]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - include/linux/ptr_ring.h
Merge tag 'armsoc-newsoc' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[mirror_ubuntu-eoan-kernel.git] / include / linux / ptr_ring.h
1 /*
2 * Definitions for the 'struct ptr_ring' datastructure.
3 *
4 * Author:
5 * Michael S. Tsirkin <mst@redhat.com>
6 *
7 * Copyright (C) 2016 Red Hat, Inc.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 * This is a limited-size FIFO maintaining pointers in FIFO order, with
15 * one CPU producing entries and another consuming entries from a FIFO.
16 *
17 * This implementation tries to minimize cache-contention when there is a
18 * single producer and a single consumer CPU.
19 */
20
21 #ifndef _LINUX_PTR_RING_H
22 #define _LINUX_PTR_RING_H 1
23
24 #ifdef __KERNEL__
25 #include <linux/spinlock.h>
26 #include <linux/cache.h>
27 #include <linux/types.h>
28 #include <linux/compiler.h>
29 #include <linux/slab.h>
30 #include <asm/errno.h>
31 #endif
32
33 struct ptr_ring {
34 int producer ____cacheline_aligned_in_smp;
35 spinlock_t producer_lock;
36 int consumer_head ____cacheline_aligned_in_smp; /* next valid entry */
37 int consumer_tail; /* next entry to invalidate */
38 spinlock_t consumer_lock;
39 /* Shared consumer/producer data */
40 /* Read-only by both the producer and the consumer */
41 int size ____cacheline_aligned_in_smp; /* max entries in queue */
42 int batch; /* number of entries to consume in a batch */
43 void **queue;
44 };
45
46 /* Note: callers invoking this in a loop must use a compiler barrier,
47 * for example cpu_relax().
48 *
49 * NB: this is unlike __ptr_ring_empty in that callers must hold producer_lock:
50 * see e.g. ptr_ring_full.
51 */
52 static inline bool __ptr_ring_full(struct ptr_ring *r)
53 {
54 return r->queue[r->producer];
55 }
56
57 static inline bool ptr_ring_full(struct ptr_ring *r)
58 {
59 bool ret;
60
61 spin_lock(&r->producer_lock);
62 ret = __ptr_ring_full(r);
63 spin_unlock(&r->producer_lock);
64
65 return ret;
66 }
67
68 static inline bool ptr_ring_full_irq(struct ptr_ring *r)
69 {
70 bool ret;
71
72 spin_lock_irq(&r->producer_lock);
73 ret = __ptr_ring_full(r);
74 spin_unlock_irq(&r->producer_lock);
75
76 return ret;
77 }
78
79 static inline bool ptr_ring_full_any(struct ptr_ring *r)
80 {
81 unsigned long flags;
82 bool ret;
83
84 spin_lock_irqsave(&r->producer_lock, flags);
85 ret = __ptr_ring_full(r);
86 spin_unlock_irqrestore(&r->producer_lock, flags);
87
88 return ret;
89 }
90
91 static inline bool ptr_ring_full_bh(struct ptr_ring *r)
92 {
93 bool ret;
94
95 spin_lock_bh(&r->producer_lock);
96 ret = __ptr_ring_full(r);
97 spin_unlock_bh(&r->producer_lock);
98
99 return ret;
100 }
101
102 /* Note: callers invoking this in a loop must use a compiler barrier,
103 * for example cpu_relax(). Callers must hold producer_lock.
104 * Callers are responsible for making sure pointer that is being queued
105 * points to a valid data.
106 */
107 static inline int __ptr_ring_produce(struct ptr_ring *r, void *ptr)
108 {
109 if (unlikely(!r->size) || r->queue[r->producer])
110 return -ENOSPC;
111
112 /* Make sure the pointer we are storing points to a valid data. */
113 /* Pairs with smp_read_barrier_depends in __ptr_ring_consume. */
114 smp_wmb();
115
116 WRITE_ONCE(r->queue[r->producer++], ptr);
117 if (unlikely(r->producer >= r->size))
118 r->producer = 0;
119 return 0;
120 }
121
122 /*
123 * Note: resize (below) nests producer lock within consumer lock, so if you
124 * consume in interrupt or BH context, you must disable interrupts/BH when
125 * calling this.
126 */
127 static inline int ptr_ring_produce(struct ptr_ring *r, void *ptr)
128 {
129 int ret;
130
131 spin_lock(&r->producer_lock);
132 ret = __ptr_ring_produce(r, ptr);
133 spin_unlock(&r->producer_lock);
134
135 return ret;
136 }
137
138 static inline int ptr_ring_produce_irq(struct ptr_ring *r, void *ptr)
139 {
140 int ret;
141
142 spin_lock_irq(&r->producer_lock);
143 ret = __ptr_ring_produce(r, ptr);
144 spin_unlock_irq(&r->producer_lock);
145
146 return ret;
147 }
148
149 static inline int ptr_ring_produce_any(struct ptr_ring *r, void *ptr)
150 {
151 unsigned long flags;
152 int ret;
153
154 spin_lock_irqsave(&r->producer_lock, flags);
155 ret = __ptr_ring_produce(r, ptr);
156 spin_unlock_irqrestore(&r->producer_lock, flags);
157
158 return ret;
159 }
160
161 static inline int ptr_ring_produce_bh(struct ptr_ring *r, void *ptr)
162 {
163 int ret;
164
165 spin_lock_bh(&r->producer_lock);
166 ret = __ptr_ring_produce(r, ptr);
167 spin_unlock_bh(&r->producer_lock);
168
169 return ret;
170 }
171
172 static inline void *__ptr_ring_peek(struct ptr_ring *r)
173 {
174 if (likely(r->size))
175 return READ_ONCE(r->queue[r->consumer_head]);
176 return NULL;
177 }
178
179 /*
180 * Test ring empty status without taking any locks.
181 *
182 * NB: This is only safe to call if ring is never resized.
183 *
184 * However, if some other CPU consumes ring entries at the same time, the value
185 * returned is not guaranteed to be correct.
186 *
187 * In this case - to avoid incorrectly detecting the ring
188 * as empty - the CPU consuming the ring entries is responsible
189 * for either consuming all ring entries until the ring is empty,
190 * or synchronizing with some other CPU and causing it to
191 * re-test __ptr_ring_empty and/or consume the ring enteries
192 * after the synchronization point.
193 *
194 * Note: callers invoking this in a loop must use a compiler barrier,
195 * for example cpu_relax().
196 */
197 static inline bool __ptr_ring_empty(struct ptr_ring *r)
198 {
199 if (likely(r->size))
200 return !r->queue[READ_ONCE(r->consumer_head)];
201 return true;
202 }
203
204 static inline bool ptr_ring_empty(struct ptr_ring *r)
205 {
206 bool ret;
207
208 spin_lock(&r->consumer_lock);
209 ret = __ptr_ring_empty(r);
210 spin_unlock(&r->consumer_lock);
211
212 return ret;
213 }
214
215 static inline bool ptr_ring_empty_irq(struct ptr_ring *r)
216 {
217 bool ret;
218
219 spin_lock_irq(&r->consumer_lock);
220 ret = __ptr_ring_empty(r);
221 spin_unlock_irq(&r->consumer_lock);
222
223 return ret;
224 }
225
226 static inline bool ptr_ring_empty_any(struct ptr_ring *r)
227 {
228 unsigned long flags;
229 bool ret;
230
231 spin_lock_irqsave(&r->consumer_lock, flags);
232 ret = __ptr_ring_empty(r);
233 spin_unlock_irqrestore(&r->consumer_lock, flags);
234
235 return ret;
236 }
237
238 static inline bool ptr_ring_empty_bh(struct ptr_ring *r)
239 {
240 bool ret;
241
242 spin_lock_bh(&r->consumer_lock);
243 ret = __ptr_ring_empty(r);
244 spin_unlock_bh(&r->consumer_lock);
245
246 return ret;
247 }
248
249 /* Must only be called after __ptr_ring_peek returned !NULL */
250 static inline void __ptr_ring_discard_one(struct ptr_ring *r)
251 {
252 /* Fundamentally, what we want to do is update consumer
253 * index and zero out the entry so producer can reuse it.
254 * Doing it naively at each consume would be as simple as:
255 * consumer = r->consumer;
256 * r->queue[consumer++] = NULL;
257 * if (unlikely(consumer >= r->size))
258 * consumer = 0;
259 * r->consumer = consumer;
260 * but that is suboptimal when the ring is full as producer is writing
261 * out new entries in the same cache line. Defer these updates until a
262 * batch of entries has been consumed.
263 */
264 /* Note: we must keep consumer_head valid at all times for __ptr_ring_empty
265 * to work correctly.
266 */
267 int consumer_head = r->consumer_head;
268 int head = consumer_head++;
269
270 /* Once we have processed enough entries invalidate them in
271 * the ring all at once so producer can reuse their space in the ring.
272 * We also do this when we reach end of the ring - not mandatory
273 * but helps keep the implementation simple.
274 */
275 if (unlikely(consumer_head - r->consumer_tail >= r->batch ||
276 consumer_head >= r->size)) {
277 /* Zero out entries in the reverse order: this way we touch the
278 * cache line that producer might currently be reading the last;
279 * producer won't make progress and touch other cache lines
280 * besides the first one until we write out all entries.
281 */
282 while (likely(head >= r->consumer_tail))
283 r->queue[head--] = NULL;
284 r->consumer_tail = consumer_head;
285 }
286 if (unlikely(consumer_head >= r->size)) {
287 consumer_head = 0;
288 r->consumer_tail = 0;
289 }
290 /* matching READ_ONCE in __ptr_ring_empty for lockless tests */
291 WRITE_ONCE(r->consumer_head, consumer_head);
292 }
293
294 static inline void *__ptr_ring_consume(struct ptr_ring *r)
295 {
296 void *ptr;
297
298 /* The READ_ONCE in __ptr_ring_peek guarantees that anyone
299 * accessing data through the pointer is up to date. Pairs
300 * with smp_wmb in __ptr_ring_produce.
301 */
302 ptr = __ptr_ring_peek(r);
303 if (ptr)
304 __ptr_ring_discard_one(r);
305
306 return ptr;
307 }
308
309 static inline int __ptr_ring_consume_batched(struct ptr_ring *r,
310 void **array, int n)
311 {
312 void *ptr;
313 int i;
314
315 for (i = 0; i < n; i++) {
316 ptr = __ptr_ring_consume(r);
317 if (!ptr)
318 break;
319 array[i] = ptr;
320 }
321
322 return i;
323 }
324
325 /*
326 * Note: resize (below) nests producer lock within consumer lock, so if you
327 * call this in interrupt or BH context, you must disable interrupts/BH when
328 * producing.
329 */
330 static inline void *ptr_ring_consume(struct ptr_ring *r)
331 {
332 void *ptr;
333
334 spin_lock(&r->consumer_lock);
335 ptr = __ptr_ring_consume(r);
336 spin_unlock(&r->consumer_lock);
337
338 return ptr;
339 }
340
341 static inline void *ptr_ring_consume_irq(struct ptr_ring *r)
342 {
343 void *ptr;
344
345 spin_lock_irq(&r->consumer_lock);
346 ptr = __ptr_ring_consume(r);
347 spin_unlock_irq(&r->consumer_lock);
348
349 return ptr;
350 }
351
352 static inline void *ptr_ring_consume_any(struct ptr_ring *r)
353 {
354 unsigned long flags;
355 void *ptr;
356
357 spin_lock_irqsave(&r->consumer_lock, flags);
358 ptr = __ptr_ring_consume(r);
359 spin_unlock_irqrestore(&r->consumer_lock, flags);
360
361 return ptr;
362 }
363
364 static inline void *ptr_ring_consume_bh(struct ptr_ring *r)
365 {
366 void *ptr;
367
368 spin_lock_bh(&r->consumer_lock);
369 ptr = __ptr_ring_consume(r);
370 spin_unlock_bh(&r->consumer_lock);
371
372 return ptr;
373 }
374
375 static inline int ptr_ring_consume_batched(struct ptr_ring *r,
376 void **array, int n)
377 {
378 int ret;
379
380 spin_lock(&r->consumer_lock);
381 ret = __ptr_ring_consume_batched(r, array, n);
382 spin_unlock(&r->consumer_lock);
383
384 return ret;
385 }
386
387 static inline int ptr_ring_consume_batched_irq(struct ptr_ring *r,
388 void **array, int n)
389 {
390 int ret;
391
392 spin_lock_irq(&r->consumer_lock);
393 ret = __ptr_ring_consume_batched(r, array, n);
394 spin_unlock_irq(&r->consumer_lock);
395
396 return ret;
397 }
398
399 static inline int ptr_ring_consume_batched_any(struct ptr_ring *r,
400 void **array, int n)
401 {
402 unsigned long flags;
403 int ret;
404
405 spin_lock_irqsave(&r->consumer_lock, flags);
406 ret = __ptr_ring_consume_batched(r, array, n);
407 spin_unlock_irqrestore(&r->consumer_lock, flags);
408
409 return ret;
410 }
411
412 static inline int ptr_ring_consume_batched_bh(struct ptr_ring *r,
413 void **array, int n)
414 {
415 int ret;
416
417 spin_lock_bh(&r->consumer_lock);
418 ret = __ptr_ring_consume_batched(r, array, n);
419 spin_unlock_bh(&r->consumer_lock);
420
421 return ret;
422 }
423
424 /* Cast to structure type and call a function without discarding from FIFO.
425 * Function must return a value.
426 * Callers must take consumer_lock.
427 */
428 #define __PTR_RING_PEEK_CALL(r, f) ((f)(__ptr_ring_peek(r)))
429
430 #define PTR_RING_PEEK_CALL(r, f) ({ \
431 typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
432 \
433 spin_lock(&(r)->consumer_lock); \
434 __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
435 spin_unlock(&(r)->consumer_lock); \
436 __PTR_RING_PEEK_CALL_v; \
437 })
438
439 #define PTR_RING_PEEK_CALL_IRQ(r, f) ({ \
440 typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
441 \
442 spin_lock_irq(&(r)->consumer_lock); \
443 __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
444 spin_unlock_irq(&(r)->consumer_lock); \
445 __PTR_RING_PEEK_CALL_v; \
446 })
447
448 #define PTR_RING_PEEK_CALL_BH(r, f) ({ \
449 typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
450 \
451 spin_lock_bh(&(r)->consumer_lock); \
452 __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
453 spin_unlock_bh(&(r)->consumer_lock); \
454 __PTR_RING_PEEK_CALL_v; \
455 })
456
457 #define PTR_RING_PEEK_CALL_ANY(r, f) ({ \
458 typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
459 unsigned long __PTR_RING_PEEK_CALL_f;\
460 \
461 spin_lock_irqsave(&(r)->consumer_lock, __PTR_RING_PEEK_CALL_f); \
462 __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
463 spin_unlock_irqrestore(&(r)->consumer_lock, __PTR_RING_PEEK_CALL_f); \
464 __PTR_RING_PEEK_CALL_v; \
465 })
466
467 /* Not all gfp_t flags (besides GFP_KERNEL) are allowed. See
468 * documentation for vmalloc for which of them are legal.
469 */
470 static inline void **__ptr_ring_init_queue_alloc(unsigned int size, gfp_t gfp)
471 {
472 if (size > KMALLOC_MAX_SIZE / sizeof(void *))
473 return NULL;
474 return kvmalloc_array(size, sizeof(void *), gfp | __GFP_ZERO);
475 }
476
477 static inline void __ptr_ring_set_size(struct ptr_ring *r, int size)
478 {
479 r->size = size;
480 r->batch = SMP_CACHE_BYTES * 2 / sizeof(*(r->queue));
481 /* We need to set batch at least to 1 to make logic
482 * in __ptr_ring_discard_one work correctly.
483 * Batching too much (because ring is small) would cause a lot of
484 * burstiness. Needs tuning, for now disable batching.
485 */
486 if (r->batch > r->size / 2 || !r->batch)
487 r->batch = 1;
488 }
489
490 static inline int ptr_ring_init(struct ptr_ring *r, int size, gfp_t gfp)
491 {
492 r->queue = __ptr_ring_init_queue_alloc(size, gfp);
493 if (!r->queue)
494 return -ENOMEM;
495
496 __ptr_ring_set_size(r, size);
497 r->producer = r->consumer_head = r->consumer_tail = 0;
498 spin_lock_init(&r->producer_lock);
499 spin_lock_init(&r->consumer_lock);
500
501 return 0;
502 }
503
504 /*
505 * Return entries into ring. Destroy entries that don't fit.
506 *
507 * Note: this is expected to be a rare slow path operation.
508 *
509 * Note: producer lock is nested within consumer lock, so if you
510 * resize you must make sure all uses nest correctly.
511 * In particular if you consume ring in interrupt or BH context, you must
512 * disable interrupts/BH when doing so.
513 */
514 static inline void ptr_ring_unconsume(struct ptr_ring *r, void **batch, int n,
515 void (*destroy)(void *))
516 {
517 unsigned long flags;
518 int head;
519
520 spin_lock_irqsave(&r->consumer_lock, flags);
521 spin_lock(&r->producer_lock);
522
523 if (!r->size)
524 goto done;
525
526 /*
527 * Clean out buffered entries (for simplicity). This way following code
528 * can test entries for NULL and if not assume they are valid.
529 */
530 head = r->consumer_head - 1;
531 while (likely(head >= r->consumer_tail))
532 r->queue[head--] = NULL;
533 r->consumer_tail = r->consumer_head;
534
535 /*
536 * Go over entries in batch, start moving head back and copy entries.
537 * Stop when we run into previously unconsumed entries.
538 */
539 while (n) {
540 head = r->consumer_head - 1;
541 if (head < 0)
542 head = r->size - 1;
543 if (r->queue[head]) {
544 /* This batch entry will have to be destroyed. */
545 goto done;
546 }
547 r->queue[head] = batch[--n];
548 r->consumer_tail = head;
549 /* matching READ_ONCE in __ptr_ring_empty for lockless tests */
550 WRITE_ONCE(r->consumer_head, head);
551 }
552
553 done:
554 /* Destroy all entries left in the batch. */
555 while (n)
556 destroy(batch[--n]);
557 spin_unlock(&r->producer_lock);
558 spin_unlock_irqrestore(&r->consumer_lock, flags);
559 }
560
561 static inline void **__ptr_ring_swap_queue(struct ptr_ring *r, void **queue,
562 int size, gfp_t gfp,
563 void (*destroy)(void *))
564 {
565 int producer = 0;
566 void **old;
567 void *ptr;
568
569 while ((ptr = __ptr_ring_consume(r)))
570 if (producer < size)
571 queue[producer++] = ptr;
572 else if (destroy)
573 destroy(ptr);
574
575 if (producer >= size)
576 producer = 0;
577 __ptr_ring_set_size(r, size);
578 r->producer = producer;
579 r->consumer_head = 0;
580 r->consumer_tail = 0;
581 old = r->queue;
582 r->queue = queue;
583
584 return old;
585 }
586
587 /*
588 * Note: producer lock is nested within consumer lock, so if you
589 * resize you must make sure all uses nest correctly.
590 * In particular if you consume ring in interrupt or BH context, you must
591 * disable interrupts/BH when doing so.
592 */
593 static inline int ptr_ring_resize(struct ptr_ring *r, int size, gfp_t gfp,
594 void (*destroy)(void *))
595 {
596 unsigned long flags;
597 void **queue = __ptr_ring_init_queue_alloc(size, gfp);
598 void **old;
599
600 if (!queue)
601 return -ENOMEM;
602
603 spin_lock_irqsave(&(r)->consumer_lock, flags);
604 spin_lock(&(r)->producer_lock);
605
606 old = __ptr_ring_swap_queue(r, queue, size, gfp, destroy);
607
608 spin_unlock(&(r)->producer_lock);
609 spin_unlock_irqrestore(&(r)->consumer_lock, flags);
610
611 kvfree(old);
612
613 return 0;
614 }
615
616 /*
617 * Note: producer lock is nested within consumer lock, so if you
618 * resize you must make sure all uses nest correctly.
619 * In particular if you consume ring in interrupt or BH context, you must
620 * disable interrupts/BH when doing so.
621 */
622 static inline int ptr_ring_resize_multiple(struct ptr_ring **rings,
623 unsigned int nrings,
624 int size,
625 gfp_t gfp, void (*destroy)(void *))
626 {
627 unsigned long flags;
628 void ***queues;
629 int i;
630
631 queues = kmalloc_array(nrings, sizeof(*queues), gfp);
632 if (!queues)
633 goto noqueues;
634
635 for (i = 0; i < nrings; ++i) {
636 queues[i] = __ptr_ring_init_queue_alloc(size, gfp);
637 if (!queues[i])
638 goto nomem;
639 }
640
641 for (i = 0; i < nrings; ++i) {
642 spin_lock_irqsave(&(rings[i])->consumer_lock, flags);
643 spin_lock(&(rings[i])->producer_lock);
644 queues[i] = __ptr_ring_swap_queue(rings[i], queues[i],
645 size, gfp, destroy);
646 spin_unlock(&(rings[i])->producer_lock);
647 spin_unlock_irqrestore(&(rings[i])->consumer_lock, flags);
648 }
649
650 for (i = 0; i < nrings; ++i)
651 kvfree(queues[i]);
652
653 kfree(queues);
654
655 return 0;
656
657 nomem:
658 while (--i >= 0)
659 kvfree(queues[i]);
660
661 kfree(queues);
662
663 noqueues:
664 return -ENOMEM;
665 }
666
667 static inline void ptr_ring_cleanup(struct ptr_ring *r, void (*destroy)(void *))
668 {
669 void *ptr;
670
671 if (destroy)
672 while ((ptr = ptr_ring_consume(r)))
673 destroy(ptr);
674 kvfree(r->queue);
675 }
676
677 #endif /* _LINUX_PTR_RING_H */