]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - include/linux/perf_event.h
8f4a70f2eca8bd0a3f55c572ad967ca516a2d8e1
[mirror_ubuntu-zesty-kernel.git] / include / linux / perf_event.h
1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18
19 /*
20 * Kernel-internal data types and definitions:
21 */
22
23 #ifdef CONFIG_PERF_EVENTS
24 # include <asm/perf_event.h>
25 # include <asm/local64.h>
26 #endif
27
28 struct perf_guest_info_callbacks {
29 int (*is_in_guest)(void);
30 int (*is_user_mode)(void);
31 unsigned long (*get_guest_ip)(void);
32 };
33
34 #ifdef CONFIG_HAVE_HW_BREAKPOINT
35 #include <asm/hw_breakpoint.h>
36 #endif
37
38 #include <linux/list.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/rcupdate.h>
42 #include <linux/spinlock.h>
43 #include <linux/hrtimer.h>
44 #include <linux/fs.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/workqueue.h>
47 #include <linux/ftrace.h>
48 #include <linux/cpu.h>
49 #include <linux/irq_work.h>
50 #include <linux/static_key.h>
51 #include <linux/jump_label_ratelimit.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <asm/local.h>
56
57 struct perf_callchain_entry {
58 __u64 nr;
59 __u64 ip[PERF_MAX_STACK_DEPTH];
60 };
61
62 struct perf_raw_record {
63 u32 size;
64 void *data;
65 };
66
67 /*
68 * branch stack layout:
69 * nr: number of taken branches stored in entries[]
70 *
71 * Note that nr can vary from sample to sample
72 * branches (to, from) are stored from most recent
73 * to least recent, i.e., entries[0] contains the most
74 * recent branch.
75 */
76 struct perf_branch_stack {
77 __u64 nr;
78 struct perf_branch_entry entries[0];
79 };
80
81 struct perf_regs_user {
82 __u64 abi;
83 struct pt_regs *regs;
84 };
85
86 struct task_struct;
87
88 /*
89 * extra PMU register associated with an event
90 */
91 struct hw_perf_event_extra {
92 u64 config; /* register value */
93 unsigned int reg; /* register address or index */
94 int alloc; /* extra register already allocated */
95 int idx; /* index in shared_regs->regs[] */
96 };
97
98 struct event_constraint;
99
100 /**
101 * struct hw_perf_event - performance event hardware details:
102 */
103 struct hw_perf_event {
104 #ifdef CONFIG_PERF_EVENTS
105 union {
106 struct { /* hardware */
107 u64 config;
108 u64 last_tag;
109 unsigned long config_base;
110 unsigned long event_base;
111 int event_base_rdpmc;
112 int idx;
113 int last_cpu;
114 int flags;
115
116 struct hw_perf_event_extra extra_reg;
117 struct hw_perf_event_extra branch_reg;
118
119 struct event_constraint *constraint;
120 };
121 struct { /* software */
122 struct hrtimer hrtimer;
123 };
124 struct { /* tracepoint */
125 struct task_struct *tp_target;
126 /* for tp_event->class */
127 struct list_head tp_list;
128 };
129 #ifdef CONFIG_HAVE_HW_BREAKPOINT
130 struct { /* breakpoint */
131 /*
132 * Crufty hack to avoid the chicken and egg
133 * problem hw_breakpoint has with context
134 * creation and event initalization.
135 */
136 struct task_struct *bp_target;
137 struct arch_hw_breakpoint info;
138 struct list_head bp_list;
139 };
140 #endif
141 };
142 int state;
143 local64_t prev_count;
144 u64 sample_period;
145 u64 last_period;
146 local64_t period_left;
147 u64 interrupts_seq;
148 u64 interrupts;
149
150 u64 freq_time_stamp;
151 u64 freq_count_stamp;
152 #endif
153 };
154
155 /*
156 * hw_perf_event::state flags
157 */
158 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
159 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
160 #define PERF_HES_ARCH 0x04
161
162 struct perf_event;
163
164 /*
165 * Common implementation detail of pmu::{start,commit,cancel}_txn
166 */
167 #define PERF_EVENT_TXN 0x1
168
169 /**
170 * struct pmu - generic performance monitoring unit
171 */
172 struct pmu {
173 struct list_head entry;
174
175 struct device *dev;
176 const struct attribute_group **attr_groups;
177 const char *name;
178 int type;
179
180 int * __percpu pmu_disable_count;
181 struct perf_cpu_context * __percpu pmu_cpu_context;
182 int task_ctx_nr;
183 int hrtimer_interval_ms;
184
185 /*
186 * Fully disable/enable this PMU, can be used to protect from the PMI
187 * as well as for lazy/batch writing of the MSRs.
188 */
189 void (*pmu_enable) (struct pmu *pmu); /* optional */
190 void (*pmu_disable) (struct pmu *pmu); /* optional */
191
192 /*
193 * Try and initialize the event for this PMU.
194 * Should return -ENOENT when the @event doesn't match this PMU.
195 */
196 int (*event_init) (struct perf_event *event);
197
198 #define PERF_EF_START 0x01 /* start the counter when adding */
199 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
200 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
201
202 /*
203 * Adds/Removes a counter to/from the PMU, can be done inside
204 * a transaction, see the ->*_txn() methods.
205 */
206 int (*add) (struct perf_event *event, int flags);
207 void (*del) (struct perf_event *event, int flags);
208
209 /*
210 * Starts/Stops a counter present on the PMU. The PMI handler
211 * should stop the counter when perf_event_overflow() returns
212 * !0. ->start() will be used to continue.
213 */
214 void (*start) (struct perf_event *event, int flags);
215 void (*stop) (struct perf_event *event, int flags);
216
217 /*
218 * Updates the counter value of the event.
219 */
220 void (*read) (struct perf_event *event);
221
222 /*
223 * Group events scheduling is treated as a transaction, add
224 * group events as a whole and perform one schedulability test.
225 * If the test fails, roll back the whole group
226 *
227 * Start the transaction, after this ->add() doesn't need to
228 * do schedulability tests.
229 */
230 void (*start_txn) (struct pmu *pmu); /* optional */
231 /*
232 * If ->start_txn() disabled the ->add() schedulability test
233 * then ->commit_txn() is required to perform one. On success
234 * the transaction is closed. On error the transaction is kept
235 * open until ->cancel_txn() is called.
236 */
237 int (*commit_txn) (struct pmu *pmu); /* optional */
238 /*
239 * Will cancel the transaction, assumes ->del() is called
240 * for each successful ->add() during the transaction.
241 */
242 void (*cancel_txn) (struct pmu *pmu); /* optional */
243
244 /*
245 * Will return the value for perf_event_mmap_page::index for this event,
246 * if no implementation is provided it will default to: event->hw.idx + 1.
247 */
248 int (*event_idx) (struct perf_event *event); /*optional */
249
250 /*
251 * flush branch stack on context-switches (needed in cpu-wide mode)
252 */
253 void (*flush_branch_stack) (void);
254 };
255
256 /**
257 * enum perf_event_active_state - the states of a event
258 */
259 enum perf_event_active_state {
260 PERF_EVENT_STATE_ERROR = -2,
261 PERF_EVENT_STATE_OFF = -1,
262 PERF_EVENT_STATE_INACTIVE = 0,
263 PERF_EVENT_STATE_ACTIVE = 1,
264 };
265
266 struct file;
267 struct perf_sample_data;
268
269 typedef void (*perf_overflow_handler_t)(struct perf_event *,
270 struct perf_sample_data *,
271 struct pt_regs *regs);
272
273 enum perf_group_flag {
274 PERF_GROUP_SOFTWARE = 0x1,
275 };
276
277 #define SWEVENT_HLIST_BITS 8
278 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
279
280 struct swevent_hlist {
281 struct hlist_head heads[SWEVENT_HLIST_SIZE];
282 struct rcu_head rcu_head;
283 };
284
285 #define PERF_ATTACH_CONTEXT 0x01
286 #define PERF_ATTACH_GROUP 0x02
287 #define PERF_ATTACH_TASK 0x04
288
289 struct perf_cgroup;
290 struct ring_buffer;
291
292 /**
293 * struct perf_event - performance event kernel representation:
294 */
295 struct perf_event {
296 #ifdef CONFIG_PERF_EVENTS
297 /*
298 * entry onto perf_event_context::event_list;
299 * modifications require ctx->lock
300 * RCU safe iterations.
301 */
302 struct list_head event_entry;
303
304 /*
305 * XXX: group_entry and sibling_list should be mutually exclusive;
306 * either you're a sibling on a group, or you're the group leader.
307 * Rework the code to always use the same list element.
308 *
309 * Locked for modification by both ctx->mutex and ctx->lock; holding
310 * either sufficies for read.
311 */
312 struct list_head group_entry;
313 struct list_head sibling_list;
314
315 /*
316 * We need storage to track the entries in perf_pmu_migrate_context; we
317 * cannot use the event_entry because of RCU and we want to keep the
318 * group in tact which avoids us using the other two entries.
319 */
320 struct list_head migrate_entry;
321
322 union {
323 struct hlist_node hlist_entry;
324 struct list_head active_entry;
325 };
326 int nr_siblings;
327 int group_flags;
328 struct perf_event *group_leader;
329 struct pmu *pmu;
330
331 enum perf_event_active_state state;
332 unsigned int attach_state;
333 local64_t count;
334 atomic64_t child_count;
335
336 /*
337 * These are the total time in nanoseconds that the event
338 * has been enabled (i.e. eligible to run, and the task has
339 * been scheduled in, if this is a per-task event)
340 * and running (scheduled onto the CPU), respectively.
341 *
342 * They are computed from tstamp_enabled, tstamp_running and
343 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
344 */
345 u64 total_time_enabled;
346 u64 total_time_running;
347
348 /*
349 * These are timestamps used for computing total_time_enabled
350 * and total_time_running when the event is in INACTIVE or
351 * ACTIVE state, measured in nanoseconds from an arbitrary point
352 * in time.
353 * tstamp_enabled: the notional time when the event was enabled
354 * tstamp_running: the notional time when the event was scheduled on
355 * tstamp_stopped: in INACTIVE state, the notional time when the
356 * event was scheduled off.
357 */
358 u64 tstamp_enabled;
359 u64 tstamp_running;
360 u64 tstamp_stopped;
361
362 /*
363 * timestamp shadows the actual context timing but it can
364 * be safely used in NMI interrupt context. It reflects the
365 * context time as it was when the event was last scheduled in.
366 *
367 * ctx_time already accounts for ctx->timestamp. Therefore to
368 * compute ctx_time for a sample, simply add perf_clock().
369 */
370 u64 shadow_ctx_time;
371
372 struct perf_event_attr attr;
373 u16 header_size;
374 u16 id_header_size;
375 u16 read_size;
376 struct hw_perf_event hw;
377
378 struct perf_event_context *ctx;
379 atomic_long_t refcount;
380
381 /*
382 * These accumulate total time (in nanoseconds) that children
383 * events have been enabled and running, respectively.
384 */
385 atomic64_t child_total_time_enabled;
386 atomic64_t child_total_time_running;
387
388 /*
389 * Protect attach/detach and child_list:
390 */
391 struct mutex child_mutex;
392 struct list_head child_list;
393 struct perf_event *parent;
394
395 int oncpu;
396 int cpu;
397
398 struct list_head owner_entry;
399 struct task_struct *owner;
400
401 /* mmap bits */
402 struct mutex mmap_mutex;
403 atomic_t mmap_count;
404
405 struct ring_buffer *rb;
406 struct list_head rb_entry;
407
408 /* poll related */
409 wait_queue_head_t waitq;
410 struct fasync_struct *fasync;
411
412 /* delayed work for NMIs and such */
413 int pending_wakeup;
414 int pending_kill;
415 int pending_disable;
416 struct irq_work pending;
417
418 atomic_t event_limit;
419
420 void (*destroy)(struct perf_event *);
421 struct rcu_head rcu_head;
422
423 struct pid_namespace *ns;
424 u64 id;
425
426 perf_overflow_handler_t overflow_handler;
427 void *overflow_handler_context;
428
429 #ifdef CONFIG_EVENT_TRACING
430 struct ftrace_event_call *tp_event;
431 struct event_filter *filter;
432 #ifdef CONFIG_FUNCTION_TRACER
433 struct ftrace_ops ftrace_ops;
434 #endif
435 #endif
436
437 #ifdef CONFIG_CGROUP_PERF
438 struct perf_cgroup *cgrp; /* cgroup event is attach to */
439 int cgrp_defer_enabled;
440 #endif
441
442 #endif /* CONFIG_PERF_EVENTS */
443 };
444
445 enum perf_event_context_type {
446 task_context,
447 cpu_context,
448 };
449
450 /**
451 * struct perf_event_context - event context structure
452 *
453 * Used as a container for task events and CPU events as well:
454 */
455 struct perf_event_context {
456 struct pmu *pmu;
457 enum perf_event_context_type type;
458 /*
459 * Protect the states of the events in the list,
460 * nr_active, and the list:
461 */
462 raw_spinlock_t lock;
463 /*
464 * Protect the list of events. Locking either mutex or lock
465 * is sufficient to ensure the list doesn't change; to change
466 * the list you need to lock both the mutex and the spinlock.
467 */
468 struct mutex mutex;
469
470 struct list_head pinned_groups;
471 struct list_head flexible_groups;
472 struct list_head event_list;
473 int nr_events;
474 int nr_active;
475 int is_active;
476 int nr_stat;
477 int nr_freq;
478 int rotate_disable;
479 atomic_t refcount;
480 struct task_struct *task;
481
482 /*
483 * Context clock, runs when context enabled.
484 */
485 u64 time;
486 u64 timestamp;
487
488 /*
489 * These fields let us detect when two contexts have both
490 * been cloned (inherited) from a common ancestor.
491 */
492 struct perf_event_context *parent_ctx;
493 u64 parent_gen;
494 u64 generation;
495 int pin_count;
496 int nr_cgroups; /* cgroup evts */
497 int nr_branch_stack; /* branch_stack evt */
498 struct rcu_head rcu_head;
499 };
500
501 /*
502 * Number of contexts where an event can trigger:
503 * task, softirq, hardirq, nmi.
504 */
505 #define PERF_NR_CONTEXTS 4
506
507 /**
508 * struct perf_event_cpu_context - per cpu event context structure
509 */
510 struct perf_cpu_context {
511 struct perf_event_context ctx;
512 struct perf_event_context *task_ctx;
513 int active_oncpu;
514 int exclusive;
515 struct hrtimer hrtimer;
516 ktime_t hrtimer_interval;
517 struct list_head rotation_list;
518 struct pmu *unique_pmu;
519 struct perf_cgroup *cgrp;
520 };
521
522 struct perf_output_handle {
523 struct perf_event *event;
524 struct ring_buffer *rb;
525 unsigned long wakeup;
526 unsigned long size;
527 void *addr;
528 int page;
529 };
530
531 #ifdef CONFIG_PERF_EVENTS
532
533 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
534 extern void perf_pmu_unregister(struct pmu *pmu);
535
536 extern int perf_num_counters(void);
537 extern const char *perf_pmu_name(void);
538 extern void __perf_event_task_sched_in(struct task_struct *prev,
539 struct task_struct *task);
540 extern void __perf_event_task_sched_out(struct task_struct *prev,
541 struct task_struct *next);
542 extern int perf_event_init_task(struct task_struct *child);
543 extern void perf_event_exit_task(struct task_struct *child);
544 extern void perf_event_free_task(struct task_struct *task);
545 extern void perf_event_delayed_put(struct task_struct *task);
546 extern void perf_event_print_debug(void);
547 extern void perf_pmu_disable(struct pmu *pmu);
548 extern void perf_pmu_enable(struct pmu *pmu);
549 extern int perf_event_task_disable(void);
550 extern int perf_event_task_enable(void);
551 extern int perf_event_refresh(struct perf_event *event, int refresh);
552 extern void perf_event_update_userpage(struct perf_event *event);
553 extern int perf_event_release_kernel(struct perf_event *event);
554 extern struct perf_event *
555 perf_event_create_kernel_counter(struct perf_event_attr *attr,
556 int cpu,
557 struct task_struct *task,
558 perf_overflow_handler_t callback,
559 void *context);
560 extern void perf_pmu_migrate_context(struct pmu *pmu,
561 int src_cpu, int dst_cpu);
562 extern u64 perf_event_read_value(struct perf_event *event,
563 u64 *enabled, u64 *running);
564
565
566 struct perf_sample_data {
567 u64 type;
568
569 u64 ip;
570 struct {
571 u32 pid;
572 u32 tid;
573 } tid_entry;
574 u64 time;
575 u64 addr;
576 u64 id;
577 u64 stream_id;
578 struct {
579 u32 cpu;
580 u32 reserved;
581 } cpu_entry;
582 u64 period;
583 union perf_mem_data_src data_src;
584 struct perf_callchain_entry *callchain;
585 struct perf_raw_record *raw;
586 struct perf_branch_stack *br_stack;
587 struct perf_regs_user regs_user;
588 u64 stack_user_size;
589 u64 weight;
590 /*
591 * Transaction flags for abort events:
592 */
593 u64 txn;
594 };
595
596 static inline void perf_sample_data_init(struct perf_sample_data *data,
597 u64 addr, u64 period)
598 {
599 /* remaining struct members initialized in perf_prepare_sample() */
600 data->addr = addr;
601 data->raw = NULL;
602 data->br_stack = NULL;
603 data->period = period;
604 data->regs_user.abi = PERF_SAMPLE_REGS_ABI_NONE;
605 data->regs_user.regs = NULL;
606 data->stack_user_size = 0;
607 data->weight = 0;
608 data->data_src.val = 0;
609 data->txn = 0;
610 }
611
612 extern void perf_output_sample(struct perf_output_handle *handle,
613 struct perf_event_header *header,
614 struct perf_sample_data *data,
615 struct perf_event *event);
616 extern void perf_prepare_sample(struct perf_event_header *header,
617 struct perf_sample_data *data,
618 struct perf_event *event,
619 struct pt_regs *regs);
620
621 extern int perf_event_overflow(struct perf_event *event,
622 struct perf_sample_data *data,
623 struct pt_regs *regs);
624
625 static inline bool is_sampling_event(struct perf_event *event)
626 {
627 return event->attr.sample_period != 0;
628 }
629
630 /*
631 * Return 1 for a software event, 0 for a hardware event
632 */
633 static inline int is_software_event(struct perf_event *event)
634 {
635 return event->pmu->task_ctx_nr == perf_sw_context;
636 }
637
638 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
639
640 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
641
642 #ifndef perf_arch_fetch_caller_regs
643 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
644 #endif
645
646 /*
647 * Take a snapshot of the regs. Skip ip and frame pointer to
648 * the nth caller. We only need a few of the regs:
649 * - ip for PERF_SAMPLE_IP
650 * - cs for user_mode() tests
651 * - bp for callchains
652 * - eflags, for future purposes, just in case
653 */
654 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
655 {
656 memset(regs, 0, sizeof(*regs));
657
658 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
659 }
660
661 static __always_inline void
662 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
663 {
664 struct pt_regs hot_regs;
665
666 if (static_key_false(&perf_swevent_enabled[event_id])) {
667 if (!regs) {
668 perf_fetch_caller_regs(&hot_regs);
669 regs = &hot_regs;
670 }
671 __perf_sw_event(event_id, nr, regs, addr);
672 }
673 }
674
675 extern struct static_key_deferred perf_sched_events;
676
677 static inline void perf_event_task_sched_in(struct task_struct *prev,
678 struct task_struct *task)
679 {
680 if (static_key_false(&perf_sched_events.key))
681 __perf_event_task_sched_in(prev, task);
682 }
683
684 static inline void perf_event_task_sched_out(struct task_struct *prev,
685 struct task_struct *next)
686 {
687 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0);
688
689 if (static_key_false(&perf_sched_events.key))
690 __perf_event_task_sched_out(prev, next);
691 }
692
693 extern void perf_event_mmap(struct vm_area_struct *vma);
694 extern struct perf_guest_info_callbacks *perf_guest_cbs;
695 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
696 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
697
698 extern void perf_event_comm(struct task_struct *tsk);
699 extern void perf_event_fork(struct task_struct *tsk);
700
701 /* Callchains */
702 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
703
704 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
705 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
706
707 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
708 {
709 if (entry->nr < PERF_MAX_STACK_DEPTH)
710 entry->ip[entry->nr++] = ip;
711 }
712
713 extern int sysctl_perf_event_paranoid;
714 extern int sysctl_perf_event_mlock;
715 extern int sysctl_perf_event_sample_rate;
716 extern int sysctl_perf_cpu_time_max_percent;
717
718 extern void perf_sample_event_took(u64 sample_len_ns);
719
720 extern int perf_proc_update_handler(struct ctl_table *table, int write,
721 void __user *buffer, size_t *lenp,
722 loff_t *ppos);
723 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
724 void __user *buffer, size_t *lenp,
725 loff_t *ppos);
726
727
728 static inline bool perf_paranoid_tracepoint_raw(void)
729 {
730 return sysctl_perf_event_paranoid > -1;
731 }
732
733 static inline bool perf_paranoid_cpu(void)
734 {
735 return sysctl_perf_event_paranoid > 0;
736 }
737
738 static inline bool perf_paranoid_kernel(void)
739 {
740 return sysctl_perf_event_paranoid > 1;
741 }
742
743 extern void perf_event_init(void);
744 extern void perf_tp_event(u64 addr, u64 count, void *record,
745 int entry_size, struct pt_regs *regs,
746 struct hlist_head *head, int rctx,
747 struct task_struct *task);
748 extern void perf_bp_event(struct perf_event *event, void *data);
749
750 #ifndef perf_misc_flags
751 # define perf_misc_flags(regs) \
752 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
753 # define perf_instruction_pointer(regs) instruction_pointer(regs)
754 #endif
755
756 static inline bool has_branch_stack(struct perf_event *event)
757 {
758 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
759 }
760
761 extern int perf_output_begin(struct perf_output_handle *handle,
762 struct perf_event *event, unsigned int size);
763 extern void perf_output_end(struct perf_output_handle *handle);
764 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
765 const void *buf, unsigned int len);
766 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
767 unsigned int len);
768 extern int perf_swevent_get_recursion_context(void);
769 extern void perf_swevent_put_recursion_context(int rctx);
770 extern u64 perf_swevent_set_period(struct perf_event *event);
771 extern void perf_event_enable(struct perf_event *event);
772 extern void perf_event_disable(struct perf_event *event);
773 extern int __perf_event_disable(void *info);
774 extern void perf_event_task_tick(void);
775 #else
776 static inline void
777 perf_event_task_sched_in(struct task_struct *prev,
778 struct task_struct *task) { }
779 static inline void
780 perf_event_task_sched_out(struct task_struct *prev,
781 struct task_struct *next) { }
782 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
783 static inline void perf_event_exit_task(struct task_struct *child) { }
784 static inline void perf_event_free_task(struct task_struct *task) { }
785 static inline void perf_event_delayed_put(struct task_struct *task) { }
786 static inline void perf_event_print_debug(void) { }
787 static inline int perf_event_task_disable(void) { return -EINVAL; }
788 static inline int perf_event_task_enable(void) { return -EINVAL; }
789 static inline int perf_event_refresh(struct perf_event *event, int refresh)
790 {
791 return -EINVAL;
792 }
793
794 static inline void
795 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
796 static inline void
797 perf_bp_event(struct perf_event *event, void *data) { }
798
799 static inline int perf_register_guest_info_callbacks
800 (struct perf_guest_info_callbacks *callbacks) { return 0; }
801 static inline int perf_unregister_guest_info_callbacks
802 (struct perf_guest_info_callbacks *callbacks) { return 0; }
803
804 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
805 static inline void perf_event_comm(struct task_struct *tsk) { }
806 static inline void perf_event_fork(struct task_struct *tsk) { }
807 static inline void perf_event_init(void) { }
808 static inline int perf_swevent_get_recursion_context(void) { return -1; }
809 static inline void perf_swevent_put_recursion_context(int rctx) { }
810 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
811 static inline void perf_event_enable(struct perf_event *event) { }
812 static inline void perf_event_disable(struct perf_event *event) { }
813 static inline int __perf_event_disable(void *info) { return -1; }
814 static inline void perf_event_task_tick(void) { }
815 #endif
816
817 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_NO_HZ_FULL)
818 extern bool perf_event_can_stop_tick(void);
819 #else
820 static inline bool perf_event_can_stop_tick(void) { return true; }
821 #endif
822
823 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
824 extern void perf_restore_debug_store(void);
825 #else
826 static inline void perf_restore_debug_store(void) { }
827 #endif
828
829 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
830
831 /*
832 * This has to have a higher priority than migration_notifier in sched/core.c.
833 */
834 #define perf_cpu_notifier(fn) \
835 do { \
836 static struct notifier_block fn##_nb = \
837 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
838 unsigned long cpu = smp_processor_id(); \
839 unsigned long flags; \
840 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
841 (void *)(unsigned long)cpu); \
842 local_irq_save(flags); \
843 fn(&fn##_nb, (unsigned long)CPU_STARTING, \
844 (void *)(unsigned long)cpu); \
845 local_irq_restore(flags); \
846 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
847 (void *)(unsigned long)cpu); \
848 register_cpu_notifier(&fn##_nb); \
849 } while (0)
850
851
852 struct perf_pmu_events_attr {
853 struct device_attribute attr;
854 u64 id;
855 const char *event_str;
856 };
857
858 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
859 static struct perf_pmu_events_attr _var = { \
860 .attr = __ATTR(_name, 0444, _show, NULL), \
861 .id = _id, \
862 };
863
864 #define PMU_FORMAT_ATTR(_name, _format) \
865 static ssize_t \
866 _name##_show(struct device *dev, \
867 struct device_attribute *attr, \
868 char *page) \
869 { \
870 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
871 return sprintf(page, _format "\n"); \
872 } \
873 \
874 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
875
876 #endif /* _LINUX_PERF_EVENT_H */