]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/perf_event.h
Merge tag 'upstream-3.16-rc1-v2' of git://git.infradead.org/linux-ubifs
[mirror_ubuntu-bionic-kernel.git] / include / linux / perf_event.h
1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18
19 /*
20 * Kernel-internal data types and definitions:
21 */
22
23 #ifdef CONFIG_PERF_EVENTS
24 # include <asm/perf_event.h>
25 # include <asm/local64.h>
26 #endif
27
28 struct perf_guest_info_callbacks {
29 int (*is_in_guest)(void);
30 int (*is_user_mode)(void);
31 unsigned long (*get_guest_ip)(void);
32 };
33
34 #ifdef CONFIG_HAVE_HW_BREAKPOINT
35 #include <asm/hw_breakpoint.h>
36 #endif
37
38 #include <linux/list.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/rcupdate.h>
42 #include <linux/spinlock.h>
43 #include <linux/hrtimer.h>
44 #include <linux/fs.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/workqueue.h>
47 #include <linux/ftrace.h>
48 #include <linux/cpu.h>
49 #include <linux/irq_work.h>
50 #include <linux/static_key.h>
51 #include <linux/jump_label_ratelimit.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <asm/local.h>
56
57 struct perf_callchain_entry {
58 __u64 nr;
59 __u64 ip[PERF_MAX_STACK_DEPTH];
60 };
61
62 struct perf_raw_record {
63 u32 size;
64 void *data;
65 };
66
67 /*
68 * branch stack layout:
69 * nr: number of taken branches stored in entries[]
70 *
71 * Note that nr can vary from sample to sample
72 * branches (to, from) are stored from most recent
73 * to least recent, i.e., entries[0] contains the most
74 * recent branch.
75 */
76 struct perf_branch_stack {
77 __u64 nr;
78 struct perf_branch_entry entries[0];
79 };
80
81 struct perf_regs_user {
82 __u64 abi;
83 struct pt_regs *regs;
84 };
85
86 struct task_struct;
87
88 /*
89 * extra PMU register associated with an event
90 */
91 struct hw_perf_event_extra {
92 u64 config; /* register value */
93 unsigned int reg; /* register address or index */
94 int alloc; /* extra register already allocated */
95 int idx; /* index in shared_regs->regs[] */
96 };
97
98 struct event_constraint;
99
100 /**
101 * struct hw_perf_event - performance event hardware details:
102 */
103 struct hw_perf_event {
104 #ifdef CONFIG_PERF_EVENTS
105 union {
106 struct { /* hardware */
107 u64 config;
108 u64 last_tag;
109 unsigned long config_base;
110 unsigned long event_base;
111 int event_base_rdpmc;
112 int idx;
113 int last_cpu;
114 int flags;
115
116 struct hw_perf_event_extra extra_reg;
117 struct hw_perf_event_extra branch_reg;
118
119 struct event_constraint *constraint;
120 };
121 struct { /* software */
122 struct hrtimer hrtimer;
123 };
124 struct { /* tracepoint */
125 struct task_struct *tp_target;
126 /* for tp_event->class */
127 struct list_head tp_list;
128 };
129 #ifdef CONFIG_HAVE_HW_BREAKPOINT
130 struct { /* breakpoint */
131 /*
132 * Crufty hack to avoid the chicken and egg
133 * problem hw_breakpoint has with context
134 * creation and event initalization.
135 */
136 struct task_struct *bp_target;
137 struct arch_hw_breakpoint info;
138 struct list_head bp_list;
139 };
140 #endif
141 };
142 int state;
143 local64_t prev_count;
144 u64 sample_period;
145 u64 last_period;
146 local64_t period_left;
147 u64 interrupts_seq;
148 u64 interrupts;
149
150 u64 freq_time_stamp;
151 u64 freq_count_stamp;
152 #endif
153 };
154
155 /*
156 * hw_perf_event::state flags
157 */
158 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
159 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
160 #define PERF_HES_ARCH 0x04
161
162 struct perf_event;
163
164 /*
165 * Common implementation detail of pmu::{start,commit,cancel}_txn
166 */
167 #define PERF_EVENT_TXN 0x1
168
169 /**
170 * struct pmu - generic performance monitoring unit
171 */
172 struct pmu {
173 struct list_head entry;
174
175 struct module *module;
176 struct device *dev;
177 const struct attribute_group **attr_groups;
178 const char *name;
179 int type;
180
181 int * __percpu pmu_disable_count;
182 struct perf_cpu_context * __percpu pmu_cpu_context;
183 int task_ctx_nr;
184 int hrtimer_interval_ms;
185
186 /*
187 * Fully disable/enable this PMU, can be used to protect from the PMI
188 * as well as for lazy/batch writing of the MSRs.
189 */
190 void (*pmu_enable) (struct pmu *pmu); /* optional */
191 void (*pmu_disable) (struct pmu *pmu); /* optional */
192
193 /*
194 * Try and initialize the event for this PMU.
195 * Should return -ENOENT when the @event doesn't match this PMU.
196 */
197 int (*event_init) (struct perf_event *event);
198
199 #define PERF_EF_START 0x01 /* start the counter when adding */
200 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
201 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
202
203 /*
204 * Adds/Removes a counter to/from the PMU, can be done inside
205 * a transaction, see the ->*_txn() methods.
206 */
207 int (*add) (struct perf_event *event, int flags);
208 void (*del) (struct perf_event *event, int flags);
209
210 /*
211 * Starts/Stops a counter present on the PMU. The PMI handler
212 * should stop the counter when perf_event_overflow() returns
213 * !0. ->start() will be used to continue.
214 */
215 void (*start) (struct perf_event *event, int flags);
216 void (*stop) (struct perf_event *event, int flags);
217
218 /*
219 * Updates the counter value of the event.
220 */
221 void (*read) (struct perf_event *event);
222
223 /*
224 * Group events scheduling is treated as a transaction, add
225 * group events as a whole and perform one schedulability test.
226 * If the test fails, roll back the whole group
227 *
228 * Start the transaction, after this ->add() doesn't need to
229 * do schedulability tests.
230 */
231 void (*start_txn) (struct pmu *pmu); /* optional */
232 /*
233 * If ->start_txn() disabled the ->add() schedulability test
234 * then ->commit_txn() is required to perform one. On success
235 * the transaction is closed. On error the transaction is kept
236 * open until ->cancel_txn() is called.
237 */
238 int (*commit_txn) (struct pmu *pmu); /* optional */
239 /*
240 * Will cancel the transaction, assumes ->del() is called
241 * for each successful ->add() during the transaction.
242 */
243 void (*cancel_txn) (struct pmu *pmu); /* optional */
244
245 /*
246 * Will return the value for perf_event_mmap_page::index for this event,
247 * if no implementation is provided it will default to: event->hw.idx + 1.
248 */
249 int (*event_idx) (struct perf_event *event); /*optional */
250
251 /*
252 * flush branch stack on context-switches (needed in cpu-wide mode)
253 */
254 void (*flush_branch_stack) (void);
255 };
256
257 /**
258 * enum perf_event_active_state - the states of a event
259 */
260 enum perf_event_active_state {
261 PERF_EVENT_STATE_ERROR = -2,
262 PERF_EVENT_STATE_OFF = -1,
263 PERF_EVENT_STATE_INACTIVE = 0,
264 PERF_EVENT_STATE_ACTIVE = 1,
265 };
266
267 struct file;
268 struct perf_sample_data;
269
270 typedef void (*perf_overflow_handler_t)(struct perf_event *,
271 struct perf_sample_data *,
272 struct pt_regs *regs);
273
274 enum perf_group_flag {
275 PERF_GROUP_SOFTWARE = 0x1,
276 };
277
278 #define SWEVENT_HLIST_BITS 8
279 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
280
281 struct swevent_hlist {
282 struct hlist_head heads[SWEVENT_HLIST_SIZE];
283 struct rcu_head rcu_head;
284 };
285
286 #define PERF_ATTACH_CONTEXT 0x01
287 #define PERF_ATTACH_GROUP 0x02
288 #define PERF_ATTACH_TASK 0x04
289
290 struct perf_cgroup;
291 struct ring_buffer;
292
293 /**
294 * struct perf_event - performance event kernel representation:
295 */
296 struct perf_event {
297 #ifdef CONFIG_PERF_EVENTS
298 /*
299 * entry onto perf_event_context::event_list;
300 * modifications require ctx->lock
301 * RCU safe iterations.
302 */
303 struct list_head event_entry;
304
305 /*
306 * XXX: group_entry and sibling_list should be mutually exclusive;
307 * either you're a sibling on a group, or you're the group leader.
308 * Rework the code to always use the same list element.
309 *
310 * Locked for modification by both ctx->mutex and ctx->lock; holding
311 * either sufficies for read.
312 */
313 struct list_head group_entry;
314 struct list_head sibling_list;
315
316 /*
317 * We need storage to track the entries in perf_pmu_migrate_context; we
318 * cannot use the event_entry because of RCU and we want to keep the
319 * group in tact which avoids us using the other two entries.
320 */
321 struct list_head migrate_entry;
322
323 struct hlist_node hlist_entry;
324 struct list_head active_entry;
325 int nr_siblings;
326 int group_flags;
327 struct perf_event *group_leader;
328 struct pmu *pmu;
329
330 enum perf_event_active_state state;
331 unsigned int attach_state;
332 local64_t count;
333 atomic64_t child_count;
334
335 /*
336 * These are the total time in nanoseconds that the event
337 * has been enabled (i.e. eligible to run, and the task has
338 * been scheduled in, if this is a per-task event)
339 * and running (scheduled onto the CPU), respectively.
340 *
341 * They are computed from tstamp_enabled, tstamp_running and
342 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
343 */
344 u64 total_time_enabled;
345 u64 total_time_running;
346
347 /*
348 * These are timestamps used for computing total_time_enabled
349 * and total_time_running when the event is in INACTIVE or
350 * ACTIVE state, measured in nanoseconds from an arbitrary point
351 * in time.
352 * tstamp_enabled: the notional time when the event was enabled
353 * tstamp_running: the notional time when the event was scheduled on
354 * tstamp_stopped: in INACTIVE state, the notional time when the
355 * event was scheduled off.
356 */
357 u64 tstamp_enabled;
358 u64 tstamp_running;
359 u64 tstamp_stopped;
360
361 /*
362 * timestamp shadows the actual context timing but it can
363 * be safely used in NMI interrupt context. It reflects the
364 * context time as it was when the event was last scheduled in.
365 *
366 * ctx_time already accounts for ctx->timestamp. Therefore to
367 * compute ctx_time for a sample, simply add perf_clock().
368 */
369 u64 shadow_ctx_time;
370
371 struct perf_event_attr attr;
372 u16 header_size;
373 u16 id_header_size;
374 u16 read_size;
375 struct hw_perf_event hw;
376
377 struct perf_event_context *ctx;
378 atomic_long_t refcount;
379
380 /*
381 * These accumulate total time (in nanoseconds) that children
382 * events have been enabled and running, respectively.
383 */
384 atomic64_t child_total_time_enabled;
385 atomic64_t child_total_time_running;
386
387 /*
388 * Protect attach/detach and child_list:
389 */
390 struct mutex child_mutex;
391 struct list_head child_list;
392 struct perf_event *parent;
393
394 int oncpu;
395 int cpu;
396
397 struct list_head owner_entry;
398 struct task_struct *owner;
399
400 /* mmap bits */
401 struct mutex mmap_mutex;
402 atomic_t mmap_count;
403
404 struct ring_buffer *rb;
405 struct list_head rb_entry;
406 unsigned long rcu_batches;
407 int rcu_pending;
408
409 /* poll related */
410 wait_queue_head_t waitq;
411 struct fasync_struct *fasync;
412
413 /* delayed work for NMIs and such */
414 int pending_wakeup;
415 int pending_kill;
416 int pending_disable;
417 struct irq_work pending;
418
419 atomic_t event_limit;
420
421 void (*destroy)(struct perf_event *);
422 struct rcu_head rcu_head;
423
424 struct pid_namespace *ns;
425 u64 id;
426
427 perf_overflow_handler_t overflow_handler;
428 void *overflow_handler_context;
429
430 #ifdef CONFIG_EVENT_TRACING
431 struct ftrace_event_call *tp_event;
432 struct event_filter *filter;
433 #ifdef CONFIG_FUNCTION_TRACER
434 struct ftrace_ops ftrace_ops;
435 #endif
436 #endif
437
438 #ifdef CONFIG_CGROUP_PERF
439 struct perf_cgroup *cgrp; /* cgroup event is attach to */
440 int cgrp_defer_enabled;
441 #endif
442
443 #endif /* CONFIG_PERF_EVENTS */
444 };
445
446 enum perf_event_context_type {
447 task_context,
448 cpu_context,
449 };
450
451 /**
452 * struct perf_event_context - event context structure
453 *
454 * Used as a container for task events and CPU events as well:
455 */
456 struct perf_event_context {
457 struct pmu *pmu;
458 enum perf_event_context_type type;
459 /*
460 * Protect the states of the events in the list,
461 * nr_active, and the list:
462 */
463 raw_spinlock_t lock;
464 /*
465 * Protect the list of events. Locking either mutex or lock
466 * is sufficient to ensure the list doesn't change; to change
467 * the list you need to lock both the mutex and the spinlock.
468 */
469 struct mutex mutex;
470
471 struct list_head pinned_groups;
472 struct list_head flexible_groups;
473 struct list_head event_list;
474 int nr_events;
475 int nr_active;
476 int is_active;
477 int nr_stat;
478 int nr_freq;
479 int rotate_disable;
480 atomic_t refcount;
481 struct task_struct *task;
482
483 /*
484 * Context clock, runs when context enabled.
485 */
486 u64 time;
487 u64 timestamp;
488
489 /*
490 * These fields let us detect when two contexts have both
491 * been cloned (inherited) from a common ancestor.
492 */
493 struct perf_event_context *parent_ctx;
494 u64 parent_gen;
495 u64 generation;
496 int pin_count;
497 int nr_cgroups; /* cgroup evts */
498 int nr_branch_stack; /* branch_stack evt */
499 struct rcu_head rcu_head;
500 };
501
502 /*
503 * Number of contexts where an event can trigger:
504 * task, softirq, hardirq, nmi.
505 */
506 #define PERF_NR_CONTEXTS 4
507
508 /**
509 * struct perf_event_cpu_context - per cpu event context structure
510 */
511 struct perf_cpu_context {
512 struct perf_event_context ctx;
513 struct perf_event_context *task_ctx;
514 int active_oncpu;
515 int exclusive;
516 struct hrtimer hrtimer;
517 ktime_t hrtimer_interval;
518 struct list_head rotation_list;
519 struct pmu *unique_pmu;
520 struct perf_cgroup *cgrp;
521 };
522
523 struct perf_output_handle {
524 struct perf_event *event;
525 struct ring_buffer *rb;
526 unsigned long wakeup;
527 unsigned long size;
528 void *addr;
529 int page;
530 };
531
532 #ifdef CONFIG_PERF_EVENTS
533
534 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
535 extern void perf_pmu_unregister(struct pmu *pmu);
536
537 extern int perf_num_counters(void);
538 extern const char *perf_pmu_name(void);
539 extern void __perf_event_task_sched_in(struct task_struct *prev,
540 struct task_struct *task);
541 extern void __perf_event_task_sched_out(struct task_struct *prev,
542 struct task_struct *next);
543 extern int perf_event_init_task(struct task_struct *child);
544 extern void perf_event_exit_task(struct task_struct *child);
545 extern void perf_event_free_task(struct task_struct *task);
546 extern void perf_event_delayed_put(struct task_struct *task);
547 extern void perf_event_print_debug(void);
548 extern void perf_pmu_disable(struct pmu *pmu);
549 extern void perf_pmu_enable(struct pmu *pmu);
550 extern int perf_event_task_disable(void);
551 extern int perf_event_task_enable(void);
552 extern int perf_event_refresh(struct perf_event *event, int refresh);
553 extern void perf_event_update_userpage(struct perf_event *event);
554 extern int perf_event_release_kernel(struct perf_event *event);
555 extern struct perf_event *
556 perf_event_create_kernel_counter(struct perf_event_attr *attr,
557 int cpu,
558 struct task_struct *task,
559 perf_overflow_handler_t callback,
560 void *context);
561 extern void perf_pmu_migrate_context(struct pmu *pmu,
562 int src_cpu, int dst_cpu);
563 extern u64 perf_event_read_value(struct perf_event *event,
564 u64 *enabled, u64 *running);
565
566
567 struct perf_sample_data {
568 u64 type;
569
570 u64 ip;
571 struct {
572 u32 pid;
573 u32 tid;
574 } tid_entry;
575 u64 time;
576 u64 addr;
577 u64 id;
578 u64 stream_id;
579 struct {
580 u32 cpu;
581 u32 reserved;
582 } cpu_entry;
583 u64 period;
584 union perf_mem_data_src data_src;
585 struct perf_callchain_entry *callchain;
586 struct perf_raw_record *raw;
587 struct perf_branch_stack *br_stack;
588 struct perf_regs_user regs_user;
589 u64 stack_user_size;
590 u64 weight;
591 /*
592 * Transaction flags for abort events:
593 */
594 u64 txn;
595 };
596
597 static inline void perf_sample_data_init(struct perf_sample_data *data,
598 u64 addr, u64 period)
599 {
600 /* remaining struct members initialized in perf_prepare_sample() */
601 data->addr = addr;
602 data->raw = NULL;
603 data->br_stack = NULL;
604 data->period = period;
605 data->regs_user.abi = PERF_SAMPLE_REGS_ABI_NONE;
606 data->regs_user.regs = NULL;
607 data->stack_user_size = 0;
608 data->weight = 0;
609 data->data_src.val = 0;
610 data->txn = 0;
611 }
612
613 extern void perf_output_sample(struct perf_output_handle *handle,
614 struct perf_event_header *header,
615 struct perf_sample_data *data,
616 struct perf_event *event);
617 extern void perf_prepare_sample(struct perf_event_header *header,
618 struct perf_sample_data *data,
619 struct perf_event *event,
620 struct pt_regs *regs);
621
622 extern int perf_event_overflow(struct perf_event *event,
623 struct perf_sample_data *data,
624 struct pt_regs *regs);
625
626 static inline bool is_sampling_event(struct perf_event *event)
627 {
628 return event->attr.sample_period != 0;
629 }
630
631 /*
632 * Return 1 for a software event, 0 for a hardware event
633 */
634 static inline int is_software_event(struct perf_event *event)
635 {
636 return event->pmu->task_ctx_nr == perf_sw_context;
637 }
638
639 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
640
641 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
642
643 #ifndef perf_arch_fetch_caller_regs
644 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
645 #endif
646
647 /*
648 * Take a snapshot of the regs. Skip ip and frame pointer to
649 * the nth caller. We only need a few of the regs:
650 * - ip for PERF_SAMPLE_IP
651 * - cs for user_mode() tests
652 * - bp for callchains
653 * - eflags, for future purposes, just in case
654 */
655 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
656 {
657 memset(regs, 0, sizeof(*regs));
658
659 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
660 }
661
662 static __always_inline void
663 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
664 {
665 struct pt_regs hot_regs;
666
667 if (static_key_false(&perf_swevent_enabled[event_id])) {
668 if (!regs) {
669 perf_fetch_caller_regs(&hot_regs);
670 regs = &hot_regs;
671 }
672 __perf_sw_event(event_id, nr, regs, addr);
673 }
674 }
675
676 extern struct static_key_deferred perf_sched_events;
677
678 static inline void perf_event_task_sched_in(struct task_struct *prev,
679 struct task_struct *task)
680 {
681 if (static_key_false(&perf_sched_events.key))
682 __perf_event_task_sched_in(prev, task);
683 }
684
685 static inline void perf_event_task_sched_out(struct task_struct *prev,
686 struct task_struct *next)
687 {
688 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0);
689
690 if (static_key_false(&perf_sched_events.key))
691 __perf_event_task_sched_out(prev, next);
692 }
693
694 extern void perf_event_mmap(struct vm_area_struct *vma);
695 extern struct perf_guest_info_callbacks *perf_guest_cbs;
696 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
697 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
698
699 extern void perf_event_comm(struct task_struct *tsk);
700 extern void perf_event_fork(struct task_struct *tsk);
701
702 /* Callchains */
703 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
704
705 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
706 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
707
708 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
709 {
710 if (entry->nr < PERF_MAX_STACK_DEPTH)
711 entry->ip[entry->nr++] = ip;
712 }
713
714 extern int sysctl_perf_event_paranoid;
715 extern int sysctl_perf_event_mlock;
716 extern int sysctl_perf_event_sample_rate;
717 extern int sysctl_perf_cpu_time_max_percent;
718
719 extern void perf_sample_event_took(u64 sample_len_ns);
720
721 extern int perf_proc_update_handler(struct ctl_table *table, int write,
722 void __user *buffer, size_t *lenp,
723 loff_t *ppos);
724 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
725 void __user *buffer, size_t *lenp,
726 loff_t *ppos);
727
728
729 static inline bool perf_paranoid_tracepoint_raw(void)
730 {
731 return sysctl_perf_event_paranoid > -1;
732 }
733
734 static inline bool perf_paranoid_cpu(void)
735 {
736 return sysctl_perf_event_paranoid > 0;
737 }
738
739 static inline bool perf_paranoid_kernel(void)
740 {
741 return sysctl_perf_event_paranoid > 1;
742 }
743
744 extern void perf_event_init(void);
745 extern void perf_tp_event(u64 addr, u64 count, void *record,
746 int entry_size, struct pt_regs *regs,
747 struct hlist_head *head, int rctx,
748 struct task_struct *task);
749 extern void perf_bp_event(struct perf_event *event, void *data);
750
751 #ifndef perf_misc_flags
752 # define perf_misc_flags(regs) \
753 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
754 # define perf_instruction_pointer(regs) instruction_pointer(regs)
755 #endif
756
757 static inline bool has_branch_stack(struct perf_event *event)
758 {
759 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
760 }
761
762 extern int perf_output_begin(struct perf_output_handle *handle,
763 struct perf_event *event, unsigned int size);
764 extern void perf_output_end(struct perf_output_handle *handle);
765 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
766 const void *buf, unsigned int len);
767 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
768 unsigned int len);
769 extern int perf_swevent_get_recursion_context(void);
770 extern void perf_swevent_put_recursion_context(int rctx);
771 extern u64 perf_swevent_set_period(struct perf_event *event);
772 extern void perf_event_enable(struct perf_event *event);
773 extern void perf_event_disable(struct perf_event *event);
774 extern int __perf_event_disable(void *info);
775 extern void perf_event_task_tick(void);
776 #else
777 static inline void
778 perf_event_task_sched_in(struct task_struct *prev,
779 struct task_struct *task) { }
780 static inline void
781 perf_event_task_sched_out(struct task_struct *prev,
782 struct task_struct *next) { }
783 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
784 static inline void perf_event_exit_task(struct task_struct *child) { }
785 static inline void perf_event_free_task(struct task_struct *task) { }
786 static inline void perf_event_delayed_put(struct task_struct *task) { }
787 static inline void perf_event_print_debug(void) { }
788 static inline int perf_event_task_disable(void) { return -EINVAL; }
789 static inline int perf_event_task_enable(void) { return -EINVAL; }
790 static inline int perf_event_refresh(struct perf_event *event, int refresh)
791 {
792 return -EINVAL;
793 }
794
795 static inline void
796 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
797 static inline void
798 perf_bp_event(struct perf_event *event, void *data) { }
799
800 static inline int perf_register_guest_info_callbacks
801 (struct perf_guest_info_callbacks *callbacks) { return 0; }
802 static inline int perf_unregister_guest_info_callbacks
803 (struct perf_guest_info_callbacks *callbacks) { return 0; }
804
805 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
806 static inline void perf_event_comm(struct task_struct *tsk) { }
807 static inline void perf_event_fork(struct task_struct *tsk) { }
808 static inline void perf_event_init(void) { }
809 static inline int perf_swevent_get_recursion_context(void) { return -1; }
810 static inline void perf_swevent_put_recursion_context(int rctx) { }
811 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
812 static inline void perf_event_enable(struct perf_event *event) { }
813 static inline void perf_event_disable(struct perf_event *event) { }
814 static inline int __perf_event_disable(void *info) { return -1; }
815 static inline void perf_event_task_tick(void) { }
816 #endif
817
818 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_NO_HZ_FULL)
819 extern bool perf_event_can_stop_tick(void);
820 #else
821 static inline bool perf_event_can_stop_tick(void) { return true; }
822 #endif
823
824 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
825 extern void perf_restore_debug_store(void);
826 #else
827 static inline void perf_restore_debug_store(void) { }
828 #endif
829
830 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
831
832 /*
833 * This has to have a higher priority than migration_notifier in sched/core.c.
834 */
835 #define perf_cpu_notifier(fn) \
836 do { \
837 static struct notifier_block fn##_nb = \
838 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
839 unsigned long cpu = smp_processor_id(); \
840 unsigned long flags; \
841 \
842 cpu_notifier_register_begin(); \
843 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
844 (void *)(unsigned long)cpu); \
845 local_irq_save(flags); \
846 fn(&fn##_nb, (unsigned long)CPU_STARTING, \
847 (void *)(unsigned long)cpu); \
848 local_irq_restore(flags); \
849 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
850 (void *)(unsigned long)cpu); \
851 __register_cpu_notifier(&fn##_nb); \
852 cpu_notifier_register_done(); \
853 } while (0)
854
855 /*
856 * Bare-bones version of perf_cpu_notifier(), which doesn't invoke the
857 * callback for already online CPUs.
858 */
859 #define __perf_cpu_notifier(fn) \
860 do { \
861 static struct notifier_block fn##_nb = \
862 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
863 \
864 __register_cpu_notifier(&fn##_nb); \
865 } while (0)
866
867 struct perf_pmu_events_attr {
868 struct device_attribute attr;
869 u64 id;
870 const char *event_str;
871 };
872
873 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
874 static struct perf_pmu_events_attr _var = { \
875 .attr = __ATTR(_name, 0444, _show, NULL), \
876 .id = _id, \
877 };
878
879 #define PMU_FORMAT_ATTR(_name, _format) \
880 static ssize_t \
881 _name##_show(struct device *dev, \
882 struct device_attribute *attr, \
883 char *page) \
884 { \
885 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
886 return sprintf(page, _format "\n"); \
887 } \
888 \
889 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
890
891 #endif /* _LINUX_PERF_EVENT_H */