]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/ptr_ring.h
Merge tag 'for-linus-20170825' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-artful-kernel.git] / include / linux / ptr_ring.h
1 /*
2 * Definitions for the 'struct ptr_ring' datastructure.
3 *
4 * Author:
5 * Michael S. Tsirkin <mst@redhat.com>
6 *
7 * Copyright (C) 2016 Red Hat, Inc.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 * This is a limited-size FIFO maintaining pointers in FIFO order, with
15 * one CPU producing entries and another consuming entries from a FIFO.
16 *
17 * This implementation tries to minimize cache-contention when there is a
18 * single producer and a single consumer CPU.
19 */
20
21 #ifndef _LINUX_PTR_RING_H
22 #define _LINUX_PTR_RING_H 1
23
24 #ifdef __KERNEL__
25 #include <linux/spinlock.h>
26 #include <linux/cache.h>
27 #include <linux/types.h>
28 #include <linux/compiler.h>
29 #include <linux/cache.h>
30 #include <linux/slab.h>
31 #include <asm/errno.h>
32 #endif
33
34 struct ptr_ring {
35 int producer ____cacheline_aligned_in_smp;
36 spinlock_t producer_lock;
37 int consumer_head ____cacheline_aligned_in_smp; /* next valid entry */
38 int consumer_tail; /* next entry to invalidate */
39 spinlock_t consumer_lock;
40 /* Shared consumer/producer data */
41 /* Read-only by both the producer and the consumer */
42 int size ____cacheline_aligned_in_smp; /* max entries in queue */
43 int batch; /* number of entries to consume in a batch */
44 void **queue;
45 };
46
47 /* Note: callers invoking this in a loop must use a compiler barrier,
48 * for example cpu_relax(). If ring is ever resized, callers must hold
49 * producer_lock - see e.g. ptr_ring_full. Otherwise, if callers don't hold
50 * producer_lock, the next call to __ptr_ring_produce may fail.
51 */
52 static inline bool __ptr_ring_full(struct ptr_ring *r)
53 {
54 return r->queue[r->producer];
55 }
56
57 static inline bool ptr_ring_full(struct ptr_ring *r)
58 {
59 bool ret;
60
61 spin_lock(&r->producer_lock);
62 ret = __ptr_ring_full(r);
63 spin_unlock(&r->producer_lock);
64
65 return ret;
66 }
67
68 static inline bool ptr_ring_full_irq(struct ptr_ring *r)
69 {
70 bool ret;
71
72 spin_lock_irq(&r->producer_lock);
73 ret = __ptr_ring_full(r);
74 spin_unlock_irq(&r->producer_lock);
75
76 return ret;
77 }
78
79 static inline bool ptr_ring_full_any(struct ptr_ring *r)
80 {
81 unsigned long flags;
82 bool ret;
83
84 spin_lock_irqsave(&r->producer_lock, flags);
85 ret = __ptr_ring_full(r);
86 spin_unlock_irqrestore(&r->producer_lock, flags);
87
88 return ret;
89 }
90
91 static inline bool ptr_ring_full_bh(struct ptr_ring *r)
92 {
93 bool ret;
94
95 spin_lock_bh(&r->producer_lock);
96 ret = __ptr_ring_full(r);
97 spin_unlock_bh(&r->producer_lock);
98
99 return ret;
100 }
101
102 /* Note: callers invoking this in a loop must use a compiler barrier,
103 * for example cpu_relax(). Callers must hold producer_lock.
104 */
105 static inline int __ptr_ring_produce(struct ptr_ring *r, void *ptr)
106 {
107 if (unlikely(!r->size) || r->queue[r->producer])
108 return -ENOSPC;
109
110 r->queue[r->producer++] = ptr;
111 if (unlikely(r->producer >= r->size))
112 r->producer = 0;
113 return 0;
114 }
115
116 /*
117 * Note: resize (below) nests producer lock within consumer lock, so if you
118 * consume in interrupt or BH context, you must disable interrupts/BH when
119 * calling this.
120 */
121 static inline int ptr_ring_produce(struct ptr_ring *r, void *ptr)
122 {
123 int ret;
124
125 spin_lock(&r->producer_lock);
126 ret = __ptr_ring_produce(r, ptr);
127 spin_unlock(&r->producer_lock);
128
129 return ret;
130 }
131
132 static inline int ptr_ring_produce_irq(struct ptr_ring *r, void *ptr)
133 {
134 int ret;
135
136 spin_lock_irq(&r->producer_lock);
137 ret = __ptr_ring_produce(r, ptr);
138 spin_unlock_irq(&r->producer_lock);
139
140 return ret;
141 }
142
143 static inline int ptr_ring_produce_any(struct ptr_ring *r, void *ptr)
144 {
145 unsigned long flags;
146 int ret;
147
148 spin_lock_irqsave(&r->producer_lock, flags);
149 ret = __ptr_ring_produce(r, ptr);
150 spin_unlock_irqrestore(&r->producer_lock, flags);
151
152 return ret;
153 }
154
155 static inline int ptr_ring_produce_bh(struct ptr_ring *r, void *ptr)
156 {
157 int ret;
158
159 spin_lock_bh(&r->producer_lock);
160 ret = __ptr_ring_produce(r, ptr);
161 spin_unlock_bh(&r->producer_lock);
162
163 return ret;
164 }
165
166 /* Note: callers invoking this in a loop must use a compiler barrier,
167 * for example cpu_relax(). Callers must take consumer_lock
168 * if they dereference the pointer - see e.g. PTR_RING_PEEK_CALL.
169 * If ring is never resized, and if the pointer is merely
170 * tested, there's no need to take the lock - see e.g. __ptr_ring_empty.
171 */
172 static inline void *__ptr_ring_peek(struct ptr_ring *r)
173 {
174 if (likely(r->size))
175 return r->queue[r->consumer_head];
176 return NULL;
177 }
178
179 /* Note: callers invoking this in a loop must use a compiler barrier,
180 * for example cpu_relax(). Callers must take consumer_lock
181 * if the ring is ever resized - see e.g. ptr_ring_empty.
182 */
183 static inline bool __ptr_ring_empty(struct ptr_ring *r)
184 {
185 return !__ptr_ring_peek(r);
186 }
187
188 static inline bool ptr_ring_empty(struct ptr_ring *r)
189 {
190 bool ret;
191
192 spin_lock(&r->consumer_lock);
193 ret = __ptr_ring_empty(r);
194 spin_unlock(&r->consumer_lock);
195
196 return ret;
197 }
198
199 static inline bool ptr_ring_empty_irq(struct ptr_ring *r)
200 {
201 bool ret;
202
203 spin_lock_irq(&r->consumer_lock);
204 ret = __ptr_ring_empty(r);
205 spin_unlock_irq(&r->consumer_lock);
206
207 return ret;
208 }
209
210 static inline bool ptr_ring_empty_any(struct ptr_ring *r)
211 {
212 unsigned long flags;
213 bool ret;
214
215 spin_lock_irqsave(&r->consumer_lock, flags);
216 ret = __ptr_ring_empty(r);
217 spin_unlock_irqrestore(&r->consumer_lock, flags);
218
219 return ret;
220 }
221
222 static inline bool ptr_ring_empty_bh(struct ptr_ring *r)
223 {
224 bool ret;
225
226 spin_lock_bh(&r->consumer_lock);
227 ret = __ptr_ring_empty(r);
228 spin_unlock_bh(&r->consumer_lock);
229
230 return ret;
231 }
232
233 /* Must only be called after __ptr_ring_peek returned !NULL */
234 static inline void __ptr_ring_discard_one(struct ptr_ring *r)
235 {
236 /* Fundamentally, what we want to do is update consumer
237 * index and zero out the entry so producer can reuse it.
238 * Doing it naively at each consume would be as simple as:
239 * r->queue[r->consumer++] = NULL;
240 * if (unlikely(r->consumer >= r->size))
241 * r->consumer = 0;
242 * but that is suboptimal when the ring is full as producer is writing
243 * out new entries in the same cache line. Defer these updates until a
244 * batch of entries has been consumed.
245 */
246 int head = r->consumer_head++;
247
248 /* Once we have processed enough entries invalidate them in
249 * the ring all at once so producer can reuse their space in the ring.
250 * We also do this when we reach end of the ring - not mandatory
251 * but helps keep the implementation simple.
252 */
253 if (unlikely(r->consumer_head - r->consumer_tail >= r->batch ||
254 r->consumer_head >= r->size)) {
255 /* Zero out entries in the reverse order: this way we touch the
256 * cache line that producer might currently be reading the last;
257 * producer won't make progress and touch other cache lines
258 * besides the first one until we write out all entries.
259 */
260 while (likely(head >= r->consumer_tail))
261 r->queue[head--] = NULL;
262 r->consumer_tail = r->consumer_head;
263 }
264 if (unlikely(r->consumer_head >= r->size)) {
265 r->consumer_head = 0;
266 r->consumer_tail = 0;
267 }
268 }
269
270 static inline void *__ptr_ring_consume(struct ptr_ring *r)
271 {
272 void *ptr;
273
274 ptr = __ptr_ring_peek(r);
275 if (ptr)
276 __ptr_ring_discard_one(r);
277
278 return ptr;
279 }
280
281 static inline int __ptr_ring_consume_batched(struct ptr_ring *r,
282 void **array, int n)
283 {
284 void *ptr;
285 int i;
286
287 for (i = 0; i < n; i++) {
288 ptr = __ptr_ring_consume(r);
289 if (!ptr)
290 break;
291 array[i] = ptr;
292 }
293
294 return i;
295 }
296
297 /*
298 * Note: resize (below) nests producer lock within consumer lock, so if you
299 * call this in interrupt or BH context, you must disable interrupts/BH when
300 * producing.
301 */
302 static inline void *ptr_ring_consume(struct ptr_ring *r)
303 {
304 void *ptr;
305
306 spin_lock(&r->consumer_lock);
307 ptr = __ptr_ring_consume(r);
308 spin_unlock(&r->consumer_lock);
309
310 return ptr;
311 }
312
313 static inline void *ptr_ring_consume_irq(struct ptr_ring *r)
314 {
315 void *ptr;
316
317 spin_lock_irq(&r->consumer_lock);
318 ptr = __ptr_ring_consume(r);
319 spin_unlock_irq(&r->consumer_lock);
320
321 return ptr;
322 }
323
324 static inline void *ptr_ring_consume_any(struct ptr_ring *r)
325 {
326 unsigned long flags;
327 void *ptr;
328
329 spin_lock_irqsave(&r->consumer_lock, flags);
330 ptr = __ptr_ring_consume(r);
331 spin_unlock_irqrestore(&r->consumer_lock, flags);
332
333 return ptr;
334 }
335
336 static inline void *ptr_ring_consume_bh(struct ptr_ring *r)
337 {
338 void *ptr;
339
340 spin_lock_bh(&r->consumer_lock);
341 ptr = __ptr_ring_consume(r);
342 spin_unlock_bh(&r->consumer_lock);
343
344 return ptr;
345 }
346
347 static inline int ptr_ring_consume_batched(struct ptr_ring *r,
348 void **array, int n)
349 {
350 int ret;
351
352 spin_lock(&r->consumer_lock);
353 ret = __ptr_ring_consume_batched(r, array, n);
354 spin_unlock(&r->consumer_lock);
355
356 return ret;
357 }
358
359 static inline int ptr_ring_consume_batched_irq(struct ptr_ring *r,
360 void **array, int n)
361 {
362 int ret;
363
364 spin_lock_irq(&r->consumer_lock);
365 ret = __ptr_ring_consume_batched(r, array, n);
366 spin_unlock_irq(&r->consumer_lock);
367
368 return ret;
369 }
370
371 static inline int ptr_ring_consume_batched_any(struct ptr_ring *r,
372 void **array, int n)
373 {
374 unsigned long flags;
375 int ret;
376
377 spin_lock_irqsave(&r->consumer_lock, flags);
378 ret = __ptr_ring_consume_batched(r, array, n);
379 spin_unlock_irqrestore(&r->consumer_lock, flags);
380
381 return ret;
382 }
383
384 static inline int ptr_ring_consume_batched_bh(struct ptr_ring *r,
385 void **array, int n)
386 {
387 int ret;
388
389 spin_lock_bh(&r->consumer_lock);
390 ret = __ptr_ring_consume_batched(r, array, n);
391 spin_unlock_bh(&r->consumer_lock);
392
393 return ret;
394 }
395
396 /* Cast to structure type and call a function without discarding from FIFO.
397 * Function must return a value.
398 * Callers must take consumer_lock.
399 */
400 #define __PTR_RING_PEEK_CALL(r, f) ((f)(__ptr_ring_peek(r)))
401
402 #define PTR_RING_PEEK_CALL(r, f) ({ \
403 typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
404 \
405 spin_lock(&(r)->consumer_lock); \
406 __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
407 spin_unlock(&(r)->consumer_lock); \
408 __PTR_RING_PEEK_CALL_v; \
409 })
410
411 #define PTR_RING_PEEK_CALL_IRQ(r, f) ({ \
412 typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
413 \
414 spin_lock_irq(&(r)->consumer_lock); \
415 __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
416 spin_unlock_irq(&(r)->consumer_lock); \
417 __PTR_RING_PEEK_CALL_v; \
418 })
419
420 #define PTR_RING_PEEK_CALL_BH(r, f) ({ \
421 typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
422 \
423 spin_lock_bh(&(r)->consumer_lock); \
424 __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
425 spin_unlock_bh(&(r)->consumer_lock); \
426 __PTR_RING_PEEK_CALL_v; \
427 })
428
429 #define PTR_RING_PEEK_CALL_ANY(r, f) ({ \
430 typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
431 unsigned long __PTR_RING_PEEK_CALL_f;\
432 \
433 spin_lock_irqsave(&(r)->consumer_lock, __PTR_RING_PEEK_CALL_f); \
434 __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
435 spin_unlock_irqrestore(&(r)->consumer_lock, __PTR_RING_PEEK_CALL_f); \
436 __PTR_RING_PEEK_CALL_v; \
437 })
438
439 static inline void **__ptr_ring_init_queue_alloc(unsigned int size, gfp_t gfp)
440 {
441 return kcalloc(size, sizeof(void *), gfp);
442 }
443
444 static inline void __ptr_ring_set_size(struct ptr_ring *r, int size)
445 {
446 r->size = size;
447 r->batch = SMP_CACHE_BYTES * 2 / sizeof(*(r->queue));
448 /* We need to set batch at least to 1 to make logic
449 * in __ptr_ring_discard_one work correctly.
450 * Batching too much (because ring is small) would cause a lot of
451 * burstiness. Needs tuning, for now disable batching.
452 */
453 if (r->batch > r->size / 2 || !r->batch)
454 r->batch = 1;
455 }
456
457 static inline int ptr_ring_init(struct ptr_ring *r, int size, gfp_t gfp)
458 {
459 r->queue = __ptr_ring_init_queue_alloc(size, gfp);
460 if (!r->queue)
461 return -ENOMEM;
462
463 __ptr_ring_set_size(r, size);
464 r->producer = r->consumer_head = r->consumer_tail = 0;
465 spin_lock_init(&r->producer_lock);
466 spin_lock_init(&r->consumer_lock);
467
468 return 0;
469 }
470
471 /*
472 * Return entries into ring. Destroy entries that don't fit.
473 *
474 * Note: this is expected to be a rare slow path operation.
475 *
476 * Note: producer lock is nested within consumer lock, so if you
477 * resize you must make sure all uses nest correctly.
478 * In particular if you consume ring in interrupt or BH context, you must
479 * disable interrupts/BH when doing so.
480 */
481 static inline void ptr_ring_unconsume(struct ptr_ring *r, void **batch, int n,
482 void (*destroy)(void *))
483 {
484 unsigned long flags;
485 int head;
486
487 spin_lock_irqsave(&r->consumer_lock, flags);
488 spin_lock(&r->producer_lock);
489
490 if (!r->size)
491 goto done;
492
493 /*
494 * Clean out buffered entries (for simplicity). This way following code
495 * can test entries for NULL and if not assume they are valid.
496 */
497 head = r->consumer_head - 1;
498 while (likely(head >= r->consumer_tail))
499 r->queue[head--] = NULL;
500 r->consumer_tail = r->consumer_head;
501
502 /*
503 * Go over entries in batch, start moving head back and copy entries.
504 * Stop when we run into previously unconsumed entries.
505 */
506 while (n) {
507 head = r->consumer_head - 1;
508 if (head < 0)
509 head = r->size - 1;
510 if (r->queue[head]) {
511 /* This batch entry will have to be destroyed. */
512 goto done;
513 }
514 r->queue[head] = batch[--n];
515 r->consumer_tail = r->consumer_head = head;
516 }
517
518 done:
519 /* Destroy all entries left in the batch. */
520 while (n)
521 destroy(batch[--n]);
522 spin_unlock(&r->producer_lock);
523 spin_unlock_irqrestore(&r->consumer_lock, flags);
524 }
525
526 static inline void **__ptr_ring_swap_queue(struct ptr_ring *r, void **queue,
527 int size, gfp_t gfp,
528 void (*destroy)(void *))
529 {
530 int producer = 0;
531 void **old;
532 void *ptr;
533
534 while ((ptr = __ptr_ring_consume(r)))
535 if (producer < size)
536 queue[producer++] = ptr;
537 else if (destroy)
538 destroy(ptr);
539
540 __ptr_ring_set_size(r, size);
541 r->producer = producer;
542 r->consumer_head = 0;
543 r->consumer_tail = 0;
544 old = r->queue;
545 r->queue = queue;
546
547 return old;
548 }
549
550 /*
551 * Note: producer lock is nested within consumer lock, so if you
552 * resize you must make sure all uses nest correctly.
553 * In particular if you consume ring in interrupt or BH context, you must
554 * disable interrupts/BH when doing so.
555 */
556 static inline int ptr_ring_resize(struct ptr_ring *r, int size, gfp_t gfp,
557 void (*destroy)(void *))
558 {
559 unsigned long flags;
560 void **queue = __ptr_ring_init_queue_alloc(size, gfp);
561 void **old;
562
563 if (!queue)
564 return -ENOMEM;
565
566 spin_lock_irqsave(&(r)->consumer_lock, flags);
567 spin_lock(&(r)->producer_lock);
568
569 old = __ptr_ring_swap_queue(r, queue, size, gfp, destroy);
570
571 spin_unlock(&(r)->producer_lock);
572 spin_unlock_irqrestore(&(r)->consumer_lock, flags);
573
574 kfree(old);
575
576 return 0;
577 }
578
579 /*
580 * Note: producer lock is nested within consumer lock, so if you
581 * resize you must make sure all uses nest correctly.
582 * In particular if you consume ring in interrupt or BH context, you must
583 * disable interrupts/BH when doing so.
584 */
585 static inline int ptr_ring_resize_multiple(struct ptr_ring **rings,
586 unsigned int nrings,
587 int size,
588 gfp_t gfp, void (*destroy)(void *))
589 {
590 unsigned long flags;
591 void ***queues;
592 int i;
593
594 queues = kmalloc_array(nrings, sizeof(*queues), gfp);
595 if (!queues)
596 goto noqueues;
597
598 for (i = 0; i < nrings; ++i) {
599 queues[i] = __ptr_ring_init_queue_alloc(size, gfp);
600 if (!queues[i])
601 goto nomem;
602 }
603
604 for (i = 0; i < nrings; ++i) {
605 spin_lock_irqsave(&(rings[i])->consumer_lock, flags);
606 spin_lock(&(rings[i])->producer_lock);
607 queues[i] = __ptr_ring_swap_queue(rings[i], queues[i],
608 size, gfp, destroy);
609 spin_unlock(&(rings[i])->producer_lock);
610 spin_unlock_irqrestore(&(rings[i])->consumer_lock, flags);
611 }
612
613 for (i = 0; i < nrings; ++i)
614 kfree(queues[i]);
615
616 kfree(queues);
617
618 return 0;
619
620 nomem:
621 while (--i >= 0)
622 kfree(queues[i]);
623
624 kfree(queues);
625
626 noqueues:
627 return -ENOMEM;
628 }
629
630 static inline void ptr_ring_cleanup(struct ptr_ring *r, void (*destroy)(void *))
631 {
632 void *ptr;
633
634 if (destroy)
635 while ((ptr = ptr_ring_consume(r)))
636 destroy(ptr);
637 kfree(r->queue);
638 }
639
640 #endif /* _LINUX_PTR_RING_H */