]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/linux/pgtable.h
mmap locking API: convert mmap_sem API comments
[mirror_ubuntu-jammy-kernel.git] / include / linux / pgtable.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PGTABLE_H
3 #define _LINUX_PGTABLE_H
4
5 #include <linux/pfn.h>
6 #include <asm/pgtable.h>
7
8 #ifndef __ASSEMBLY__
9 #ifdef CONFIG_MMU
10
11 #include <linux/mm_types.h>
12 #include <linux/bug.h>
13 #include <linux/errno.h>
14 #include <asm-generic/pgtable_uffd.h>
15
16 #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
17 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
18 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
19 #endif
20
21 /*
22 * On almost all architectures and configurations, 0 can be used as the
23 * upper ceiling to free_pgtables(): on many architectures it has the same
24 * effect as using TASK_SIZE. However, there is one configuration which
25 * must impose a more careful limit, to avoid freeing kernel pgtables.
26 */
27 #ifndef USER_PGTABLES_CEILING
28 #define USER_PGTABLES_CEILING 0UL
29 #endif
30
31 /*
32 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
33 *
34 * The pXx_index() functions return the index of the entry in the page
35 * table page which would control the given virtual address
36 *
37 * As these functions may be used by the same code for different levels of
38 * the page table folding, they are always available, regardless of
39 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
40 * because in such cases PTRS_PER_PxD equals 1.
41 */
42
43 static inline unsigned long pte_index(unsigned long address)
44 {
45 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
46 }
47
48 #ifndef pmd_index
49 static inline unsigned long pmd_index(unsigned long address)
50 {
51 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
52 }
53 #define pmd_index pmd_index
54 #endif
55
56 #ifndef pud_index
57 static inline unsigned long pud_index(unsigned long address)
58 {
59 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
60 }
61 #define pud_index pud_index
62 #endif
63
64 #ifndef pgd_index
65 /* Must be a compile-time constant, so implement it as a macro */
66 #define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
67 #endif
68
69 #ifndef pte_offset_kernel
70 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
71 {
72 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
73 }
74 #define pte_offset_kernel pte_offset_kernel
75 #endif
76
77 #if defined(CONFIG_HIGHPTE)
78 #define pte_offset_map(dir, address) \
79 ((pte_t *)kmap_atomic(pmd_page(*(dir))) + \
80 pte_index((address)))
81 #define pte_unmap(pte) kunmap_atomic((pte))
82 #else
83 #define pte_offset_map(dir, address) pte_offset_kernel((dir), (address))
84 #define pte_unmap(pte) ((void)(pte)) /* NOP */
85 #endif
86
87 /* Find an entry in the second-level page table.. */
88 #ifndef pmd_offset
89 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
90 {
91 return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address);
92 }
93 #define pmd_offset pmd_offset
94 #endif
95
96 #ifndef pud_offset
97 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
98 {
99 return (pud_t *)p4d_page_vaddr(*p4d) + pud_index(address);
100 }
101 #define pud_offset pud_offset
102 #endif
103
104 static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
105 {
106 return (pgd + pgd_index(address));
107 };
108
109 /*
110 * a shortcut to get a pgd_t in a given mm
111 */
112 #ifndef pgd_offset
113 #define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address))
114 #endif
115
116 /*
117 * a shortcut which implies the use of the kernel's pgd, instead
118 * of a process's
119 */
120 #define pgd_offset_k(address) pgd_offset(&init_mm, (address))
121
122 /*
123 * In many cases it is known that a virtual address is mapped at PMD or PTE
124 * level, so instead of traversing all the page table levels, we can get a
125 * pointer to the PMD entry in user or kernel page table or translate a virtual
126 * address to the pointer in the PTE in the kernel page tables with simple
127 * helpers.
128 */
129 static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
130 {
131 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
132 }
133
134 static inline pmd_t *pmd_off_k(unsigned long va)
135 {
136 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
137 }
138
139 static inline pte_t *virt_to_kpte(unsigned long vaddr)
140 {
141 pmd_t *pmd = pmd_off_k(vaddr);
142
143 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
144 }
145
146 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
147 extern int ptep_set_access_flags(struct vm_area_struct *vma,
148 unsigned long address, pte_t *ptep,
149 pte_t entry, int dirty);
150 #endif
151
152 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
153 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
154 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
155 unsigned long address, pmd_t *pmdp,
156 pmd_t entry, int dirty);
157 extern int pudp_set_access_flags(struct vm_area_struct *vma,
158 unsigned long address, pud_t *pudp,
159 pud_t entry, int dirty);
160 #else
161 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
162 unsigned long address, pmd_t *pmdp,
163 pmd_t entry, int dirty)
164 {
165 BUILD_BUG();
166 return 0;
167 }
168 static inline int pudp_set_access_flags(struct vm_area_struct *vma,
169 unsigned long address, pud_t *pudp,
170 pud_t entry, int dirty)
171 {
172 BUILD_BUG();
173 return 0;
174 }
175 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
176 #endif
177
178 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
179 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
180 unsigned long address,
181 pte_t *ptep)
182 {
183 pte_t pte = *ptep;
184 int r = 1;
185 if (!pte_young(pte))
186 r = 0;
187 else
188 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
189 return r;
190 }
191 #endif
192
193 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
194 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
195 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
196 unsigned long address,
197 pmd_t *pmdp)
198 {
199 pmd_t pmd = *pmdp;
200 int r = 1;
201 if (!pmd_young(pmd))
202 r = 0;
203 else
204 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
205 return r;
206 }
207 #else
208 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
209 unsigned long address,
210 pmd_t *pmdp)
211 {
212 BUILD_BUG();
213 return 0;
214 }
215 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
216 #endif
217
218 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
219 int ptep_clear_flush_young(struct vm_area_struct *vma,
220 unsigned long address, pte_t *ptep);
221 #endif
222
223 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
224 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
225 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
226 unsigned long address, pmd_t *pmdp);
227 #else
228 /*
229 * Despite relevant to THP only, this API is called from generic rmap code
230 * under PageTransHuge(), hence needs a dummy implementation for !THP
231 */
232 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
233 unsigned long address, pmd_t *pmdp)
234 {
235 BUILD_BUG();
236 return 0;
237 }
238 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
239 #endif
240
241 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
242 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
243 unsigned long address,
244 pte_t *ptep)
245 {
246 pte_t pte = *ptep;
247 pte_clear(mm, address, ptep);
248 return pte;
249 }
250 #endif
251
252 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
253 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
254 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
255 unsigned long address,
256 pmd_t *pmdp)
257 {
258 pmd_t pmd = *pmdp;
259 pmd_clear(pmdp);
260 return pmd;
261 }
262 #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
263 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
264 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
265 unsigned long address,
266 pud_t *pudp)
267 {
268 pud_t pud = *pudp;
269
270 pud_clear(pudp);
271 return pud;
272 }
273 #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
274 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
275
276 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
277 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
278 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
279 unsigned long address, pmd_t *pmdp,
280 int full)
281 {
282 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
283 }
284 #endif
285
286 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
287 static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
288 unsigned long address, pud_t *pudp,
289 int full)
290 {
291 return pudp_huge_get_and_clear(mm, address, pudp);
292 }
293 #endif
294 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
295
296 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
297 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
298 unsigned long address, pte_t *ptep,
299 int full)
300 {
301 pte_t pte;
302 pte = ptep_get_and_clear(mm, address, ptep);
303 return pte;
304 }
305 #endif
306
307
308 /*
309 * If two threads concurrently fault at the same page, the thread that
310 * won the race updates the PTE and its local TLB/Cache. The other thread
311 * gives up, simply does nothing, and continues; on architectures where
312 * software can update TLB, local TLB can be updated here to avoid next page
313 * fault. This function updates TLB only, do nothing with cache or others.
314 * It is the difference with function update_mmu_cache.
315 */
316 #ifndef __HAVE_ARCH_UPDATE_MMU_TLB
317 static inline void update_mmu_tlb(struct vm_area_struct *vma,
318 unsigned long address, pte_t *ptep)
319 {
320 }
321 #define __HAVE_ARCH_UPDATE_MMU_TLB
322 #endif
323
324 /*
325 * Some architectures may be able to avoid expensive synchronization
326 * primitives when modifications are made to PTE's which are already
327 * not present, or in the process of an address space destruction.
328 */
329 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
330 static inline void pte_clear_not_present_full(struct mm_struct *mm,
331 unsigned long address,
332 pte_t *ptep,
333 int full)
334 {
335 pte_clear(mm, address, ptep);
336 }
337 #endif
338
339 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
340 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
341 unsigned long address,
342 pte_t *ptep);
343 #endif
344
345 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
346 extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
347 unsigned long address,
348 pmd_t *pmdp);
349 extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
350 unsigned long address,
351 pud_t *pudp);
352 #endif
353
354 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
355 struct mm_struct;
356 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
357 {
358 pte_t old_pte = *ptep;
359 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
360 }
361 #endif
362
363 /*
364 * On some architectures hardware does not set page access bit when accessing
365 * memory page, it is responsibilty of software setting this bit. It brings
366 * out extra page fault penalty to track page access bit. For optimization page
367 * access bit can be set during all page fault flow on these arches.
368 * To be differentiate with macro pte_mkyoung, this macro is used on platforms
369 * where software maintains page access bit.
370 */
371 #ifndef pte_sw_mkyoung
372 static inline pte_t pte_sw_mkyoung(pte_t pte)
373 {
374 return pte;
375 }
376 #define pte_sw_mkyoung pte_sw_mkyoung
377 #endif
378
379 #ifndef pte_savedwrite
380 #define pte_savedwrite pte_write
381 #endif
382
383 #ifndef pte_mk_savedwrite
384 #define pte_mk_savedwrite pte_mkwrite
385 #endif
386
387 #ifndef pte_clear_savedwrite
388 #define pte_clear_savedwrite pte_wrprotect
389 #endif
390
391 #ifndef pmd_savedwrite
392 #define pmd_savedwrite pmd_write
393 #endif
394
395 #ifndef pmd_mk_savedwrite
396 #define pmd_mk_savedwrite pmd_mkwrite
397 #endif
398
399 #ifndef pmd_clear_savedwrite
400 #define pmd_clear_savedwrite pmd_wrprotect
401 #endif
402
403 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
404 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
405 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
406 unsigned long address, pmd_t *pmdp)
407 {
408 pmd_t old_pmd = *pmdp;
409 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
410 }
411 #else
412 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
413 unsigned long address, pmd_t *pmdp)
414 {
415 BUILD_BUG();
416 }
417 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
418 #endif
419 #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
420 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
421 static inline void pudp_set_wrprotect(struct mm_struct *mm,
422 unsigned long address, pud_t *pudp)
423 {
424 pud_t old_pud = *pudp;
425
426 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
427 }
428 #else
429 static inline void pudp_set_wrprotect(struct mm_struct *mm,
430 unsigned long address, pud_t *pudp)
431 {
432 BUILD_BUG();
433 }
434 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
435 #endif
436
437 #ifndef pmdp_collapse_flush
438 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
439 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
440 unsigned long address, pmd_t *pmdp);
441 #else
442 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
443 unsigned long address,
444 pmd_t *pmdp)
445 {
446 BUILD_BUG();
447 return *pmdp;
448 }
449 #define pmdp_collapse_flush pmdp_collapse_flush
450 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
451 #endif
452
453 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
454 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
455 pgtable_t pgtable);
456 #endif
457
458 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
459 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
460 #endif
461
462 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
463 /*
464 * This is an implementation of pmdp_establish() that is only suitable for an
465 * architecture that doesn't have hardware dirty/accessed bits. In this case we
466 * can't race with CPU which sets these bits and non-atomic aproach is fine.
467 */
468 static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
469 unsigned long address, pmd_t *pmdp, pmd_t pmd)
470 {
471 pmd_t old_pmd = *pmdp;
472 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
473 return old_pmd;
474 }
475 #endif
476
477 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
478 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
479 pmd_t *pmdp);
480 #endif
481
482 #ifndef __HAVE_ARCH_PTE_SAME
483 static inline int pte_same(pte_t pte_a, pte_t pte_b)
484 {
485 return pte_val(pte_a) == pte_val(pte_b);
486 }
487 #endif
488
489 #ifndef __HAVE_ARCH_PTE_UNUSED
490 /*
491 * Some architectures provide facilities to virtualization guests
492 * so that they can flag allocated pages as unused. This allows the
493 * host to transparently reclaim unused pages. This function returns
494 * whether the pte's page is unused.
495 */
496 static inline int pte_unused(pte_t pte)
497 {
498 return 0;
499 }
500 #endif
501
502 #ifndef pte_access_permitted
503 #define pte_access_permitted(pte, write) \
504 (pte_present(pte) && (!(write) || pte_write(pte)))
505 #endif
506
507 #ifndef pmd_access_permitted
508 #define pmd_access_permitted(pmd, write) \
509 (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
510 #endif
511
512 #ifndef pud_access_permitted
513 #define pud_access_permitted(pud, write) \
514 (pud_present(pud) && (!(write) || pud_write(pud)))
515 #endif
516
517 #ifndef p4d_access_permitted
518 #define p4d_access_permitted(p4d, write) \
519 (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
520 #endif
521
522 #ifndef pgd_access_permitted
523 #define pgd_access_permitted(pgd, write) \
524 (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
525 #endif
526
527 #ifndef __HAVE_ARCH_PMD_SAME
528 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
529 {
530 return pmd_val(pmd_a) == pmd_val(pmd_b);
531 }
532
533 static inline int pud_same(pud_t pud_a, pud_t pud_b)
534 {
535 return pud_val(pud_a) == pud_val(pud_b);
536 }
537 #endif
538
539 #ifndef __HAVE_ARCH_P4D_SAME
540 static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
541 {
542 return p4d_val(p4d_a) == p4d_val(p4d_b);
543 }
544 #endif
545
546 #ifndef __HAVE_ARCH_PGD_SAME
547 static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
548 {
549 return pgd_val(pgd_a) == pgd_val(pgd_b);
550 }
551 #endif
552
553 /*
554 * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
555 * TLB flush will be required as a result of the "set". For example, use
556 * in scenarios where it is known ahead of time that the routine is
557 * setting non-present entries, or re-setting an existing entry to the
558 * same value. Otherwise, use the typical "set" helpers and flush the
559 * TLB.
560 */
561 #define set_pte_safe(ptep, pte) \
562 ({ \
563 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
564 set_pte(ptep, pte); \
565 })
566
567 #define set_pmd_safe(pmdp, pmd) \
568 ({ \
569 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
570 set_pmd(pmdp, pmd); \
571 })
572
573 #define set_pud_safe(pudp, pud) \
574 ({ \
575 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
576 set_pud(pudp, pud); \
577 })
578
579 #define set_p4d_safe(p4dp, p4d) \
580 ({ \
581 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
582 set_p4d(p4dp, p4d); \
583 })
584
585 #define set_pgd_safe(pgdp, pgd) \
586 ({ \
587 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
588 set_pgd(pgdp, pgd); \
589 })
590
591 #ifndef __HAVE_ARCH_DO_SWAP_PAGE
592 /*
593 * Some architectures support metadata associated with a page. When a
594 * page is being swapped out, this metadata must be saved so it can be
595 * restored when the page is swapped back in. SPARC M7 and newer
596 * processors support an ADI (Application Data Integrity) tag for the
597 * page as metadata for the page. arch_do_swap_page() can restore this
598 * metadata when a page is swapped back in.
599 */
600 static inline void arch_do_swap_page(struct mm_struct *mm,
601 struct vm_area_struct *vma,
602 unsigned long addr,
603 pte_t pte, pte_t oldpte)
604 {
605
606 }
607 #endif
608
609 #ifndef __HAVE_ARCH_UNMAP_ONE
610 /*
611 * Some architectures support metadata associated with a page. When a
612 * page is being swapped out, this metadata must be saved so it can be
613 * restored when the page is swapped back in. SPARC M7 and newer
614 * processors support an ADI (Application Data Integrity) tag for the
615 * page as metadata for the page. arch_unmap_one() can save this
616 * metadata on a swap-out of a page.
617 */
618 static inline int arch_unmap_one(struct mm_struct *mm,
619 struct vm_area_struct *vma,
620 unsigned long addr,
621 pte_t orig_pte)
622 {
623 return 0;
624 }
625 #endif
626
627 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
628 #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
629 #endif
630
631 #ifndef __HAVE_ARCH_MOVE_PTE
632 #define move_pte(pte, prot, old_addr, new_addr) (pte)
633 #endif
634
635 #ifndef pte_accessible
636 # define pte_accessible(mm, pte) ((void)(pte), 1)
637 #endif
638
639 #ifndef flush_tlb_fix_spurious_fault
640 #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
641 #endif
642
643 #ifndef pgprot_nx
644 #define pgprot_nx(prot) (prot)
645 #endif
646
647 #ifndef pgprot_noncached
648 #define pgprot_noncached(prot) (prot)
649 #endif
650
651 #ifndef pgprot_writecombine
652 #define pgprot_writecombine pgprot_noncached
653 #endif
654
655 #ifndef pgprot_writethrough
656 #define pgprot_writethrough pgprot_noncached
657 #endif
658
659 #ifndef pgprot_device
660 #define pgprot_device pgprot_noncached
661 #endif
662
663 #ifndef pgprot_modify
664 #define pgprot_modify pgprot_modify
665 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
666 {
667 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
668 newprot = pgprot_noncached(newprot);
669 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
670 newprot = pgprot_writecombine(newprot);
671 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
672 newprot = pgprot_device(newprot);
673 return newprot;
674 }
675 #endif
676
677 /*
678 * When walking page tables, get the address of the next boundary,
679 * or the end address of the range if that comes earlier. Although no
680 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
681 */
682
683 #define pgd_addr_end(addr, end) \
684 ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
685 (__boundary - 1 < (end) - 1)? __boundary: (end); \
686 })
687
688 #ifndef p4d_addr_end
689 #define p4d_addr_end(addr, end) \
690 ({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \
691 (__boundary - 1 < (end) - 1)? __boundary: (end); \
692 })
693 #endif
694
695 #ifndef pud_addr_end
696 #define pud_addr_end(addr, end) \
697 ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
698 (__boundary - 1 < (end) - 1)? __boundary: (end); \
699 })
700 #endif
701
702 #ifndef pmd_addr_end
703 #define pmd_addr_end(addr, end) \
704 ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
705 (__boundary - 1 < (end) - 1)? __boundary: (end); \
706 })
707 #endif
708
709 /*
710 * When walking page tables, we usually want to skip any p?d_none entries;
711 * and any p?d_bad entries - reporting the error before resetting to none.
712 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
713 */
714 void pgd_clear_bad(pgd_t *);
715
716 #ifndef __PAGETABLE_P4D_FOLDED
717 void p4d_clear_bad(p4d_t *);
718 #else
719 #define p4d_clear_bad(p4d) do { } while (0)
720 #endif
721
722 #ifndef __PAGETABLE_PUD_FOLDED
723 void pud_clear_bad(pud_t *);
724 #else
725 #define pud_clear_bad(p4d) do { } while (0)
726 #endif
727
728 void pmd_clear_bad(pmd_t *);
729
730 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
731 {
732 if (pgd_none(*pgd))
733 return 1;
734 if (unlikely(pgd_bad(*pgd))) {
735 pgd_clear_bad(pgd);
736 return 1;
737 }
738 return 0;
739 }
740
741 static inline int p4d_none_or_clear_bad(p4d_t *p4d)
742 {
743 if (p4d_none(*p4d))
744 return 1;
745 if (unlikely(p4d_bad(*p4d))) {
746 p4d_clear_bad(p4d);
747 return 1;
748 }
749 return 0;
750 }
751
752 static inline int pud_none_or_clear_bad(pud_t *pud)
753 {
754 if (pud_none(*pud))
755 return 1;
756 if (unlikely(pud_bad(*pud))) {
757 pud_clear_bad(pud);
758 return 1;
759 }
760 return 0;
761 }
762
763 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
764 {
765 if (pmd_none(*pmd))
766 return 1;
767 if (unlikely(pmd_bad(*pmd))) {
768 pmd_clear_bad(pmd);
769 return 1;
770 }
771 return 0;
772 }
773
774 static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
775 unsigned long addr,
776 pte_t *ptep)
777 {
778 /*
779 * Get the current pte state, but zero it out to make it
780 * non-present, preventing the hardware from asynchronously
781 * updating it.
782 */
783 return ptep_get_and_clear(vma->vm_mm, addr, ptep);
784 }
785
786 static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
787 unsigned long addr,
788 pte_t *ptep, pte_t pte)
789 {
790 /*
791 * The pte is non-present, so there's no hardware state to
792 * preserve.
793 */
794 set_pte_at(vma->vm_mm, addr, ptep, pte);
795 }
796
797 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
798 /*
799 * Start a pte protection read-modify-write transaction, which
800 * protects against asynchronous hardware modifications to the pte.
801 * The intention is not to prevent the hardware from making pte
802 * updates, but to prevent any updates it may make from being lost.
803 *
804 * This does not protect against other software modifications of the
805 * pte; the appropriate pte lock must be held over the transation.
806 *
807 * Note that this interface is intended to be batchable, meaning that
808 * ptep_modify_prot_commit may not actually update the pte, but merely
809 * queue the update to be done at some later time. The update must be
810 * actually committed before the pte lock is released, however.
811 */
812 static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
813 unsigned long addr,
814 pte_t *ptep)
815 {
816 return __ptep_modify_prot_start(vma, addr, ptep);
817 }
818
819 /*
820 * Commit an update to a pte, leaving any hardware-controlled bits in
821 * the PTE unmodified.
822 */
823 static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
824 unsigned long addr,
825 pte_t *ptep, pte_t old_pte, pte_t pte)
826 {
827 __ptep_modify_prot_commit(vma, addr, ptep, pte);
828 }
829 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
830 #endif /* CONFIG_MMU */
831
832 /*
833 * No-op macros that just return the current protection value. Defined here
834 * because these macros can be used used even if CONFIG_MMU is not defined.
835 */
836 #ifndef pgprot_encrypted
837 #define pgprot_encrypted(prot) (prot)
838 #endif
839
840 #ifndef pgprot_decrypted
841 #define pgprot_decrypted(prot) (prot)
842 #endif
843
844 /*
845 * A facility to provide lazy MMU batching. This allows PTE updates and
846 * page invalidations to be delayed until a call to leave lazy MMU mode
847 * is issued. Some architectures may benefit from doing this, and it is
848 * beneficial for both shadow and direct mode hypervisors, which may batch
849 * the PTE updates which happen during this window. Note that using this
850 * interface requires that read hazards be removed from the code. A read
851 * hazard could result in the direct mode hypervisor case, since the actual
852 * write to the page tables may not yet have taken place, so reads though
853 * a raw PTE pointer after it has been modified are not guaranteed to be
854 * up to date. This mode can only be entered and left under the protection of
855 * the page table locks for all page tables which may be modified. In the UP
856 * case, this is required so that preemption is disabled, and in the SMP case,
857 * it must synchronize the delayed page table writes properly on other CPUs.
858 */
859 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
860 #define arch_enter_lazy_mmu_mode() do {} while (0)
861 #define arch_leave_lazy_mmu_mode() do {} while (0)
862 #define arch_flush_lazy_mmu_mode() do {} while (0)
863 #endif
864
865 /*
866 * A facility to provide batching of the reload of page tables and
867 * other process state with the actual context switch code for
868 * paravirtualized guests. By convention, only one of the batched
869 * update (lazy) modes (CPU, MMU) should be active at any given time,
870 * entry should never be nested, and entry and exits should always be
871 * paired. This is for sanity of maintaining and reasoning about the
872 * kernel code. In this case, the exit (end of the context switch) is
873 * in architecture-specific code, and so doesn't need a generic
874 * definition.
875 */
876 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
877 #define arch_start_context_switch(prev) do {} while (0)
878 #endif
879
880 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
881 #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
882 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
883 {
884 return pmd;
885 }
886
887 static inline int pmd_swp_soft_dirty(pmd_t pmd)
888 {
889 return 0;
890 }
891
892 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
893 {
894 return pmd;
895 }
896 #endif
897 #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
898 static inline int pte_soft_dirty(pte_t pte)
899 {
900 return 0;
901 }
902
903 static inline int pmd_soft_dirty(pmd_t pmd)
904 {
905 return 0;
906 }
907
908 static inline pte_t pte_mksoft_dirty(pte_t pte)
909 {
910 return pte;
911 }
912
913 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
914 {
915 return pmd;
916 }
917
918 static inline pte_t pte_clear_soft_dirty(pte_t pte)
919 {
920 return pte;
921 }
922
923 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
924 {
925 return pmd;
926 }
927
928 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
929 {
930 return pte;
931 }
932
933 static inline int pte_swp_soft_dirty(pte_t pte)
934 {
935 return 0;
936 }
937
938 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
939 {
940 return pte;
941 }
942
943 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
944 {
945 return pmd;
946 }
947
948 static inline int pmd_swp_soft_dirty(pmd_t pmd)
949 {
950 return 0;
951 }
952
953 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
954 {
955 return pmd;
956 }
957 #endif
958
959 #ifndef __HAVE_PFNMAP_TRACKING
960 /*
961 * Interfaces that can be used by architecture code to keep track of
962 * memory type of pfn mappings specified by the remap_pfn_range,
963 * vmf_insert_pfn.
964 */
965
966 /*
967 * track_pfn_remap is called when a _new_ pfn mapping is being established
968 * by remap_pfn_range() for physical range indicated by pfn and size.
969 */
970 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
971 unsigned long pfn, unsigned long addr,
972 unsigned long size)
973 {
974 return 0;
975 }
976
977 /*
978 * track_pfn_insert is called when a _new_ single pfn is established
979 * by vmf_insert_pfn().
980 */
981 static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
982 pfn_t pfn)
983 {
984 }
985
986 /*
987 * track_pfn_copy is called when vma that is covering the pfnmap gets
988 * copied through copy_page_range().
989 */
990 static inline int track_pfn_copy(struct vm_area_struct *vma)
991 {
992 return 0;
993 }
994
995 /*
996 * untrack_pfn is called while unmapping a pfnmap for a region.
997 * untrack can be called for a specific region indicated by pfn and size or
998 * can be for the entire vma (in which case pfn, size are zero).
999 */
1000 static inline void untrack_pfn(struct vm_area_struct *vma,
1001 unsigned long pfn, unsigned long size)
1002 {
1003 }
1004
1005 /*
1006 * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
1007 */
1008 static inline void untrack_pfn_moved(struct vm_area_struct *vma)
1009 {
1010 }
1011 #else
1012 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1013 unsigned long pfn, unsigned long addr,
1014 unsigned long size);
1015 extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1016 pfn_t pfn);
1017 extern int track_pfn_copy(struct vm_area_struct *vma);
1018 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1019 unsigned long size);
1020 extern void untrack_pfn_moved(struct vm_area_struct *vma);
1021 #endif
1022
1023 #ifdef __HAVE_COLOR_ZERO_PAGE
1024 static inline int is_zero_pfn(unsigned long pfn)
1025 {
1026 extern unsigned long zero_pfn;
1027 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1028 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1029 }
1030
1031 #define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
1032
1033 #else
1034 static inline int is_zero_pfn(unsigned long pfn)
1035 {
1036 extern unsigned long zero_pfn;
1037 return pfn == zero_pfn;
1038 }
1039
1040 static inline unsigned long my_zero_pfn(unsigned long addr)
1041 {
1042 extern unsigned long zero_pfn;
1043 return zero_pfn;
1044 }
1045 #endif
1046
1047 #ifdef CONFIG_MMU
1048
1049 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
1050 static inline int pmd_trans_huge(pmd_t pmd)
1051 {
1052 return 0;
1053 }
1054 #ifndef pmd_write
1055 static inline int pmd_write(pmd_t pmd)
1056 {
1057 BUG();
1058 return 0;
1059 }
1060 #endif /* pmd_write */
1061 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1062
1063 #ifndef pud_write
1064 static inline int pud_write(pud_t pud)
1065 {
1066 BUG();
1067 return 0;
1068 }
1069 #endif /* pud_write */
1070
1071 #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
1072 static inline int pmd_devmap(pmd_t pmd)
1073 {
1074 return 0;
1075 }
1076 static inline int pud_devmap(pud_t pud)
1077 {
1078 return 0;
1079 }
1080 static inline int pgd_devmap(pgd_t pgd)
1081 {
1082 return 0;
1083 }
1084 #endif
1085
1086 #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1087 (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1088 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD))
1089 static inline int pud_trans_huge(pud_t pud)
1090 {
1091 return 0;
1092 }
1093 #endif
1094
1095 /* See pmd_none_or_trans_huge_or_clear_bad for discussion. */
1096 static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud)
1097 {
1098 pud_t pudval = READ_ONCE(*pud);
1099
1100 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1101 return 1;
1102 if (unlikely(pud_bad(pudval))) {
1103 pud_clear_bad(pud);
1104 return 1;
1105 }
1106 return 0;
1107 }
1108
1109 /* See pmd_trans_unstable for discussion. */
1110 static inline int pud_trans_unstable(pud_t *pud)
1111 {
1112 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1113 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1114 return pud_none_or_trans_huge_or_dev_or_clear_bad(pud);
1115 #else
1116 return 0;
1117 #endif
1118 }
1119
1120 #ifndef pmd_read_atomic
1121 static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
1122 {
1123 /*
1124 * Depend on compiler for an atomic pmd read. NOTE: this is
1125 * only going to work, if the pmdval_t isn't larger than
1126 * an unsigned long.
1127 */
1128 return *pmdp;
1129 }
1130 #endif
1131
1132 #ifndef arch_needs_pgtable_deposit
1133 #define arch_needs_pgtable_deposit() (false)
1134 #endif
1135 /*
1136 * This function is meant to be used by sites walking pagetables with
1137 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
1138 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
1139 * into a null pmd and the transhuge page fault can convert a null pmd
1140 * into an hugepmd or into a regular pmd (if the hugepage allocation
1141 * fails). While holding the mmap_sem in read mode the pmd becomes
1142 * stable and stops changing under us only if it's not null and not a
1143 * transhuge pmd. When those races occurs and this function makes a
1144 * difference vs the standard pmd_none_or_clear_bad, the result is
1145 * undefined so behaving like if the pmd was none is safe (because it
1146 * can return none anyway). The compiler level barrier() is critically
1147 * important to compute the two checks atomically on the same pmdval.
1148 *
1149 * For 32bit kernels with a 64bit large pmd_t this automatically takes
1150 * care of reading the pmd atomically to avoid SMP race conditions
1151 * against pmd_populate() when the mmap_sem is hold for reading by the
1152 * caller (a special atomic read not done by "gcc" as in the generic
1153 * version above, is also needed when THP is disabled because the page
1154 * fault can populate the pmd from under us).
1155 */
1156 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
1157 {
1158 pmd_t pmdval = pmd_read_atomic(pmd);
1159 /*
1160 * The barrier will stabilize the pmdval in a register or on
1161 * the stack so that it will stop changing under the code.
1162 *
1163 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
1164 * pmd_read_atomic is allowed to return a not atomic pmdval
1165 * (for example pointing to an hugepage that has never been
1166 * mapped in the pmd). The below checks will only care about
1167 * the low part of the pmd with 32bit PAE x86 anyway, with the
1168 * exception of pmd_none(). So the important thing is that if
1169 * the low part of the pmd is found null, the high part will
1170 * be also null or the pmd_none() check below would be
1171 * confused.
1172 */
1173 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1174 barrier();
1175 #endif
1176 /*
1177 * !pmd_present() checks for pmd migration entries
1178 *
1179 * The complete check uses is_pmd_migration_entry() in linux/swapops.h
1180 * But using that requires moving current function and pmd_trans_unstable()
1181 * to linux/swapops.h to resovle dependency, which is too much code move.
1182 *
1183 * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
1184 * because !pmd_present() pages can only be under migration not swapped
1185 * out.
1186 *
1187 * pmd_none() is preseved for future condition checks on pmd migration
1188 * entries and not confusing with this function name, although it is
1189 * redundant with !pmd_present().
1190 */
1191 if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
1192 (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
1193 return 1;
1194 if (unlikely(pmd_bad(pmdval))) {
1195 pmd_clear_bad(pmd);
1196 return 1;
1197 }
1198 return 0;
1199 }
1200
1201 /*
1202 * This is a noop if Transparent Hugepage Support is not built into
1203 * the kernel. Otherwise it is equivalent to
1204 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
1205 * places that already verified the pmd is not none and they want to
1206 * walk ptes while holding the mmap sem in read mode (write mode don't
1207 * need this). If THP is not enabled, the pmd can't go away under the
1208 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
1209 * run a pmd_trans_unstable before walking the ptes after
1210 * split_huge_pmd returns (because it may have run when the pmd become
1211 * null, but then a page fault can map in a THP and not a regular page).
1212 */
1213 static inline int pmd_trans_unstable(pmd_t *pmd)
1214 {
1215 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1216 return pmd_none_or_trans_huge_or_clear_bad(pmd);
1217 #else
1218 return 0;
1219 #endif
1220 }
1221
1222 #ifndef CONFIG_NUMA_BALANCING
1223 /*
1224 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
1225 * the only case the kernel cares is for NUMA balancing and is only ever set
1226 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
1227 * _PAGE_PROTNONE so by by default, implement the helper as "always no". It
1228 * is the responsibility of the caller to distinguish between PROT_NONE
1229 * protections and NUMA hinting fault protections.
1230 */
1231 static inline int pte_protnone(pte_t pte)
1232 {
1233 return 0;
1234 }
1235
1236 static inline int pmd_protnone(pmd_t pmd)
1237 {
1238 return 0;
1239 }
1240 #endif /* CONFIG_NUMA_BALANCING */
1241
1242 #endif /* CONFIG_MMU */
1243
1244 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1245
1246 #ifndef __PAGETABLE_P4D_FOLDED
1247 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1248 int p4d_clear_huge(p4d_t *p4d);
1249 #else
1250 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1251 {
1252 return 0;
1253 }
1254 static inline int p4d_clear_huge(p4d_t *p4d)
1255 {
1256 return 0;
1257 }
1258 #endif /* !__PAGETABLE_P4D_FOLDED */
1259
1260 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1261 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1262 int pud_clear_huge(pud_t *pud);
1263 int pmd_clear_huge(pmd_t *pmd);
1264 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1265 int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1266 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1267 #else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1268 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1269 {
1270 return 0;
1271 }
1272 static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1273 {
1274 return 0;
1275 }
1276 static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1277 {
1278 return 0;
1279 }
1280 static inline int p4d_clear_huge(p4d_t *p4d)
1281 {
1282 return 0;
1283 }
1284 static inline int pud_clear_huge(pud_t *pud)
1285 {
1286 return 0;
1287 }
1288 static inline int pmd_clear_huge(pmd_t *pmd)
1289 {
1290 return 0;
1291 }
1292 static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1293 {
1294 return 0;
1295 }
1296 static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1297 {
1298 return 0;
1299 }
1300 static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1301 {
1302 return 0;
1303 }
1304 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1305
1306 #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1307 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1308 /*
1309 * ARCHes with special requirements for evicting THP backing TLB entries can
1310 * implement this. Otherwise also, it can help optimize normal TLB flush in
1311 * THP regime. stock flush_tlb_range() typically has optimization to nuke the
1312 * entire TLB TLB if flush span is greater than a threshold, which will
1313 * likely be true for a single huge page. Thus a single thp flush will
1314 * invalidate the entire TLB which is not desitable.
1315 * e.g. see arch/arc: flush_pmd_tlb_range
1316 */
1317 #define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1318 #define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1319 #else
1320 #define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
1321 #define flush_pud_tlb_range(vma, addr, end) BUILD_BUG()
1322 #endif
1323 #endif
1324
1325 struct file;
1326 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1327 unsigned long size, pgprot_t *vma_prot);
1328
1329 #ifndef CONFIG_X86_ESPFIX64
1330 static inline void init_espfix_bsp(void) { }
1331 #endif
1332
1333 extern void __init pgtable_cache_init(void);
1334
1335 #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1336 static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1337 {
1338 return true;
1339 }
1340
1341 static inline bool arch_has_pfn_modify_check(void)
1342 {
1343 return false;
1344 }
1345 #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1346
1347 /*
1348 * Architecture PAGE_KERNEL_* fallbacks
1349 *
1350 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1351 * because they really don't support them, or the port needs to be updated to
1352 * reflect the required functionality. Below are a set of relatively safe
1353 * fallbacks, as best effort, which we can count on in lieu of the architectures
1354 * not defining them on their own yet.
1355 */
1356
1357 #ifndef PAGE_KERNEL_RO
1358 # define PAGE_KERNEL_RO PAGE_KERNEL
1359 #endif
1360
1361 #ifndef PAGE_KERNEL_EXEC
1362 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1363 #endif
1364
1365 /*
1366 * Page Table Modification bits for pgtbl_mod_mask.
1367 *
1368 * These are used by the p?d_alloc_track*() set of functions an in the generic
1369 * vmalloc/ioremap code to track at which page-table levels entries have been
1370 * modified. Based on that the code can better decide when vmalloc and ioremap
1371 * mapping changes need to be synchronized to other page-tables in the system.
1372 */
1373 #define __PGTBL_PGD_MODIFIED 0
1374 #define __PGTBL_P4D_MODIFIED 1
1375 #define __PGTBL_PUD_MODIFIED 2
1376 #define __PGTBL_PMD_MODIFIED 3
1377 #define __PGTBL_PTE_MODIFIED 4
1378
1379 #define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED)
1380 #define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED)
1381 #define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED)
1382 #define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED)
1383 #define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED)
1384
1385 /* Page-Table Modification Mask */
1386 typedef unsigned int pgtbl_mod_mask;
1387
1388 #endif /* !__ASSEMBLY__ */
1389
1390 #ifndef io_remap_pfn_range
1391 #define io_remap_pfn_range remap_pfn_range
1392 #endif
1393
1394 #ifndef has_transparent_hugepage
1395 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1396 #define has_transparent_hugepage() 1
1397 #else
1398 #define has_transparent_hugepage() 0
1399 #endif
1400 #endif
1401
1402 /*
1403 * On some architectures it depends on the mm if the p4d/pud or pmd
1404 * layer of the page table hierarchy is folded or not.
1405 */
1406 #ifndef mm_p4d_folded
1407 #define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED)
1408 #endif
1409
1410 #ifndef mm_pud_folded
1411 #define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED)
1412 #endif
1413
1414 #ifndef mm_pmd_folded
1415 #define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED)
1416 #endif
1417
1418 /*
1419 * p?d_leaf() - true if this entry is a final mapping to a physical address.
1420 * This differs from p?d_huge() by the fact that they are always available (if
1421 * the architecture supports large pages at the appropriate level) even
1422 * if CONFIG_HUGETLB_PAGE is not defined.
1423 * Only meaningful when called on a valid entry.
1424 */
1425 #ifndef pgd_leaf
1426 #define pgd_leaf(x) 0
1427 #endif
1428 #ifndef p4d_leaf
1429 #define p4d_leaf(x) 0
1430 #endif
1431 #ifndef pud_leaf
1432 #define pud_leaf(x) 0
1433 #endif
1434 #ifndef pmd_leaf
1435 #define pmd_leaf(x) 0
1436 #endif
1437
1438 #endif /* _LINUX_PGTABLE_H */