]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - include/linux/perf_event.h
Merge branch 'perf/urgent' into perf/core, to pick up fixes
[mirror_ubuntu-hirsute-kernel.git] / include / linux / perf_event.h
1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18 #include <uapi/linux/bpf_perf_event.h>
19
20 /*
21 * Kernel-internal data types and definitions:
22 */
23
24 #ifdef CONFIG_PERF_EVENTS
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28
29 struct perf_guest_info_callbacks {
30 int (*is_in_guest)(void);
31 int (*is_user_mode)(void);
32 unsigned long (*get_guest_ip)(void);
33 void (*handle_intel_pt_intr)(void);
34 };
35
36 #ifdef CONFIG_HAVE_HW_BREAKPOINT
37 #include <asm/hw_breakpoint.h>
38 #endif
39
40 #include <linux/list.h>
41 #include <linux/mutex.h>
42 #include <linux/rculist.h>
43 #include <linux/rcupdate.h>
44 #include <linux/spinlock.h>
45 #include <linux/hrtimer.h>
46 #include <linux/fs.h>
47 #include <linux/pid_namespace.h>
48 #include <linux/workqueue.h>
49 #include <linux/ftrace.h>
50 #include <linux/cpu.h>
51 #include <linux/irq_work.h>
52 #include <linux/static_key.h>
53 #include <linux/jump_label_ratelimit.h>
54 #include <linux/atomic.h>
55 #include <linux/sysfs.h>
56 #include <linux/perf_regs.h>
57 #include <linux/cgroup.h>
58 #include <linux/refcount.h>
59 #include <linux/security.h>
60 #include <asm/local.h>
61
62 struct perf_callchain_entry {
63 __u64 nr;
64 __u64 ip[0]; /* /proc/sys/kernel/perf_event_max_stack */
65 };
66
67 struct perf_callchain_entry_ctx {
68 struct perf_callchain_entry *entry;
69 u32 max_stack;
70 u32 nr;
71 short contexts;
72 bool contexts_maxed;
73 };
74
75 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
76 unsigned long off, unsigned long len);
77
78 struct perf_raw_frag {
79 union {
80 struct perf_raw_frag *next;
81 unsigned long pad;
82 };
83 perf_copy_f copy;
84 void *data;
85 u32 size;
86 } __packed;
87
88 struct perf_raw_record {
89 struct perf_raw_frag frag;
90 u32 size;
91 };
92
93 /*
94 * branch stack layout:
95 * nr: number of taken branches stored in entries[]
96 *
97 * Note that nr can vary from sample to sample
98 * branches (to, from) are stored from most recent
99 * to least recent, i.e., entries[0] contains the most
100 * recent branch.
101 */
102 struct perf_branch_stack {
103 __u64 nr;
104 struct perf_branch_entry entries[0];
105 };
106
107 struct task_struct;
108
109 /*
110 * extra PMU register associated with an event
111 */
112 struct hw_perf_event_extra {
113 u64 config; /* register value */
114 unsigned int reg; /* register address or index */
115 int alloc; /* extra register already allocated */
116 int idx; /* index in shared_regs->regs[] */
117 };
118
119 /**
120 * struct hw_perf_event - performance event hardware details:
121 */
122 struct hw_perf_event {
123 #ifdef CONFIG_PERF_EVENTS
124 union {
125 struct { /* hardware */
126 u64 config;
127 u64 last_tag;
128 unsigned long config_base;
129 unsigned long event_base;
130 int event_base_rdpmc;
131 int idx;
132 int last_cpu;
133 int flags;
134
135 struct hw_perf_event_extra extra_reg;
136 struct hw_perf_event_extra branch_reg;
137 };
138 struct { /* software */
139 struct hrtimer hrtimer;
140 };
141 struct { /* tracepoint */
142 /* for tp_event->class */
143 struct list_head tp_list;
144 };
145 struct { /* amd_power */
146 u64 pwr_acc;
147 u64 ptsc;
148 };
149 #ifdef CONFIG_HAVE_HW_BREAKPOINT
150 struct { /* breakpoint */
151 /*
152 * Crufty hack to avoid the chicken and egg
153 * problem hw_breakpoint has with context
154 * creation and event initalization.
155 */
156 struct arch_hw_breakpoint info;
157 struct list_head bp_list;
158 };
159 #endif
160 struct { /* amd_iommu */
161 u8 iommu_bank;
162 u8 iommu_cntr;
163 u16 padding;
164 u64 conf;
165 u64 conf1;
166 };
167 };
168 /*
169 * If the event is a per task event, this will point to the task in
170 * question. See the comment in perf_event_alloc().
171 */
172 struct task_struct *target;
173
174 /*
175 * PMU would store hardware filter configuration
176 * here.
177 */
178 void *addr_filters;
179
180 /* Last sync'ed generation of filters */
181 unsigned long addr_filters_gen;
182
183 /*
184 * hw_perf_event::state flags; used to track the PERF_EF_* state.
185 */
186 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
187 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
188 #define PERF_HES_ARCH 0x04
189
190 int state;
191
192 /*
193 * The last observed hardware counter value, updated with a
194 * local64_cmpxchg() such that pmu::read() can be called nested.
195 */
196 local64_t prev_count;
197
198 /*
199 * The period to start the next sample with.
200 */
201 u64 sample_period;
202
203 /*
204 * The period we started this sample with.
205 */
206 u64 last_period;
207
208 /*
209 * However much is left of the current period; note that this is
210 * a full 64bit value and allows for generation of periods longer
211 * than hardware might allow.
212 */
213 local64_t period_left;
214
215 /*
216 * State for throttling the event, see __perf_event_overflow() and
217 * perf_adjust_freq_unthr_context().
218 */
219 u64 interrupts_seq;
220 u64 interrupts;
221
222 /*
223 * State for freq target events, see __perf_event_overflow() and
224 * perf_adjust_freq_unthr_context().
225 */
226 u64 freq_time_stamp;
227 u64 freq_count_stamp;
228 #endif
229 };
230
231 struct perf_event;
232
233 /*
234 * Common implementation detail of pmu::{start,commit,cancel}_txn
235 */
236 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */
237 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */
238
239 /**
240 * pmu::capabilities flags
241 */
242 #define PERF_PMU_CAP_NO_INTERRUPT 0x01
243 #define PERF_PMU_CAP_NO_NMI 0x02
244 #define PERF_PMU_CAP_AUX_NO_SG 0x04
245 #define PERF_PMU_CAP_EXTENDED_REGS 0x08
246 #define PERF_PMU_CAP_EXCLUSIVE 0x10
247 #define PERF_PMU_CAP_ITRACE 0x20
248 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40
249 #define PERF_PMU_CAP_NO_EXCLUDE 0x80
250 #define PERF_PMU_CAP_AUX_OUTPUT 0x100
251
252 /**
253 * struct pmu - generic performance monitoring unit
254 */
255 struct pmu {
256 struct list_head entry;
257
258 struct module *module;
259 struct device *dev;
260 const struct attribute_group **attr_groups;
261 const struct attribute_group **attr_update;
262 const char *name;
263 int type;
264
265 /*
266 * various common per-pmu feature flags
267 */
268 int capabilities;
269
270 int __percpu *pmu_disable_count;
271 struct perf_cpu_context __percpu *pmu_cpu_context;
272 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
273 int task_ctx_nr;
274 int hrtimer_interval_ms;
275
276 /* number of address filters this PMU can do */
277 unsigned int nr_addr_filters;
278
279 /*
280 * Fully disable/enable this PMU, can be used to protect from the PMI
281 * as well as for lazy/batch writing of the MSRs.
282 */
283 void (*pmu_enable) (struct pmu *pmu); /* optional */
284 void (*pmu_disable) (struct pmu *pmu); /* optional */
285
286 /*
287 * Try and initialize the event for this PMU.
288 *
289 * Returns:
290 * -ENOENT -- @event is not for this PMU
291 *
292 * -ENODEV -- @event is for this PMU but PMU not present
293 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable
294 * -EINVAL -- @event is for this PMU but @event is not valid
295 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
296 * -EACCES -- @event is for this PMU, @event is valid, but no privileges
297 *
298 * 0 -- @event is for this PMU and valid
299 *
300 * Other error return values are allowed.
301 */
302 int (*event_init) (struct perf_event *event);
303
304 /*
305 * Notification that the event was mapped or unmapped. Called
306 * in the context of the mapping task.
307 */
308 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
309 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
310
311 /*
312 * Flags for ->add()/->del()/ ->start()/->stop(). There are
313 * matching hw_perf_event::state flags.
314 */
315 #define PERF_EF_START 0x01 /* start the counter when adding */
316 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
317 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
318
319 /*
320 * Adds/Removes a counter to/from the PMU, can be done inside a
321 * transaction, see the ->*_txn() methods.
322 *
323 * The add/del callbacks will reserve all hardware resources required
324 * to service the event, this includes any counter constraint
325 * scheduling etc.
326 *
327 * Called with IRQs disabled and the PMU disabled on the CPU the event
328 * is on.
329 *
330 * ->add() called without PERF_EF_START should result in the same state
331 * as ->add() followed by ->stop().
332 *
333 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
334 * ->stop() that must deal with already being stopped without
335 * PERF_EF_UPDATE.
336 */
337 int (*add) (struct perf_event *event, int flags);
338 void (*del) (struct perf_event *event, int flags);
339
340 /*
341 * Starts/Stops a counter present on the PMU.
342 *
343 * The PMI handler should stop the counter when perf_event_overflow()
344 * returns !0. ->start() will be used to continue.
345 *
346 * Also used to change the sample period.
347 *
348 * Called with IRQs disabled and the PMU disabled on the CPU the event
349 * is on -- will be called from NMI context with the PMU generates
350 * NMIs.
351 *
352 * ->stop() with PERF_EF_UPDATE will read the counter and update
353 * period/count values like ->read() would.
354 *
355 * ->start() with PERF_EF_RELOAD will reprogram the the counter
356 * value, must be preceded by a ->stop() with PERF_EF_UPDATE.
357 */
358 void (*start) (struct perf_event *event, int flags);
359 void (*stop) (struct perf_event *event, int flags);
360
361 /*
362 * Updates the counter value of the event.
363 *
364 * For sampling capable PMUs this will also update the software period
365 * hw_perf_event::period_left field.
366 */
367 void (*read) (struct perf_event *event);
368
369 /*
370 * Group events scheduling is treated as a transaction, add
371 * group events as a whole and perform one schedulability test.
372 * If the test fails, roll back the whole group
373 *
374 * Start the transaction, after this ->add() doesn't need to
375 * do schedulability tests.
376 *
377 * Optional.
378 */
379 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags);
380 /*
381 * If ->start_txn() disabled the ->add() schedulability test
382 * then ->commit_txn() is required to perform one. On success
383 * the transaction is closed. On error the transaction is kept
384 * open until ->cancel_txn() is called.
385 *
386 * Optional.
387 */
388 int (*commit_txn) (struct pmu *pmu);
389 /*
390 * Will cancel the transaction, assumes ->del() is called
391 * for each successful ->add() during the transaction.
392 *
393 * Optional.
394 */
395 void (*cancel_txn) (struct pmu *pmu);
396
397 /*
398 * Will return the value for perf_event_mmap_page::index for this event,
399 * if no implementation is provided it will default to: event->hw.idx + 1.
400 */
401 int (*event_idx) (struct perf_event *event); /*optional */
402
403 /*
404 * context-switches callback
405 */
406 void (*sched_task) (struct perf_event_context *ctx,
407 bool sched_in);
408 /*
409 * PMU specific data size
410 */
411 size_t task_ctx_size;
412
413
414 /*
415 * Set up pmu-private data structures for an AUX area
416 */
417 void *(*setup_aux) (struct perf_event *event, void **pages,
418 int nr_pages, bool overwrite);
419 /* optional */
420
421 /*
422 * Free pmu-private AUX data structures
423 */
424 void (*free_aux) (void *aux); /* optional */
425
426 /*
427 * Validate address range filters: make sure the HW supports the
428 * requested configuration and number of filters; return 0 if the
429 * supplied filters are valid, -errno otherwise.
430 *
431 * Runs in the context of the ioctl()ing process and is not serialized
432 * with the rest of the PMU callbacks.
433 */
434 int (*addr_filters_validate) (struct list_head *filters);
435 /* optional */
436
437 /*
438 * Synchronize address range filter configuration:
439 * translate hw-agnostic filters into hardware configuration in
440 * event::hw::addr_filters.
441 *
442 * Runs as a part of filter sync sequence that is done in ->start()
443 * callback by calling perf_event_addr_filters_sync().
444 *
445 * May (and should) traverse event::addr_filters::list, for which its
446 * caller provides necessary serialization.
447 */
448 void (*addr_filters_sync) (struct perf_event *event);
449 /* optional */
450
451 /*
452 * Check if event can be used for aux_output purposes for
453 * events of this PMU.
454 *
455 * Runs from perf_event_open(). Should return 0 for "no match"
456 * or non-zero for "match".
457 */
458 int (*aux_output_match) (struct perf_event *event);
459 /* optional */
460
461 /*
462 * Filter events for PMU-specific reasons.
463 */
464 int (*filter_match) (struct perf_event *event); /* optional */
465
466 /*
467 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
468 */
469 int (*check_period) (struct perf_event *event, u64 value); /* optional */
470 };
471
472 enum perf_addr_filter_action_t {
473 PERF_ADDR_FILTER_ACTION_STOP = 0,
474 PERF_ADDR_FILTER_ACTION_START,
475 PERF_ADDR_FILTER_ACTION_FILTER,
476 };
477
478 /**
479 * struct perf_addr_filter - address range filter definition
480 * @entry: event's filter list linkage
481 * @path: object file's path for file-based filters
482 * @offset: filter range offset
483 * @size: filter range size (size==0 means single address trigger)
484 * @action: filter/start/stop
485 *
486 * This is a hardware-agnostic filter configuration as specified by the user.
487 */
488 struct perf_addr_filter {
489 struct list_head entry;
490 struct path path;
491 unsigned long offset;
492 unsigned long size;
493 enum perf_addr_filter_action_t action;
494 };
495
496 /**
497 * struct perf_addr_filters_head - container for address range filters
498 * @list: list of filters for this event
499 * @lock: spinlock that serializes accesses to the @list and event's
500 * (and its children's) filter generations.
501 * @nr_file_filters: number of file-based filters
502 *
503 * A child event will use parent's @list (and therefore @lock), so they are
504 * bundled together; see perf_event_addr_filters().
505 */
506 struct perf_addr_filters_head {
507 struct list_head list;
508 raw_spinlock_t lock;
509 unsigned int nr_file_filters;
510 };
511
512 struct perf_addr_filter_range {
513 unsigned long start;
514 unsigned long size;
515 };
516
517 /**
518 * enum perf_event_state - the states of an event:
519 */
520 enum perf_event_state {
521 PERF_EVENT_STATE_DEAD = -4,
522 PERF_EVENT_STATE_EXIT = -3,
523 PERF_EVENT_STATE_ERROR = -2,
524 PERF_EVENT_STATE_OFF = -1,
525 PERF_EVENT_STATE_INACTIVE = 0,
526 PERF_EVENT_STATE_ACTIVE = 1,
527 };
528
529 struct file;
530 struct perf_sample_data;
531
532 typedef void (*perf_overflow_handler_t)(struct perf_event *,
533 struct perf_sample_data *,
534 struct pt_regs *regs);
535
536 /*
537 * Event capabilities. For event_caps and groups caps.
538 *
539 * PERF_EV_CAP_SOFTWARE: Is a software event.
540 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
541 * from any CPU in the package where it is active.
542 */
543 #define PERF_EV_CAP_SOFTWARE BIT(0)
544 #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1)
545
546 #define SWEVENT_HLIST_BITS 8
547 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
548
549 struct swevent_hlist {
550 struct hlist_head heads[SWEVENT_HLIST_SIZE];
551 struct rcu_head rcu_head;
552 };
553
554 #define PERF_ATTACH_CONTEXT 0x01
555 #define PERF_ATTACH_GROUP 0x02
556 #define PERF_ATTACH_TASK 0x04
557 #define PERF_ATTACH_TASK_DATA 0x08
558 #define PERF_ATTACH_ITRACE 0x10
559
560 struct perf_cgroup;
561 struct ring_buffer;
562
563 struct pmu_event_list {
564 raw_spinlock_t lock;
565 struct list_head list;
566 };
567
568 #define for_each_sibling_event(sibling, event) \
569 if ((event)->group_leader == (event)) \
570 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
571
572 /**
573 * struct perf_event - performance event kernel representation:
574 */
575 struct perf_event {
576 #ifdef CONFIG_PERF_EVENTS
577 /*
578 * entry onto perf_event_context::event_list;
579 * modifications require ctx->lock
580 * RCU safe iterations.
581 */
582 struct list_head event_entry;
583
584 /*
585 * Locked for modification by both ctx->mutex and ctx->lock; holding
586 * either sufficies for read.
587 */
588 struct list_head sibling_list;
589 struct list_head active_list;
590 /*
591 * Node on the pinned or flexible tree located at the event context;
592 */
593 struct rb_node group_node;
594 u64 group_index;
595 /*
596 * We need storage to track the entries in perf_pmu_migrate_context; we
597 * cannot use the event_entry because of RCU and we want to keep the
598 * group in tact which avoids us using the other two entries.
599 */
600 struct list_head migrate_entry;
601
602 struct hlist_node hlist_entry;
603 struct list_head active_entry;
604 int nr_siblings;
605
606 /* Not serialized. Only written during event initialization. */
607 int event_caps;
608 /* The cumulative AND of all event_caps for events in this group. */
609 int group_caps;
610
611 struct perf_event *group_leader;
612 struct pmu *pmu;
613 void *pmu_private;
614
615 enum perf_event_state state;
616 unsigned int attach_state;
617 local64_t count;
618 atomic64_t child_count;
619
620 /*
621 * These are the total time in nanoseconds that the event
622 * has been enabled (i.e. eligible to run, and the task has
623 * been scheduled in, if this is a per-task event)
624 * and running (scheduled onto the CPU), respectively.
625 */
626 u64 total_time_enabled;
627 u64 total_time_running;
628 u64 tstamp;
629
630 /*
631 * timestamp shadows the actual context timing but it can
632 * be safely used in NMI interrupt context. It reflects the
633 * context time as it was when the event was last scheduled in.
634 *
635 * ctx_time already accounts for ctx->timestamp. Therefore to
636 * compute ctx_time for a sample, simply add perf_clock().
637 */
638 u64 shadow_ctx_time;
639
640 struct perf_event_attr attr;
641 u16 header_size;
642 u16 id_header_size;
643 u16 read_size;
644 struct hw_perf_event hw;
645
646 struct perf_event_context *ctx;
647 atomic_long_t refcount;
648
649 /*
650 * These accumulate total time (in nanoseconds) that children
651 * events have been enabled and running, respectively.
652 */
653 atomic64_t child_total_time_enabled;
654 atomic64_t child_total_time_running;
655
656 /*
657 * Protect attach/detach and child_list:
658 */
659 struct mutex child_mutex;
660 struct list_head child_list;
661 struct perf_event *parent;
662
663 int oncpu;
664 int cpu;
665
666 struct list_head owner_entry;
667 struct task_struct *owner;
668
669 /* mmap bits */
670 struct mutex mmap_mutex;
671 atomic_t mmap_count;
672
673 struct ring_buffer *rb;
674 struct list_head rb_entry;
675 unsigned long rcu_batches;
676 int rcu_pending;
677
678 /* poll related */
679 wait_queue_head_t waitq;
680 struct fasync_struct *fasync;
681
682 /* delayed work for NMIs and such */
683 int pending_wakeup;
684 int pending_kill;
685 int pending_disable;
686 struct irq_work pending;
687
688 atomic_t event_limit;
689
690 /* address range filters */
691 struct perf_addr_filters_head addr_filters;
692 /* vma address array for file-based filders */
693 struct perf_addr_filter_range *addr_filter_ranges;
694 unsigned long addr_filters_gen;
695
696 /* for aux_output events */
697 struct perf_event *aux_event;
698
699 void (*destroy)(struct perf_event *);
700 struct rcu_head rcu_head;
701
702 struct pid_namespace *ns;
703 u64 id;
704
705 u64 (*clock)(void);
706 perf_overflow_handler_t overflow_handler;
707 void *overflow_handler_context;
708 #ifdef CONFIG_BPF_SYSCALL
709 perf_overflow_handler_t orig_overflow_handler;
710 struct bpf_prog *prog;
711 #endif
712
713 #ifdef CONFIG_EVENT_TRACING
714 struct trace_event_call *tp_event;
715 struct event_filter *filter;
716 #ifdef CONFIG_FUNCTION_TRACER
717 struct ftrace_ops ftrace_ops;
718 #endif
719 #endif
720
721 #ifdef CONFIG_CGROUP_PERF
722 struct perf_cgroup *cgrp; /* cgroup event is attach to */
723 #endif
724
725 #ifdef CONFIG_SECURITY
726 void *security;
727 #endif
728 struct list_head sb_list;
729 #endif /* CONFIG_PERF_EVENTS */
730 };
731
732
733 struct perf_event_groups {
734 struct rb_root tree;
735 u64 index;
736 };
737
738 /**
739 * struct perf_event_context - event context structure
740 *
741 * Used as a container for task events and CPU events as well:
742 */
743 struct perf_event_context {
744 struct pmu *pmu;
745 /*
746 * Protect the states of the events in the list,
747 * nr_active, and the list:
748 */
749 raw_spinlock_t lock;
750 /*
751 * Protect the list of events. Locking either mutex or lock
752 * is sufficient to ensure the list doesn't change; to change
753 * the list you need to lock both the mutex and the spinlock.
754 */
755 struct mutex mutex;
756
757 struct list_head active_ctx_list;
758 struct perf_event_groups pinned_groups;
759 struct perf_event_groups flexible_groups;
760 struct list_head event_list;
761
762 struct list_head pinned_active;
763 struct list_head flexible_active;
764
765 int nr_events;
766 int nr_active;
767 int is_active;
768 int nr_stat;
769 int nr_freq;
770 int rotate_disable;
771 /*
772 * Set when nr_events != nr_active, except tolerant to events not
773 * necessary to be active due to scheduling constraints, such as cgroups.
774 */
775 int rotate_necessary;
776 refcount_t refcount;
777 struct task_struct *task;
778
779 /*
780 * Context clock, runs when context enabled.
781 */
782 u64 time;
783 u64 timestamp;
784
785 /*
786 * These fields let us detect when two contexts have both
787 * been cloned (inherited) from a common ancestor.
788 */
789 struct perf_event_context *parent_ctx;
790 u64 parent_gen;
791 u64 generation;
792 int pin_count;
793 #ifdef CONFIG_CGROUP_PERF
794 int nr_cgroups; /* cgroup evts */
795 #endif
796 void *task_ctx_data; /* pmu specific data */
797 struct rcu_head rcu_head;
798 };
799
800 /*
801 * Number of contexts where an event can trigger:
802 * task, softirq, hardirq, nmi.
803 */
804 #define PERF_NR_CONTEXTS 4
805
806 /**
807 * struct perf_event_cpu_context - per cpu event context structure
808 */
809 struct perf_cpu_context {
810 struct perf_event_context ctx;
811 struct perf_event_context *task_ctx;
812 int active_oncpu;
813 int exclusive;
814
815 raw_spinlock_t hrtimer_lock;
816 struct hrtimer hrtimer;
817 ktime_t hrtimer_interval;
818 unsigned int hrtimer_active;
819
820 #ifdef CONFIG_CGROUP_PERF
821 struct perf_cgroup *cgrp;
822 struct list_head cgrp_cpuctx_entry;
823 #endif
824
825 struct list_head sched_cb_entry;
826 int sched_cb_usage;
827
828 int online;
829 };
830
831 struct perf_output_handle {
832 struct perf_event *event;
833 struct ring_buffer *rb;
834 unsigned long wakeup;
835 unsigned long size;
836 u64 aux_flags;
837 union {
838 void *addr;
839 unsigned long head;
840 };
841 int page;
842 };
843
844 struct bpf_perf_event_data_kern {
845 bpf_user_pt_regs_t *regs;
846 struct perf_sample_data *data;
847 struct perf_event *event;
848 };
849
850 #ifdef CONFIG_CGROUP_PERF
851
852 /*
853 * perf_cgroup_info keeps track of time_enabled for a cgroup.
854 * This is a per-cpu dynamically allocated data structure.
855 */
856 struct perf_cgroup_info {
857 u64 time;
858 u64 timestamp;
859 };
860
861 struct perf_cgroup {
862 struct cgroup_subsys_state css;
863 struct perf_cgroup_info __percpu *info;
864 };
865
866 /*
867 * Must ensure cgroup is pinned (css_get) before calling
868 * this function. In other words, we cannot call this function
869 * if there is no cgroup event for the current CPU context.
870 */
871 static inline struct perf_cgroup *
872 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
873 {
874 return container_of(task_css_check(task, perf_event_cgrp_id,
875 ctx ? lockdep_is_held(&ctx->lock)
876 : true),
877 struct perf_cgroup, css);
878 }
879 #endif /* CONFIG_CGROUP_PERF */
880
881 #ifdef CONFIG_PERF_EVENTS
882
883 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
884 struct perf_event *event);
885 extern void perf_aux_output_end(struct perf_output_handle *handle,
886 unsigned long size);
887 extern int perf_aux_output_skip(struct perf_output_handle *handle,
888 unsigned long size);
889 extern void *perf_get_aux(struct perf_output_handle *handle);
890 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
891 extern void perf_event_itrace_started(struct perf_event *event);
892
893 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
894 extern void perf_pmu_unregister(struct pmu *pmu);
895
896 extern int perf_num_counters(void);
897 extern const char *perf_pmu_name(void);
898 extern void __perf_event_task_sched_in(struct task_struct *prev,
899 struct task_struct *task);
900 extern void __perf_event_task_sched_out(struct task_struct *prev,
901 struct task_struct *next);
902 extern int perf_event_init_task(struct task_struct *child);
903 extern void perf_event_exit_task(struct task_struct *child);
904 extern void perf_event_free_task(struct task_struct *task);
905 extern void perf_event_delayed_put(struct task_struct *task);
906 extern struct file *perf_event_get(unsigned int fd);
907 extern const struct perf_event *perf_get_event(struct file *file);
908 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
909 extern void perf_event_print_debug(void);
910 extern void perf_pmu_disable(struct pmu *pmu);
911 extern void perf_pmu_enable(struct pmu *pmu);
912 extern void perf_sched_cb_dec(struct pmu *pmu);
913 extern void perf_sched_cb_inc(struct pmu *pmu);
914 extern int perf_event_task_disable(void);
915 extern int perf_event_task_enable(void);
916
917 extern void perf_pmu_resched(struct pmu *pmu);
918
919 extern int perf_event_refresh(struct perf_event *event, int refresh);
920 extern void perf_event_update_userpage(struct perf_event *event);
921 extern int perf_event_release_kernel(struct perf_event *event);
922 extern struct perf_event *
923 perf_event_create_kernel_counter(struct perf_event_attr *attr,
924 int cpu,
925 struct task_struct *task,
926 perf_overflow_handler_t callback,
927 void *context);
928 extern void perf_pmu_migrate_context(struct pmu *pmu,
929 int src_cpu, int dst_cpu);
930 int perf_event_read_local(struct perf_event *event, u64 *value,
931 u64 *enabled, u64 *running);
932 extern u64 perf_event_read_value(struct perf_event *event,
933 u64 *enabled, u64 *running);
934
935
936 struct perf_sample_data {
937 /*
938 * Fields set by perf_sample_data_init(), group so as to
939 * minimize the cachelines touched.
940 */
941 u64 addr;
942 struct perf_raw_record *raw;
943 struct perf_branch_stack *br_stack;
944 u64 period;
945 u64 weight;
946 u64 txn;
947 union perf_mem_data_src data_src;
948
949 /*
950 * The other fields, optionally {set,used} by
951 * perf_{prepare,output}_sample().
952 */
953 u64 type;
954 u64 ip;
955 struct {
956 u32 pid;
957 u32 tid;
958 } tid_entry;
959 u64 time;
960 u64 id;
961 u64 stream_id;
962 struct {
963 u32 cpu;
964 u32 reserved;
965 } cpu_entry;
966 struct perf_callchain_entry *callchain;
967
968 /*
969 * regs_user may point to task_pt_regs or to regs_user_copy, depending
970 * on arch details.
971 */
972 struct perf_regs regs_user;
973 struct pt_regs regs_user_copy;
974
975 struct perf_regs regs_intr;
976 u64 stack_user_size;
977
978 u64 phys_addr;
979 } ____cacheline_aligned;
980
981 /* default value for data source */
982 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
983 PERF_MEM_S(LVL, NA) |\
984 PERF_MEM_S(SNOOP, NA) |\
985 PERF_MEM_S(LOCK, NA) |\
986 PERF_MEM_S(TLB, NA))
987
988 static inline void perf_sample_data_init(struct perf_sample_data *data,
989 u64 addr, u64 period)
990 {
991 /* remaining struct members initialized in perf_prepare_sample() */
992 data->addr = addr;
993 data->raw = NULL;
994 data->br_stack = NULL;
995 data->period = period;
996 data->weight = 0;
997 data->data_src.val = PERF_MEM_NA;
998 data->txn = 0;
999 }
1000
1001 extern void perf_output_sample(struct perf_output_handle *handle,
1002 struct perf_event_header *header,
1003 struct perf_sample_data *data,
1004 struct perf_event *event);
1005 extern void perf_prepare_sample(struct perf_event_header *header,
1006 struct perf_sample_data *data,
1007 struct perf_event *event,
1008 struct pt_regs *regs);
1009
1010 extern int perf_event_overflow(struct perf_event *event,
1011 struct perf_sample_data *data,
1012 struct pt_regs *regs);
1013
1014 extern void perf_event_output_forward(struct perf_event *event,
1015 struct perf_sample_data *data,
1016 struct pt_regs *regs);
1017 extern void perf_event_output_backward(struct perf_event *event,
1018 struct perf_sample_data *data,
1019 struct pt_regs *regs);
1020 extern int perf_event_output(struct perf_event *event,
1021 struct perf_sample_data *data,
1022 struct pt_regs *regs);
1023
1024 static inline bool
1025 is_default_overflow_handler(struct perf_event *event)
1026 {
1027 if (likely(event->overflow_handler == perf_event_output_forward))
1028 return true;
1029 if (unlikely(event->overflow_handler == perf_event_output_backward))
1030 return true;
1031 return false;
1032 }
1033
1034 extern void
1035 perf_event_header__init_id(struct perf_event_header *header,
1036 struct perf_sample_data *data,
1037 struct perf_event *event);
1038 extern void
1039 perf_event__output_id_sample(struct perf_event *event,
1040 struct perf_output_handle *handle,
1041 struct perf_sample_data *sample);
1042
1043 extern void
1044 perf_log_lost_samples(struct perf_event *event, u64 lost);
1045
1046 static inline bool event_has_any_exclude_flag(struct perf_event *event)
1047 {
1048 struct perf_event_attr *attr = &event->attr;
1049
1050 return attr->exclude_idle || attr->exclude_user ||
1051 attr->exclude_kernel || attr->exclude_hv ||
1052 attr->exclude_guest || attr->exclude_host;
1053 }
1054
1055 static inline bool is_sampling_event(struct perf_event *event)
1056 {
1057 return event->attr.sample_period != 0;
1058 }
1059
1060 /*
1061 * Return 1 for a software event, 0 for a hardware event
1062 */
1063 static inline int is_software_event(struct perf_event *event)
1064 {
1065 return event->event_caps & PERF_EV_CAP_SOFTWARE;
1066 }
1067
1068 /*
1069 * Return 1 for event in sw context, 0 for event in hw context
1070 */
1071 static inline int in_software_context(struct perf_event *event)
1072 {
1073 return event->ctx->pmu->task_ctx_nr == perf_sw_context;
1074 }
1075
1076 static inline int is_exclusive_pmu(struct pmu *pmu)
1077 {
1078 return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1079 }
1080
1081 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1082
1083 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1084 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1085
1086 #ifndef perf_arch_fetch_caller_regs
1087 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1088 #endif
1089
1090 /*
1091 * When generating a perf sample in-line, instead of from an interrupt /
1092 * exception, we lack a pt_regs. This is typically used from software events
1093 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1094 *
1095 * We typically don't need a full set, but (for x86) do require:
1096 * - ip for PERF_SAMPLE_IP
1097 * - cs for user_mode() tests
1098 * - sp for PERF_SAMPLE_CALLCHAIN
1099 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1100 *
1101 * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1102 * things like PERF_SAMPLE_REGS_INTR.
1103 */
1104 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1105 {
1106 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1107 }
1108
1109 static __always_inline void
1110 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1111 {
1112 if (static_key_false(&perf_swevent_enabled[event_id]))
1113 __perf_sw_event(event_id, nr, regs, addr);
1114 }
1115
1116 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1117
1118 /*
1119 * 'Special' version for the scheduler, it hard assumes no recursion,
1120 * which is guaranteed by us not actually scheduling inside other swevents
1121 * because those disable preemption.
1122 */
1123 static __always_inline void
1124 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1125 {
1126 if (static_key_false(&perf_swevent_enabled[event_id])) {
1127 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1128
1129 perf_fetch_caller_regs(regs);
1130 ___perf_sw_event(event_id, nr, regs, addr);
1131 }
1132 }
1133
1134 extern struct static_key_false perf_sched_events;
1135
1136 static __always_inline bool
1137 perf_sw_migrate_enabled(void)
1138 {
1139 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1140 return true;
1141 return false;
1142 }
1143
1144 static inline void perf_event_task_migrate(struct task_struct *task)
1145 {
1146 if (perf_sw_migrate_enabled())
1147 task->sched_migrated = 1;
1148 }
1149
1150 static inline void perf_event_task_sched_in(struct task_struct *prev,
1151 struct task_struct *task)
1152 {
1153 if (static_branch_unlikely(&perf_sched_events))
1154 __perf_event_task_sched_in(prev, task);
1155
1156 if (perf_sw_migrate_enabled() && task->sched_migrated) {
1157 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1158
1159 perf_fetch_caller_regs(regs);
1160 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1161 task->sched_migrated = 0;
1162 }
1163 }
1164
1165 static inline void perf_event_task_sched_out(struct task_struct *prev,
1166 struct task_struct *next)
1167 {
1168 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1169
1170 if (static_branch_unlikely(&perf_sched_events))
1171 __perf_event_task_sched_out(prev, next);
1172 }
1173
1174 extern void perf_event_mmap(struct vm_area_struct *vma);
1175
1176 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1177 bool unregister, const char *sym);
1178 extern void perf_event_bpf_event(struct bpf_prog *prog,
1179 enum perf_bpf_event_type type,
1180 u16 flags);
1181
1182 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1183 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1184 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1185
1186 extern void perf_event_exec(void);
1187 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1188 extern void perf_event_namespaces(struct task_struct *tsk);
1189 extern void perf_event_fork(struct task_struct *tsk);
1190
1191 /* Callchains */
1192 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1193
1194 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1195 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1196 extern struct perf_callchain_entry *
1197 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1198 u32 max_stack, bool crosstask, bool add_mark);
1199 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1200 extern int get_callchain_buffers(int max_stack);
1201 extern void put_callchain_buffers(void);
1202
1203 extern int sysctl_perf_event_max_stack;
1204 extern int sysctl_perf_event_max_contexts_per_stack;
1205
1206 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1207 {
1208 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1209 struct perf_callchain_entry *entry = ctx->entry;
1210 entry->ip[entry->nr++] = ip;
1211 ++ctx->contexts;
1212 return 0;
1213 } else {
1214 ctx->contexts_maxed = true;
1215 return -1; /* no more room, stop walking the stack */
1216 }
1217 }
1218
1219 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1220 {
1221 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1222 struct perf_callchain_entry *entry = ctx->entry;
1223 entry->ip[entry->nr++] = ip;
1224 ++ctx->nr;
1225 return 0;
1226 } else {
1227 return -1; /* no more room, stop walking the stack */
1228 }
1229 }
1230
1231 extern int sysctl_perf_event_paranoid;
1232 extern int sysctl_perf_event_mlock;
1233 extern int sysctl_perf_event_sample_rate;
1234 extern int sysctl_perf_cpu_time_max_percent;
1235
1236 extern void perf_sample_event_took(u64 sample_len_ns);
1237
1238 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1239 void __user *buffer, size_t *lenp,
1240 loff_t *ppos);
1241 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1242 void __user *buffer, size_t *lenp,
1243 loff_t *ppos);
1244
1245 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1246 void __user *buffer, size_t *lenp, loff_t *ppos);
1247
1248 /* Access to perf_event_open(2) syscall. */
1249 #define PERF_SECURITY_OPEN 0
1250
1251 /* Finer grained perf_event_open(2) access control. */
1252 #define PERF_SECURITY_CPU 1
1253 #define PERF_SECURITY_KERNEL 2
1254 #define PERF_SECURITY_TRACEPOINT 3
1255
1256 static inline int perf_is_paranoid(void)
1257 {
1258 return sysctl_perf_event_paranoid > -1;
1259 }
1260
1261 static inline int perf_allow_kernel(struct perf_event_attr *attr)
1262 {
1263 if (sysctl_perf_event_paranoid > 1 && !capable(CAP_SYS_ADMIN))
1264 return -EACCES;
1265
1266 return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
1267 }
1268
1269 static inline int perf_allow_cpu(struct perf_event_attr *attr)
1270 {
1271 if (sysctl_perf_event_paranoid > 0 && !capable(CAP_SYS_ADMIN))
1272 return -EACCES;
1273
1274 return security_perf_event_open(attr, PERF_SECURITY_CPU);
1275 }
1276
1277 static inline int perf_allow_tracepoint(struct perf_event_attr *attr)
1278 {
1279 if (sysctl_perf_event_paranoid > -1 && !capable(CAP_SYS_ADMIN))
1280 return -EPERM;
1281
1282 return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT);
1283 }
1284
1285 extern void perf_event_init(void);
1286 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1287 int entry_size, struct pt_regs *regs,
1288 struct hlist_head *head, int rctx,
1289 struct task_struct *task);
1290 extern void perf_bp_event(struct perf_event *event, void *data);
1291
1292 #ifndef perf_misc_flags
1293 # define perf_misc_flags(regs) \
1294 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1295 # define perf_instruction_pointer(regs) instruction_pointer(regs)
1296 #endif
1297 #ifndef perf_arch_bpf_user_pt_regs
1298 # define perf_arch_bpf_user_pt_regs(regs) regs
1299 #endif
1300
1301 static inline bool has_branch_stack(struct perf_event *event)
1302 {
1303 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1304 }
1305
1306 static inline bool needs_branch_stack(struct perf_event *event)
1307 {
1308 return event->attr.branch_sample_type != 0;
1309 }
1310
1311 static inline bool has_aux(struct perf_event *event)
1312 {
1313 return event->pmu->setup_aux;
1314 }
1315
1316 static inline bool is_write_backward(struct perf_event *event)
1317 {
1318 return !!event->attr.write_backward;
1319 }
1320
1321 static inline bool has_addr_filter(struct perf_event *event)
1322 {
1323 return event->pmu->nr_addr_filters;
1324 }
1325
1326 /*
1327 * An inherited event uses parent's filters
1328 */
1329 static inline struct perf_addr_filters_head *
1330 perf_event_addr_filters(struct perf_event *event)
1331 {
1332 struct perf_addr_filters_head *ifh = &event->addr_filters;
1333
1334 if (event->parent)
1335 ifh = &event->parent->addr_filters;
1336
1337 return ifh;
1338 }
1339
1340 extern void perf_event_addr_filters_sync(struct perf_event *event);
1341
1342 extern int perf_output_begin(struct perf_output_handle *handle,
1343 struct perf_event *event, unsigned int size);
1344 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1345 struct perf_event *event,
1346 unsigned int size);
1347 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1348 struct perf_event *event,
1349 unsigned int size);
1350
1351 extern void perf_output_end(struct perf_output_handle *handle);
1352 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1353 const void *buf, unsigned int len);
1354 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1355 unsigned int len);
1356 extern int perf_swevent_get_recursion_context(void);
1357 extern void perf_swevent_put_recursion_context(int rctx);
1358 extern u64 perf_swevent_set_period(struct perf_event *event);
1359 extern void perf_event_enable(struct perf_event *event);
1360 extern void perf_event_disable(struct perf_event *event);
1361 extern void perf_event_disable_local(struct perf_event *event);
1362 extern void perf_event_disable_inatomic(struct perf_event *event);
1363 extern void perf_event_task_tick(void);
1364 extern int perf_event_account_interrupt(struct perf_event *event);
1365 #else /* !CONFIG_PERF_EVENTS: */
1366 static inline void *
1367 perf_aux_output_begin(struct perf_output_handle *handle,
1368 struct perf_event *event) { return NULL; }
1369 static inline void
1370 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1371 { }
1372 static inline int
1373 perf_aux_output_skip(struct perf_output_handle *handle,
1374 unsigned long size) { return -EINVAL; }
1375 static inline void *
1376 perf_get_aux(struct perf_output_handle *handle) { return NULL; }
1377 static inline void
1378 perf_event_task_migrate(struct task_struct *task) { }
1379 static inline void
1380 perf_event_task_sched_in(struct task_struct *prev,
1381 struct task_struct *task) { }
1382 static inline void
1383 perf_event_task_sched_out(struct task_struct *prev,
1384 struct task_struct *next) { }
1385 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
1386 static inline void perf_event_exit_task(struct task_struct *child) { }
1387 static inline void perf_event_free_task(struct task_struct *task) { }
1388 static inline void perf_event_delayed_put(struct task_struct *task) { }
1389 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); }
1390 static inline const struct perf_event *perf_get_event(struct file *file)
1391 {
1392 return ERR_PTR(-EINVAL);
1393 }
1394 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1395 {
1396 return ERR_PTR(-EINVAL);
1397 }
1398 static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1399 u64 *enabled, u64 *running)
1400 {
1401 return -EINVAL;
1402 }
1403 static inline void perf_event_print_debug(void) { }
1404 static inline int perf_event_task_disable(void) { return -EINVAL; }
1405 static inline int perf_event_task_enable(void) { return -EINVAL; }
1406 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1407 {
1408 return -EINVAL;
1409 }
1410
1411 static inline void
1412 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1413 static inline void
1414 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { }
1415 static inline void
1416 perf_bp_event(struct perf_event *event, void *data) { }
1417
1418 static inline int perf_register_guest_info_callbacks
1419 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1420 static inline int perf_unregister_guest_info_callbacks
1421 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1422
1423 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1424
1425 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
1426 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1427 bool unregister, const char *sym) { }
1428 static inline void perf_event_bpf_event(struct bpf_prog *prog,
1429 enum perf_bpf_event_type type,
1430 u16 flags) { }
1431 static inline void perf_event_exec(void) { }
1432 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
1433 static inline void perf_event_namespaces(struct task_struct *tsk) { }
1434 static inline void perf_event_fork(struct task_struct *tsk) { }
1435 static inline void perf_event_init(void) { }
1436 static inline int perf_swevent_get_recursion_context(void) { return -1; }
1437 static inline void perf_swevent_put_recursion_context(int rctx) { }
1438 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
1439 static inline void perf_event_enable(struct perf_event *event) { }
1440 static inline void perf_event_disable(struct perf_event *event) { }
1441 static inline int __perf_event_disable(void *info) { return -1; }
1442 static inline void perf_event_task_tick(void) { }
1443 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; }
1444 #endif
1445
1446 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1447 extern void perf_restore_debug_store(void);
1448 #else
1449 static inline void perf_restore_debug_store(void) { }
1450 #endif
1451
1452 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1453 {
1454 return frag->pad < sizeof(u64);
1455 }
1456
1457 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1458
1459 struct perf_pmu_events_attr {
1460 struct device_attribute attr;
1461 u64 id;
1462 const char *event_str;
1463 };
1464
1465 struct perf_pmu_events_ht_attr {
1466 struct device_attribute attr;
1467 u64 id;
1468 const char *event_str_ht;
1469 const char *event_str_noht;
1470 };
1471
1472 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1473 char *page);
1474
1475 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
1476 static struct perf_pmu_events_attr _var = { \
1477 .attr = __ATTR(_name, 0444, _show, NULL), \
1478 .id = _id, \
1479 };
1480
1481 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
1482 static struct perf_pmu_events_attr _var = { \
1483 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1484 .id = 0, \
1485 .event_str = _str, \
1486 };
1487
1488 #define PMU_FORMAT_ATTR(_name, _format) \
1489 static ssize_t \
1490 _name##_show(struct device *dev, \
1491 struct device_attribute *attr, \
1492 char *page) \
1493 { \
1494 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1495 return sprintf(page, _format "\n"); \
1496 } \
1497 \
1498 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1499
1500 /* Performance counter hotplug functions */
1501 #ifdef CONFIG_PERF_EVENTS
1502 int perf_event_init_cpu(unsigned int cpu);
1503 int perf_event_exit_cpu(unsigned int cpu);
1504 #else
1505 #define perf_event_init_cpu NULL
1506 #define perf_event_exit_cpu NULL
1507 #endif
1508
1509 #endif /* _LINUX_PERF_EVENT_H */