]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/perf_event.h
KEYS: Fix race between updating and finding a negative key
[mirror_ubuntu-artful-kernel.git] / include / linux / perf_event.h
1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18
19 /*
20 * Kernel-internal data types and definitions:
21 */
22
23 #ifdef CONFIG_PERF_EVENTS
24 # include <asm/perf_event.h>
25 # include <asm/local64.h>
26 #endif
27
28 struct perf_guest_info_callbacks {
29 int (*is_in_guest)(void);
30 int (*is_user_mode)(void);
31 unsigned long (*get_guest_ip)(void);
32 };
33
34 #ifdef CONFIG_HAVE_HW_BREAKPOINT
35 #include <asm/hw_breakpoint.h>
36 #endif
37
38 #include <linux/list.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/rcupdate.h>
42 #include <linux/spinlock.h>
43 #include <linux/hrtimer.h>
44 #include <linux/fs.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/workqueue.h>
47 #include <linux/ftrace.h>
48 #include <linux/cpu.h>
49 #include <linux/irq_work.h>
50 #include <linux/static_key.h>
51 #include <linux/jump_label_ratelimit.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <linux/workqueue.h>
56 #include <linux/cgroup.h>
57 #include <asm/local.h>
58
59 struct perf_callchain_entry {
60 __u64 nr;
61 __u64 ip[0]; /* /proc/sys/kernel/perf_event_max_stack */
62 };
63
64 struct perf_callchain_entry_ctx {
65 struct perf_callchain_entry *entry;
66 u32 max_stack;
67 u32 nr;
68 short contexts;
69 bool contexts_maxed;
70 };
71
72 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
73 unsigned long off, unsigned long len);
74
75 struct perf_raw_frag {
76 union {
77 struct perf_raw_frag *next;
78 unsigned long pad;
79 };
80 perf_copy_f copy;
81 void *data;
82 u32 size;
83 } __packed;
84
85 struct perf_raw_record {
86 struct perf_raw_frag frag;
87 u32 size;
88 };
89
90 /*
91 * branch stack layout:
92 * nr: number of taken branches stored in entries[]
93 *
94 * Note that nr can vary from sample to sample
95 * branches (to, from) are stored from most recent
96 * to least recent, i.e., entries[0] contains the most
97 * recent branch.
98 */
99 struct perf_branch_stack {
100 __u64 nr;
101 struct perf_branch_entry entries[0];
102 };
103
104 struct task_struct;
105
106 /*
107 * extra PMU register associated with an event
108 */
109 struct hw_perf_event_extra {
110 u64 config; /* register value */
111 unsigned int reg; /* register address or index */
112 int alloc; /* extra register already allocated */
113 int idx; /* index in shared_regs->regs[] */
114 };
115
116 /**
117 * struct hw_perf_event - performance event hardware details:
118 */
119 struct hw_perf_event {
120 #ifdef CONFIG_PERF_EVENTS
121 union {
122 struct { /* hardware */
123 u64 config;
124 u64 last_tag;
125 unsigned long config_base;
126 unsigned long event_base;
127 int event_base_rdpmc;
128 int idx;
129 int last_cpu;
130 int flags;
131
132 struct hw_perf_event_extra extra_reg;
133 struct hw_perf_event_extra branch_reg;
134 };
135 struct { /* software */
136 struct hrtimer hrtimer;
137 };
138 struct { /* tracepoint */
139 /* for tp_event->class */
140 struct list_head tp_list;
141 };
142 struct { /* itrace */
143 int itrace_started;
144 };
145 struct { /* amd_power */
146 u64 pwr_acc;
147 u64 ptsc;
148 };
149 #ifdef CONFIG_HAVE_HW_BREAKPOINT
150 struct { /* breakpoint */
151 /*
152 * Crufty hack to avoid the chicken and egg
153 * problem hw_breakpoint has with context
154 * creation and event initalization.
155 */
156 struct arch_hw_breakpoint info;
157 struct list_head bp_list;
158 };
159 #endif
160 struct { /* amd_iommu */
161 u8 iommu_bank;
162 u8 iommu_cntr;
163 u16 padding;
164 u64 conf;
165 u64 conf1;
166 };
167 };
168 /*
169 * If the event is a per task event, this will point to the task in
170 * question. See the comment in perf_event_alloc().
171 */
172 struct task_struct *target;
173
174 /*
175 * PMU would store hardware filter configuration
176 * here.
177 */
178 void *addr_filters;
179
180 /* Last sync'ed generation of filters */
181 unsigned long addr_filters_gen;
182
183 /*
184 * hw_perf_event::state flags; used to track the PERF_EF_* state.
185 */
186 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
187 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
188 #define PERF_HES_ARCH 0x04
189
190 int state;
191
192 /*
193 * The last observed hardware counter value, updated with a
194 * local64_cmpxchg() such that pmu::read() can be called nested.
195 */
196 local64_t prev_count;
197
198 /*
199 * The period to start the next sample with.
200 */
201 u64 sample_period;
202
203 /*
204 * The period we started this sample with.
205 */
206 u64 last_period;
207
208 /*
209 * However much is left of the current period; note that this is
210 * a full 64bit value and allows for generation of periods longer
211 * than hardware might allow.
212 */
213 local64_t period_left;
214
215 /*
216 * State for throttling the event, see __perf_event_overflow() and
217 * perf_adjust_freq_unthr_context().
218 */
219 u64 interrupts_seq;
220 u64 interrupts;
221
222 /*
223 * State for freq target events, see __perf_event_overflow() and
224 * perf_adjust_freq_unthr_context().
225 */
226 u64 freq_time_stamp;
227 u64 freq_count_stamp;
228 #endif
229 };
230
231 struct perf_event;
232
233 /*
234 * Common implementation detail of pmu::{start,commit,cancel}_txn
235 */
236 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */
237 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */
238
239 /**
240 * pmu::capabilities flags
241 */
242 #define PERF_PMU_CAP_NO_INTERRUPT 0x01
243 #define PERF_PMU_CAP_NO_NMI 0x02
244 #define PERF_PMU_CAP_AUX_NO_SG 0x04
245 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF 0x08
246 #define PERF_PMU_CAP_EXCLUSIVE 0x10
247 #define PERF_PMU_CAP_ITRACE 0x20
248 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40
249
250 /**
251 * struct pmu - generic performance monitoring unit
252 */
253 struct pmu {
254 struct list_head entry;
255
256 struct module *module;
257 struct device *dev;
258 const struct attribute_group **attr_groups;
259 const char *name;
260 int type;
261
262 /*
263 * various common per-pmu feature flags
264 */
265 int capabilities;
266
267 int * __percpu pmu_disable_count;
268 struct perf_cpu_context * __percpu pmu_cpu_context;
269 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
270 int task_ctx_nr;
271 int hrtimer_interval_ms;
272
273 /* number of address filters this PMU can do */
274 unsigned int nr_addr_filters;
275
276 /*
277 * Fully disable/enable this PMU, can be used to protect from the PMI
278 * as well as for lazy/batch writing of the MSRs.
279 */
280 void (*pmu_enable) (struct pmu *pmu); /* optional */
281 void (*pmu_disable) (struct pmu *pmu); /* optional */
282
283 /*
284 * Try and initialize the event for this PMU.
285 *
286 * Returns:
287 * -ENOENT -- @event is not for this PMU
288 *
289 * -ENODEV -- @event is for this PMU but PMU not present
290 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable
291 * -EINVAL -- @event is for this PMU but @event is not valid
292 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
293 * -EACCESS -- @event is for this PMU, @event is valid, but no privilidges
294 *
295 * 0 -- @event is for this PMU and valid
296 *
297 * Other error return values are allowed.
298 */
299 int (*event_init) (struct perf_event *event);
300
301 /*
302 * Notification that the event was mapped or unmapped. Called
303 * in the context of the mapping task.
304 */
305 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
306 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
307
308 /*
309 * Flags for ->add()/->del()/ ->start()/->stop(). There are
310 * matching hw_perf_event::state flags.
311 */
312 #define PERF_EF_START 0x01 /* start the counter when adding */
313 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
314 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
315
316 /*
317 * Adds/Removes a counter to/from the PMU, can be done inside a
318 * transaction, see the ->*_txn() methods.
319 *
320 * The add/del callbacks will reserve all hardware resources required
321 * to service the event, this includes any counter constraint
322 * scheduling etc.
323 *
324 * Called with IRQs disabled and the PMU disabled on the CPU the event
325 * is on.
326 *
327 * ->add() called without PERF_EF_START should result in the same state
328 * as ->add() followed by ->stop().
329 *
330 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
331 * ->stop() that must deal with already being stopped without
332 * PERF_EF_UPDATE.
333 */
334 int (*add) (struct perf_event *event, int flags);
335 void (*del) (struct perf_event *event, int flags);
336
337 /*
338 * Starts/Stops a counter present on the PMU.
339 *
340 * The PMI handler should stop the counter when perf_event_overflow()
341 * returns !0. ->start() will be used to continue.
342 *
343 * Also used to change the sample period.
344 *
345 * Called with IRQs disabled and the PMU disabled on the CPU the event
346 * is on -- will be called from NMI context with the PMU generates
347 * NMIs.
348 *
349 * ->stop() with PERF_EF_UPDATE will read the counter and update
350 * period/count values like ->read() would.
351 *
352 * ->start() with PERF_EF_RELOAD will reprogram the the counter
353 * value, must be preceded by a ->stop() with PERF_EF_UPDATE.
354 */
355 void (*start) (struct perf_event *event, int flags);
356 void (*stop) (struct perf_event *event, int flags);
357
358 /*
359 * Updates the counter value of the event.
360 *
361 * For sampling capable PMUs this will also update the software period
362 * hw_perf_event::period_left field.
363 */
364 void (*read) (struct perf_event *event);
365
366 /*
367 * Group events scheduling is treated as a transaction, add
368 * group events as a whole and perform one schedulability test.
369 * If the test fails, roll back the whole group
370 *
371 * Start the transaction, after this ->add() doesn't need to
372 * do schedulability tests.
373 *
374 * Optional.
375 */
376 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags);
377 /*
378 * If ->start_txn() disabled the ->add() schedulability test
379 * then ->commit_txn() is required to perform one. On success
380 * the transaction is closed. On error the transaction is kept
381 * open until ->cancel_txn() is called.
382 *
383 * Optional.
384 */
385 int (*commit_txn) (struct pmu *pmu);
386 /*
387 * Will cancel the transaction, assumes ->del() is called
388 * for each successful ->add() during the transaction.
389 *
390 * Optional.
391 */
392 void (*cancel_txn) (struct pmu *pmu);
393
394 /*
395 * Will return the value for perf_event_mmap_page::index for this event,
396 * if no implementation is provided it will default to: event->hw.idx + 1.
397 */
398 int (*event_idx) (struct perf_event *event); /*optional */
399
400 /*
401 * context-switches callback
402 */
403 void (*sched_task) (struct perf_event_context *ctx,
404 bool sched_in);
405 /*
406 * PMU specific data size
407 */
408 size_t task_ctx_size;
409
410
411 /*
412 * Set up pmu-private data structures for an AUX area
413 */
414 void *(*setup_aux) (int cpu, void **pages,
415 int nr_pages, bool overwrite);
416 /* optional */
417
418 /*
419 * Free pmu-private AUX data structures
420 */
421 void (*free_aux) (void *aux); /* optional */
422
423 /*
424 * Validate address range filters: make sure the HW supports the
425 * requested configuration and number of filters; return 0 if the
426 * supplied filters are valid, -errno otherwise.
427 *
428 * Runs in the context of the ioctl()ing process and is not serialized
429 * with the rest of the PMU callbacks.
430 */
431 int (*addr_filters_validate) (struct list_head *filters);
432 /* optional */
433
434 /*
435 * Synchronize address range filter configuration:
436 * translate hw-agnostic filters into hardware configuration in
437 * event::hw::addr_filters.
438 *
439 * Runs as a part of filter sync sequence that is done in ->start()
440 * callback by calling perf_event_addr_filters_sync().
441 *
442 * May (and should) traverse event::addr_filters::list, for which its
443 * caller provides necessary serialization.
444 */
445 void (*addr_filters_sync) (struct perf_event *event);
446 /* optional */
447
448 /*
449 * Filter events for PMU-specific reasons.
450 */
451 int (*filter_match) (struct perf_event *event); /* optional */
452 };
453
454 /**
455 * struct perf_addr_filter - address range filter definition
456 * @entry: event's filter list linkage
457 * @inode: object file's inode for file-based filters
458 * @offset: filter range offset
459 * @size: filter range size
460 * @range: 1: range, 0: address
461 * @filter: 1: filter/start, 0: stop
462 *
463 * This is a hardware-agnostic filter configuration as specified by the user.
464 */
465 struct perf_addr_filter {
466 struct list_head entry;
467 struct inode *inode;
468 unsigned long offset;
469 unsigned long size;
470 unsigned int range : 1,
471 filter : 1;
472 };
473
474 /**
475 * struct perf_addr_filters_head - container for address range filters
476 * @list: list of filters for this event
477 * @lock: spinlock that serializes accesses to the @list and event's
478 * (and its children's) filter generations.
479 * @nr_file_filters: number of file-based filters
480 *
481 * A child event will use parent's @list (and therefore @lock), so they are
482 * bundled together; see perf_event_addr_filters().
483 */
484 struct perf_addr_filters_head {
485 struct list_head list;
486 raw_spinlock_t lock;
487 unsigned int nr_file_filters;
488 };
489
490 /**
491 * enum perf_event_active_state - the states of a event
492 */
493 enum perf_event_active_state {
494 PERF_EVENT_STATE_DEAD = -4,
495 PERF_EVENT_STATE_EXIT = -3,
496 PERF_EVENT_STATE_ERROR = -2,
497 PERF_EVENT_STATE_OFF = -1,
498 PERF_EVENT_STATE_INACTIVE = 0,
499 PERF_EVENT_STATE_ACTIVE = 1,
500 };
501
502 struct file;
503 struct perf_sample_data;
504
505 typedef void (*perf_overflow_handler_t)(struct perf_event *,
506 struct perf_sample_data *,
507 struct pt_regs *regs);
508
509 /*
510 * Event capabilities. For event_caps and groups caps.
511 *
512 * PERF_EV_CAP_SOFTWARE: Is a software event.
513 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
514 * from any CPU in the package where it is active.
515 */
516 #define PERF_EV_CAP_SOFTWARE BIT(0)
517 #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1)
518
519 #define SWEVENT_HLIST_BITS 8
520 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
521
522 struct swevent_hlist {
523 struct hlist_head heads[SWEVENT_HLIST_SIZE];
524 struct rcu_head rcu_head;
525 };
526
527 #define PERF_ATTACH_CONTEXT 0x01
528 #define PERF_ATTACH_GROUP 0x02
529 #define PERF_ATTACH_TASK 0x04
530 #define PERF_ATTACH_TASK_DATA 0x08
531
532 struct perf_cgroup;
533 struct ring_buffer;
534
535 struct pmu_event_list {
536 raw_spinlock_t lock;
537 struct list_head list;
538 };
539
540 /**
541 * struct perf_event - performance event kernel representation:
542 */
543 struct perf_event {
544 #ifdef CONFIG_PERF_EVENTS
545 /*
546 * entry onto perf_event_context::event_list;
547 * modifications require ctx->lock
548 * RCU safe iterations.
549 */
550 struct list_head event_entry;
551
552 /*
553 * XXX: group_entry and sibling_list should be mutually exclusive;
554 * either you're a sibling on a group, or you're the group leader.
555 * Rework the code to always use the same list element.
556 *
557 * Locked for modification by both ctx->mutex and ctx->lock; holding
558 * either sufficies for read.
559 */
560 struct list_head group_entry;
561 struct list_head sibling_list;
562
563 /*
564 * We need storage to track the entries in perf_pmu_migrate_context; we
565 * cannot use the event_entry because of RCU and we want to keep the
566 * group in tact which avoids us using the other two entries.
567 */
568 struct list_head migrate_entry;
569
570 struct hlist_node hlist_entry;
571 struct list_head active_entry;
572 int nr_siblings;
573
574 /* Not serialized. Only written during event initialization. */
575 int event_caps;
576 /* The cumulative AND of all event_caps for events in this group. */
577 int group_caps;
578
579 struct perf_event *group_leader;
580 struct pmu *pmu;
581 void *pmu_private;
582
583 enum perf_event_active_state state;
584 unsigned int attach_state;
585 local64_t count;
586 atomic64_t child_count;
587
588 /*
589 * These are the total time in nanoseconds that the event
590 * has been enabled (i.e. eligible to run, and the task has
591 * been scheduled in, if this is a per-task event)
592 * and running (scheduled onto the CPU), respectively.
593 *
594 * They are computed from tstamp_enabled, tstamp_running and
595 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
596 */
597 u64 total_time_enabled;
598 u64 total_time_running;
599
600 /*
601 * These are timestamps used for computing total_time_enabled
602 * and total_time_running when the event is in INACTIVE or
603 * ACTIVE state, measured in nanoseconds from an arbitrary point
604 * in time.
605 * tstamp_enabled: the notional time when the event was enabled
606 * tstamp_running: the notional time when the event was scheduled on
607 * tstamp_stopped: in INACTIVE state, the notional time when the
608 * event was scheduled off.
609 */
610 u64 tstamp_enabled;
611 u64 tstamp_running;
612 u64 tstamp_stopped;
613
614 /*
615 * timestamp shadows the actual context timing but it can
616 * be safely used in NMI interrupt context. It reflects the
617 * context time as it was when the event was last scheduled in.
618 *
619 * ctx_time already accounts for ctx->timestamp. Therefore to
620 * compute ctx_time for a sample, simply add perf_clock().
621 */
622 u64 shadow_ctx_time;
623
624 struct perf_event_attr attr;
625 u16 header_size;
626 u16 id_header_size;
627 u16 read_size;
628 struct hw_perf_event hw;
629
630 struct perf_event_context *ctx;
631 atomic_long_t refcount;
632
633 /*
634 * These accumulate total time (in nanoseconds) that children
635 * events have been enabled and running, respectively.
636 */
637 atomic64_t child_total_time_enabled;
638 atomic64_t child_total_time_running;
639
640 /*
641 * Protect attach/detach and child_list:
642 */
643 struct mutex child_mutex;
644 struct list_head child_list;
645 struct perf_event *parent;
646
647 int oncpu;
648 int cpu;
649
650 struct list_head owner_entry;
651 struct task_struct *owner;
652
653 /* mmap bits */
654 struct mutex mmap_mutex;
655 atomic_t mmap_count;
656
657 struct ring_buffer *rb;
658 struct list_head rb_entry;
659 unsigned long rcu_batches;
660 int rcu_pending;
661
662 /* poll related */
663 wait_queue_head_t waitq;
664 struct fasync_struct *fasync;
665
666 /* delayed work for NMIs and such */
667 int pending_wakeup;
668 int pending_kill;
669 int pending_disable;
670 struct irq_work pending;
671
672 atomic_t event_limit;
673
674 /* address range filters */
675 struct perf_addr_filters_head addr_filters;
676 /* vma address array for file-based filders */
677 unsigned long *addr_filters_offs;
678 unsigned long addr_filters_gen;
679
680 void (*destroy)(struct perf_event *);
681 struct rcu_head rcu_head;
682
683 struct pid_namespace *ns;
684 u64 id;
685
686 u64 (*clock)(void);
687 perf_overflow_handler_t overflow_handler;
688 void *overflow_handler_context;
689 #ifdef CONFIG_BPF_SYSCALL
690 perf_overflow_handler_t orig_overflow_handler;
691 struct bpf_prog *prog;
692 #endif
693
694 #ifdef CONFIG_EVENT_TRACING
695 struct trace_event_call *tp_event;
696 struct event_filter *filter;
697 #ifdef CONFIG_FUNCTION_TRACER
698 struct ftrace_ops ftrace_ops;
699 #endif
700 #endif
701
702 #ifdef CONFIG_CGROUP_PERF
703 struct perf_cgroup *cgrp; /* cgroup event is attach to */
704 int cgrp_defer_enabled;
705 #endif
706
707 struct list_head sb_list;
708 #endif /* CONFIG_PERF_EVENTS */
709 };
710
711 /**
712 * struct perf_event_context - event context structure
713 *
714 * Used as a container for task events and CPU events as well:
715 */
716 struct perf_event_context {
717 struct pmu *pmu;
718 /*
719 * Protect the states of the events in the list,
720 * nr_active, and the list:
721 */
722 raw_spinlock_t lock;
723 /*
724 * Protect the list of events. Locking either mutex or lock
725 * is sufficient to ensure the list doesn't change; to change
726 * the list you need to lock both the mutex and the spinlock.
727 */
728 struct mutex mutex;
729
730 struct list_head active_ctx_list;
731 struct list_head pinned_groups;
732 struct list_head flexible_groups;
733 struct list_head event_list;
734 int nr_events;
735 int nr_active;
736 int is_active;
737 int nr_stat;
738 int nr_freq;
739 int rotate_disable;
740 atomic_t refcount;
741 struct task_struct *task;
742
743 /*
744 * Context clock, runs when context enabled.
745 */
746 u64 time;
747 u64 timestamp;
748
749 /*
750 * These fields let us detect when two contexts have both
751 * been cloned (inherited) from a common ancestor.
752 */
753 struct perf_event_context *parent_ctx;
754 u64 parent_gen;
755 u64 generation;
756 int pin_count;
757 #ifdef CONFIG_CGROUP_PERF
758 int nr_cgroups; /* cgroup evts */
759 #endif
760 void *task_ctx_data; /* pmu specific data */
761 struct rcu_head rcu_head;
762 };
763
764 /*
765 * Number of contexts where an event can trigger:
766 * task, softirq, hardirq, nmi.
767 */
768 #define PERF_NR_CONTEXTS 4
769
770 /**
771 * struct perf_event_cpu_context - per cpu event context structure
772 */
773 struct perf_cpu_context {
774 struct perf_event_context ctx;
775 struct perf_event_context *task_ctx;
776 int active_oncpu;
777 int exclusive;
778
779 raw_spinlock_t hrtimer_lock;
780 struct hrtimer hrtimer;
781 ktime_t hrtimer_interval;
782 unsigned int hrtimer_active;
783
784 #ifdef CONFIG_CGROUP_PERF
785 struct perf_cgroup *cgrp;
786 struct list_head cgrp_cpuctx_entry;
787 #endif
788
789 struct list_head sched_cb_entry;
790 int sched_cb_usage;
791
792 int online;
793 };
794
795 struct perf_output_handle {
796 struct perf_event *event;
797 struct ring_buffer *rb;
798 unsigned long wakeup;
799 unsigned long size;
800 u64 aux_flags;
801 union {
802 void *addr;
803 unsigned long head;
804 };
805 int page;
806 };
807
808 struct bpf_perf_event_data_kern {
809 struct pt_regs *regs;
810 struct perf_sample_data *data;
811 };
812
813 #ifdef CONFIG_CGROUP_PERF
814
815 /*
816 * perf_cgroup_info keeps track of time_enabled for a cgroup.
817 * This is a per-cpu dynamically allocated data structure.
818 */
819 struct perf_cgroup_info {
820 u64 time;
821 u64 timestamp;
822 };
823
824 struct perf_cgroup {
825 struct cgroup_subsys_state css;
826 struct perf_cgroup_info __percpu *info;
827 };
828
829 /*
830 * Must ensure cgroup is pinned (css_get) before calling
831 * this function. In other words, we cannot call this function
832 * if there is no cgroup event for the current CPU context.
833 */
834 static inline struct perf_cgroup *
835 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
836 {
837 return container_of(task_css_check(task, perf_event_cgrp_id,
838 ctx ? lockdep_is_held(&ctx->lock)
839 : true),
840 struct perf_cgroup, css);
841 }
842 #endif /* CONFIG_CGROUP_PERF */
843
844 #ifdef CONFIG_PERF_EVENTS
845
846 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
847 struct perf_event *event);
848 extern void perf_aux_output_end(struct perf_output_handle *handle,
849 unsigned long size);
850 extern int perf_aux_output_skip(struct perf_output_handle *handle,
851 unsigned long size);
852 extern void *perf_get_aux(struct perf_output_handle *handle);
853 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
854
855 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
856 extern void perf_pmu_unregister(struct pmu *pmu);
857
858 extern int perf_num_counters(void);
859 extern const char *perf_pmu_name(void);
860 extern void __perf_event_task_sched_in(struct task_struct *prev,
861 struct task_struct *task);
862 extern void __perf_event_task_sched_out(struct task_struct *prev,
863 struct task_struct *next);
864 extern int perf_event_init_task(struct task_struct *child);
865 extern void perf_event_exit_task(struct task_struct *child);
866 extern void perf_event_free_task(struct task_struct *task);
867 extern void perf_event_delayed_put(struct task_struct *task);
868 extern struct file *perf_event_get(unsigned int fd);
869 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
870 extern void perf_event_print_debug(void);
871 extern void perf_pmu_disable(struct pmu *pmu);
872 extern void perf_pmu_enable(struct pmu *pmu);
873 extern void perf_sched_cb_dec(struct pmu *pmu);
874 extern void perf_sched_cb_inc(struct pmu *pmu);
875 extern int perf_event_task_disable(void);
876 extern int perf_event_task_enable(void);
877 extern int perf_event_refresh(struct perf_event *event, int refresh);
878 extern void perf_event_update_userpage(struct perf_event *event);
879 extern int perf_event_release_kernel(struct perf_event *event);
880 extern struct perf_event *
881 perf_event_create_kernel_counter(struct perf_event_attr *attr,
882 int cpu,
883 struct task_struct *task,
884 perf_overflow_handler_t callback,
885 void *context);
886 extern void perf_pmu_migrate_context(struct pmu *pmu,
887 int src_cpu, int dst_cpu);
888 int perf_event_read_local(struct perf_event *event, u64 *value);
889 extern u64 perf_event_read_value(struct perf_event *event,
890 u64 *enabled, u64 *running);
891
892
893 struct perf_sample_data {
894 /*
895 * Fields set by perf_sample_data_init(), group so as to
896 * minimize the cachelines touched.
897 */
898 u64 addr;
899 struct perf_raw_record *raw;
900 struct perf_branch_stack *br_stack;
901 u64 period;
902 u64 weight;
903 u64 txn;
904 union perf_mem_data_src data_src;
905
906 /*
907 * The other fields, optionally {set,used} by
908 * perf_{prepare,output}_sample().
909 */
910 u64 type;
911 u64 ip;
912 struct {
913 u32 pid;
914 u32 tid;
915 } tid_entry;
916 u64 time;
917 u64 id;
918 u64 stream_id;
919 struct {
920 u32 cpu;
921 u32 reserved;
922 } cpu_entry;
923 struct perf_callchain_entry *callchain;
924
925 /*
926 * regs_user may point to task_pt_regs or to regs_user_copy, depending
927 * on arch details.
928 */
929 struct perf_regs regs_user;
930 struct pt_regs regs_user_copy;
931
932 struct perf_regs regs_intr;
933 u64 stack_user_size;
934 } ____cacheline_aligned;
935
936 /* default value for data source */
937 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
938 PERF_MEM_S(LVL, NA) |\
939 PERF_MEM_S(SNOOP, NA) |\
940 PERF_MEM_S(LOCK, NA) |\
941 PERF_MEM_S(TLB, NA))
942
943 static inline void perf_sample_data_init(struct perf_sample_data *data,
944 u64 addr, u64 period)
945 {
946 /* remaining struct members initialized in perf_prepare_sample() */
947 data->addr = addr;
948 data->raw = NULL;
949 data->br_stack = NULL;
950 data->period = period;
951 data->weight = 0;
952 data->data_src.val = PERF_MEM_NA;
953 data->txn = 0;
954 }
955
956 extern void perf_output_sample(struct perf_output_handle *handle,
957 struct perf_event_header *header,
958 struct perf_sample_data *data,
959 struct perf_event *event);
960 extern void perf_prepare_sample(struct perf_event_header *header,
961 struct perf_sample_data *data,
962 struct perf_event *event,
963 struct pt_regs *regs);
964
965 extern int perf_event_overflow(struct perf_event *event,
966 struct perf_sample_data *data,
967 struct pt_regs *regs);
968
969 extern void perf_event_output_forward(struct perf_event *event,
970 struct perf_sample_data *data,
971 struct pt_regs *regs);
972 extern void perf_event_output_backward(struct perf_event *event,
973 struct perf_sample_data *data,
974 struct pt_regs *regs);
975 extern void perf_event_output(struct perf_event *event,
976 struct perf_sample_data *data,
977 struct pt_regs *regs);
978
979 static inline bool
980 is_default_overflow_handler(struct perf_event *event)
981 {
982 if (likely(event->overflow_handler == perf_event_output_forward))
983 return true;
984 if (unlikely(event->overflow_handler == perf_event_output_backward))
985 return true;
986 return false;
987 }
988
989 extern void
990 perf_event_header__init_id(struct perf_event_header *header,
991 struct perf_sample_data *data,
992 struct perf_event *event);
993 extern void
994 perf_event__output_id_sample(struct perf_event *event,
995 struct perf_output_handle *handle,
996 struct perf_sample_data *sample);
997
998 extern void
999 perf_log_lost_samples(struct perf_event *event, u64 lost);
1000
1001 static inline bool is_sampling_event(struct perf_event *event)
1002 {
1003 return event->attr.sample_period != 0;
1004 }
1005
1006 /*
1007 * Return 1 for a software event, 0 for a hardware event
1008 */
1009 static inline int is_software_event(struct perf_event *event)
1010 {
1011 return event->event_caps & PERF_EV_CAP_SOFTWARE;
1012 }
1013
1014 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1015
1016 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1017 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1018
1019 #ifndef perf_arch_fetch_caller_regs
1020 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1021 #endif
1022
1023 /*
1024 * Take a snapshot of the regs. Skip ip and frame pointer to
1025 * the nth caller. We only need a few of the regs:
1026 * - ip for PERF_SAMPLE_IP
1027 * - cs for user_mode() tests
1028 * - bp for callchains
1029 * - eflags, for future purposes, just in case
1030 */
1031 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1032 {
1033 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1034 }
1035
1036 static __always_inline void
1037 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1038 {
1039 if (static_key_false(&perf_swevent_enabled[event_id]))
1040 __perf_sw_event(event_id, nr, regs, addr);
1041 }
1042
1043 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1044
1045 /*
1046 * 'Special' version for the scheduler, it hard assumes no recursion,
1047 * which is guaranteed by us not actually scheduling inside other swevents
1048 * because those disable preemption.
1049 */
1050 static __always_inline void
1051 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1052 {
1053 if (static_key_false(&perf_swevent_enabled[event_id])) {
1054 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1055
1056 perf_fetch_caller_regs(regs);
1057 ___perf_sw_event(event_id, nr, regs, addr);
1058 }
1059 }
1060
1061 extern struct static_key_false perf_sched_events;
1062
1063 static __always_inline bool
1064 perf_sw_migrate_enabled(void)
1065 {
1066 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1067 return true;
1068 return false;
1069 }
1070
1071 static inline void perf_event_task_migrate(struct task_struct *task)
1072 {
1073 if (perf_sw_migrate_enabled())
1074 task->sched_migrated = 1;
1075 }
1076
1077 static inline void perf_event_task_sched_in(struct task_struct *prev,
1078 struct task_struct *task)
1079 {
1080 if (static_branch_unlikely(&perf_sched_events))
1081 __perf_event_task_sched_in(prev, task);
1082
1083 if (perf_sw_migrate_enabled() && task->sched_migrated) {
1084 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1085
1086 perf_fetch_caller_regs(regs);
1087 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1088 task->sched_migrated = 0;
1089 }
1090 }
1091
1092 static inline void perf_event_task_sched_out(struct task_struct *prev,
1093 struct task_struct *next)
1094 {
1095 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1096
1097 if (static_branch_unlikely(&perf_sched_events))
1098 __perf_event_task_sched_out(prev, next);
1099 }
1100
1101 extern void perf_event_mmap(struct vm_area_struct *vma);
1102 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1103 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1104 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1105
1106 extern void perf_event_exec(void);
1107 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1108 extern void perf_event_namespaces(struct task_struct *tsk);
1109 extern void perf_event_fork(struct task_struct *tsk);
1110
1111 /* Callchains */
1112 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1113
1114 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1115 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1116 extern struct perf_callchain_entry *
1117 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1118 u32 max_stack, bool crosstask, bool add_mark);
1119 extern int get_callchain_buffers(int max_stack);
1120 extern void put_callchain_buffers(void);
1121
1122 extern int sysctl_perf_event_max_stack;
1123 extern int sysctl_perf_event_max_contexts_per_stack;
1124
1125 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1126 {
1127 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1128 struct perf_callchain_entry *entry = ctx->entry;
1129 entry->ip[entry->nr++] = ip;
1130 ++ctx->contexts;
1131 return 0;
1132 } else {
1133 ctx->contexts_maxed = true;
1134 return -1; /* no more room, stop walking the stack */
1135 }
1136 }
1137
1138 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1139 {
1140 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1141 struct perf_callchain_entry *entry = ctx->entry;
1142 entry->ip[entry->nr++] = ip;
1143 ++ctx->nr;
1144 return 0;
1145 } else {
1146 return -1; /* no more room, stop walking the stack */
1147 }
1148 }
1149
1150 extern int sysctl_perf_event_paranoid;
1151 extern int sysctl_perf_event_mlock;
1152 extern int sysctl_perf_event_sample_rate;
1153 extern int sysctl_perf_cpu_time_max_percent;
1154
1155 extern void perf_sample_event_took(u64 sample_len_ns);
1156
1157 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1158 void __user *buffer, size_t *lenp,
1159 loff_t *ppos);
1160 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1161 void __user *buffer, size_t *lenp,
1162 loff_t *ppos);
1163
1164 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1165 void __user *buffer, size_t *lenp, loff_t *ppos);
1166
1167 static inline bool perf_paranoid_any(void)
1168 {
1169 return sysctl_perf_event_paranoid > 2;
1170 }
1171
1172 static inline bool perf_paranoid_tracepoint_raw(void)
1173 {
1174 return sysctl_perf_event_paranoid > -1;
1175 }
1176
1177 static inline bool perf_paranoid_cpu(void)
1178 {
1179 return sysctl_perf_event_paranoid > 0;
1180 }
1181
1182 static inline bool perf_paranoid_kernel(void)
1183 {
1184 return sysctl_perf_event_paranoid > 1;
1185 }
1186
1187 extern void perf_event_init(void);
1188 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1189 int entry_size, struct pt_regs *regs,
1190 struct hlist_head *head, int rctx,
1191 struct task_struct *task, struct perf_event *event);
1192 extern void perf_bp_event(struct perf_event *event, void *data);
1193
1194 #ifndef perf_misc_flags
1195 # define perf_misc_flags(regs) \
1196 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1197 # define perf_instruction_pointer(regs) instruction_pointer(regs)
1198 #endif
1199
1200 static inline bool has_branch_stack(struct perf_event *event)
1201 {
1202 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1203 }
1204
1205 static inline bool needs_branch_stack(struct perf_event *event)
1206 {
1207 return event->attr.branch_sample_type != 0;
1208 }
1209
1210 static inline bool has_aux(struct perf_event *event)
1211 {
1212 return event->pmu->setup_aux;
1213 }
1214
1215 static inline bool is_write_backward(struct perf_event *event)
1216 {
1217 return !!event->attr.write_backward;
1218 }
1219
1220 static inline bool has_addr_filter(struct perf_event *event)
1221 {
1222 return event->pmu->nr_addr_filters;
1223 }
1224
1225 /*
1226 * An inherited event uses parent's filters
1227 */
1228 static inline struct perf_addr_filters_head *
1229 perf_event_addr_filters(struct perf_event *event)
1230 {
1231 struct perf_addr_filters_head *ifh = &event->addr_filters;
1232
1233 if (event->parent)
1234 ifh = &event->parent->addr_filters;
1235
1236 return ifh;
1237 }
1238
1239 extern void perf_event_addr_filters_sync(struct perf_event *event);
1240
1241 extern int perf_output_begin(struct perf_output_handle *handle,
1242 struct perf_event *event, unsigned int size);
1243 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1244 struct perf_event *event,
1245 unsigned int size);
1246 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1247 struct perf_event *event,
1248 unsigned int size);
1249
1250 extern void perf_output_end(struct perf_output_handle *handle);
1251 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1252 const void *buf, unsigned int len);
1253 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1254 unsigned int len);
1255 extern int perf_swevent_get_recursion_context(void);
1256 extern void perf_swevent_put_recursion_context(int rctx);
1257 extern u64 perf_swevent_set_period(struct perf_event *event);
1258 extern void perf_event_enable(struct perf_event *event);
1259 extern void perf_event_disable(struct perf_event *event);
1260 extern void perf_event_disable_local(struct perf_event *event);
1261 extern void perf_event_disable_inatomic(struct perf_event *event);
1262 extern void perf_event_task_tick(void);
1263 extern int perf_event_account_interrupt(struct perf_event *event);
1264 #else /* !CONFIG_PERF_EVENTS: */
1265 static inline void *
1266 perf_aux_output_begin(struct perf_output_handle *handle,
1267 struct perf_event *event) { return NULL; }
1268 static inline void
1269 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1270 { }
1271 static inline int
1272 perf_aux_output_skip(struct perf_output_handle *handle,
1273 unsigned long size) { return -EINVAL; }
1274 static inline void *
1275 perf_get_aux(struct perf_output_handle *handle) { return NULL; }
1276 static inline void
1277 perf_event_task_migrate(struct task_struct *task) { }
1278 static inline void
1279 perf_event_task_sched_in(struct task_struct *prev,
1280 struct task_struct *task) { }
1281 static inline void
1282 perf_event_task_sched_out(struct task_struct *prev,
1283 struct task_struct *next) { }
1284 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
1285 static inline void perf_event_exit_task(struct task_struct *child) { }
1286 static inline void perf_event_free_task(struct task_struct *task) { }
1287 static inline void perf_event_delayed_put(struct task_struct *task) { }
1288 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); }
1289 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1290 {
1291 return ERR_PTR(-EINVAL);
1292 }
1293 static inline int perf_event_read_local(struct perf_event *event, u64 *value)
1294 {
1295 return -EINVAL;
1296 }
1297 static inline void perf_event_print_debug(void) { }
1298 static inline int perf_event_task_disable(void) { return -EINVAL; }
1299 static inline int perf_event_task_enable(void) { return -EINVAL; }
1300 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1301 {
1302 return -EINVAL;
1303 }
1304
1305 static inline void
1306 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1307 static inline void
1308 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { }
1309 static inline void
1310 perf_bp_event(struct perf_event *event, void *data) { }
1311
1312 static inline int perf_register_guest_info_callbacks
1313 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1314 static inline int perf_unregister_guest_info_callbacks
1315 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1316
1317 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1318 static inline void perf_event_exec(void) { }
1319 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
1320 static inline void perf_event_namespaces(struct task_struct *tsk) { }
1321 static inline void perf_event_fork(struct task_struct *tsk) { }
1322 static inline void perf_event_init(void) { }
1323 static inline int perf_swevent_get_recursion_context(void) { return -1; }
1324 static inline void perf_swevent_put_recursion_context(int rctx) { }
1325 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
1326 static inline void perf_event_enable(struct perf_event *event) { }
1327 static inline void perf_event_disable(struct perf_event *event) { }
1328 static inline int __perf_event_disable(void *info) { return -1; }
1329 static inline void perf_event_task_tick(void) { }
1330 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; }
1331 #endif
1332
1333 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1334 extern void perf_restore_debug_store(void);
1335 #else
1336 static inline void perf_restore_debug_store(void) { }
1337 #endif
1338
1339 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1340 {
1341 return frag->pad < sizeof(u64);
1342 }
1343
1344 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1345
1346 struct perf_pmu_events_attr {
1347 struct device_attribute attr;
1348 u64 id;
1349 const char *event_str;
1350 };
1351
1352 struct perf_pmu_events_ht_attr {
1353 struct device_attribute attr;
1354 u64 id;
1355 const char *event_str_ht;
1356 const char *event_str_noht;
1357 };
1358
1359 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1360 char *page);
1361
1362 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
1363 static struct perf_pmu_events_attr _var = { \
1364 .attr = __ATTR(_name, 0444, _show, NULL), \
1365 .id = _id, \
1366 };
1367
1368 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
1369 static struct perf_pmu_events_attr _var = { \
1370 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1371 .id = 0, \
1372 .event_str = _str, \
1373 };
1374
1375 #define PMU_FORMAT_ATTR(_name, _format) \
1376 static ssize_t \
1377 _name##_show(struct device *dev, \
1378 struct device_attribute *attr, \
1379 char *page) \
1380 { \
1381 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1382 return sprintf(page, _format "\n"); \
1383 } \
1384 \
1385 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1386
1387 /* Performance counter hotplug functions */
1388 #ifdef CONFIG_PERF_EVENTS
1389 int perf_event_init_cpu(unsigned int cpu);
1390 int perf_event_exit_cpu(unsigned int cpu);
1391 #else
1392 #define perf_event_init_cpu NULL
1393 #define perf_event_exit_cpu NULL
1394 #endif
1395
1396 #endif /* _LINUX_PERF_EVENT_H */