2, nval1, nval2); \
481 raw_local_irq_restore(flags); \
482 ret__; \
483 })
484
485 #ifndef this_cpu_cmpxchg_double
486 # ifndef this_cpu_cmpxchg_double_1
487 # define this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \
488 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
489 # endif
490 # ifndef this_cpu_cmpxchg_double_2
491 # define this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \
492 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
493 # endif
494 # ifndef this_cpu_cmpxchg_double_4
495 # define this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \
496 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
497 # endif
498 # ifndef this_cpu_cmpxchg_double_8
499 # define this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \
500 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
501 # endif
502 # define this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
503 __pcpu_double_call_return_bool(this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2))
504 #endif
505
506 /*
507 * Generic percpu operations for context that are safe from preemption/interrupts.
508 * Either we do not care about races or the caller has the
509 * responsibility of handling preemption/interrupt issues. Arch code can still
510 * override these instructions since the arch per cpu code may be more
511 * efficient and may actually get race freeness for free (that is the
512 * case for x86 for example).
513 *
514 * If there is no other protection through preempt disable and/or
515 * disabling interupts then one of these RMW operations can show unexpected
516 * behavior because the execution thread was rescheduled on another processor
517 * or an interrupt occurred and the same percpu variable was modified from
518 * the interrupt context.
519 */
520 #ifndef __this_cpu_read
521 # ifndef __this_cpu_read_1
522 # define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp)))
523 # endif
524 # ifndef __this_cpu_read_2
525 # define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp)))
526 # endif
527 # ifndef __this_cpu_read_4
528 # define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp)))
529 # endif
530 # ifndef __this_cpu_read_8
531 # define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp)))
532 # endif
533 # define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp))
534 #endif
535
536 #define __this_cpu_generic_to_op(pcp, val, op) \
537 do { \
538 *__this_cpu_ptr(&(pcp)) op val; \
539 } while (0)
540
541 #ifndef __this_cpu_write
542 # ifndef __this_cpu_write_1
543 # define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
544 # endif
545 # ifndef __this_cpu_write_2
546 # define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
547 # endif
548 # ifndef __this_cpu_write_4
549 # define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
550 # endif
551 # ifndef __this_cpu_write_8
552 # define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
553 # endif
554 # define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val))
555 #endif
556
557 #ifndef __this_cpu_add
558 # ifndef __this_cpu_add_1
559 # define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
560 # endif
561 # ifndef __this_cpu_add_2
562 # define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
563 # endif
564 # ifndef __this_cpu_add_4
565 # define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
566 # endif
567 # ifndef __this_cpu_add_8
568 # define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
569 # endif
570 # define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val))
571 #endif
572
573 #ifndef __this_cpu_sub
574 # define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(typeof(pcp))(val))
575 #endif
576
577 #ifndef __this_cpu_inc
578 # define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1)
579 #endif
580
581 #ifndef __this_cpu_dec
582 # define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1)
583 #endif
584
585 #ifndef __this_cpu_and
586 # ifndef __this_cpu_and_1
587 # define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
588 # endif
589 # ifndef __this_cpu_and_2
590 # define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
591 # endif
592 # ifndef __this_cpu_and_4
593 # define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
594 # endif
595 # ifndef __this_cpu_and_8
596 # define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
597 # endif
598 # define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val))
599 #endif
600
601 #ifndef __this_cpu_or
602 # ifndef __this_cpu_or_1
603 # define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
604 # endif
605 # ifndef __this_cpu_or_2
606 # define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
607 # endif
608 # ifndef __this_cpu_or_4
609 # define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
610 # endif
611 # ifndef __this_cpu_or_8
612 # define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
613 # endif
614 # define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val))
615 #endif
616
617 #define __this_cpu_generic_add_return(pcp, val) \
618 ({ \
619 __this_cpu_add(pcp, val); \
620 __this_cpu_read(pcp); \
621 })
622
623 #ifndef __this_cpu_add_return
624 # ifndef __this_cpu_add_return_1
625 # define __this_cpu_add_return_1(pcp, val) __this_cpu_generic_add_return(pcp, val)
626 # endif
627 # ifndef __this_cpu_add_return_2
628 # define __this_cpu_add_return_2(pcp, val) __this_cpu_generic_add_return(pcp, val)
629 # endif
630 # ifndef __this_cpu_add_return_4
631 # define __this_cpu_add_return_4(pcp, val) __this_cpu_generic_add_return(pcp, val)
632 # endif
633 # ifndef __this_cpu_add_return_8
634 # define __this_cpu_add_return_8(pcp, val) __this_cpu_generic_add_return(pcp, val)
635 # endif
636 # define __this_cpu_add_return(pcp, val) \
637 __pcpu_size_call_return2(__this_cpu_add_return_, pcp, val)
638 #endif
639
640 #define __this_cpu_sub_return(pcp, val) __this_cpu_add_return(pcp, -(typeof(pcp))(val))
641 #define __this_cpu_inc_return(pcp) __this_cpu_add_return(pcp, 1)
642 #define __this_cpu_dec_return(pcp) __this_cpu_add_return(pcp, -1)
643
644 #define __this_cpu_generic_xchg(pcp, nval) \
645 ({ typeof(pcp) ret__; \
646 ret__ = __this_cpu_read(pcp); \
647 __this_cpu_write(pcp, nval); \
648 ret__; \
649 })
650
651 #ifndef __this_cpu_xchg
652 # ifndef __this_cpu_xchg_1
653 # define __this_cpu_xchg_1(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
654 # endif
655 # ifndef __this_cpu_xchg_2
656 # define __this_cpu_xchg_2(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
657 # endif
658 # ifndef __this_cpu_xchg_4
659 # define __this_cpu_xchg_4(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
660 # endif
661 # ifndef __this_cpu_xchg_8
662 # define __this_cpu_xchg_8(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
663 # endif
664 # define __this_cpu_xchg(pcp, nval) \
665 __pcpu_size_call_return2(__this_cpu_xchg_, (pcp), nval)
666 #endif
667
668 #define __this_cpu_generic_cmpxchg(pcp, oval, nval) \
669 ({ \
670 typeof(pcp) ret__; \
671 ret__ = __this_cpu_read(pcp); \
672 if (ret__ == (oval)) \
673 __this_cpu_write(pcp, nval); \
674 ret__; \
675 })
676
677 #ifndef __this_cpu_cmpxchg
678 # ifndef __this_cpu_cmpxchg_1
679 # define __this_cpu_cmpxchg_1(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
680 # endif
681 # ifndef __this_cpu_cmpxchg_2
682 # define __this_cpu_cmpxchg_2(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
683 # endif
684 # ifndef __this_cpu_cmpxchg_4
685 # define __this_cpu_cmpxchg_4(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
686 # endif
687 # ifndef __this_cpu_cmpxchg_8
688 # define __this_cpu_cmpxchg_8(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
689 # endif
690 # define __this_cpu_cmpxchg(pcp, oval, nval) \
691 __pcpu_size_call_return2(__this_cpu_cmpxchg_, pcp, oval, nval)
692 #endif
693
694 #define __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
695 ({ \
696 int __ret = 0; \
697 if (__this_cpu_read(pcp1) == (oval1) && \
698 __this_cpu_read(pcp2) == (oval2)) { \
699 __this_cpu_write(pcp1, (nval1)); \
700 __this_cpu_write(pcp2, (nval2)); \
701 __ret = 1; \
702 } \
703 (__ret); \
704 })
705
706 #ifndef __this_cpu_cmpxchg_double
707 # ifndef __this_cpu_cmpxchg_double_1
708 # define __this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \
709 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
710 # endif
711 # ifndef __this_cpu_cmpxchg_double_2
712 # define __this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \
713 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
714 # endif
715 # ifndef __this_cpu_cmpxchg_double_4
716 # define __this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \
717 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
718 # endif
719 # ifndef __this_cpu_cmpxchg_double_8
720 # define __this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \
721 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
722 # endif
723 # define __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
724 __pcpu_double_call_return_bool(__this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2))
725 #endif
726
727 #endif /* __LINUX_PERCPU_H */