]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/perf_event.h
Merge tag 'media/v4.14-1' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[mirror_ubuntu-bionic-kernel.git] / include / linux / perf_event.h
1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18
19 /*
20 * Kernel-internal data types and definitions:
21 */
22
23 #ifdef CONFIG_PERF_EVENTS
24 # include <asm/perf_event.h>
25 # include <asm/local64.h>
26 #endif
27
28 struct perf_guest_info_callbacks {
29 int (*is_in_guest)(void);
30 int (*is_user_mode)(void);
31 unsigned long (*get_guest_ip)(void);
32 };
33
34 #ifdef CONFIG_HAVE_HW_BREAKPOINT
35 #include <asm/hw_breakpoint.h>
36 #endif
37
38 #include <linux/list.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/rcupdate.h>
42 #include <linux/spinlock.h>
43 #include <linux/hrtimer.h>
44 #include <linux/fs.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/workqueue.h>
47 #include <linux/ftrace.h>
48 #include <linux/cpu.h>
49 #include <linux/irq_work.h>
50 #include <linux/static_key.h>
51 #include <linux/jump_label_ratelimit.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <linux/workqueue.h>
56 #include <linux/cgroup.h>
57 #include <asm/local.h>
58
59 struct perf_callchain_entry {
60 __u64 nr;
61 __u64 ip[0]; /* /proc/sys/kernel/perf_event_max_stack */
62 };
63
64 struct perf_callchain_entry_ctx {
65 struct perf_callchain_entry *entry;
66 u32 max_stack;
67 u32 nr;
68 short contexts;
69 bool contexts_maxed;
70 };
71
72 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
73 unsigned long off, unsigned long len);
74
75 struct perf_raw_frag {
76 union {
77 struct perf_raw_frag *next;
78 unsigned long pad;
79 };
80 perf_copy_f copy;
81 void *data;
82 u32 size;
83 } __packed;
84
85 struct perf_raw_record {
86 struct perf_raw_frag frag;
87 u32 size;
88 };
89
90 /*
91 * branch stack layout:
92 * nr: number of taken branches stored in entries[]
93 *
94 * Note that nr can vary from sample to sample
95 * branches (to, from) are stored from most recent
96 * to least recent, i.e., entries[0] contains the most
97 * recent branch.
98 */
99 struct perf_branch_stack {
100 __u64 nr;
101 struct perf_branch_entry entries[0];
102 };
103
104 struct task_struct;
105
106 /*
107 * extra PMU register associated with an event
108 */
109 struct hw_perf_event_extra {
110 u64 config; /* register value */
111 unsigned int reg; /* register address or index */
112 int alloc; /* extra register already allocated */
113 int idx; /* index in shared_regs->regs[] */
114 };
115
116 /**
117 * struct hw_perf_event - performance event hardware details:
118 */
119 struct hw_perf_event {
120 #ifdef CONFIG_PERF_EVENTS
121 union {
122 struct { /* hardware */
123 u64 config;
124 u64 last_tag;
125 unsigned long config_base;
126 unsigned long event_base;
127 int event_base_rdpmc;
128 int idx;
129 int last_cpu;
130 int flags;
131
132 struct hw_perf_event_extra extra_reg;
133 struct hw_perf_event_extra branch_reg;
134 };
135 struct { /* software */
136 struct hrtimer hrtimer;
137 };
138 struct { /* tracepoint */
139 /* for tp_event->class */
140 struct list_head tp_list;
141 };
142 struct { /* amd_power */
143 u64 pwr_acc;
144 u64 ptsc;
145 };
146 #ifdef CONFIG_HAVE_HW_BREAKPOINT
147 struct { /* breakpoint */
148 /*
149 * Crufty hack to avoid the chicken and egg
150 * problem hw_breakpoint has with context
151 * creation and event initalization.
152 */
153 struct arch_hw_breakpoint info;
154 struct list_head bp_list;
155 };
156 #endif
157 struct { /* amd_iommu */
158 u8 iommu_bank;
159 u8 iommu_cntr;
160 u16 padding;
161 u64 conf;
162 u64 conf1;
163 };
164 };
165 /*
166 * If the event is a per task event, this will point to the task in
167 * question. See the comment in perf_event_alloc().
168 */
169 struct task_struct *target;
170
171 /*
172 * PMU would store hardware filter configuration
173 * here.
174 */
175 void *addr_filters;
176
177 /* Last sync'ed generation of filters */
178 unsigned long addr_filters_gen;
179
180 /*
181 * hw_perf_event::state flags; used to track the PERF_EF_* state.
182 */
183 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
184 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
185 #define PERF_HES_ARCH 0x04
186
187 int state;
188
189 /*
190 * The last observed hardware counter value, updated with a
191 * local64_cmpxchg() such that pmu::read() can be called nested.
192 */
193 local64_t prev_count;
194
195 /*
196 * The period to start the next sample with.
197 */
198 u64 sample_period;
199
200 /*
201 * The period we started this sample with.
202 */
203 u64 last_period;
204
205 /*
206 * However much is left of the current period; note that this is
207 * a full 64bit value and allows for generation of periods longer
208 * than hardware might allow.
209 */
210 local64_t period_left;
211
212 /*
213 * State for throttling the event, see __perf_event_overflow() and
214 * perf_adjust_freq_unthr_context().
215 */
216 u64 interrupts_seq;
217 u64 interrupts;
218
219 /*
220 * State for freq target events, see __perf_event_overflow() and
221 * perf_adjust_freq_unthr_context().
222 */
223 u64 freq_time_stamp;
224 u64 freq_count_stamp;
225 #endif
226 };
227
228 struct perf_event;
229
230 /*
231 * Common implementation detail of pmu::{start,commit,cancel}_txn
232 */
233 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */
234 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */
235
236 /**
237 * pmu::capabilities flags
238 */
239 #define PERF_PMU_CAP_NO_INTERRUPT 0x01
240 #define PERF_PMU_CAP_NO_NMI 0x02
241 #define PERF_PMU_CAP_AUX_NO_SG 0x04
242 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF 0x08
243 #define PERF_PMU_CAP_EXCLUSIVE 0x10
244 #define PERF_PMU_CAP_ITRACE 0x20
245 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40
246
247 /**
248 * struct pmu - generic performance monitoring unit
249 */
250 struct pmu {
251 struct list_head entry;
252
253 struct module *module;
254 struct device *dev;
255 const struct attribute_group **attr_groups;
256 const char *name;
257 int type;
258
259 /*
260 * various common per-pmu feature flags
261 */
262 int capabilities;
263
264 int * __percpu pmu_disable_count;
265 struct perf_cpu_context * __percpu pmu_cpu_context;
266 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
267 int task_ctx_nr;
268 int hrtimer_interval_ms;
269
270 /* number of address filters this PMU can do */
271 unsigned int nr_addr_filters;
272
273 /*
274 * Fully disable/enable this PMU, can be used to protect from the PMI
275 * as well as for lazy/batch writing of the MSRs.
276 */
277 void (*pmu_enable) (struct pmu *pmu); /* optional */
278 void (*pmu_disable) (struct pmu *pmu); /* optional */
279
280 /*
281 * Try and initialize the event for this PMU.
282 *
283 * Returns:
284 * -ENOENT -- @event is not for this PMU
285 *
286 * -ENODEV -- @event is for this PMU but PMU not present
287 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable
288 * -EINVAL -- @event is for this PMU but @event is not valid
289 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
290 * -EACCESS -- @event is for this PMU, @event is valid, but no privilidges
291 *
292 * 0 -- @event is for this PMU and valid
293 *
294 * Other error return values are allowed.
295 */
296 int (*event_init) (struct perf_event *event);
297
298 /*
299 * Notification that the event was mapped or unmapped. Called
300 * in the context of the mapping task.
301 */
302 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
303 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
304
305 /*
306 * Flags for ->add()/->del()/ ->start()/->stop(). There are
307 * matching hw_perf_event::state flags.
308 */
309 #define PERF_EF_START 0x01 /* start the counter when adding */
310 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
311 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
312
313 /*
314 * Adds/Removes a counter to/from the PMU, can be done inside a
315 * transaction, see the ->*_txn() methods.
316 *
317 * The add/del callbacks will reserve all hardware resources required
318 * to service the event, this includes any counter constraint
319 * scheduling etc.
320 *
321 * Called with IRQs disabled and the PMU disabled on the CPU the event
322 * is on.
323 *
324 * ->add() called without PERF_EF_START should result in the same state
325 * as ->add() followed by ->stop().
326 *
327 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
328 * ->stop() that must deal with already being stopped without
329 * PERF_EF_UPDATE.
330 */
331 int (*add) (struct perf_event *event, int flags);
332 void (*del) (struct perf_event *event, int flags);
333
334 /*
335 * Starts/Stops a counter present on the PMU.
336 *
337 * The PMI handler should stop the counter when perf_event_overflow()
338 * returns !0. ->start() will be used to continue.
339 *
340 * Also used to change the sample period.
341 *
342 * Called with IRQs disabled and the PMU disabled on the CPU the event
343 * is on -- will be called from NMI context with the PMU generates
344 * NMIs.
345 *
346 * ->stop() with PERF_EF_UPDATE will read the counter and update
347 * period/count values like ->read() would.
348 *
349 * ->start() with PERF_EF_RELOAD will reprogram the the counter
350 * value, must be preceded by a ->stop() with PERF_EF_UPDATE.
351 */
352 void (*start) (struct perf_event *event, int flags);
353 void (*stop) (struct perf_event *event, int flags);
354
355 /*
356 * Updates the counter value of the event.
357 *
358 * For sampling capable PMUs this will also update the software period
359 * hw_perf_event::period_left field.
360 */
361 void (*read) (struct perf_event *event);
362
363 /*
364 * Group events scheduling is treated as a transaction, add
365 * group events as a whole and perform one schedulability test.
366 * If the test fails, roll back the whole group
367 *
368 * Start the transaction, after this ->add() doesn't need to
369 * do schedulability tests.
370 *
371 * Optional.
372 */
373 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags);
374 /*
375 * If ->start_txn() disabled the ->add() schedulability test
376 * then ->commit_txn() is required to perform one. On success
377 * the transaction is closed. On error the transaction is kept
378 * open until ->cancel_txn() is called.
379 *
380 * Optional.
381 */
382 int (*commit_txn) (struct pmu *pmu);
383 /*
384 * Will cancel the transaction, assumes ->del() is called
385 * for each successful ->add() during the transaction.
386 *
387 * Optional.
388 */
389 void (*cancel_txn) (struct pmu *pmu);
390
391 /*
392 * Will return the value for perf_event_mmap_page::index for this event,
393 * if no implementation is provided it will default to: event->hw.idx + 1.
394 */
395 int (*event_idx) (struct perf_event *event); /*optional */
396
397 /*
398 * context-switches callback
399 */
400 void (*sched_task) (struct perf_event_context *ctx,
401 bool sched_in);
402 /*
403 * PMU specific data size
404 */
405 size_t task_ctx_size;
406
407
408 /*
409 * Set up pmu-private data structures for an AUX area
410 */
411 void *(*setup_aux) (int cpu, void **pages,
412 int nr_pages, bool overwrite);
413 /* optional */
414
415 /*
416 * Free pmu-private AUX data structures
417 */
418 void (*free_aux) (void *aux); /* optional */
419
420 /*
421 * Validate address range filters: make sure the HW supports the
422 * requested configuration and number of filters; return 0 if the
423 * supplied filters are valid, -errno otherwise.
424 *
425 * Runs in the context of the ioctl()ing process and is not serialized
426 * with the rest of the PMU callbacks.
427 */
428 int (*addr_filters_validate) (struct list_head *filters);
429 /* optional */
430
431 /*
432 * Synchronize address range filter configuration:
433 * translate hw-agnostic filters into hardware configuration in
434 * event::hw::addr_filters.
435 *
436 * Runs as a part of filter sync sequence that is done in ->start()
437 * callback by calling perf_event_addr_filters_sync().
438 *
439 * May (and should) traverse event::addr_filters::list, for which its
440 * caller provides necessary serialization.
441 */
442 void (*addr_filters_sync) (struct perf_event *event);
443 /* optional */
444
445 /*
446 * Filter events for PMU-specific reasons.
447 */
448 int (*filter_match) (struct perf_event *event); /* optional */
449 };
450
451 /**
452 * struct perf_addr_filter - address range filter definition
453 * @entry: event's filter list linkage
454 * @inode: object file's inode for file-based filters
455 * @offset: filter range offset
456 * @size: filter range size
457 * @range: 1: range, 0: address
458 * @filter: 1: filter/start, 0: stop
459 *
460 * This is a hardware-agnostic filter configuration as specified by the user.
461 */
462 struct perf_addr_filter {
463 struct list_head entry;
464 struct inode *inode;
465 unsigned long offset;
466 unsigned long size;
467 unsigned int range : 1,
468 filter : 1;
469 };
470
471 /**
472 * struct perf_addr_filters_head - container for address range filters
473 * @list: list of filters for this event
474 * @lock: spinlock that serializes accesses to the @list and event's
475 * (and its children's) filter generations.
476 * @nr_file_filters: number of file-based filters
477 *
478 * A child event will use parent's @list (and therefore @lock), so they are
479 * bundled together; see perf_event_addr_filters().
480 */
481 struct perf_addr_filters_head {
482 struct list_head list;
483 raw_spinlock_t lock;
484 unsigned int nr_file_filters;
485 };
486
487 /**
488 * enum perf_event_active_state - the states of a event
489 */
490 enum perf_event_active_state {
491 PERF_EVENT_STATE_DEAD = -4,
492 PERF_EVENT_STATE_EXIT = -3,
493 PERF_EVENT_STATE_ERROR = -2,
494 PERF_EVENT_STATE_OFF = -1,
495 PERF_EVENT_STATE_INACTIVE = 0,
496 PERF_EVENT_STATE_ACTIVE = 1,
497 };
498
499 struct file;
500 struct perf_sample_data;
501
502 typedef void (*perf_overflow_handler_t)(struct perf_event *,
503 struct perf_sample_data *,
504 struct pt_regs *regs);
505
506 /*
507 * Event capabilities. For event_caps and groups caps.
508 *
509 * PERF_EV_CAP_SOFTWARE: Is a software event.
510 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
511 * from any CPU in the package where it is active.
512 */
513 #define PERF_EV_CAP_SOFTWARE BIT(0)
514 #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1)
515
516 #define SWEVENT_HLIST_BITS 8
517 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
518
519 struct swevent_hlist {
520 struct hlist_head heads[SWEVENT_HLIST_SIZE];
521 struct rcu_head rcu_head;
522 };
523
524 #define PERF_ATTACH_CONTEXT 0x01
525 #define PERF_ATTACH_GROUP 0x02
526 #define PERF_ATTACH_TASK 0x04
527 #define PERF_ATTACH_TASK_DATA 0x08
528 #define PERF_ATTACH_ITRACE 0x10
529
530 struct perf_cgroup;
531 struct ring_buffer;
532
533 struct pmu_event_list {
534 raw_spinlock_t lock;
535 struct list_head list;
536 };
537
538 /**
539 * struct perf_event - performance event kernel representation:
540 */
541 struct perf_event {
542 #ifdef CONFIG_PERF_EVENTS
543 /*
544 * entry onto perf_event_context::event_list;
545 * modifications require ctx->lock
546 * RCU safe iterations.
547 */
548 struct list_head event_entry;
549
550 /*
551 * XXX: group_entry and sibling_list should be mutually exclusive;
552 * either you're a sibling on a group, or you're the group leader.
553 * Rework the code to always use the same list element.
554 *
555 * Locked for modification by both ctx->mutex and ctx->lock; holding
556 * either sufficies for read.
557 */
558 struct list_head group_entry;
559 struct list_head sibling_list;
560
561 /*
562 * We need storage to track the entries in perf_pmu_migrate_context; we
563 * cannot use the event_entry because of RCU and we want to keep the
564 * group in tact which avoids us using the other two entries.
565 */
566 struct list_head migrate_entry;
567
568 struct hlist_node hlist_entry;
569 struct list_head active_entry;
570 int nr_siblings;
571
572 /* Not serialized. Only written during event initialization. */
573 int event_caps;
574 /* The cumulative AND of all event_caps for events in this group. */
575 int group_caps;
576
577 struct perf_event *group_leader;
578 struct pmu *pmu;
579 void *pmu_private;
580
581 enum perf_event_active_state state;
582 unsigned int attach_state;
583 local64_t count;
584 atomic64_t child_count;
585
586 /*
587 * These are the total time in nanoseconds that the event
588 * has been enabled (i.e. eligible to run, and the task has
589 * been scheduled in, if this is a per-task event)
590 * and running (scheduled onto the CPU), respectively.
591 *
592 * They are computed from tstamp_enabled, tstamp_running and
593 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
594 */
595 u64 total_time_enabled;
596 u64 total_time_running;
597
598 /*
599 * These are timestamps used for computing total_time_enabled
600 * and total_time_running when the event is in INACTIVE or
601 * ACTIVE state, measured in nanoseconds from an arbitrary point
602 * in time.
603 * tstamp_enabled: the notional time when the event was enabled
604 * tstamp_running: the notional time when the event was scheduled on
605 * tstamp_stopped: in INACTIVE state, the notional time when the
606 * event was scheduled off.
607 */
608 u64 tstamp_enabled;
609 u64 tstamp_running;
610 u64 tstamp_stopped;
611
612 /*
613 * timestamp shadows the actual context timing but it can
614 * be safely used in NMI interrupt context. It reflects the
615 * context time as it was when the event was last scheduled in.
616 *
617 * ctx_time already accounts for ctx->timestamp. Therefore to
618 * compute ctx_time for a sample, simply add perf_clock().
619 */
620 u64 shadow_ctx_time;
621
622 struct perf_event_attr attr;
623 u16 header_size;
624 u16 id_header_size;
625 u16 read_size;
626 struct hw_perf_event hw;
627
628 struct perf_event_context *ctx;
629 atomic_long_t refcount;
630
631 /*
632 * These accumulate total time (in nanoseconds) that children
633 * events have been enabled and running, respectively.
634 */
635 atomic64_t child_total_time_enabled;
636 atomic64_t child_total_time_running;
637
638 /*
639 * Protect attach/detach and child_list:
640 */
641 struct mutex child_mutex;
642 struct list_head child_list;
643 struct perf_event *parent;
644
645 int oncpu;
646 int cpu;
647
648 struct list_head owner_entry;
649 struct task_struct *owner;
650
651 /* mmap bits */
652 struct mutex mmap_mutex;
653 atomic_t mmap_count;
654
655 struct ring_buffer *rb;
656 struct list_head rb_entry;
657 unsigned long rcu_batches;
658 int rcu_pending;
659
660 /* poll related */
661 wait_queue_head_t waitq;
662 struct fasync_struct *fasync;
663
664 /* delayed work for NMIs and such */
665 int pending_wakeup;
666 int pending_kill;
667 int pending_disable;
668 struct irq_work pending;
669
670 atomic_t event_limit;
671
672 /* address range filters */
673 struct perf_addr_filters_head addr_filters;
674 /* vma address array for file-based filders */
675 unsigned long *addr_filters_offs;
676 unsigned long addr_filters_gen;
677
678 void (*destroy)(struct perf_event *);
679 struct rcu_head rcu_head;
680
681 struct pid_namespace *ns;
682 u64 id;
683
684 u64 (*clock)(void);
685 perf_overflow_handler_t overflow_handler;
686 void *overflow_handler_context;
687 #ifdef CONFIG_BPF_SYSCALL
688 perf_overflow_handler_t orig_overflow_handler;
689 struct bpf_prog *prog;
690 #endif
691
692 #ifdef CONFIG_EVENT_TRACING
693 struct trace_event_call *tp_event;
694 struct event_filter *filter;
695 #ifdef CONFIG_FUNCTION_TRACER
696 struct ftrace_ops ftrace_ops;
697 #endif
698 #endif
699
700 #ifdef CONFIG_CGROUP_PERF
701 struct perf_cgroup *cgrp; /* cgroup event is attach to */
702 int cgrp_defer_enabled;
703 #endif
704
705 struct list_head sb_list;
706 #endif /* CONFIG_PERF_EVENTS */
707 };
708
709 /**
710 * struct perf_event_context - event context structure
711 *
712 * Used as a container for task events and CPU events as well:
713 */
714 struct perf_event_context {
715 struct pmu *pmu;
716 /*
717 * Protect the states of the events in the list,
718 * nr_active, and the list:
719 */
720 raw_spinlock_t lock;
721 /*
722 * Protect the list of events. Locking either mutex or lock
723 * is sufficient to ensure the list doesn't change; to change
724 * the list you need to lock both the mutex and the spinlock.
725 */
726 struct mutex mutex;
727
728 struct list_head active_ctx_list;
729 struct list_head pinned_groups;
730 struct list_head flexible_groups;
731 struct list_head event_list;
732 int nr_events;
733 int nr_active;
734 int is_active;
735 int nr_stat;
736 int nr_freq;
737 int rotate_disable;
738 atomic_t refcount;
739 struct task_struct *task;
740
741 /*
742 * Context clock, runs when context enabled.
743 */
744 u64 time;
745 u64 timestamp;
746
747 /*
748 * These fields let us detect when two contexts have both
749 * been cloned (inherited) from a common ancestor.
750 */
751 struct perf_event_context *parent_ctx;
752 u64 parent_gen;
753 u64 generation;
754 int pin_count;
755 #ifdef CONFIG_CGROUP_PERF
756 int nr_cgroups; /* cgroup evts */
757 #endif
758 void *task_ctx_data; /* pmu specific data */
759 struct rcu_head rcu_head;
760 };
761
762 /*
763 * Number of contexts where an event can trigger:
764 * task, softirq, hardirq, nmi.
765 */
766 #define PERF_NR_CONTEXTS 4
767
768 /**
769 * struct perf_event_cpu_context - per cpu event context structure
770 */
771 struct perf_cpu_context {
772 struct perf_event_context ctx;
773 struct perf_event_context *task_ctx;
774 int active_oncpu;
775 int exclusive;
776
777 raw_spinlock_t hrtimer_lock;
778 struct hrtimer hrtimer;
779 ktime_t hrtimer_interval;
780 unsigned int hrtimer_active;
781
782 #ifdef CONFIG_CGROUP_PERF
783 struct perf_cgroup *cgrp;
784 struct list_head cgrp_cpuctx_entry;
785 #endif
786
787 struct list_head sched_cb_entry;
788 int sched_cb_usage;
789
790 int online;
791 };
792
793 struct perf_output_handle {
794 struct perf_event *event;
795 struct ring_buffer *rb;
796 unsigned long wakeup;
797 unsigned long size;
798 u64 aux_flags;
799 union {
800 void *addr;
801 unsigned long head;
802 };
803 int page;
804 };
805
806 struct bpf_perf_event_data_kern {
807 struct pt_regs *regs;
808 struct perf_sample_data *data;
809 };
810
811 #ifdef CONFIG_CGROUP_PERF
812
813 /*
814 * perf_cgroup_info keeps track of time_enabled for a cgroup.
815 * This is a per-cpu dynamically allocated data structure.
816 */
817 struct perf_cgroup_info {
818 u64 time;
819 u64 timestamp;
820 };
821
822 struct perf_cgroup {
823 struct cgroup_subsys_state css;
824 struct perf_cgroup_info __percpu *info;
825 };
826
827 /*
828 * Must ensure cgroup is pinned (css_get) before calling
829 * this function. In other words, we cannot call this function
830 * if there is no cgroup event for the current CPU context.
831 */
832 static inline struct perf_cgroup *
833 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
834 {
835 return container_of(task_css_check(task, perf_event_cgrp_id,
836 ctx ? lockdep_is_held(&ctx->lock)
837 : true),
838 struct perf_cgroup, css);
839 }
840 #endif /* CONFIG_CGROUP_PERF */
841
842 #ifdef CONFIG_PERF_EVENTS
843
844 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
845 struct perf_event *event);
846 extern void perf_aux_output_end(struct perf_output_handle *handle,
847 unsigned long size);
848 extern int perf_aux_output_skip(struct perf_output_handle *handle,
849 unsigned long size);
850 extern void *perf_get_aux(struct perf_output_handle *handle);
851 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
852 extern void perf_event_itrace_started(struct perf_event *event);
853
854 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
855 extern void perf_pmu_unregister(struct pmu *pmu);
856
857 extern int perf_num_counters(void);
858 extern const char *perf_pmu_name(void);
859 extern void __perf_event_task_sched_in(struct task_struct *prev,
860 struct task_struct *task);
861 extern void __perf_event_task_sched_out(struct task_struct *prev,
862 struct task_struct *next);
863 extern int perf_event_init_task(struct task_struct *child);
864 extern void perf_event_exit_task(struct task_struct *child);
865 extern void perf_event_free_task(struct task_struct *task);
866 extern void perf_event_delayed_put(struct task_struct *task);
867 extern struct file *perf_event_get(unsigned int fd);
868 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
869 extern void perf_event_print_debug(void);
870 extern void perf_pmu_disable(struct pmu *pmu);
871 extern void perf_pmu_enable(struct pmu *pmu);
872 extern void perf_sched_cb_dec(struct pmu *pmu);
873 extern void perf_sched_cb_inc(struct pmu *pmu);
874 extern int perf_event_task_disable(void);
875 extern int perf_event_task_enable(void);
876 extern int perf_event_refresh(struct perf_event *event, int refresh);
877 extern void perf_event_update_userpage(struct perf_event *event);
878 extern int perf_event_release_kernel(struct perf_event *event);
879 extern struct perf_event *
880 perf_event_create_kernel_counter(struct perf_event_attr *attr,
881 int cpu,
882 struct task_struct *task,
883 perf_overflow_handler_t callback,
884 void *context);
885 extern void perf_pmu_migrate_context(struct pmu *pmu,
886 int src_cpu, int dst_cpu);
887 int perf_event_read_local(struct perf_event *event, u64 *value);
888 extern u64 perf_event_read_value(struct perf_event *event,
889 u64 *enabled, u64 *running);
890
891
892 struct perf_sample_data {
893 /*
894 * Fields set by perf_sample_data_init(), group so as to
895 * minimize the cachelines touched.
896 */
897 u64 addr;
898 struct perf_raw_record *raw;
899 struct perf_branch_stack *br_stack;
900 u64 period;
901 u64 weight;
902 u64 txn;
903 union perf_mem_data_src data_src;
904
905 /*
906 * The other fields, optionally {set,used} by
907 * perf_{prepare,output}_sample().
908 */
909 u64 type;
910 u64 ip;
911 struct {
912 u32 pid;
913 u32 tid;
914 } tid_entry;
915 u64 time;
916 u64 id;
917 u64 stream_id;
918 struct {
919 u32 cpu;
920 u32 reserved;
921 } cpu_entry;
922 struct perf_callchain_entry *callchain;
923
924 /*
925 * regs_user may point to task_pt_regs or to regs_user_copy, depending
926 * on arch details.
927 */
928 struct perf_regs regs_user;
929 struct pt_regs regs_user_copy;
930
931 struct perf_regs regs_intr;
932 u64 stack_user_size;
933
934 u64 phys_addr;
935 } ____cacheline_aligned;
936
937 /* default value for data source */
938 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
939 PERF_MEM_S(LVL, NA) |\
940 PERF_MEM_S(SNOOP, NA) |\
941 PERF_MEM_S(LOCK, NA) |\
942 PERF_MEM_S(TLB, NA))
943
944 static inline void perf_sample_data_init(struct perf_sample_data *data,
945 u64 addr, u64 period)
946 {
947 /* remaining struct members initialized in perf_prepare_sample() */
948 data->addr = addr;
949 data->raw = NULL;
950 data->br_stack = NULL;
951 data->period = period;
952 data->weight = 0;
953 data->data_src.val = PERF_MEM_NA;
954 data->txn = 0;
955 }
956
957 extern void perf_output_sample(struct perf_output_handle *handle,
958 struct perf_event_header *header,
959 struct perf_sample_data *data,
960 struct perf_event *event);
961 extern void perf_prepare_sample(struct perf_event_header *header,
962 struct perf_sample_data *data,
963 struct perf_event *event,
964 struct pt_regs *regs);
965
966 extern int perf_event_overflow(struct perf_event *event,
967 struct perf_sample_data *data,
968 struct pt_regs *regs);
969
970 extern void perf_event_output_forward(struct perf_event *event,
971 struct perf_sample_data *data,
972 struct pt_regs *regs);
973 extern void perf_event_output_backward(struct perf_event *event,
974 struct perf_sample_data *data,
975 struct pt_regs *regs);
976 extern void perf_event_output(struct perf_event *event,
977 struct perf_sample_data *data,
978 struct pt_regs *regs);
979
980 static inline bool
981 is_default_overflow_handler(struct perf_event *event)
982 {
983 if (likely(event->overflow_handler == perf_event_output_forward))
984 return true;
985 if (unlikely(event->overflow_handler == perf_event_output_backward))
986 return true;
987 return false;
988 }
989
990 extern void
991 perf_event_header__init_id(struct perf_event_header *header,
992 struct perf_sample_data *data,
993 struct perf_event *event);
994 extern void
995 perf_event__output_id_sample(struct perf_event *event,
996 struct perf_output_handle *handle,
997 struct perf_sample_data *sample);
998
999 extern void
1000 perf_log_lost_samples(struct perf_event *event, u64 lost);
1001
1002 static inline bool is_sampling_event(struct perf_event *event)
1003 {
1004 return event->attr.sample_period != 0;
1005 }
1006
1007 /*
1008 * Return 1 for a software event, 0 for a hardware event
1009 */
1010 static inline int is_software_event(struct perf_event *event)
1011 {
1012 return event->event_caps & PERF_EV_CAP_SOFTWARE;
1013 }
1014
1015 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1016
1017 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1018 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1019
1020 #ifndef perf_arch_fetch_caller_regs
1021 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1022 #endif
1023
1024 /*
1025 * Take a snapshot of the regs. Skip ip and frame pointer to
1026 * the nth caller. We only need a few of the regs:
1027 * - ip for PERF_SAMPLE_IP
1028 * - cs for user_mode() tests
1029 * - bp for callchains
1030 * - eflags, for future purposes, just in case
1031 */
1032 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1033 {
1034 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1035 }
1036
1037 static __always_inline void
1038 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1039 {
1040 if (static_key_false(&perf_swevent_enabled[event_id]))
1041 __perf_sw_event(event_id, nr, regs, addr);
1042 }
1043
1044 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1045
1046 /*
1047 * 'Special' version for the scheduler, it hard assumes no recursion,
1048 * which is guaranteed by us not actually scheduling inside other swevents
1049 * because those disable preemption.
1050 */
1051 static __always_inline void
1052 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1053 {
1054 if (static_key_false(&perf_swevent_enabled[event_id])) {
1055 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1056
1057 perf_fetch_caller_regs(regs);
1058 ___perf_sw_event(event_id, nr, regs, addr);
1059 }
1060 }
1061
1062 extern struct static_key_false perf_sched_events;
1063
1064 static __always_inline bool
1065 perf_sw_migrate_enabled(void)
1066 {
1067 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1068 return true;
1069 return false;
1070 }
1071
1072 static inline void perf_event_task_migrate(struct task_struct *task)
1073 {
1074 if (perf_sw_migrate_enabled())
1075 task->sched_migrated = 1;
1076 }
1077
1078 static inline void perf_event_task_sched_in(struct task_struct *prev,
1079 struct task_struct *task)
1080 {
1081 if (static_branch_unlikely(&perf_sched_events))
1082 __perf_event_task_sched_in(prev, task);
1083
1084 if (perf_sw_migrate_enabled() && task->sched_migrated) {
1085 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1086
1087 perf_fetch_caller_regs(regs);
1088 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1089 task->sched_migrated = 0;
1090 }
1091 }
1092
1093 static inline void perf_event_task_sched_out(struct task_struct *prev,
1094 struct task_struct *next)
1095 {
1096 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1097
1098 if (static_branch_unlikely(&perf_sched_events))
1099 __perf_event_task_sched_out(prev, next);
1100 }
1101
1102 extern void perf_event_mmap(struct vm_area_struct *vma);
1103 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1104 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1105 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1106
1107 extern void perf_event_exec(void);
1108 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1109 extern void perf_event_namespaces(struct task_struct *tsk);
1110 extern void perf_event_fork(struct task_struct *tsk);
1111
1112 /* Callchains */
1113 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1114
1115 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1116 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1117 extern struct perf_callchain_entry *
1118 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1119 u32 max_stack, bool crosstask, bool add_mark);
1120 extern int get_callchain_buffers(int max_stack);
1121 extern void put_callchain_buffers(void);
1122
1123 extern int sysctl_perf_event_max_stack;
1124 extern int sysctl_perf_event_max_contexts_per_stack;
1125
1126 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1127 {
1128 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1129 struct perf_callchain_entry *entry = ctx->entry;
1130 entry->ip[entry->nr++] = ip;
1131 ++ctx->contexts;
1132 return 0;
1133 } else {
1134 ctx->contexts_maxed = true;
1135 return -1; /* no more room, stop walking the stack */
1136 }
1137 }
1138
1139 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1140 {
1141 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1142 struct perf_callchain_entry *entry = ctx->entry;
1143 entry->ip[entry->nr++] = ip;
1144 ++ctx->nr;
1145 return 0;
1146 } else {
1147 return -1; /* no more room, stop walking the stack */
1148 }
1149 }
1150
1151 extern int sysctl_perf_event_paranoid;
1152 extern int sysctl_perf_event_mlock;
1153 extern int sysctl_perf_event_sample_rate;
1154 extern int sysctl_perf_cpu_time_max_percent;
1155
1156 extern void perf_sample_event_took(u64 sample_len_ns);
1157
1158 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1159 void __user *buffer, size_t *lenp,
1160 loff_t *ppos);
1161 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1162 void __user *buffer, size_t *lenp,
1163 loff_t *ppos);
1164
1165 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1166 void __user *buffer, size_t *lenp, loff_t *ppos);
1167
1168 static inline bool perf_paranoid_tracepoint_raw(void)
1169 {
1170 return sysctl_perf_event_paranoid > -1;
1171 }
1172
1173 static inline bool perf_paranoid_cpu(void)
1174 {
1175 return sysctl_perf_event_paranoid > 0;
1176 }
1177
1178 static inline bool perf_paranoid_kernel(void)
1179 {
1180 return sysctl_perf_event_paranoid > 1;
1181 }
1182
1183 extern void perf_event_init(void);
1184 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1185 int entry_size, struct pt_regs *regs,
1186 struct hlist_head *head, int rctx,
1187 struct task_struct *task, struct perf_event *event);
1188 extern void perf_bp_event(struct perf_event *event, void *data);
1189
1190 #ifndef perf_misc_flags
1191 # define perf_misc_flags(regs) \
1192 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1193 # define perf_instruction_pointer(regs) instruction_pointer(regs)
1194 #endif
1195
1196 static inline bool has_branch_stack(struct perf_event *event)
1197 {
1198 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1199 }
1200
1201 static inline bool needs_branch_stack(struct perf_event *event)
1202 {
1203 return event->attr.branch_sample_type != 0;
1204 }
1205
1206 static inline bool has_aux(struct perf_event *event)
1207 {
1208 return event->pmu->setup_aux;
1209 }
1210
1211 static inline bool is_write_backward(struct perf_event *event)
1212 {
1213 return !!event->attr.write_backward;
1214 }
1215
1216 static inline bool has_addr_filter(struct perf_event *event)
1217 {
1218 return event->pmu->nr_addr_filters;
1219 }
1220
1221 /*
1222 * An inherited event uses parent's filters
1223 */
1224 static inline struct perf_addr_filters_head *
1225 perf_event_addr_filters(struct perf_event *event)
1226 {
1227 struct perf_addr_filters_head *ifh = &event->addr_filters;
1228
1229 if (event->parent)
1230 ifh = &event->parent->addr_filters;
1231
1232 return ifh;
1233 }
1234
1235 extern void perf_event_addr_filters_sync(struct perf_event *event);
1236
1237 extern int perf_output_begin(struct perf_output_handle *handle,
1238 struct perf_event *event, unsigned int size);
1239 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1240 struct perf_event *event,
1241 unsigned int size);
1242 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1243 struct perf_event *event,
1244 unsigned int size);
1245
1246 extern void perf_output_end(struct perf_output_handle *handle);
1247 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1248 const void *buf, unsigned int len);
1249 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1250 unsigned int len);
1251 extern int perf_swevent_get_recursion_context(void);
1252 extern void perf_swevent_put_recursion_context(int rctx);
1253 extern u64 perf_swevent_set_period(struct perf_event *event);
1254 extern void perf_event_enable(struct perf_event *event);
1255 extern void perf_event_disable(struct perf_event *event);
1256 extern void perf_event_disable_local(struct perf_event *event);
1257 extern void perf_event_disable_inatomic(struct perf_event *event);
1258 extern void perf_event_task_tick(void);
1259 extern int perf_event_account_interrupt(struct perf_event *event);
1260 #else /* !CONFIG_PERF_EVENTS: */
1261 static inline void *
1262 perf_aux_output_begin(struct perf_output_handle *handle,
1263 struct perf_event *event) { return NULL; }
1264 static inline void
1265 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1266 { }
1267 static inline int
1268 perf_aux_output_skip(struct perf_output_handle *handle,
1269 unsigned long size) { return -EINVAL; }
1270 static inline void *
1271 perf_get_aux(struct perf_output_handle *handle) { return NULL; }
1272 static inline void
1273 perf_event_task_migrate(struct task_struct *task) { }
1274 static inline void
1275 perf_event_task_sched_in(struct task_struct *prev,
1276 struct task_struct *task) { }
1277 static inline void
1278 perf_event_task_sched_out(struct task_struct *prev,
1279 struct task_struct *next) { }
1280 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
1281 static inline void perf_event_exit_task(struct task_struct *child) { }
1282 static inline void perf_event_free_task(struct task_struct *task) { }
1283 static inline void perf_event_delayed_put(struct task_struct *task) { }
1284 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); }
1285 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1286 {
1287 return ERR_PTR(-EINVAL);
1288 }
1289 static inline int perf_event_read_local(struct perf_event *event, u64 *value)
1290 {
1291 return -EINVAL;
1292 }
1293 static inline void perf_event_print_debug(void) { }
1294 static inline int perf_event_task_disable(void) { return -EINVAL; }
1295 static inline int perf_event_task_enable(void) { return -EINVAL; }
1296 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1297 {
1298 return -EINVAL;
1299 }
1300
1301 static inline void
1302 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1303 static inline void
1304 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { }
1305 static inline void
1306 perf_bp_event(struct perf_event *event, void *data) { }
1307
1308 static inline int perf_register_guest_info_callbacks
1309 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1310 static inline int perf_unregister_guest_info_callbacks
1311 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1312
1313 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1314 static inline void perf_event_exec(void) { }
1315 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
1316 static inline void perf_event_namespaces(struct task_struct *tsk) { }
1317 static inline void perf_event_fork(struct task_struct *tsk) { }
1318 static inline void perf_event_init(void) { }
1319 static inline int perf_swevent_get_recursion_context(void) { return -1; }
1320 static inline void perf_swevent_put_recursion_context(int rctx) { }
1321 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
1322 static inline void perf_event_enable(struct perf_event *event) { }
1323 static inline void perf_event_disable(struct perf_event *event) { }
1324 static inline int __perf_event_disable(void *info) { return -1; }
1325 static inline void perf_event_task_tick(void) { }
1326 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; }
1327 #endif
1328
1329 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1330 extern void perf_restore_debug_store(void);
1331 #else
1332 static inline void perf_restore_debug_store(void) { }
1333 #endif
1334
1335 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1336 {
1337 return frag->pad < sizeof(u64);
1338 }
1339
1340 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1341
1342 struct perf_pmu_events_attr {
1343 struct device_attribute attr;
1344 u64 id;
1345 const char *event_str;
1346 };
1347
1348 struct perf_pmu_events_ht_attr {
1349 struct device_attribute attr;
1350 u64 id;
1351 const char *event_str_ht;
1352 const char *event_str_noht;
1353 };
1354
1355 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1356 char *page);
1357
1358 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
1359 static struct perf_pmu_events_attr _var = { \
1360 .attr = __ATTR(_name, 0444, _show, NULL), \
1361 .id = _id, \
1362 };
1363
1364 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
1365 static struct perf_pmu_events_attr _var = { \
1366 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1367 .id = 0, \
1368 .event_str = _str, \
1369 };
1370
1371 #define PMU_FORMAT_ATTR(_name, _format) \
1372 static ssize_t \
1373 _name##_show(struct device *dev, \
1374 struct device_attribute *attr, \
1375 char *page) \
1376 { \
1377 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1378 return sprintf(page, _format "\n"); \
1379 } \
1380 \
1381 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1382
1383 /* Performance counter hotplug functions */
1384 #ifdef CONFIG_PERF_EVENTS
1385 int perf_event_init_cpu(unsigned int cpu);
1386 int perf_event_exit_cpu(unsigned int cpu);
1387 #else
1388 #define perf_event_init_cpu NULL
1389 #define perf_event_exit_cpu NULL
1390 #endif
1391
1392 #endif /* _LINUX_PERF_EVENT_H */