]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/perf_event.h
Merge branch 'x86-syscall-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / include / linux / perf_event.h
1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18
19 /*
20 * Kernel-internal data types and definitions:
21 */
22
23 #ifdef CONFIG_PERF_EVENTS
24 # include <asm/perf_event.h>
25 # include <asm/local64.h>
26 #endif
27
28 struct perf_guest_info_callbacks {
29 int (*is_in_guest)(void);
30 int (*is_user_mode)(void);
31 unsigned long (*get_guest_ip)(void);
32 };
33
34 #ifdef CONFIG_HAVE_HW_BREAKPOINT
35 #include <asm/hw_breakpoint.h>
36 #endif
37
38 #include <linux/list.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/rcupdate.h>
42 #include <linux/spinlock.h>
43 #include <linux/hrtimer.h>
44 #include <linux/fs.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/workqueue.h>
47 #include <linux/ftrace.h>
48 #include <linux/cpu.h>
49 #include <linux/irq_work.h>
50 #include <linux/static_key.h>
51 #include <linux/jump_label_ratelimit.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <linux/workqueue.h>
56 #include <linux/cgroup.h>
57 #include <asm/local.h>
58
59 struct perf_callchain_entry {
60 __u64 nr;
61 __u64 ip[0]; /* /proc/sys/kernel/perf_event_max_stack */
62 };
63
64 struct perf_callchain_entry_ctx {
65 struct perf_callchain_entry *entry;
66 u32 max_stack;
67 u32 nr;
68 short contexts;
69 bool contexts_maxed;
70 };
71
72 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
73 unsigned long off, unsigned long len);
74
75 struct perf_raw_frag {
76 union {
77 struct perf_raw_frag *next;
78 unsigned long pad;
79 };
80 perf_copy_f copy;
81 void *data;
82 u32 size;
83 } __packed;
84
85 struct perf_raw_record {
86 struct perf_raw_frag frag;
87 u32 size;
88 };
89
90 /*
91 * branch stack layout:
92 * nr: number of taken branches stored in entries[]
93 *
94 * Note that nr can vary from sample to sample
95 * branches (to, from) are stored from most recent
96 * to least recent, i.e., entries[0] contains the most
97 * recent branch.
98 */
99 struct perf_branch_stack {
100 __u64 nr;
101 struct perf_branch_entry entries[0];
102 };
103
104 struct task_struct;
105
106 /*
107 * extra PMU register associated with an event
108 */
109 struct hw_perf_event_extra {
110 u64 config; /* register value */
111 unsigned int reg; /* register address or index */
112 int alloc; /* extra register already allocated */
113 int idx; /* index in shared_regs->regs[] */
114 };
115
116 /**
117 * struct hw_perf_event - performance event hardware details:
118 */
119 struct hw_perf_event {
120 #ifdef CONFIG_PERF_EVENTS
121 union {
122 struct { /* hardware */
123 u64 config;
124 u64 last_tag;
125 unsigned long config_base;
126 unsigned long event_base;
127 int event_base_rdpmc;
128 int idx;
129 int last_cpu;
130 int flags;
131
132 struct hw_perf_event_extra extra_reg;
133 struct hw_perf_event_extra branch_reg;
134 };
135 struct { /* software */
136 struct hrtimer hrtimer;
137 };
138 struct { /* tracepoint */
139 /* for tp_event->class */
140 struct list_head tp_list;
141 };
142 struct { /* intel_cqm */
143 int cqm_state;
144 u32 cqm_rmid;
145 int is_group_event;
146 struct list_head cqm_events_entry;
147 struct list_head cqm_groups_entry;
148 struct list_head cqm_group_entry;
149 };
150 struct { /* amd_power */
151 u64 pwr_acc;
152 u64 ptsc;
153 };
154 #ifdef CONFIG_HAVE_HW_BREAKPOINT
155 struct { /* breakpoint */
156 /*
157 * Crufty hack to avoid the chicken and egg
158 * problem hw_breakpoint has with context
159 * creation and event initalization.
160 */
161 struct arch_hw_breakpoint info;
162 struct list_head bp_list;
163 };
164 #endif
165 struct { /* amd_iommu */
166 u8 iommu_bank;
167 u8 iommu_cntr;
168 u16 padding;
169 u64 conf;
170 u64 conf1;
171 };
172 };
173 /*
174 * If the event is a per task event, this will point to the task in
175 * question. See the comment in perf_event_alloc().
176 */
177 struct task_struct *target;
178
179 /*
180 * PMU would store hardware filter configuration
181 * here.
182 */
183 void *addr_filters;
184
185 /* Last sync'ed generation of filters */
186 unsigned long addr_filters_gen;
187
188 /*
189 * hw_perf_event::state flags; used to track the PERF_EF_* state.
190 */
191 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
192 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
193 #define PERF_HES_ARCH 0x04
194
195 int state;
196
197 /*
198 * The last observed hardware counter value, updated with a
199 * local64_cmpxchg() such that pmu::read() can be called nested.
200 */
201 local64_t prev_count;
202
203 /*
204 * The period to start the next sample with.
205 */
206 u64 sample_period;
207
208 /*
209 * The period we started this sample with.
210 */
211 u64 last_period;
212
213 /*
214 * However much is left of the current period; note that this is
215 * a full 64bit value and allows for generation of periods longer
216 * than hardware might allow.
217 */
218 local64_t period_left;
219
220 /*
221 * State for throttling the event, see __perf_event_overflow() and
222 * perf_adjust_freq_unthr_context().
223 */
224 u64 interrupts_seq;
225 u64 interrupts;
226
227 /*
228 * State for freq target events, see __perf_event_overflow() and
229 * perf_adjust_freq_unthr_context().
230 */
231 u64 freq_time_stamp;
232 u64 freq_count_stamp;
233 #endif
234 };
235
236 struct perf_event;
237
238 /*
239 * Common implementation detail of pmu::{start,commit,cancel}_txn
240 */
241 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */
242 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */
243
244 /**
245 * pmu::capabilities flags
246 */
247 #define PERF_PMU_CAP_NO_INTERRUPT 0x01
248 #define PERF_PMU_CAP_NO_NMI 0x02
249 #define PERF_PMU_CAP_AUX_NO_SG 0x04
250 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF 0x08
251 #define PERF_PMU_CAP_EXCLUSIVE 0x10
252 #define PERF_PMU_CAP_ITRACE 0x20
253 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40
254
255 /**
256 * struct pmu - generic performance monitoring unit
257 */
258 struct pmu {
259 struct list_head entry;
260
261 struct module *module;
262 struct device *dev;
263 const struct attribute_group **attr_groups;
264 const char *name;
265 int type;
266
267 /*
268 * various common per-pmu feature flags
269 */
270 int capabilities;
271
272 int * __percpu pmu_disable_count;
273 struct perf_cpu_context * __percpu pmu_cpu_context;
274 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
275 int task_ctx_nr;
276 int hrtimer_interval_ms;
277
278 /* number of address filters this PMU can do */
279 unsigned int nr_addr_filters;
280
281 /*
282 * Fully disable/enable this PMU, can be used to protect from the PMI
283 * as well as for lazy/batch writing of the MSRs.
284 */
285 void (*pmu_enable) (struct pmu *pmu); /* optional */
286 void (*pmu_disable) (struct pmu *pmu); /* optional */
287
288 /*
289 * Try and initialize the event for this PMU.
290 *
291 * Returns:
292 * -ENOENT -- @event is not for this PMU
293 *
294 * -ENODEV -- @event is for this PMU but PMU not present
295 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable
296 * -EINVAL -- @event is for this PMU but @event is not valid
297 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
298 * -EACCESS -- @event is for this PMU, @event is valid, but no privilidges
299 *
300 * 0 -- @event is for this PMU and valid
301 *
302 * Other error return values are allowed.
303 */
304 int (*event_init) (struct perf_event *event);
305
306 /*
307 * Notification that the event was mapped or unmapped. Called
308 * in the context of the mapping task.
309 */
310 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
311 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
312
313 /*
314 * Flags for ->add()/->del()/ ->start()/->stop(). There are
315 * matching hw_perf_event::state flags.
316 */
317 #define PERF_EF_START 0x01 /* start the counter when adding */
318 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
319 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
320
321 /*
322 * Adds/Removes a counter to/from the PMU, can be done inside a
323 * transaction, see the ->*_txn() methods.
324 *
325 * The add/del callbacks will reserve all hardware resources required
326 * to service the event, this includes any counter constraint
327 * scheduling etc.
328 *
329 * Called with IRQs disabled and the PMU disabled on the CPU the event
330 * is on.
331 *
332 * ->add() called without PERF_EF_START should result in the same state
333 * as ->add() followed by ->stop().
334 *
335 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
336 * ->stop() that must deal with already being stopped without
337 * PERF_EF_UPDATE.
338 */
339 int (*add) (struct perf_event *event, int flags);
340 void (*del) (struct perf_event *event, int flags);
341
342 /*
343 * Starts/Stops a counter present on the PMU.
344 *
345 * The PMI handler should stop the counter when perf_event_overflow()
346 * returns !0. ->start() will be used to continue.
347 *
348 * Also used to change the sample period.
349 *
350 * Called with IRQs disabled and the PMU disabled on the CPU the event
351 * is on -- will be called from NMI context with the PMU generates
352 * NMIs.
353 *
354 * ->stop() with PERF_EF_UPDATE will read the counter and update
355 * period/count values like ->read() would.
356 *
357 * ->start() with PERF_EF_RELOAD will reprogram the the counter
358 * value, must be preceded by a ->stop() with PERF_EF_UPDATE.
359 */
360 void (*start) (struct perf_event *event, int flags);
361 void (*stop) (struct perf_event *event, int flags);
362
363 /*
364 * Updates the counter value of the event.
365 *
366 * For sampling capable PMUs this will also update the software period
367 * hw_perf_event::period_left field.
368 */
369 void (*read) (struct perf_event *event);
370
371 /*
372 * Group events scheduling is treated as a transaction, add
373 * group events as a whole and perform one schedulability test.
374 * If the test fails, roll back the whole group
375 *
376 * Start the transaction, after this ->add() doesn't need to
377 * do schedulability tests.
378 *
379 * Optional.
380 */
381 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags);
382 /*
383 * If ->start_txn() disabled the ->add() schedulability test
384 * then ->commit_txn() is required to perform one. On success
385 * the transaction is closed. On error the transaction is kept
386 * open until ->cancel_txn() is called.
387 *
388 * Optional.
389 */
390 int (*commit_txn) (struct pmu *pmu);
391 /*
392 * Will cancel the transaction, assumes ->del() is called
393 * for each successful ->add() during the transaction.
394 *
395 * Optional.
396 */
397 void (*cancel_txn) (struct pmu *pmu);
398
399 /*
400 * Will return the value for perf_event_mmap_page::index for this event,
401 * if no implementation is provided it will default to: event->hw.idx + 1.
402 */
403 int (*event_idx) (struct perf_event *event); /*optional */
404
405 /*
406 * context-switches callback
407 */
408 void (*sched_task) (struct perf_event_context *ctx,
409 bool sched_in);
410 /*
411 * PMU specific data size
412 */
413 size_t task_ctx_size;
414
415
416 /*
417 * Return the count value for a counter.
418 */
419 u64 (*count) (struct perf_event *event); /*optional*/
420
421 /*
422 * Set up pmu-private data structures for an AUX area
423 */
424 void *(*setup_aux) (int cpu, void **pages,
425 int nr_pages, bool overwrite);
426 /* optional */
427
428 /*
429 * Free pmu-private AUX data structures
430 */
431 void (*free_aux) (void *aux); /* optional */
432
433 /*
434 * Validate address range filters: make sure the HW supports the
435 * requested configuration and number of filters; return 0 if the
436 * supplied filters are valid, -errno otherwise.
437 *
438 * Runs in the context of the ioctl()ing process and is not serialized
439 * with the rest of the PMU callbacks.
440 */
441 int (*addr_filters_validate) (struct list_head *filters);
442 /* optional */
443
444 /*
445 * Synchronize address range filter configuration:
446 * translate hw-agnostic filters into hardware configuration in
447 * event::hw::addr_filters.
448 *
449 * Runs as a part of filter sync sequence that is done in ->start()
450 * callback by calling perf_event_addr_filters_sync().
451 *
452 * May (and should) traverse event::addr_filters::list, for which its
453 * caller provides necessary serialization.
454 */
455 void (*addr_filters_sync) (struct perf_event *event);
456 /* optional */
457
458 /*
459 * Filter events for PMU-specific reasons.
460 */
461 int (*filter_match) (struct perf_event *event); /* optional */
462 };
463
464 /**
465 * struct perf_addr_filter - address range filter definition
466 * @entry: event's filter list linkage
467 * @inode: object file's inode for file-based filters
468 * @offset: filter range offset
469 * @size: filter range size
470 * @range: 1: range, 0: address
471 * @filter: 1: filter/start, 0: stop
472 *
473 * This is a hardware-agnostic filter configuration as specified by the user.
474 */
475 struct perf_addr_filter {
476 struct list_head entry;
477 struct inode *inode;
478 unsigned long offset;
479 unsigned long size;
480 unsigned int range : 1,
481 filter : 1;
482 };
483
484 /**
485 * struct perf_addr_filters_head - container for address range filters
486 * @list: list of filters for this event
487 * @lock: spinlock that serializes accesses to the @list and event's
488 * (and its children's) filter generations.
489 * @nr_file_filters: number of file-based filters
490 *
491 * A child event will use parent's @list (and therefore @lock), so they are
492 * bundled together; see perf_event_addr_filters().
493 */
494 struct perf_addr_filters_head {
495 struct list_head list;
496 raw_spinlock_t lock;
497 unsigned int nr_file_filters;
498 };
499
500 /**
501 * enum perf_event_active_state - the states of a event
502 */
503 enum perf_event_active_state {
504 PERF_EVENT_STATE_DEAD = -4,
505 PERF_EVENT_STATE_EXIT = -3,
506 PERF_EVENT_STATE_ERROR = -2,
507 PERF_EVENT_STATE_OFF = -1,
508 PERF_EVENT_STATE_INACTIVE = 0,
509 PERF_EVENT_STATE_ACTIVE = 1,
510 };
511
512 struct file;
513 struct perf_sample_data;
514
515 typedef void (*perf_overflow_handler_t)(struct perf_event *,
516 struct perf_sample_data *,
517 struct pt_regs *regs);
518
519 /*
520 * Event capabilities. For event_caps and groups caps.
521 *
522 * PERF_EV_CAP_SOFTWARE: Is a software event.
523 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
524 * from any CPU in the package where it is active.
525 */
526 #define PERF_EV_CAP_SOFTWARE BIT(0)
527 #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1)
528
529 #define SWEVENT_HLIST_BITS 8
530 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
531
532 struct swevent_hlist {
533 struct hlist_head heads[SWEVENT_HLIST_SIZE];
534 struct rcu_head rcu_head;
535 };
536
537 #define PERF_ATTACH_CONTEXT 0x01
538 #define PERF_ATTACH_GROUP 0x02
539 #define PERF_ATTACH_TASK 0x04
540 #define PERF_ATTACH_TASK_DATA 0x08
541 #define PERF_ATTACH_ITRACE 0x10
542
543 struct perf_cgroup;
544 struct ring_buffer;
545
546 struct pmu_event_list {
547 raw_spinlock_t lock;
548 struct list_head list;
549 };
550
551 /**
552 * struct perf_event - performance event kernel representation:
553 */
554 struct perf_event {
555 #ifdef CONFIG_PERF_EVENTS
556 /*
557 * entry onto perf_event_context::event_list;
558 * modifications require ctx->lock
559 * RCU safe iterations.
560 */
561 struct list_head event_entry;
562
563 /*
564 * XXX: group_entry and sibling_list should be mutually exclusive;
565 * either you're a sibling on a group, or you're the group leader.
566 * Rework the code to always use the same list element.
567 *
568 * Locked for modification by both ctx->mutex and ctx->lock; holding
569 * either sufficies for read.
570 */
571 struct list_head group_entry;
572 struct list_head sibling_list;
573
574 /*
575 * We need storage to track the entries in perf_pmu_migrate_context; we
576 * cannot use the event_entry because of RCU and we want to keep the
577 * group in tact which avoids us using the other two entries.
578 */
579 struct list_head migrate_entry;
580
581 struct hlist_node hlist_entry;
582 struct list_head active_entry;
583 int nr_siblings;
584
585 /* Not serialized. Only written during event initialization. */
586 int event_caps;
587 /* The cumulative AND of all event_caps for events in this group. */
588 int group_caps;
589
590 struct perf_event *group_leader;
591 struct pmu *pmu;
592 void *pmu_private;
593
594 enum perf_event_active_state state;
595 unsigned int attach_state;
596 local64_t count;
597 atomic64_t child_count;
598
599 /*
600 * These are the total time in nanoseconds that the event
601 * has been enabled (i.e. eligible to run, and the task has
602 * been scheduled in, if this is a per-task event)
603 * and running (scheduled onto the CPU), respectively.
604 *
605 * They are computed from tstamp_enabled, tstamp_running and
606 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
607 */
608 u64 total_time_enabled;
609 u64 total_time_running;
610
611 /*
612 * These are timestamps used for computing total_time_enabled
613 * and total_time_running when the event is in INACTIVE or
614 * ACTIVE state, measured in nanoseconds from an arbitrary point
615 * in time.
616 * tstamp_enabled: the notional time when the event was enabled
617 * tstamp_running: the notional time when the event was scheduled on
618 * tstamp_stopped: in INACTIVE state, the notional time when the
619 * event was scheduled off.
620 */
621 u64 tstamp_enabled;
622 u64 tstamp_running;
623 u64 tstamp_stopped;
624
625 /*
626 * timestamp shadows the actual context timing but it can
627 * be safely used in NMI interrupt context. It reflects the
628 * context time as it was when the event was last scheduled in.
629 *
630 * ctx_time already accounts for ctx->timestamp. Therefore to
631 * compute ctx_time for a sample, simply add perf_clock().
632 */
633 u64 shadow_ctx_time;
634
635 struct perf_event_attr attr;
636 u16 header_size;
637 u16 id_header_size;
638 u16 read_size;
639 struct hw_perf_event hw;
640
641 struct perf_event_context *ctx;
642 atomic_long_t refcount;
643
644 /*
645 * These accumulate total time (in nanoseconds) that children
646 * events have been enabled and running, respectively.
647 */
648 atomic64_t child_total_time_enabled;
649 atomic64_t child_total_time_running;
650
651 /*
652 * Protect attach/detach and child_list:
653 */
654 struct mutex child_mutex;
655 struct list_head child_list;
656 struct perf_event *parent;
657
658 int oncpu;
659 int cpu;
660
661 struct list_head owner_entry;
662 struct task_struct *owner;
663
664 /* mmap bits */
665 struct mutex mmap_mutex;
666 atomic_t mmap_count;
667
668 struct ring_buffer *rb;
669 struct list_head rb_entry;
670 unsigned long rcu_batches;
671 int rcu_pending;
672
673 /* poll related */
674 wait_queue_head_t waitq;
675 struct fasync_struct *fasync;
676
677 /* delayed work for NMIs and such */
678 int pending_wakeup;
679 int pending_kill;
680 int pending_disable;
681 struct irq_work pending;
682
683 atomic_t event_limit;
684
685 /* address range filters */
686 struct perf_addr_filters_head addr_filters;
687 /* vma address array for file-based filders */
688 unsigned long *addr_filters_offs;
689 unsigned long addr_filters_gen;
690
691 void (*destroy)(struct perf_event *);
692 struct rcu_head rcu_head;
693
694 struct pid_namespace *ns;
695 u64 id;
696
697 u64 (*clock)(void);
698 perf_overflow_handler_t overflow_handler;
699 void *overflow_handler_context;
700 #ifdef CONFIG_BPF_SYSCALL
701 perf_overflow_handler_t orig_overflow_handler;
702 struct bpf_prog *prog;
703 #endif
704
705 #ifdef CONFIG_EVENT_TRACING
706 struct trace_event_call *tp_event;
707 struct event_filter *filter;
708 #ifdef CONFIG_FUNCTION_TRACER
709 struct ftrace_ops ftrace_ops;
710 #endif
711 #endif
712
713 #ifdef CONFIG_CGROUP_PERF
714 struct perf_cgroup *cgrp; /* cgroup event is attach to */
715 int cgrp_defer_enabled;
716 #endif
717
718 struct list_head sb_list;
719 #endif /* CONFIG_PERF_EVENTS */
720 };
721
722 /**
723 * struct perf_event_context - event context structure
724 *
725 * Used as a container for task events and CPU events as well:
726 */
727 struct perf_event_context {
728 struct pmu *pmu;
729 /*
730 * Protect the states of the events in the list,
731 * nr_active, and the list:
732 */
733 raw_spinlock_t lock;
734 /*
735 * Protect the list of events. Locking either mutex or lock
736 * is sufficient to ensure the list doesn't change; to change
737 * the list you need to lock both the mutex and the spinlock.
738 */
739 struct mutex mutex;
740
741 struct list_head active_ctx_list;
742 struct list_head pinned_groups;
743 struct list_head flexible_groups;
744 struct list_head event_list;
745 int nr_events;
746 int nr_active;
747 int is_active;
748 int nr_stat;
749 int nr_freq;
750 int rotate_disable;
751 atomic_t refcount;
752 struct task_struct *task;
753
754 /*
755 * Context clock, runs when context enabled.
756 */
757 u64 time;
758 u64 timestamp;
759
760 /*
761 * These fields let us detect when two contexts have both
762 * been cloned (inherited) from a common ancestor.
763 */
764 struct perf_event_context *parent_ctx;
765 u64 parent_gen;
766 u64 generation;
767 int pin_count;
768 #ifdef CONFIG_CGROUP_PERF
769 int nr_cgroups; /* cgroup evts */
770 #endif
771 void *task_ctx_data; /* pmu specific data */
772 struct rcu_head rcu_head;
773 };
774
775 /*
776 * Number of contexts where an event can trigger:
777 * task, softirq, hardirq, nmi.
778 */
779 #define PERF_NR_CONTEXTS 4
780
781 /**
782 * struct perf_event_cpu_context - per cpu event context structure
783 */
784 struct perf_cpu_context {
785 struct perf_event_context ctx;
786 struct perf_event_context *task_ctx;
787 int active_oncpu;
788 int exclusive;
789
790 raw_spinlock_t hrtimer_lock;
791 struct hrtimer hrtimer;
792 ktime_t hrtimer_interval;
793 unsigned int hrtimer_active;
794
795 #ifdef CONFIG_CGROUP_PERF
796 struct perf_cgroup *cgrp;
797 struct list_head cgrp_cpuctx_entry;
798 #endif
799
800 struct list_head sched_cb_entry;
801 int sched_cb_usage;
802
803 int online;
804 };
805
806 struct perf_output_handle {
807 struct perf_event *event;
808 struct ring_buffer *rb;
809 unsigned long wakeup;
810 unsigned long size;
811 u64 aux_flags;
812 union {
813 void *addr;
814 unsigned long head;
815 };
816 int page;
817 };
818
819 struct bpf_perf_event_data_kern {
820 struct pt_regs *regs;
821 struct perf_sample_data *data;
822 };
823
824 #ifdef CONFIG_CGROUP_PERF
825
826 /*
827 * perf_cgroup_info keeps track of time_enabled for a cgroup.
828 * This is a per-cpu dynamically allocated data structure.
829 */
830 struct perf_cgroup_info {
831 u64 time;
832 u64 timestamp;
833 };
834
835 struct perf_cgroup {
836 struct cgroup_subsys_state css;
837 struct perf_cgroup_info __percpu *info;
838 };
839
840 /*
841 * Must ensure cgroup is pinned (css_get) before calling
842 * this function. In other words, we cannot call this function
843 * if there is no cgroup event for the current CPU context.
844 */
845 static inline struct perf_cgroup *
846 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
847 {
848 return container_of(task_css_check(task, perf_event_cgrp_id,
849 ctx ? lockdep_is_held(&ctx->lock)
850 : true),
851 struct perf_cgroup, css);
852 }
853 #endif /* CONFIG_CGROUP_PERF */
854
855 #ifdef CONFIG_PERF_EVENTS
856
857 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
858 struct perf_event *event);
859 extern void perf_aux_output_end(struct perf_output_handle *handle,
860 unsigned long size);
861 extern int perf_aux_output_skip(struct perf_output_handle *handle,
862 unsigned long size);
863 extern void *perf_get_aux(struct perf_output_handle *handle);
864 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
865 extern void perf_event_itrace_started(struct perf_event *event);
866
867 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
868 extern void perf_pmu_unregister(struct pmu *pmu);
869
870 extern int perf_num_counters(void);
871 extern const char *perf_pmu_name(void);
872 extern void __perf_event_task_sched_in(struct task_struct *prev,
873 struct task_struct *task);
874 extern void __perf_event_task_sched_out(struct task_struct *prev,
875 struct task_struct *next);
876 extern int perf_event_init_task(struct task_struct *child);
877 extern void perf_event_exit_task(struct task_struct *child);
878 extern void perf_event_free_task(struct task_struct *task);
879 extern void perf_event_delayed_put(struct task_struct *task);
880 extern struct file *perf_event_get(unsigned int fd);
881 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
882 extern void perf_event_print_debug(void);
883 extern void perf_pmu_disable(struct pmu *pmu);
884 extern void perf_pmu_enable(struct pmu *pmu);
885 extern void perf_sched_cb_dec(struct pmu *pmu);
886 extern void perf_sched_cb_inc(struct pmu *pmu);
887 extern int perf_event_task_disable(void);
888 extern int perf_event_task_enable(void);
889 extern int perf_event_refresh(struct perf_event *event, int refresh);
890 extern void perf_event_update_userpage(struct perf_event *event);
891 extern int perf_event_release_kernel(struct perf_event *event);
892 extern struct perf_event *
893 perf_event_create_kernel_counter(struct perf_event_attr *attr,
894 int cpu,
895 struct task_struct *task,
896 perf_overflow_handler_t callback,
897 void *context);
898 extern void perf_pmu_migrate_context(struct pmu *pmu,
899 int src_cpu, int dst_cpu);
900 int perf_event_read_local(struct perf_event *event, u64 *value);
901 extern u64 perf_event_read_value(struct perf_event *event,
902 u64 *enabled, u64 *running);
903
904
905 struct perf_sample_data {
906 /*
907 * Fields set by perf_sample_data_init(), group so as to
908 * minimize the cachelines touched.
909 */
910 u64 addr;
911 struct perf_raw_record *raw;
912 struct perf_branch_stack *br_stack;
913 u64 period;
914 u64 weight;
915 u64 txn;
916 union perf_mem_data_src data_src;
917
918 /*
919 * The other fields, optionally {set,used} by
920 * perf_{prepare,output}_sample().
921 */
922 u64 type;
923 u64 ip;
924 struct {
925 u32 pid;
926 u32 tid;
927 } tid_entry;
928 u64 time;
929 u64 id;
930 u64 stream_id;
931 struct {
932 u32 cpu;
933 u32 reserved;
934 } cpu_entry;
935 struct perf_callchain_entry *callchain;
936
937 /*
938 * regs_user may point to task_pt_regs or to regs_user_copy, depending
939 * on arch details.
940 */
941 struct perf_regs regs_user;
942 struct pt_regs regs_user_copy;
943
944 struct perf_regs regs_intr;
945 u64 stack_user_size;
946
947 u64 phys_addr;
948 } ____cacheline_aligned;
949
950 /* default value for data source */
951 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
952 PERF_MEM_S(LVL, NA) |\
953 PERF_MEM_S(SNOOP, NA) |\
954 PERF_MEM_S(LOCK, NA) |\
955 PERF_MEM_S(TLB, NA))
956
957 static inline void perf_sample_data_init(struct perf_sample_data *data,
958 u64 addr, u64 period)
959 {
960 /* remaining struct members initialized in perf_prepare_sample() */
961 data->addr = addr;
962 data->raw = NULL;
963 data->br_stack = NULL;
964 data->period = period;
965 data->weight = 0;
966 data->data_src.val = PERF_MEM_NA;
967 data->txn = 0;
968 }
969
970 extern void perf_output_sample(struct perf_output_handle *handle,
971 struct perf_event_header *header,
972 struct perf_sample_data *data,
973 struct perf_event *event);
974 extern void perf_prepare_sample(struct perf_event_header *header,
975 struct perf_sample_data *data,
976 struct perf_event *event,
977 struct pt_regs *regs);
978
979 extern int perf_event_overflow(struct perf_event *event,
980 struct perf_sample_data *data,
981 struct pt_regs *regs);
982
983 extern void perf_event_output_forward(struct perf_event *event,
984 struct perf_sample_data *data,
985 struct pt_regs *regs);
986 extern void perf_event_output_backward(struct perf_event *event,
987 struct perf_sample_data *data,
988 struct pt_regs *regs);
989 extern void perf_event_output(struct perf_event *event,
990 struct perf_sample_data *data,
991 struct pt_regs *regs);
992
993 static inline bool
994 is_default_overflow_handler(struct perf_event *event)
995 {
996 if (likely(event->overflow_handler == perf_event_output_forward))
997 return true;
998 if (unlikely(event->overflow_handler == perf_event_output_backward))
999 return true;
1000 return false;
1001 }
1002
1003 extern void
1004 perf_event_header__init_id(struct perf_event_header *header,
1005 struct perf_sample_data *data,
1006 struct perf_event *event);
1007 extern void
1008 perf_event__output_id_sample(struct perf_event *event,
1009 struct perf_output_handle *handle,
1010 struct perf_sample_data *sample);
1011
1012 extern void
1013 perf_log_lost_samples(struct perf_event *event, u64 lost);
1014
1015 static inline bool is_sampling_event(struct perf_event *event)
1016 {
1017 return event->attr.sample_period != 0;
1018 }
1019
1020 /*
1021 * Return 1 for a software event, 0 for a hardware event
1022 */
1023 static inline int is_software_event(struct perf_event *event)
1024 {
1025 return event->event_caps & PERF_EV_CAP_SOFTWARE;
1026 }
1027
1028 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1029
1030 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1031 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1032
1033 #ifndef perf_arch_fetch_caller_regs
1034 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1035 #endif
1036
1037 /*
1038 * Take a snapshot of the regs. Skip ip and frame pointer to
1039 * the nth caller. We only need a few of the regs:
1040 * - ip for PERF_SAMPLE_IP
1041 * - cs for user_mode() tests
1042 * - bp for callchains
1043 * - eflags, for future purposes, just in case
1044 */
1045 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1046 {
1047 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1048 }
1049
1050 static __always_inline void
1051 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1052 {
1053 if (static_key_false(&perf_swevent_enabled[event_id]))
1054 __perf_sw_event(event_id, nr, regs, addr);
1055 }
1056
1057 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1058
1059 /*
1060 * 'Special' version for the scheduler, it hard assumes no recursion,
1061 * which is guaranteed by us not actually scheduling inside other swevents
1062 * because those disable preemption.
1063 */
1064 static __always_inline void
1065 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1066 {
1067 if (static_key_false(&perf_swevent_enabled[event_id])) {
1068 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1069
1070 perf_fetch_caller_regs(regs);
1071 ___perf_sw_event(event_id, nr, regs, addr);
1072 }
1073 }
1074
1075 extern struct static_key_false perf_sched_events;
1076
1077 static __always_inline bool
1078 perf_sw_migrate_enabled(void)
1079 {
1080 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1081 return true;
1082 return false;
1083 }
1084
1085 static inline void perf_event_task_migrate(struct task_struct *task)
1086 {
1087 if (perf_sw_migrate_enabled())
1088 task->sched_migrated = 1;
1089 }
1090
1091 static inline void perf_event_task_sched_in(struct task_struct *prev,
1092 struct task_struct *task)
1093 {
1094 if (static_branch_unlikely(&perf_sched_events))
1095 __perf_event_task_sched_in(prev, task);
1096
1097 if (perf_sw_migrate_enabled() && task->sched_migrated) {
1098 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1099
1100 perf_fetch_caller_regs(regs);
1101 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1102 task->sched_migrated = 0;
1103 }
1104 }
1105
1106 static inline void perf_event_task_sched_out(struct task_struct *prev,
1107 struct task_struct *next)
1108 {
1109 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1110
1111 if (static_branch_unlikely(&perf_sched_events))
1112 __perf_event_task_sched_out(prev, next);
1113 }
1114
1115 static inline u64 __perf_event_count(struct perf_event *event)
1116 {
1117 return local64_read(&event->count) + atomic64_read(&event->child_count);
1118 }
1119
1120 extern void perf_event_mmap(struct vm_area_struct *vma);
1121 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1122 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1123 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1124
1125 extern void perf_event_exec(void);
1126 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1127 extern void perf_event_namespaces(struct task_struct *tsk);
1128 extern void perf_event_fork(struct task_struct *tsk);
1129
1130 /* Callchains */
1131 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1132
1133 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1134 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1135 extern struct perf_callchain_entry *
1136 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1137 u32 max_stack, bool crosstask, bool add_mark);
1138 extern int get_callchain_buffers(int max_stack);
1139 extern void put_callchain_buffers(void);
1140
1141 extern int sysctl_perf_event_max_stack;
1142 extern int sysctl_perf_event_max_contexts_per_stack;
1143
1144 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1145 {
1146 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1147 struct perf_callchain_entry *entry = ctx->entry;
1148 entry->ip[entry->nr++] = ip;
1149 ++ctx->contexts;
1150 return 0;
1151 } else {
1152 ctx->contexts_maxed = true;
1153 return -1; /* no more room, stop walking the stack */
1154 }
1155 }
1156
1157 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1158 {
1159 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1160 struct perf_callchain_entry *entry = ctx->entry;
1161 entry->ip[entry->nr++] = ip;
1162 ++ctx->nr;
1163 return 0;
1164 } else {
1165 return -1; /* no more room, stop walking the stack */
1166 }
1167 }
1168
1169 extern int sysctl_perf_event_paranoid;
1170 extern int sysctl_perf_event_mlock;
1171 extern int sysctl_perf_event_sample_rate;
1172 extern int sysctl_perf_cpu_time_max_percent;
1173
1174 extern void perf_sample_event_took(u64 sample_len_ns);
1175
1176 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1177 void __user *buffer, size_t *lenp,
1178 loff_t *ppos);
1179 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1180 void __user *buffer, size_t *lenp,
1181 loff_t *ppos);
1182
1183 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1184 void __user *buffer, size_t *lenp, loff_t *ppos);
1185
1186 static inline bool perf_paranoid_tracepoint_raw(void)
1187 {
1188 return sysctl_perf_event_paranoid > -1;
1189 }
1190
1191 static inline bool perf_paranoid_cpu(void)
1192 {
1193 return sysctl_perf_event_paranoid > 0;
1194 }
1195
1196 static inline bool perf_paranoid_kernel(void)
1197 {
1198 return sysctl_perf_event_paranoid > 1;
1199 }
1200
1201 extern void perf_event_init(void);
1202 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1203 int entry_size, struct pt_regs *regs,
1204 struct hlist_head *head, int rctx,
1205 struct task_struct *task, struct perf_event *event);
1206 extern void perf_bp_event(struct perf_event *event, void *data);
1207
1208 #ifndef perf_misc_flags
1209 # define perf_misc_flags(regs) \
1210 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1211 # define perf_instruction_pointer(regs) instruction_pointer(regs)
1212 #endif
1213
1214 static inline bool has_branch_stack(struct perf_event *event)
1215 {
1216 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1217 }
1218
1219 static inline bool needs_branch_stack(struct perf_event *event)
1220 {
1221 return event->attr.branch_sample_type != 0;
1222 }
1223
1224 static inline bool has_aux(struct perf_event *event)
1225 {
1226 return event->pmu->setup_aux;
1227 }
1228
1229 static inline bool is_write_backward(struct perf_event *event)
1230 {
1231 return !!event->attr.write_backward;
1232 }
1233
1234 static inline bool has_addr_filter(struct perf_event *event)
1235 {
1236 return event->pmu->nr_addr_filters;
1237 }
1238
1239 /*
1240 * An inherited event uses parent's filters
1241 */
1242 static inline struct perf_addr_filters_head *
1243 perf_event_addr_filters(struct perf_event *event)
1244 {
1245 struct perf_addr_filters_head *ifh = &event->addr_filters;
1246
1247 if (event->parent)
1248 ifh = &event->parent->addr_filters;
1249
1250 return ifh;
1251 }
1252
1253 extern void perf_event_addr_filters_sync(struct perf_event *event);
1254
1255 extern int perf_output_begin(struct perf_output_handle *handle,
1256 struct perf_event *event, unsigned int size);
1257 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1258 struct perf_event *event,
1259 unsigned int size);
1260 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1261 struct perf_event *event,
1262 unsigned int size);
1263
1264 extern void perf_output_end(struct perf_output_handle *handle);
1265 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1266 const void *buf, unsigned int len);
1267 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1268 unsigned int len);
1269 extern int perf_swevent_get_recursion_context(void);
1270 extern void perf_swevent_put_recursion_context(int rctx);
1271 extern u64 perf_swevent_set_period(struct perf_event *event);
1272 extern void perf_event_enable(struct perf_event *event);
1273 extern void perf_event_disable(struct perf_event *event);
1274 extern void perf_event_disable_local(struct perf_event *event);
1275 extern void perf_event_disable_inatomic(struct perf_event *event);
1276 extern void perf_event_task_tick(void);
1277 extern int perf_event_account_interrupt(struct perf_event *event);
1278 #else /* !CONFIG_PERF_EVENTS: */
1279 static inline void *
1280 perf_aux_output_begin(struct perf_output_handle *handle,
1281 struct perf_event *event) { return NULL; }
1282 static inline void
1283 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1284 { }
1285 static inline int
1286 perf_aux_output_skip(struct perf_output_handle *handle,
1287 unsigned long size) { return -EINVAL; }
1288 static inline void *
1289 perf_get_aux(struct perf_output_handle *handle) { return NULL; }
1290 static inline void
1291 perf_event_task_migrate(struct task_struct *task) { }
1292 static inline void
1293 perf_event_task_sched_in(struct task_struct *prev,
1294 struct task_struct *task) { }
1295 static inline void
1296 perf_event_task_sched_out(struct task_struct *prev,
1297 struct task_struct *next) { }
1298 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
1299 static inline void perf_event_exit_task(struct task_struct *child) { }
1300 static inline void perf_event_free_task(struct task_struct *task) { }
1301 static inline void perf_event_delayed_put(struct task_struct *task) { }
1302 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); }
1303 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1304 {
1305 return ERR_PTR(-EINVAL);
1306 }
1307 static inline int perf_event_read_local(struct perf_event *event, u64 *value)
1308 {
1309 return -EINVAL;
1310 }
1311 static inline void perf_event_print_debug(void) { }
1312 static inline int perf_event_task_disable(void) { return -EINVAL; }
1313 static inline int perf_event_task_enable(void) { return -EINVAL; }
1314 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1315 {
1316 return -EINVAL;
1317 }
1318
1319 static inline void
1320 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1321 static inline void
1322 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { }
1323 static inline void
1324 perf_bp_event(struct perf_event *event, void *data) { }
1325
1326 static inline int perf_register_guest_info_callbacks
1327 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1328 static inline int perf_unregister_guest_info_callbacks
1329 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1330
1331 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1332 static inline void perf_event_exec(void) { }
1333 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
1334 static inline void perf_event_namespaces(struct task_struct *tsk) { }
1335 static inline void perf_event_fork(struct task_struct *tsk) { }
1336 static inline void perf_event_init(void) { }
1337 static inline int perf_swevent_get_recursion_context(void) { return -1; }
1338 static inline void perf_swevent_put_recursion_context(int rctx) { }
1339 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
1340 static inline void perf_event_enable(struct perf_event *event) { }
1341 static inline void perf_event_disable(struct perf_event *event) { }
1342 static inline int __perf_event_disable(void *info) { return -1; }
1343 static inline void perf_event_task_tick(void) { }
1344 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; }
1345 #endif
1346
1347 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1348 extern void perf_restore_debug_store(void);
1349 #else
1350 static inline void perf_restore_debug_store(void) { }
1351 #endif
1352
1353 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1354 {
1355 return frag->pad < sizeof(u64);
1356 }
1357
1358 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1359
1360 struct perf_pmu_events_attr {
1361 struct device_attribute attr;
1362 u64 id;
1363 const char *event_str;
1364 };
1365
1366 struct perf_pmu_events_ht_attr {
1367 struct device_attribute attr;
1368 u64 id;
1369 const char *event_str_ht;
1370 const char *event_str_noht;
1371 };
1372
1373 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1374 char *page);
1375
1376 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
1377 static struct perf_pmu_events_attr _var = { \
1378 .attr = __ATTR(_name, 0444, _show, NULL), \
1379 .id = _id, \
1380 };
1381
1382 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
1383 static struct perf_pmu_events_attr _var = { \
1384 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1385 .id = 0, \
1386 .event_str = _str, \
1387 };
1388
1389 #define PMU_FORMAT_ATTR(_name, _format) \
1390 static ssize_t \
1391 _name##_show(struct device *dev, \
1392 struct device_attribute *attr, \
1393 char *page) \
1394 { \
1395 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1396 return sprintf(page, _format "\n"); \
1397 } \
1398 \
1399 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1400
1401 /* Performance counter hotplug functions */
1402 #ifdef CONFIG_PERF_EVENTS
1403 int perf_event_init_cpu(unsigned int cpu);
1404 int perf_event_exit_cpu(unsigned int cpu);
1405 #else
1406 #define perf_event_init_cpu NULL
1407 #define perf_event_exit_cpu NULL
1408 #endif
1409
1410 #endif /* _LINUX_PERF_EVENT_H */