]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/linux/perf_event.h
perf: Tighten (and fix) the grouping condition
[mirror_ubuntu-jammy-kernel.git] / include / linux / perf_event.h
1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18
19 /*
20 * Kernel-internal data types and definitions:
21 */
22
23 #ifdef CONFIG_PERF_EVENTS
24 # include <asm/perf_event.h>
25 # include <asm/local64.h>
26 #endif
27
28 struct perf_guest_info_callbacks {
29 int (*is_in_guest)(void);
30 int (*is_user_mode)(void);
31 unsigned long (*get_guest_ip)(void);
32 };
33
34 #ifdef CONFIG_HAVE_HW_BREAKPOINT
35 #include <asm/hw_breakpoint.h>
36 #endif
37
38 #include <linux/list.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/rcupdate.h>
42 #include <linux/spinlock.h>
43 #include <linux/hrtimer.h>
44 #include <linux/fs.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/workqueue.h>
47 #include <linux/ftrace.h>
48 #include <linux/cpu.h>
49 #include <linux/irq_work.h>
50 #include <linux/static_key.h>
51 #include <linux/jump_label_ratelimit.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <linux/workqueue.h>
56 #include <asm/local.h>
57
58 struct perf_callchain_entry {
59 __u64 nr;
60 __u64 ip[PERF_MAX_STACK_DEPTH];
61 };
62
63 struct perf_raw_record {
64 u32 size;
65 void *data;
66 };
67
68 /*
69 * branch stack layout:
70 * nr: number of taken branches stored in entries[]
71 *
72 * Note that nr can vary from sample to sample
73 * branches (to, from) are stored from most recent
74 * to least recent, i.e., entries[0] contains the most
75 * recent branch.
76 */
77 struct perf_branch_stack {
78 __u64 nr;
79 struct perf_branch_entry entries[0];
80 };
81
82 struct task_struct;
83
84 /*
85 * extra PMU register associated with an event
86 */
87 struct hw_perf_event_extra {
88 u64 config; /* register value */
89 unsigned int reg; /* register address or index */
90 int alloc; /* extra register already allocated */
91 int idx; /* index in shared_regs->regs[] */
92 };
93
94 struct event_constraint;
95
96 /**
97 * struct hw_perf_event - performance event hardware details:
98 */
99 struct hw_perf_event {
100 #ifdef CONFIG_PERF_EVENTS
101 union {
102 struct { /* hardware */
103 u64 config;
104 u64 last_tag;
105 unsigned long config_base;
106 unsigned long event_base;
107 int event_base_rdpmc;
108 int idx;
109 int last_cpu;
110 int flags;
111
112 struct hw_perf_event_extra extra_reg;
113 struct hw_perf_event_extra branch_reg;
114
115 struct event_constraint *constraint;
116 };
117 struct { /* software */
118 struct hrtimer hrtimer;
119 };
120 struct { /* tracepoint */
121 struct task_struct *tp_target;
122 /* for tp_event->class */
123 struct list_head tp_list;
124 };
125 #ifdef CONFIG_HAVE_HW_BREAKPOINT
126 struct { /* breakpoint */
127 /*
128 * Crufty hack to avoid the chicken and egg
129 * problem hw_breakpoint has with context
130 * creation and event initalization.
131 */
132 struct task_struct *bp_target;
133 struct arch_hw_breakpoint info;
134 struct list_head bp_list;
135 };
136 #endif
137 };
138 int state;
139 local64_t prev_count;
140 u64 sample_period;
141 u64 last_period;
142 local64_t period_left;
143 u64 interrupts_seq;
144 u64 interrupts;
145
146 u64 freq_time_stamp;
147 u64 freq_count_stamp;
148 #endif
149 };
150
151 /*
152 * hw_perf_event::state flags
153 */
154 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
155 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
156 #define PERF_HES_ARCH 0x04
157
158 struct perf_event;
159
160 /*
161 * Common implementation detail of pmu::{start,commit,cancel}_txn
162 */
163 #define PERF_EVENT_TXN 0x1
164
165 /**
166 * pmu::capabilities flags
167 */
168 #define PERF_PMU_CAP_NO_INTERRUPT 0x01
169
170 /**
171 * struct pmu - generic performance monitoring unit
172 */
173 struct pmu {
174 struct list_head entry;
175
176 struct module *module;
177 struct device *dev;
178 const struct attribute_group **attr_groups;
179 const char *name;
180 int type;
181
182 /*
183 * various common per-pmu feature flags
184 */
185 int capabilities;
186
187 int * __percpu pmu_disable_count;
188 struct perf_cpu_context * __percpu pmu_cpu_context;
189 int task_ctx_nr;
190 int hrtimer_interval_ms;
191
192 /*
193 * Fully disable/enable this PMU, can be used to protect from the PMI
194 * as well as for lazy/batch writing of the MSRs.
195 */
196 void (*pmu_enable) (struct pmu *pmu); /* optional */
197 void (*pmu_disable) (struct pmu *pmu); /* optional */
198
199 /*
200 * Try and initialize the event for this PMU.
201 * Should return -ENOENT when the @event doesn't match this PMU.
202 */
203 int (*event_init) (struct perf_event *event);
204
205 #define PERF_EF_START 0x01 /* start the counter when adding */
206 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
207 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
208
209 /*
210 * Adds/Removes a counter to/from the PMU, can be done inside
211 * a transaction, see the ->*_txn() methods.
212 */
213 int (*add) (struct perf_event *event, int flags);
214 void (*del) (struct perf_event *event, int flags);
215
216 /*
217 * Starts/Stops a counter present on the PMU. The PMI handler
218 * should stop the counter when perf_event_overflow() returns
219 * !0. ->start() will be used to continue.
220 */
221 void (*start) (struct perf_event *event, int flags);
222 void (*stop) (struct perf_event *event, int flags);
223
224 /*
225 * Updates the counter value of the event.
226 */
227 void (*read) (struct perf_event *event);
228
229 /*
230 * Group events scheduling is treated as a transaction, add
231 * group events as a whole and perform one schedulability test.
232 * If the test fails, roll back the whole group
233 *
234 * Start the transaction, after this ->add() doesn't need to
235 * do schedulability tests.
236 */
237 void (*start_txn) (struct pmu *pmu); /* optional */
238 /*
239 * If ->start_txn() disabled the ->add() schedulability test
240 * then ->commit_txn() is required to perform one. On success
241 * the transaction is closed. On error the transaction is kept
242 * open until ->cancel_txn() is called.
243 */
244 int (*commit_txn) (struct pmu *pmu); /* optional */
245 /*
246 * Will cancel the transaction, assumes ->del() is called
247 * for each successful ->add() during the transaction.
248 */
249 void (*cancel_txn) (struct pmu *pmu); /* optional */
250
251 /*
252 * Will return the value for perf_event_mmap_page::index for this event,
253 * if no implementation is provided it will default to: event->hw.idx + 1.
254 */
255 int (*event_idx) (struct perf_event *event); /*optional */
256
257 /*
258 * flush branch stack on context-switches (needed in cpu-wide mode)
259 */
260 void (*flush_branch_stack) (void);
261 };
262
263 /**
264 * enum perf_event_active_state - the states of a event
265 */
266 enum perf_event_active_state {
267 PERF_EVENT_STATE_EXIT = -3,
268 PERF_EVENT_STATE_ERROR = -2,
269 PERF_EVENT_STATE_OFF = -1,
270 PERF_EVENT_STATE_INACTIVE = 0,
271 PERF_EVENT_STATE_ACTIVE = 1,
272 };
273
274 struct file;
275 struct perf_sample_data;
276
277 typedef void (*perf_overflow_handler_t)(struct perf_event *,
278 struct perf_sample_data *,
279 struct pt_regs *regs);
280
281 enum perf_group_flag {
282 PERF_GROUP_SOFTWARE = 0x1,
283 };
284
285 #define SWEVENT_HLIST_BITS 8
286 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
287
288 struct swevent_hlist {
289 struct hlist_head heads[SWEVENT_HLIST_SIZE];
290 struct rcu_head rcu_head;
291 };
292
293 #define PERF_ATTACH_CONTEXT 0x01
294 #define PERF_ATTACH_GROUP 0x02
295 #define PERF_ATTACH_TASK 0x04
296
297 struct perf_cgroup;
298 struct ring_buffer;
299
300 /**
301 * struct perf_event - performance event kernel representation:
302 */
303 struct perf_event {
304 #ifdef CONFIG_PERF_EVENTS
305 /*
306 * entry onto perf_event_context::event_list;
307 * modifications require ctx->lock
308 * RCU safe iterations.
309 */
310 struct list_head event_entry;
311
312 /*
313 * XXX: group_entry and sibling_list should be mutually exclusive;
314 * either you're a sibling on a group, or you're the group leader.
315 * Rework the code to always use the same list element.
316 *
317 * Locked for modification by both ctx->mutex and ctx->lock; holding
318 * either sufficies for read.
319 */
320 struct list_head group_entry;
321 struct list_head sibling_list;
322
323 /*
324 * We need storage to track the entries in perf_pmu_migrate_context; we
325 * cannot use the event_entry because of RCU and we want to keep the
326 * group in tact which avoids us using the other two entries.
327 */
328 struct list_head migrate_entry;
329
330 struct hlist_node hlist_entry;
331 struct list_head active_entry;
332 int nr_siblings;
333 int group_flags;
334 struct perf_event *group_leader;
335 struct pmu *pmu;
336
337 enum perf_event_active_state state;
338 unsigned int attach_state;
339 local64_t count;
340 atomic64_t child_count;
341
342 /*
343 * These are the total time in nanoseconds that the event
344 * has been enabled (i.e. eligible to run, and the task has
345 * been scheduled in, if this is a per-task event)
346 * and running (scheduled onto the CPU), respectively.
347 *
348 * They are computed from tstamp_enabled, tstamp_running and
349 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
350 */
351 u64 total_time_enabled;
352 u64 total_time_running;
353
354 /*
355 * These are timestamps used for computing total_time_enabled
356 * and total_time_running when the event is in INACTIVE or
357 * ACTIVE state, measured in nanoseconds from an arbitrary point
358 * in time.
359 * tstamp_enabled: the notional time when the event was enabled
360 * tstamp_running: the notional time when the event was scheduled on
361 * tstamp_stopped: in INACTIVE state, the notional time when the
362 * event was scheduled off.
363 */
364 u64 tstamp_enabled;
365 u64 tstamp_running;
366 u64 tstamp_stopped;
367
368 /*
369 * timestamp shadows the actual context timing but it can
370 * be safely used in NMI interrupt context. It reflects the
371 * context time as it was when the event was last scheduled in.
372 *
373 * ctx_time already accounts for ctx->timestamp. Therefore to
374 * compute ctx_time for a sample, simply add perf_clock().
375 */
376 u64 shadow_ctx_time;
377
378 struct perf_event_attr attr;
379 u16 header_size;
380 u16 id_header_size;
381 u16 read_size;
382 struct hw_perf_event hw;
383
384 struct perf_event_context *ctx;
385 atomic_long_t refcount;
386
387 /*
388 * These accumulate total time (in nanoseconds) that children
389 * events have been enabled and running, respectively.
390 */
391 atomic64_t child_total_time_enabled;
392 atomic64_t child_total_time_running;
393
394 /*
395 * Protect attach/detach and child_list:
396 */
397 struct mutex child_mutex;
398 struct list_head child_list;
399 struct perf_event *parent;
400
401 int oncpu;
402 int cpu;
403
404 struct list_head owner_entry;
405 struct task_struct *owner;
406
407 /* mmap bits */
408 struct mutex mmap_mutex;
409 atomic_t mmap_count;
410
411 struct ring_buffer *rb;
412 struct list_head rb_entry;
413 unsigned long rcu_batches;
414 int rcu_pending;
415
416 /* poll related */
417 wait_queue_head_t waitq;
418 struct fasync_struct *fasync;
419
420 /* delayed work for NMIs and such */
421 int pending_wakeup;
422 int pending_kill;
423 int pending_disable;
424 struct irq_work pending;
425
426 atomic_t event_limit;
427
428 void (*destroy)(struct perf_event *);
429 struct rcu_head rcu_head;
430
431 struct pid_namespace *ns;
432 u64 id;
433
434 perf_overflow_handler_t overflow_handler;
435 void *overflow_handler_context;
436
437 #ifdef CONFIG_EVENT_TRACING
438 struct ftrace_event_call *tp_event;
439 struct event_filter *filter;
440 #ifdef CONFIG_FUNCTION_TRACER
441 struct ftrace_ops ftrace_ops;
442 #endif
443 #endif
444
445 #ifdef CONFIG_CGROUP_PERF
446 struct perf_cgroup *cgrp; /* cgroup event is attach to */
447 int cgrp_defer_enabled;
448 #endif
449
450 #endif /* CONFIG_PERF_EVENTS */
451 };
452
453 /**
454 * struct perf_event_context - event context structure
455 *
456 * Used as a container for task events and CPU events as well:
457 */
458 struct perf_event_context {
459 struct pmu *pmu;
460 /*
461 * Protect the states of the events in the list,
462 * nr_active, and the list:
463 */
464 raw_spinlock_t lock;
465 /*
466 * Protect the list of events. Locking either mutex or lock
467 * is sufficient to ensure the list doesn't change; to change
468 * the list you need to lock both the mutex and the spinlock.
469 */
470 struct mutex mutex;
471
472 struct list_head pinned_groups;
473 struct list_head flexible_groups;
474 struct list_head event_list;
475 int nr_events;
476 int nr_active;
477 int is_active;
478 int nr_stat;
479 int nr_freq;
480 int rotate_disable;
481 atomic_t refcount;
482 struct task_struct *task;
483
484 /*
485 * Context clock, runs when context enabled.
486 */
487 u64 time;
488 u64 timestamp;
489
490 /*
491 * These fields let us detect when two contexts have both
492 * been cloned (inherited) from a common ancestor.
493 */
494 struct perf_event_context *parent_ctx;
495 u64 parent_gen;
496 u64 generation;
497 int pin_count;
498 int nr_cgroups; /* cgroup evts */
499 int nr_branch_stack; /* branch_stack evt */
500 struct rcu_head rcu_head;
501
502 struct delayed_work orphans_remove;
503 bool orphans_remove_sched;
504 };
505
506 /*
507 * Number of contexts where an event can trigger:
508 * task, softirq, hardirq, nmi.
509 */
510 #define PERF_NR_CONTEXTS 4
511
512 /**
513 * struct perf_event_cpu_context - per cpu event context structure
514 */
515 struct perf_cpu_context {
516 struct perf_event_context ctx;
517 struct perf_event_context *task_ctx;
518 int active_oncpu;
519 int exclusive;
520 struct hrtimer hrtimer;
521 ktime_t hrtimer_interval;
522 struct list_head rotation_list;
523 struct pmu *unique_pmu;
524 struct perf_cgroup *cgrp;
525 };
526
527 struct perf_output_handle {
528 struct perf_event *event;
529 struct ring_buffer *rb;
530 unsigned long wakeup;
531 unsigned long size;
532 void *addr;
533 int page;
534 };
535
536 #ifdef CONFIG_PERF_EVENTS
537
538 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
539 extern void perf_pmu_unregister(struct pmu *pmu);
540
541 extern int perf_num_counters(void);
542 extern const char *perf_pmu_name(void);
543 extern void __perf_event_task_sched_in(struct task_struct *prev,
544 struct task_struct *task);
545 extern void __perf_event_task_sched_out(struct task_struct *prev,
546 struct task_struct *next);
547 extern int perf_event_init_task(struct task_struct *child);
548 extern void perf_event_exit_task(struct task_struct *child);
549 extern void perf_event_free_task(struct task_struct *task);
550 extern void perf_event_delayed_put(struct task_struct *task);
551 extern void perf_event_print_debug(void);
552 extern void perf_pmu_disable(struct pmu *pmu);
553 extern void perf_pmu_enable(struct pmu *pmu);
554 extern int perf_event_task_disable(void);
555 extern int perf_event_task_enable(void);
556 extern int perf_event_refresh(struct perf_event *event, int refresh);
557 extern void perf_event_update_userpage(struct perf_event *event);
558 extern int perf_event_release_kernel(struct perf_event *event);
559 extern struct perf_event *
560 perf_event_create_kernel_counter(struct perf_event_attr *attr,
561 int cpu,
562 struct task_struct *task,
563 perf_overflow_handler_t callback,
564 void *context);
565 extern void perf_pmu_migrate_context(struct pmu *pmu,
566 int src_cpu, int dst_cpu);
567 extern u64 perf_event_read_value(struct perf_event *event,
568 u64 *enabled, u64 *running);
569
570
571 struct perf_sample_data {
572 /*
573 * Fields set by perf_sample_data_init(), group so as to
574 * minimize the cachelines touched.
575 */
576 u64 addr;
577 struct perf_raw_record *raw;
578 struct perf_branch_stack *br_stack;
579 u64 period;
580 u64 weight;
581 u64 txn;
582 union perf_mem_data_src data_src;
583
584 /*
585 * The other fields, optionally {set,used} by
586 * perf_{prepare,output}_sample().
587 */
588 u64 type;
589 u64 ip;
590 struct {
591 u32 pid;
592 u32 tid;
593 } tid_entry;
594 u64 time;
595 u64 id;
596 u64 stream_id;
597 struct {
598 u32 cpu;
599 u32 reserved;
600 } cpu_entry;
601 struct perf_callchain_entry *callchain;
602
603 /*
604 * regs_user may point to task_pt_regs or to regs_user_copy, depending
605 * on arch details.
606 */
607 struct perf_regs regs_user;
608 struct pt_regs regs_user_copy;
609
610 struct perf_regs regs_intr;
611 u64 stack_user_size;
612 } ____cacheline_aligned;
613
614 /* default value for data source */
615 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
616 PERF_MEM_S(LVL, NA) |\
617 PERF_MEM_S(SNOOP, NA) |\
618 PERF_MEM_S(LOCK, NA) |\
619 PERF_MEM_S(TLB, NA))
620
621 static inline void perf_sample_data_init(struct perf_sample_data *data,
622 u64 addr, u64 period)
623 {
624 /* remaining struct members initialized in perf_prepare_sample() */
625 data->addr = addr;
626 data->raw = NULL;
627 data->br_stack = NULL;
628 data->period = period;
629 data->weight = 0;
630 data->data_src.val = PERF_MEM_NA;
631 data->txn = 0;
632 }
633
634 extern void perf_output_sample(struct perf_output_handle *handle,
635 struct perf_event_header *header,
636 struct perf_sample_data *data,
637 struct perf_event *event);
638 extern void perf_prepare_sample(struct perf_event_header *header,
639 struct perf_sample_data *data,
640 struct perf_event *event,
641 struct pt_regs *regs);
642
643 extern int perf_event_overflow(struct perf_event *event,
644 struct perf_sample_data *data,
645 struct pt_regs *regs);
646
647 static inline bool is_sampling_event(struct perf_event *event)
648 {
649 return event->attr.sample_period != 0;
650 }
651
652 /*
653 * Return 1 for a software event, 0 for a hardware event
654 */
655 static inline int is_software_event(struct perf_event *event)
656 {
657 return event->pmu->task_ctx_nr == perf_sw_context;
658 }
659
660 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
661
662 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
663
664 #ifndef perf_arch_fetch_caller_regs
665 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
666 #endif
667
668 /*
669 * Take a snapshot of the regs. Skip ip and frame pointer to
670 * the nth caller. We only need a few of the regs:
671 * - ip for PERF_SAMPLE_IP
672 * - cs for user_mode() tests
673 * - bp for callchains
674 * - eflags, for future purposes, just in case
675 */
676 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
677 {
678 memset(regs, 0, sizeof(*regs));
679
680 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
681 }
682
683 static __always_inline void
684 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
685 {
686 struct pt_regs hot_regs;
687
688 if (static_key_false(&perf_swevent_enabled[event_id])) {
689 if (!regs) {
690 perf_fetch_caller_regs(&hot_regs);
691 regs = &hot_regs;
692 }
693 __perf_sw_event(event_id, nr, regs, addr);
694 }
695 }
696
697 extern struct static_key_deferred perf_sched_events;
698
699 static inline void perf_event_task_sched_in(struct task_struct *prev,
700 struct task_struct *task)
701 {
702 if (static_key_false(&perf_sched_events.key))
703 __perf_event_task_sched_in(prev, task);
704 }
705
706 static inline void perf_event_task_sched_out(struct task_struct *prev,
707 struct task_struct *next)
708 {
709 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0);
710
711 if (static_key_false(&perf_sched_events.key))
712 __perf_event_task_sched_out(prev, next);
713 }
714
715 extern void perf_event_mmap(struct vm_area_struct *vma);
716 extern struct perf_guest_info_callbacks *perf_guest_cbs;
717 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
718 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
719
720 extern void perf_event_exec(void);
721 extern void perf_event_comm(struct task_struct *tsk, bool exec);
722 extern void perf_event_fork(struct task_struct *tsk);
723
724 /* Callchains */
725 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
726
727 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
728 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
729
730 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
731 {
732 if (entry->nr < PERF_MAX_STACK_DEPTH)
733 entry->ip[entry->nr++] = ip;
734 }
735
736 extern int sysctl_perf_event_paranoid;
737 extern int sysctl_perf_event_mlock;
738 extern int sysctl_perf_event_sample_rate;
739 extern int sysctl_perf_cpu_time_max_percent;
740
741 extern void perf_sample_event_took(u64 sample_len_ns);
742
743 extern int perf_proc_update_handler(struct ctl_table *table, int write,
744 void __user *buffer, size_t *lenp,
745 loff_t *ppos);
746 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
747 void __user *buffer, size_t *lenp,
748 loff_t *ppos);
749
750
751 static inline bool perf_paranoid_tracepoint_raw(void)
752 {
753 return sysctl_perf_event_paranoid > -1;
754 }
755
756 static inline bool perf_paranoid_cpu(void)
757 {
758 return sysctl_perf_event_paranoid > 0;
759 }
760
761 static inline bool perf_paranoid_kernel(void)
762 {
763 return sysctl_perf_event_paranoid > 1;
764 }
765
766 extern void perf_event_init(void);
767 extern void perf_tp_event(u64 addr, u64 count, void *record,
768 int entry_size, struct pt_regs *regs,
769 struct hlist_head *head, int rctx,
770 struct task_struct *task);
771 extern void perf_bp_event(struct perf_event *event, void *data);
772
773 #ifndef perf_misc_flags
774 # define perf_misc_flags(regs) \
775 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
776 # define perf_instruction_pointer(regs) instruction_pointer(regs)
777 #endif
778
779 static inline bool has_branch_stack(struct perf_event *event)
780 {
781 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
782 }
783
784 extern int perf_output_begin(struct perf_output_handle *handle,
785 struct perf_event *event, unsigned int size);
786 extern void perf_output_end(struct perf_output_handle *handle);
787 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
788 const void *buf, unsigned int len);
789 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
790 unsigned int len);
791 extern int perf_swevent_get_recursion_context(void);
792 extern void perf_swevent_put_recursion_context(int rctx);
793 extern u64 perf_swevent_set_period(struct perf_event *event);
794 extern void perf_event_enable(struct perf_event *event);
795 extern void perf_event_disable(struct perf_event *event);
796 extern int __perf_event_disable(void *info);
797 extern void perf_event_task_tick(void);
798 #else /* !CONFIG_PERF_EVENTS: */
799 static inline void
800 perf_event_task_sched_in(struct task_struct *prev,
801 struct task_struct *task) { }
802 static inline void
803 perf_event_task_sched_out(struct task_struct *prev,
804 struct task_struct *next) { }
805 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
806 static inline void perf_event_exit_task(struct task_struct *child) { }
807 static inline void perf_event_free_task(struct task_struct *task) { }
808 static inline void perf_event_delayed_put(struct task_struct *task) { }
809 static inline void perf_event_print_debug(void) { }
810 static inline int perf_event_task_disable(void) { return -EINVAL; }
811 static inline int perf_event_task_enable(void) { return -EINVAL; }
812 static inline int perf_event_refresh(struct perf_event *event, int refresh)
813 {
814 return -EINVAL;
815 }
816
817 static inline void
818 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
819 static inline void
820 perf_bp_event(struct perf_event *event, void *data) { }
821
822 static inline int perf_register_guest_info_callbacks
823 (struct perf_guest_info_callbacks *callbacks) { return 0; }
824 static inline int perf_unregister_guest_info_callbacks
825 (struct perf_guest_info_callbacks *callbacks) { return 0; }
826
827 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
828 static inline void perf_event_exec(void) { }
829 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
830 static inline void perf_event_fork(struct task_struct *tsk) { }
831 static inline void perf_event_init(void) { }
832 static inline int perf_swevent_get_recursion_context(void) { return -1; }
833 static inline void perf_swevent_put_recursion_context(int rctx) { }
834 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
835 static inline void perf_event_enable(struct perf_event *event) { }
836 static inline void perf_event_disable(struct perf_event *event) { }
837 static inline int __perf_event_disable(void *info) { return -1; }
838 static inline void perf_event_task_tick(void) { }
839 #endif
840
841 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_NO_HZ_FULL)
842 extern bool perf_event_can_stop_tick(void);
843 #else
844 static inline bool perf_event_can_stop_tick(void) { return true; }
845 #endif
846
847 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
848 extern void perf_restore_debug_store(void);
849 #else
850 static inline void perf_restore_debug_store(void) { }
851 #endif
852
853 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
854
855 /*
856 * This has to have a higher priority than migration_notifier in sched/core.c.
857 */
858 #define perf_cpu_notifier(fn) \
859 do { \
860 static struct notifier_block fn##_nb = \
861 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
862 unsigned long cpu = smp_processor_id(); \
863 unsigned long flags; \
864 \
865 cpu_notifier_register_begin(); \
866 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
867 (void *)(unsigned long)cpu); \
868 local_irq_save(flags); \
869 fn(&fn##_nb, (unsigned long)CPU_STARTING, \
870 (void *)(unsigned long)cpu); \
871 local_irq_restore(flags); \
872 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
873 (void *)(unsigned long)cpu); \
874 __register_cpu_notifier(&fn##_nb); \
875 cpu_notifier_register_done(); \
876 } while (0)
877
878 /*
879 * Bare-bones version of perf_cpu_notifier(), which doesn't invoke the
880 * callback for already online CPUs.
881 */
882 #define __perf_cpu_notifier(fn) \
883 do { \
884 static struct notifier_block fn##_nb = \
885 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
886 \
887 __register_cpu_notifier(&fn##_nb); \
888 } while (0)
889
890 struct perf_pmu_events_attr {
891 struct device_attribute attr;
892 u64 id;
893 const char *event_str;
894 };
895
896 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
897 static struct perf_pmu_events_attr _var = { \
898 .attr = __ATTR(_name, 0444, _show, NULL), \
899 .id = _id, \
900 };
901
902 #define PMU_FORMAT_ATTR(_name, _format) \
903 static ssize_t \
904 _name##_show(struct device *dev, \
905 struct device_attribute *attr, \
906 char *page) \
907 { \
908 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
909 return sprintf(page, _format "\n"); \
910 } \
911 \
912 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
913
914 #endif /* _LINUX_PERF_EVENT_H */