]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/ptrace.h
ptrace: implement PTRACE_LISTEN
[mirror_ubuntu-bionic-kernel.git] / include / linux / ptrace.h
1 #ifndef _LINUX_PTRACE_H
2 #define _LINUX_PTRACE_H
3 /* ptrace.h */
4 /* structs and defines to help the user use the ptrace system call. */
5
6 /* has the defines to get at the registers. */
7
8 #define PTRACE_TRACEME 0
9 #define PTRACE_PEEKTEXT 1
10 #define PTRACE_PEEKDATA 2
11 #define PTRACE_PEEKUSR 3
12 #define PTRACE_POKETEXT 4
13 #define PTRACE_POKEDATA 5
14 #define PTRACE_POKEUSR 6
15 #define PTRACE_CONT 7
16 #define PTRACE_KILL 8
17 #define PTRACE_SINGLESTEP 9
18
19 #define PTRACE_ATTACH 16
20 #define PTRACE_DETACH 17
21
22 #define PTRACE_SYSCALL 24
23
24 /* 0x4200-0x4300 are reserved for architecture-independent additions. */
25 #define PTRACE_SETOPTIONS 0x4200
26 #define PTRACE_GETEVENTMSG 0x4201
27 #define PTRACE_GETSIGINFO 0x4202
28 #define PTRACE_SETSIGINFO 0x4203
29
30 /*
31 * Generic ptrace interface that exports the architecture specific regsets
32 * using the corresponding NT_* types (which are also used in the core dump).
33 * Please note that the NT_PRSTATUS note type in a core dump contains a full
34 * 'struct elf_prstatus'. But the user_regset for NT_PRSTATUS contains just the
35 * elf_gregset_t that is the pr_reg field of 'struct elf_prstatus'. For all the
36 * other user_regset flavors, the user_regset layout and the ELF core dump note
37 * payload are exactly the same layout.
38 *
39 * This interface usage is as follows:
40 * struct iovec iov = { buf, len};
41 *
42 * ret = ptrace(PTRACE_GETREGSET/PTRACE_SETREGSET, pid, NT_XXX_TYPE, &iov);
43 *
44 * On the successful completion, iov.len will be updated by the kernel,
45 * specifying how much the kernel has written/read to/from the user's iov.buf.
46 */
47 #define PTRACE_GETREGSET 0x4204
48 #define PTRACE_SETREGSET 0x4205
49
50 #define PTRACE_SEIZE 0x4206
51 #define PTRACE_INTERRUPT 0x4207
52 #define PTRACE_LISTEN 0x4208
53
54 /* flags in @data for PTRACE_SEIZE */
55 #define PTRACE_SEIZE_DEVEL 0x80000000 /* temp flag for development */
56
57 /* options set using PTRACE_SETOPTIONS */
58 #define PTRACE_O_TRACESYSGOOD 0x00000001
59 #define PTRACE_O_TRACEFORK 0x00000002
60 #define PTRACE_O_TRACEVFORK 0x00000004
61 #define PTRACE_O_TRACECLONE 0x00000008
62 #define PTRACE_O_TRACEEXEC 0x00000010
63 #define PTRACE_O_TRACEVFORKDONE 0x00000020
64 #define PTRACE_O_TRACEEXIT 0x00000040
65
66 #define PTRACE_O_MASK 0x0000007f
67
68 /* Wait extended result codes for the above trace options. */
69 #define PTRACE_EVENT_FORK 1
70 #define PTRACE_EVENT_VFORK 2
71 #define PTRACE_EVENT_CLONE 3
72 #define PTRACE_EVENT_EXEC 4
73 #define PTRACE_EVENT_VFORK_DONE 5
74 #define PTRACE_EVENT_EXIT 6
75 #define PTRACE_EVENT_STOP 7
76
77 #include <asm/ptrace.h>
78
79 #ifdef __KERNEL__
80 /*
81 * Ptrace flags
82 *
83 * The owner ship rules for task->ptrace which holds the ptrace
84 * flags is simple. When a task is running it owns it's task->ptrace
85 * flags. When the a task is stopped the ptracer owns task->ptrace.
86 */
87
88 #define PT_SEIZED 0x00010000 /* SEIZE used, enable new behavior */
89 #define PT_PTRACED 0x00000001
90 #define PT_DTRACE 0x00000002 /* delayed trace (used on m68k, i386) */
91 #define PT_TRACESYSGOOD 0x00000004
92 #define PT_PTRACE_CAP 0x00000008 /* ptracer can follow suid-exec */
93 #define PT_TRACE_FORK 0x00000010
94 #define PT_TRACE_VFORK 0x00000020
95 #define PT_TRACE_CLONE 0x00000040
96 #define PT_TRACE_EXEC 0x00000080
97 #define PT_TRACE_VFORK_DONE 0x00000100
98 #define PT_TRACE_EXIT 0x00000200
99
100 #define PT_TRACE_MASK 0x000003f4
101
102 /* single stepping state bits (used on ARM and PA-RISC) */
103 #define PT_SINGLESTEP_BIT 31
104 #define PT_SINGLESTEP (1<<PT_SINGLESTEP_BIT)
105 #define PT_BLOCKSTEP_BIT 30
106 #define PT_BLOCKSTEP (1<<PT_BLOCKSTEP_BIT)
107
108 #include <linux/compiler.h> /* For unlikely. */
109 #include <linux/sched.h> /* For struct task_struct. */
110
111
112 extern long arch_ptrace(struct task_struct *child, long request,
113 unsigned long addr, unsigned long data);
114 extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len);
115 extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len);
116 extern void ptrace_disable(struct task_struct *);
117 extern int ptrace_check_attach(struct task_struct *task, bool ignore_state);
118 extern int ptrace_request(struct task_struct *child, long request,
119 unsigned long addr, unsigned long data);
120 extern void ptrace_notify(int exit_code);
121 extern void __ptrace_link(struct task_struct *child,
122 struct task_struct *new_parent);
123 extern void __ptrace_unlink(struct task_struct *child);
124 extern void exit_ptrace(struct task_struct *tracer);
125 #define PTRACE_MODE_READ 1
126 #define PTRACE_MODE_ATTACH 2
127 /* Returns 0 on success, -errno on denial. */
128 extern int __ptrace_may_access(struct task_struct *task, unsigned int mode);
129 /* Returns true on success, false on denial. */
130 extern bool ptrace_may_access(struct task_struct *task, unsigned int mode);
131
132 static inline int ptrace_reparented(struct task_struct *child)
133 {
134 return child->real_parent != child->parent;
135 }
136
137 static inline void ptrace_unlink(struct task_struct *child)
138 {
139 if (unlikely(child->ptrace))
140 __ptrace_unlink(child);
141 }
142
143 int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
144 unsigned long data);
145 int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
146 unsigned long data);
147
148 /**
149 * task_ptrace - return %PT_* flags that apply to a task
150 * @task: pointer to &task_struct in question
151 *
152 * Returns the %PT_* flags that apply to @task.
153 */
154 static inline int task_ptrace(struct task_struct *task)
155 {
156 return task->ptrace;
157 }
158
159 /**
160 * ptrace_event - possibly stop for a ptrace event notification
161 * @mask: %PT_* bit to check in @current->ptrace
162 * @event: %PTRACE_EVENT_* value to report if @mask is set
163 * @message: value for %PTRACE_GETEVENTMSG to return
164 *
165 * This checks the @mask bit to see if ptrace wants stops for this event.
166 * If so we stop, reporting @event and @message to the ptrace parent.
167 *
168 * Returns nonzero if we did a ptrace notification, zero if not.
169 *
170 * Called without locks.
171 */
172 static inline int ptrace_event(int mask, int event, unsigned long message)
173 {
174 if (mask && likely(!(current->ptrace & mask)))
175 return 0;
176 current->ptrace_message = message;
177 ptrace_notify((event << 8) | SIGTRAP);
178 return 1;
179 }
180
181 /**
182 * ptrace_init_task - initialize ptrace state for a new child
183 * @child: new child task
184 * @ptrace: true if child should be ptrace'd by parent's tracer
185 *
186 * This is called immediately after adding @child to its parent's children
187 * list. @ptrace is false in the normal case, and true to ptrace @child.
188 *
189 * Called with current's siglock and write_lock_irq(&tasklist_lock) held.
190 */
191 static inline void ptrace_init_task(struct task_struct *child, bool ptrace)
192 {
193 INIT_LIST_HEAD(&child->ptrace_entry);
194 INIT_LIST_HEAD(&child->ptraced);
195 child->parent = child->real_parent;
196 child->ptrace = 0;
197 if (unlikely(ptrace) && (current->ptrace & PT_PTRACED)) {
198 child->ptrace = current->ptrace;
199 __ptrace_link(child, current->parent);
200 }
201
202 #ifdef CONFIG_HAVE_HW_BREAKPOINT
203 atomic_set(&child->ptrace_bp_refcnt, 1);
204 #endif
205 }
206
207 /**
208 * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped
209 * @task: task in %EXIT_DEAD state
210 *
211 * Called with write_lock(&tasklist_lock) held.
212 */
213 static inline void ptrace_release_task(struct task_struct *task)
214 {
215 BUG_ON(!list_empty(&task->ptraced));
216 ptrace_unlink(task);
217 BUG_ON(!list_empty(&task->ptrace_entry));
218 }
219
220 #ifndef force_successful_syscall_return
221 /*
222 * System call handlers that, upon successful completion, need to return a
223 * negative value should call force_successful_syscall_return() right before
224 * returning. On architectures where the syscall convention provides for a
225 * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly
226 * others), this macro can be used to ensure that the error flag will not get
227 * set. On architectures which do not support a separate error flag, the macro
228 * is a no-op and the spurious error condition needs to be filtered out by some
229 * other means (e.g., in user-level, by passing an extra argument to the
230 * syscall handler, or something along those lines).
231 */
232 #define force_successful_syscall_return() do { } while (0)
233 #endif
234
235 /*
236 * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__.
237 *
238 * These do-nothing inlines are used when the arch does not
239 * implement single-step. The kerneldoc comments are here
240 * to document the interface for all arch definitions.
241 */
242
243 #ifndef arch_has_single_step
244 /**
245 * arch_has_single_step - does this CPU support user-mode single-step?
246 *
247 * If this is defined, then there must be function declarations or
248 * inlines for user_enable_single_step() and user_disable_single_step().
249 * arch_has_single_step() should evaluate to nonzero iff the machine
250 * supports instruction single-step for user mode.
251 * It can be a constant or it can test a CPU feature bit.
252 */
253 #define arch_has_single_step() (0)
254
255 /**
256 * user_enable_single_step - single-step in user-mode task
257 * @task: either current or a task stopped in %TASK_TRACED
258 *
259 * This can only be called when arch_has_single_step() has returned nonzero.
260 * Set @task so that when it returns to user mode, it will trap after the
261 * next single instruction executes. If arch_has_block_step() is defined,
262 * this must clear the effects of user_enable_block_step() too.
263 */
264 static inline void user_enable_single_step(struct task_struct *task)
265 {
266 BUG(); /* This can never be called. */
267 }
268
269 /**
270 * user_disable_single_step - cancel user-mode single-step
271 * @task: either current or a task stopped in %TASK_TRACED
272 *
273 * Clear @task of the effects of user_enable_single_step() and
274 * user_enable_block_step(). This can be called whether or not either
275 * of those was ever called on @task, and even if arch_has_single_step()
276 * returned zero.
277 */
278 static inline void user_disable_single_step(struct task_struct *task)
279 {
280 }
281 #else
282 extern void user_enable_single_step(struct task_struct *);
283 extern void user_disable_single_step(struct task_struct *);
284 #endif /* arch_has_single_step */
285
286 #ifndef arch_has_block_step
287 /**
288 * arch_has_block_step - does this CPU support user-mode block-step?
289 *
290 * If this is defined, then there must be a function declaration or inline
291 * for user_enable_block_step(), and arch_has_single_step() must be defined
292 * too. arch_has_block_step() should evaluate to nonzero iff the machine
293 * supports step-until-branch for user mode. It can be a constant or it
294 * can test a CPU feature bit.
295 */
296 #define arch_has_block_step() (0)
297
298 /**
299 * user_enable_block_step - step until branch in user-mode task
300 * @task: either current or a task stopped in %TASK_TRACED
301 *
302 * This can only be called when arch_has_block_step() has returned nonzero,
303 * and will never be called when single-instruction stepping is being used.
304 * Set @task so that when it returns to user mode, it will trap after the
305 * next branch or trap taken.
306 */
307 static inline void user_enable_block_step(struct task_struct *task)
308 {
309 BUG(); /* This can never be called. */
310 }
311 #else
312 extern void user_enable_block_step(struct task_struct *);
313 #endif /* arch_has_block_step */
314
315 #ifdef ARCH_HAS_USER_SINGLE_STEP_INFO
316 extern void user_single_step_siginfo(struct task_struct *tsk,
317 struct pt_regs *regs, siginfo_t *info);
318 #else
319 static inline void user_single_step_siginfo(struct task_struct *tsk,
320 struct pt_regs *regs, siginfo_t *info)
321 {
322 memset(info, 0, sizeof(*info));
323 info->si_signo = SIGTRAP;
324 }
325 #endif
326
327 #ifndef arch_ptrace_stop_needed
328 /**
329 * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called
330 * @code: current->exit_code value ptrace will stop with
331 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with
332 *
333 * This is called with the siglock held, to decide whether or not it's
334 * necessary to release the siglock and call arch_ptrace_stop() with the
335 * same @code and @info arguments. It can be defined to a constant if
336 * arch_ptrace_stop() is never required, or always is. On machines where
337 * this makes sense, it should be defined to a quick test to optimize out
338 * calling arch_ptrace_stop() when it would be superfluous. For example,
339 * if the thread has not been back to user mode since the last stop, the
340 * thread state might indicate that nothing needs to be done.
341 */
342 #define arch_ptrace_stop_needed(code, info) (0)
343 #endif
344
345 #ifndef arch_ptrace_stop
346 /**
347 * arch_ptrace_stop - Do machine-specific work before stopping for ptrace
348 * @code: current->exit_code value ptrace will stop with
349 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with
350 *
351 * This is called with no locks held when arch_ptrace_stop_needed() has
352 * just returned nonzero. It is allowed to block, e.g. for user memory
353 * access. The arch can have machine-specific work to be done before
354 * ptrace stops. On ia64, register backing store gets written back to user
355 * memory here. Since this can be costly (requires dropping the siglock),
356 * we only do it when the arch requires it for this particular stop, as
357 * indicated by arch_ptrace_stop_needed().
358 */
359 #define arch_ptrace_stop(code, info) do { } while (0)
360 #endif
361
362 extern int task_current_syscall(struct task_struct *target, long *callno,
363 unsigned long args[6], unsigned int maxargs,
364 unsigned long *sp, unsigned long *pc);
365
366 #ifdef CONFIG_HAVE_HW_BREAKPOINT
367 extern int ptrace_get_breakpoints(struct task_struct *tsk);
368 extern void ptrace_put_breakpoints(struct task_struct *tsk);
369 #else
370 static inline void ptrace_put_breakpoints(struct task_struct *tsk) { }
371 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
372
373 #endif /* __KERNEL */
374
375 #endif