]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/perf_event.h
Merge branch 'pm-domains'
[mirror_ubuntu-artful-kernel.git] / include / linux / perf_event.h
1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18
19 /*
20 * Kernel-internal data types and definitions:
21 */
22
23 #ifdef CONFIG_PERF_EVENTS
24 # include <asm/perf_event.h>
25 # include <asm/local64.h>
26 #endif
27
28 struct perf_guest_info_callbacks {
29 int (*is_in_guest)(void);
30 int (*is_user_mode)(void);
31 unsigned long (*get_guest_ip)(void);
32 };
33
34 #ifdef CONFIG_HAVE_HW_BREAKPOINT
35 #include <asm/hw_breakpoint.h>
36 #endif
37
38 #include <linux/list.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/rcupdate.h>
42 #include <linux/spinlock.h>
43 #include <linux/hrtimer.h>
44 #include <linux/fs.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/workqueue.h>
47 #include <linux/ftrace.h>
48 #include <linux/cpu.h>
49 #include <linux/irq_work.h>
50 #include <linux/static_key.h>
51 #include <linux/jump_label_ratelimit.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <linux/workqueue.h>
56 #include <linux/cgroup.h>
57 #include <asm/local.h>
58
59 struct perf_callchain_entry {
60 __u64 nr;
61 __u64 ip[PERF_MAX_STACK_DEPTH];
62 };
63
64 struct perf_raw_record {
65 u32 size;
66 void *data;
67 };
68
69 /*
70 * branch stack layout:
71 * nr: number of taken branches stored in entries[]
72 *
73 * Note that nr can vary from sample to sample
74 * branches (to, from) are stored from most recent
75 * to least recent, i.e., entries[0] contains the most
76 * recent branch.
77 */
78 struct perf_branch_stack {
79 __u64 nr;
80 struct perf_branch_entry entries[0];
81 };
82
83 struct task_struct;
84
85 /*
86 * extra PMU register associated with an event
87 */
88 struct hw_perf_event_extra {
89 u64 config; /* register value */
90 unsigned int reg; /* register address or index */
91 int alloc; /* extra register already allocated */
92 int idx; /* index in shared_regs->regs[] */
93 };
94
95 /**
96 * struct hw_perf_event - performance event hardware details:
97 */
98 struct hw_perf_event {
99 #ifdef CONFIG_PERF_EVENTS
100 union {
101 struct { /* hardware */
102 u64 config;
103 u64 last_tag;
104 unsigned long config_base;
105 unsigned long event_base;
106 int event_base_rdpmc;
107 int idx;
108 int last_cpu;
109 int flags;
110
111 struct hw_perf_event_extra extra_reg;
112 struct hw_perf_event_extra branch_reg;
113 };
114 struct { /* software */
115 struct hrtimer hrtimer;
116 };
117 struct { /* tracepoint */
118 /* for tp_event->class */
119 struct list_head tp_list;
120 };
121 struct { /* intel_cqm */
122 int cqm_state;
123 u32 cqm_rmid;
124 struct list_head cqm_events_entry;
125 struct list_head cqm_groups_entry;
126 struct list_head cqm_group_entry;
127 };
128 struct { /* itrace */
129 int itrace_started;
130 };
131 #ifdef CONFIG_HAVE_HW_BREAKPOINT
132 struct { /* breakpoint */
133 /*
134 * Crufty hack to avoid the chicken and egg
135 * problem hw_breakpoint has with context
136 * creation and event initalization.
137 */
138 struct arch_hw_breakpoint info;
139 struct list_head bp_list;
140 };
141 #endif
142 };
143 /*
144 * If the event is a per task event, this will point to the task in
145 * question. See the comment in perf_event_alloc().
146 */
147 struct task_struct *target;
148
149 /*
150 * hw_perf_event::state flags; used to track the PERF_EF_* state.
151 */
152 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
153 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
154 #define PERF_HES_ARCH 0x04
155
156 int state;
157
158 /*
159 * The last observed hardware counter value, updated with a
160 * local64_cmpxchg() such that pmu::read() can be called nested.
161 */
162 local64_t prev_count;
163
164 /*
165 * The period to start the next sample with.
166 */
167 u64 sample_period;
168
169 /*
170 * The period we started this sample with.
171 */
172 u64 last_period;
173
174 /*
175 * However much is left of the current period; note that this is
176 * a full 64bit value and allows for generation of periods longer
177 * than hardware might allow.
178 */
179 local64_t period_left;
180
181 /*
182 * State for throttling the event, see __perf_event_overflow() and
183 * perf_adjust_freq_unthr_context().
184 */
185 u64 interrupts_seq;
186 u64 interrupts;
187
188 /*
189 * State for freq target events, see __perf_event_overflow() and
190 * perf_adjust_freq_unthr_context().
191 */
192 u64 freq_time_stamp;
193 u64 freq_count_stamp;
194 #endif
195 };
196
197 struct perf_event;
198
199 /*
200 * Common implementation detail of pmu::{start,commit,cancel}_txn
201 */
202 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */
203 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */
204
205 /**
206 * pmu::capabilities flags
207 */
208 #define PERF_PMU_CAP_NO_INTERRUPT 0x01
209 #define PERF_PMU_CAP_NO_NMI 0x02
210 #define PERF_PMU_CAP_AUX_NO_SG 0x04
211 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF 0x08
212 #define PERF_PMU_CAP_EXCLUSIVE 0x10
213 #define PERF_PMU_CAP_ITRACE 0x20
214
215 /**
216 * struct pmu - generic performance monitoring unit
217 */
218 struct pmu {
219 struct list_head entry;
220
221 struct module *module;
222 struct device *dev;
223 const struct attribute_group **attr_groups;
224 const char *name;
225 int type;
226
227 /*
228 * various common per-pmu feature flags
229 */
230 int capabilities;
231
232 int * __percpu pmu_disable_count;
233 struct perf_cpu_context * __percpu pmu_cpu_context;
234 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
235 int task_ctx_nr;
236 int hrtimer_interval_ms;
237
238 /*
239 * Fully disable/enable this PMU, can be used to protect from the PMI
240 * as well as for lazy/batch writing of the MSRs.
241 */
242 void (*pmu_enable) (struct pmu *pmu); /* optional */
243 void (*pmu_disable) (struct pmu *pmu); /* optional */
244
245 /*
246 * Try and initialize the event for this PMU.
247 *
248 * Returns:
249 * -ENOENT -- @event is not for this PMU
250 *
251 * -ENODEV -- @event is for this PMU but PMU not present
252 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable
253 * -EINVAL -- @event is for this PMU but @event is not valid
254 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
255 * -EACCESS -- @event is for this PMU, @event is valid, but no privilidges
256 *
257 * 0 -- @event is for this PMU and valid
258 *
259 * Other error return values are allowed.
260 */
261 int (*event_init) (struct perf_event *event);
262
263 /*
264 * Notification that the event was mapped or unmapped. Called
265 * in the context of the mapping task.
266 */
267 void (*event_mapped) (struct perf_event *event); /*optional*/
268 void (*event_unmapped) (struct perf_event *event); /*optional*/
269
270 /*
271 * Flags for ->add()/->del()/ ->start()/->stop(). There are
272 * matching hw_perf_event::state flags.
273 */
274 #define PERF_EF_START 0x01 /* start the counter when adding */
275 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
276 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
277
278 /*
279 * Adds/Removes a counter to/from the PMU, can be done inside a
280 * transaction, see the ->*_txn() methods.
281 *
282 * The add/del callbacks will reserve all hardware resources required
283 * to service the event, this includes any counter constraint
284 * scheduling etc.
285 *
286 * Called with IRQs disabled and the PMU disabled on the CPU the event
287 * is on.
288 *
289 * ->add() called without PERF_EF_START should result in the same state
290 * as ->add() followed by ->stop().
291 *
292 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
293 * ->stop() that must deal with already being stopped without
294 * PERF_EF_UPDATE.
295 */
296 int (*add) (struct perf_event *event, int flags);
297 void (*del) (struct perf_event *event, int flags);
298
299 /*
300 * Starts/Stops a counter present on the PMU.
301 *
302 * The PMI handler should stop the counter when perf_event_overflow()
303 * returns !0. ->start() will be used to continue.
304 *
305 * Also used to change the sample period.
306 *
307 * Called with IRQs disabled and the PMU disabled on the CPU the event
308 * is on -- will be called from NMI context with the PMU generates
309 * NMIs.
310 *
311 * ->stop() with PERF_EF_UPDATE will read the counter and update
312 * period/count values like ->read() would.
313 *
314 * ->start() with PERF_EF_RELOAD will reprogram the the counter
315 * value, must be preceded by a ->stop() with PERF_EF_UPDATE.
316 */
317 void (*start) (struct perf_event *event, int flags);
318 void (*stop) (struct perf_event *event, int flags);
319
320 /*
321 * Updates the counter value of the event.
322 *
323 * For sampling capable PMUs this will also update the software period
324 * hw_perf_event::period_left field.
325 */
326 void (*read) (struct perf_event *event);
327
328 /*
329 * Group events scheduling is treated as a transaction, add
330 * group events as a whole and perform one schedulability test.
331 * If the test fails, roll back the whole group
332 *
333 * Start the transaction, after this ->add() doesn't need to
334 * do schedulability tests.
335 *
336 * Optional.
337 */
338 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags);
339 /*
340 * If ->start_txn() disabled the ->add() schedulability test
341 * then ->commit_txn() is required to perform one. On success
342 * the transaction is closed. On error the transaction is kept
343 * open until ->cancel_txn() is called.
344 *
345 * Optional.
346 */
347 int (*commit_txn) (struct pmu *pmu);
348 /*
349 * Will cancel the transaction, assumes ->del() is called
350 * for each successful ->add() during the transaction.
351 *
352 * Optional.
353 */
354 void (*cancel_txn) (struct pmu *pmu);
355
356 /*
357 * Will return the value for perf_event_mmap_page::index for this event,
358 * if no implementation is provided it will default to: event->hw.idx + 1.
359 */
360 int (*event_idx) (struct perf_event *event); /*optional */
361
362 /*
363 * context-switches callback
364 */
365 void (*sched_task) (struct perf_event_context *ctx,
366 bool sched_in);
367 /*
368 * PMU specific data size
369 */
370 size_t task_ctx_size;
371
372
373 /*
374 * Return the count value for a counter.
375 */
376 u64 (*count) (struct perf_event *event); /*optional*/
377
378 /*
379 * Set up pmu-private data structures for an AUX area
380 */
381 void *(*setup_aux) (int cpu, void **pages,
382 int nr_pages, bool overwrite);
383 /* optional */
384
385 /*
386 * Free pmu-private AUX data structures
387 */
388 void (*free_aux) (void *aux); /* optional */
389
390 /*
391 * Filter events for PMU-specific reasons.
392 */
393 int (*filter_match) (struct perf_event *event); /* optional */
394 };
395
396 /**
397 * enum perf_event_active_state - the states of a event
398 */
399 enum perf_event_active_state {
400 PERF_EVENT_STATE_EXIT = -3,
401 PERF_EVENT_STATE_ERROR = -2,
402 PERF_EVENT_STATE_OFF = -1,
403 PERF_EVENT_STATE_INACTIVE = 0,
404 PERF_EVENT_STATE_ACTIVE = 1,
405 };
406
407 struct file;
408 struct perf_sample_data;
409
410 typedef void (*perf_overflow_handler_t)(struct perf_event *,
411 struct perf_sample_data *,
412 struct pt_regs *regs);
413
414 enum perf_group_flag {
415 PERF_GROUP_SOFTWARE = 0x1,
416 };
417
418 #define SWEVENT_HLIST_BITS 8
419 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
420
421 struct swevent_hlist {
422 struct hlist_head heads[SWEVENT_HLIST_SIZE];
423 struct rcu_head rcu_head;
424 };
425
426 #define PERF_ATTACH_CONTEXT 0x01
427 #define PERF_ATTACH_GROUP 0x02
428 #define PERF_ATTACH_TASK 0x04
429 #define PERF_ATTACH_TASK_DATA 0x08
430
431 struct perf_cgroup;
432 struct ring_buffer;
433
434 /**
435 * struct perf_event - performance event kernel representation:
436 */
437 struct perf_event {
438 #ifdef CONFIG_PERF_EVENTS
439 /*
440 * entry onto perf_event_context::event_list;
441 * modifications require ctx->lock
442 * RCU safe iterations.
443 */
444 struct list_head event_entry;
445
446 /*
447 * XXX: group_entry and sibling_list should be mutually exclusive;
448 * either you're a sibling on a group, or you're the group leader.
449 * Rework the code to always use the same list element.
450 *
451 * Locked for modification by both ctx->mutex and ctx->lock; holding
452 * either sufficies for read.
453 */
454 struct list_head group_entry;
455 struct list_head sibling_list;
456
457 /*
458 * We need storage to track the entries in perf_pmu_migrate_context; we
459 * cannot use the event_entry because of RCU and we want to keep the
460 * group in tact which avoids us using the other two entries.
461 */
462 struct list_head migrate_entry;
463
464 struct hlist_node hlist_entry;
465 struct list_head active_entry;
466 int nr_siblings;
467 int group_flags;
468 struct perf_event *group_leader;
469 struct pmu *pmu;
470
471 enum perf_event_active_state state;
472 unsigned int attach_state;
473 local64_t count;
474 atomic64_t child_count;
475
476 /*
477 * These are the total time in nanoseconds that the event
478 * has been enabled (i.e. eligible to run, and the task has
479 * been scheduled in, if this is a per-task event)
480 * and running (scheduled onto the CPU), respectively.
481 *
482 * They are computed from tstamp_enabled, tstamp_running and
483 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
484 */
485 u64 total_time_enabled;
486 u64 total_time_running;
487
488 /*
489 * These are timestamps used for computing total_time_enabled
490 * and total_time_running when the event is in INACTIVE or
491 * ACTIVE state, measured in nanoseconds from an arbitrary point
492 * in time.
493 * tstamp_enabled: the notional time when the event was enabled
494 * tstamp_running: the notional time when the event was scheduled on
495 * tstamp_stopped: in INACTIVE state, the notional time when the
496 * event was scheduled off.
497 */
498 u64 tstamp_enabled;
499 u64 tstamp_running;
500 u64 tstamp_stopped;
501
502 /*
503 * timestamp shadows the actual context timing but it can
504 * be safely used in NMI interrupt context. It reflects the
505 * context time as it was when the event was last scheduled in.
506 *
507 * ctx_time already accounts for ctx->timestamp. Therefore to
508 * compute ctx_time for a sample, simply add perf_clock().
509 */
510 u64 shadow_ctx_time;
511
512 struct perf_event_attr attr;
513 u16 header_size;
514 u16 id_header_size;
515 u16 read_size;
516 struct hw_perf_event hw;
517
518 struct perf_event_context *ctx;
519 atomic_long_t refcount;
520
521 /*
522 * These accumulate total time (in nanoseconds) that children
523 * events have been enabled and running, respectively.
524 */
525 atomic64_t child_total_time_enabled;
526 atomic64_t child_total_time_running;
527
528 /*
529 * Protect attach/detach and child_list:
530 */
531 struct mutex child_mutex;
532 struct list_head child_list;
533 struct perf_event *parent;
534
535 int oncpu;
536 int cpu;
537
538 struct list_head owner_entry;
539 struct task_struct *owner;
540
541 /* mmap bits */
542 struct mutex mmap_mutex;
543 atomic_t mmap_count;
544
545 struct ring_buffer *rb;
546 struct list_head rb_entry;
547 unsigned long rcu_batches;
548 int rcu_pending;
549
550 /* poll related */
551 wait_queue_head_t waitq;
552 struct fasync_struct *fasync;
553
554 /* delayed work for NMIs and such */
555 int pending_wakeup;
556 int pending_kill;
557 int pending_disable;
558 struct irq_work pending;
559
560 atomic_t event_limit;
561
562 void (*destroy)(struct perf_event *);
563 struct rcu_head rcu_head;
564
565 struct pid_namespace *ns;
566 u64 id;
567
568 u64 (*clock)(void);
569 perf_overflow_handler_t overflow_handler;
570 void *overflow_handler_context;
571
572 #ifdef CONFIG_EVENT_TRACING
573 struct trace_event_call *tp_event;
574 struct event_filter *filter;
575 #ifdef CONFIG_FUNCTION_TRACER
576 struct ftrace_ops ftrace_ops;
577 #endif
578 #endif
579
580 #ifdef CONFIG_CGROUP_PERF
581 struct perf_cgroup *cgrp; /* cgroup event is attach to */
582 int cgrp_defer_enabled;
583 #endif
584
585 #endif /* CONFIG_PERF_EVENTS */
586 };
587
588 /**
589 * struct perf_event_context - event context structure
590 *
591 * Used as a container for task events and CPU events as well:
592 */
593 struct perf_event_context {
594 struct pmu *pmu;
595 /*
596 * Protect the states of the events in the list,
597 * nr_active, and the list:
598 */
599 raw_spinlock_t lock;
600 /*
601 * Protect the list of events. Locking either mutex or lock
602 * is sufficient to ensure the list doesn't change; to change
603 * the list you need to lock both the mutex and the spinlock.
604 */
605 struct mutex mutex;
606
607 struct list_head active_ctx_list;
608 struct list_head pinned_groups;
609 struct list_head flexible_groups;
610 struct list_head event_list;
611 int nr_events;
612 int nr_active;
613 int is_active;
614 int nr_stat;
615 int nr_freq;
616 int rotate_disable;
617 atomic_t refcount;
618 struct task_struct *task;
619
620 /*
621 * Context clock, runs when context enabled.
622 */
623 u64 time;
624 u64 timestamp;
625
626 /*
627 * These fields let us detect when two contexts have both
628 * been cloned (inherited) from a common ancestor.
629 */
630 struct perf_event_context *parent_ctx;
631 u64 parent_gen;
632 u64 generation;
633 int pin_count;
634 int nr_cgroups; /* cgroup evts */
635 void *task_ctx_data; /* pmu specific data */
636 struct rcu_head rcu_head;
637
638 struct delayed_work orphans_remove;
639 bool orphans_remove_sched;
640 };
641
642 /*
643 * Number of contexts where an event can trigger:
644 * task, softirq, hardirq, nmi.
645 */
646 #define PERF_NR_CONTEXTS 4
647
648 /**
649 * struct perf_event_cpu_context - per cpu event context structure
650 */
651 struct perf_cpu_context {
652 struct perf_event_context ctx;
653 struct perf_event_context *task_ctx;
654 int active_oncpu;
655 int exclusive;
656
657 raw_spinlock_t hrtimer_lock;
658 struct hrtimer hrtimer;
659 ktime_t hrtimer_interval;
660 unsigned int hrtimer_active;
661
662 struct pmu *unique_pmu;
663 struct perf_cgroup *cgrp;
664 };
665
666 struct perf_output_handle {
667 struct perf_event *event;
668 struct ring_buffer *rb;
669 unsigned long wakeup;
670 unsigned long size;
671 union {
672 void *addr;
673 unsigned long head;
674 };
675 int page;
676 };
677
678 #ifdef CONFIG_CGROUP_PERF
679
680 /*
681 * perf_cgroup_info keeps track of time_enabled for a cgroup.
682 * This is a per-cpu dynamically allocated data structure.
683 */
684 struct perf_cgroup_info {
685 u64 time;
686 u64 timestamp;
687 };
688
689 struct perf_cgroup {
690 struct cgroup_subsys_state css;
691 struct perf_cgroup_info __percpu *info;
692 };
693
694 /*
695 * Must ensure cgroup is pinned (css_get) before calling
696 * this function. In other words, we cannot call this function
697 * if there is no cgroup event for the current CPU context.
698 */
699 static inline struct perf_cgroup *
700 perf_cgroup_from_task(struct task_struct *task)
701 {
702 return container_of(task_css(task, perf_event_cgrp_id),
703 struct perf_cgroup, css);
704 }
705 #endif /* CONFIG_CGROUP_PERF */
706
707 #ifdef CONFIG_PERF_EVENTS
708
709 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
710 struct perf_event *event);
711 extern void perf_aux_output_end(struct perf_output_handle *handle,
712 unsigned long size, bool truncated);
713 extern int perf_aux_output_skip(struct perf_output_handle *handle,
714 unsigned long size);
715 extern void *perf_get_aux(struct perf_output_handle *handle);
716
717 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
718 extern void perf_pmu_unregister(struct pmu *pmu);
719
720 extern int perf_num_counters(void);
721 extern const char *perf_pmu_name(void);
722 extern void __perf_event_task_sched_in(struct task_struct *prev,
723 struct task_struct *task);
724 extern void __perf_event_task_sched_out(struct task_struct *prev,
725 struct task_struct *next);
726 extern int perf_event_init_task(struct task_struct *child);
727 extern void perf_event_exit_task(struct task_struct *child);
728 extern void perf_event_free_task(struct task_struct *task);
729 extern void perf_event_delayed_put(struct task_struct *task);
730 extern struct perf_event *perf_event_get(unsigned int fd);
731 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
732 extern void perf_event_print_debug(void);
733 extern void perf_pmu_disable(struct pmu *pmu);
734 extern void perf_pmu_enable(struct pmu *pmu);
735 extern void perf_sched_cb_dec(struct pmu *pmu);
736 extern void perf_sched_cb_inc(struct pmu *pmu);
737 extern int perf_event_task_disable(void);
738 extern int perf_event_task_enable(void);
739 extern int perf_event_refresh(struct perf_event *event, int refresh);
740 extern void perf_event_update_userpage(struct perf_event *event);
741 extern int perf_event_release_kernel(struct perf_event *event);
742 extern struct perf_event *
743 perf_event_create_kernel_counter(struct perf_event_attr *attr,
744 int cpu,
745 struct task_struct *task,
746 perf_overflow_handler_t callback,
747 void *context);
748 extern void perf_pmu_migrate_context(struct pmu *pmu,
749 int src_cpu, int dst_cpu);
750 extern u64 perf_event_read_local(struct perf_event *event);
751 extern u64 perf_event_read_value(struct perf_event *event,
752 u64 *enabled, u64 *running);
753
754
755 struct perf_sample_data {
756 /*
757 * Fields set by perf_sample_data_init(), group so as to
758 * minimize the cachelines touched.
759 */
760 u64 addr;
761 struct perf_raw_record *raw;
762 struct perf_branch_stack *br_stack;
763 u64 period;
764 u64 weight;
765 u64 txn;
766 union perf_mem_data_src data_src;
767
768 /*
769 * The other fields, optionally {set,used} by
770 * perf_{prepare,output}_sample().
771 */
772 u64 type;
773 u64 ip;
774 struct {
775 u32 pid;
776 u32 tid;
777 } tid_entry;
778 u64 time;
779 u64 id;
780 u64 stream_id;
781 struct {
782 u32 cpu;
783 u32 reserved;
784 } cpu_entry;
785 struct perf_callchain_entry *callchain;
786
787 /*
788 * regs_user may point to task_pt_regs or to regs_user_copy, depending
789 * on arch details.
790 */
791 struct perf_regs regs_user;
792 struct pt_regs regs_user_copy;
793
794 struct perf_regs regs_intr;
795 u64 stack_user_size;
796 } ____cacheline_aligned;
797
798 /* default value for data source */
799 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
800 PERF_MEM_S(LVL, NA) |\
801 PERF_MEM_S(SNOOP, NA) |\
802 PERF_MEM_S(LOCK, NA) |\
803 PERF_MEM_S(TLB, NA))
804
805 static inline void perf_sample_data_init(struct perf_sample_data *data,
806 u64 addr, u64 period)
807 {
808 /* remaining struct members initialized in perf_prepare_sample() */
809 data->addr = addr;
810 data->raw = NULL;
811 data->br_stack = NULL;
812 data->period = period;
813 data->weight = 0;
814 data->data_src.val = PERF_MEM_NA;
815 data->txn = 0;
816 }
817
818 extern void perf_output_sample(struct perf_output_handle *handle,
819 struct perf_event_header *header,
820 struct perf_sample_data *data,
821 struct perf_event *event);
822 extern void perf_prepare_sample(struct perf_event_header *header,
823 struct perf_sample_data *data,
824 struct perf_event *event,
825 struct pt_regs *regs);
826
827 extern int perf_event_overflow(struct perf_event *event,
828 struct perf_sample_data *data,
829 struct pt_regs *regs);
830
831 extern void perf_event_output(struct perf_event *event,
832 struct perf_sample_data *data,
833 struct pt_regs *regs);
834
835 extern void
836 perf_event_header__init_id(struct perf_event_header *header,
837 struct perf_sample_data *data,
838 struct perf_event *event);
839 extern void
840 perf_event__output_id_sample(struct perf_event *event,
841 struct perf_output_handle *handle,
842 struct perf_sample_data *sample);
843
844 extern void
845 perf_log_lost_samples(struct perf_event *event, u64 lost);
846
847 static inline bool is_sampling_event(struct perf_event *event)
848 {
849 return event->attr.sample_period != 0;
850 }
851
852 /*
853 * Return 1 for a software event, 0 for a hardware event
854 */
855 static inline int is_software_event(struct perf_event *event)
856 {
857 return event->pmu->task_ctx_nr == perf_sw_context;
858 }
859
860 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
861
862 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
863 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
864
865 #ifndef perf_arch_fetch_caller_regs
866 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
867 #endif
868
869 /*
870 * Take a snapshot of the regs. Skip ip and frame pointer to
871 * the nth caller. We only need a few of the regs:
872 * - ip for PERF_SAMPLE_IP
873 * - cs for user_mode() tests
874 * - bp for callchains
875 * - eflags, for future purposes, just in case
876 */
877 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
878 {
879 memset(regs, 0, sizeof(*regs));
880
881 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
882 }
883
884 static __always_inline void
885 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
886 {
887 if (static_key_false(&perf_swevent_enabled[event_id]))
888 __perf_sw_event(event_id, nr, regs, addr);
889 }
890
891 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
892
893 /*
894 * 'Special' version for the scheduler, it hard assumes no recursion,
895 * which is guaranteed by us not actually scheduling inside other swevents
896 * because those disable preemption.
897 */
898 static __always_inline void
899 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
900 {
901 if (static_key_false(&perf_swevent_enabled[event_id])) {
902 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
903
904 perf_fetch_caller_regs(regs);
905 ___perf_sw_event(event_id, nr, regs, addr);
906 }
907 }
908
909 extern struct static_key_deferred perf_sched_events;
910
911 static __always_inline bool
912 perf_sw_migrate_enabled(void)
913 {
914 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
915 return true;
916 return false;
917 }
918
919 static inline void perf_event_task_migrate(struct task_struct *task)
920 {
921 if (perf_sw_migrate_enabled())
922 task->sched_migrated = 1;
923 }
924
925 static inline void perf_event_task_sched_in(struct task_struct *prev,
926 struct task_struct *task)
927 {
928 if (static_key_false(&perf_sched_events.key))
929 __perf_event_task_sched_in(prev, task);
930
931 if (perf_sw_migrate_enabled() && task->sched_migrated) {
932 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
933
934 perf_fetch_caller_regs(regs);
935 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
936 task->sched_migrated = 0;
937 }
938 }
939
940 static inline void perf_event_task_sched_out(struct task_struct *prev,
941 struct task_struct *next)
942 {
943 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
944
945 if (static_key_false(&perf_sched_events.key))
946 __perf_event_task_sched_out(prev, next);
947 }
948
949 static inline u64 __perf_event_count(struct perf_event *event)
950 {
951 return local64_read(&event->count) + atomic64_read(&event->child_count);
952 }
953
954 extern void perf_event_mmap(struct vm_area_struct *vma);
955 extern struct perf_guest_info_callbacks *perf_guest_cbs;
956 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
957 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
958
959 extern void perf_event_exec(void);
960 extern void perf_event_comm(struct task_struct *tsk, bool exec);
961 extern void perf_event_fork(struct task_struct *tsk);
962
963 /* Callchains */
964 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
965
966 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
967 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
968
969 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
970 {
971 if (entry->nr < PERF_MAX_STACK_DEPTH)
972 entry->ip[entry->nr++] = ip;
973 }
974
975 extern int sysctl_perf_event_paranoid;
976 extern int sysctl_perf_event_mlock;
977 extern int sysctl_perf_event_sample_rate;
978 extern int sysctl_perf_cpu_time_max_percent;
979
980 extern void perf_sample_event_took(u64 sample_len_ns);
981
982 extern int perf_proc_update_handler(struct ctl_table *table, int write,
983 void __user *buffer, size_t *lenp,
984 loff_t *ppos);
985 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
986 void __user *buffer, size_t *lenp,
987 loff_t *ppos);
988
989
990 static inline bool perf_paranoid_tracepoint_raw(void)
991 {
992 return sysctl_perf_event_paranoid > -1;
993 }
994
995 static inline bool perf_paranoid_cpu(void)
996 {
997 return sysctl_perf_event_paranoid > 0;
998 }
999
1000 static inline bool perf_paranoid_kernel(void)
1001 {
1002 return sysctl_perf_event_paranoid > 1;
1003 }
1004
1005 extern void perf_event_init(void);
1006 extern void perf_tp_event(u64 addr, u64 count, void *record,
1007 int entry_size, struct pt_regs *regs,
1008 struct hlist_head *head, int rctx,
1009 struct task_struct *task);
1010 extern void perf_bp_event(struct perf_event *event, void *data);
1011
1012 #ifndef perf_misc_flags
1013 # define perf_misc_flags(regs) \
1014 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1015 # define perf_instruction_pointer(regs) instruction_pointer(regs)
1016 #endif
1017
1018 static inline bool has_branch_stack(struct perf_event *event)
1019 {
1020 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1021 }
1022
1023 static inline bool needs_branch_stack(struct perf_event *event)
1024 {
1025 return event->attr.branch_sample_type != 0;
1026 }
1027
1028 static inline bool has_aux(struct perf_event *event)
1029 {
1030 return event->pmu->setup_aux;
1031 }
1032
1033 extern int perf_output_begin(struct perf_output_handle *handle,
1034 struct perf_event *event, unsigned int size);
1035 extern void perf_output_end(struct perf_output_handle *handle);
1036 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1037 const void *buf, unsigned int len);
1038 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1039 unsigned int len);
1040 extern int perf_swevent_get_recursion_context(void);
1041 extern void perf_swevent_put_recursion_context(int rctx);
1042 extern u64 perf_swevent_set_period(struct perf_event *event);
1043 extern void perf_event_enable(struct perf_event *event);
1044 extern void perf_event_disable(struct perf_event *event);
1045 extern int __perf_event_disable(void *info);
1046 extern void perf_event_task_tick(void);
1047 #else /* !CONFIG_PERF_EVENTS: */
1048 static inline void *
1049 perf_aux_output_begin(struct perf_output_handle *handle,
1050 struct perf_event *event) { return NULL; }
1051 static inline void
1052 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size,
1053 bool truncated) { }
1054 static inline int
1055 perf_aux_output_skip(struct perf_output_handle *handle,
1056 unsigned long size) { return -EINVAL; }
1057 static inline void *
1058 perf_get_aux(struct perf_output_handle *handle) { return NULL; }
1059 static inline void
1060 perf_event_task_migrate(struct task_struct *task) { }
1061 static inline void
1062 perf_event_task_sched_in(struct task_struct *prev,
1063 struct task_struct *task) { }
1064 static inline void
1065 perf_event_task_sched_out(struct task_struct *prev,
1066 struct task_struct *next) { }
1067 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
1068 static inline void perf_event_exit_task(struct task_struct *child) { }
1069 static inline void perf_event_free_task(struct task_struct *task) { }
1070 static inline void perf_event_delayed_put(struct task_struct *task) { }
1071 static inline struct perf_event *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); }
1072 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1073 {
1074 return ERR_PTR(-EINVAL);
1075 }
1076 static inline u64 perf_event_read_local(struct perf_event *event) { return -EINVAL; }
1077 static inline void perf_event_print_debug(void) { }
1078 static inline int perf_event_task_disable(void) { return -EINVAL; }
1079 static inline int perf_event_task_enable(void) { return -EINVAL; }
1080 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1081 {
1082 return -EINVAL;
1083 }
1084
1085 static inline void
1086 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1087 static inline void
1088 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { }
1089 static inline void
1090 perf_bp_event(struct perf_event *event, void *data) { }
1091
1092 static inline int perf_register_guest_info_callbacks
1093 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1094 static inline int perf_unregister_guest_info_callbacks
1095 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1096
1097 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1098 static inline void perf_event_exec(void) { }
1099 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
1100 static inline void perf_event_fork(struct task_struct *tsk) { }
1101 static inline void perf_event_init(void) { }
1102 static inline int perf_swevent_get_recursion_context(void) { return -1; }
1103 static inline void perf_swevent_put_recursion_context(int rctx) { }
1104 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
1105 static inline void perf_event_enable(struct perf_event *event) { }
1106 static inline void perf_event_disable(struct perf_event *event) { }
1107 static inline int __perf_event_disable(void *info) { return -1; }
1108 static inline void perf_event_task_tick(void) { }
1109 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; }
1110 #endif
1111
1112 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_NO_HZ_FULL)
1113 extern bool perf_event_can_stop_tick(void);
1114 #else
1115 static inline bool perf_event_can_stop_tick(void) { return true; }
1116 #endif
1117
1118 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1119 extern void perf_restore_debug_store(void);
1120 #else
1121 static inline void perf_restore_debug_store(void) { }
1122 #endif
1123
1124 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1125
1126 /*
1127 * This has to have a higher priority than migration_notifier in sched/core.c.
1128 */
1129 #define perf_cpu_notifier(fn) \
1130 do { \
1131 static struct notifier_block fn##_nb = \
1132 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
1133 unsigned long cpu = smp_processor_id(); \
1134 unsigned long flags; \
1135 \
1136 cpu_notifier_register_begin(); \
1137 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
1138 (void *)(unsigned long)cpu); \
1139 local_irq_save(flags); \
1140 fn(&fn##_nb, (unsigned long)CPU_STARTING, \
1141 (void *)(unsigned long)cpu); \
1142 local_irq_restore(flags); \
1143 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
1144 (void *)(unsigned long)cpu); \
1145 __register_cpu_notifier(&fn##_nb); \
1146 cpu_notifier_register_done(); \
1147 } while (0)
1148
1149 /*
1150 * Bare-bones version of perf_cpu_notifier(), which doesn't invoke the
1151 * callback for already online CPUs.
1152 */
1153 #define __perf_cpu_notifier(fn) \
1154 do { \
1155 static struct notifier_block fn##_nb = \
1156 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
1157 \
1158 __register_cpu_notifier(&fn##_nb); \
1159 } while (0)
1160
1161 struct perf_pmu_events_attr {
1162 struct device_attribute attr;
1163 u64 id;
1164 const char *event_str;
1165 };
1166
1167 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1168 char *page);
1169
1170 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
1171 static struct perf_pmu_events_attr _var = { \
1172 .attr = __ATTR(_name, 0444, _show, NULL), \
1173 .id = _id, \
1174 };
1175
1176 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
1177 static struct perf_pmu_events_attr _var = { \
1178 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1179 .id = 0, \
1180 .event_str = _str, \
1181 };
1182
1183 #define PMU_FORMAT_ATTR(_name, _format) \
1184 static ssize_t \
1185 _name##_show(struct device *dev, \
1186 struct device_attribute *attr, \
1187 char *page) \
1188 { \
1189 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1190 return sprintf(page, _format "\n"); \
1191 } \
1192 \
1193 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1194
1195 #endif /* _LINUX_PERF_EVENT_H */