]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - include/linux/qed/qed_chain.h
Merge remote-tracking branches 'spi/topic/dw', 'spi/topic/dw-mid', 'spi/topic/fsl...
[mirror_ubuntu-hirsute-kernel.git] / include / linux / qed / qed_chain.h
1 /* QLogic qed NIC Driver
2 * Copyright (c) 2015 QLogic Corporation
3 *
4 * This software is available under the terms of the GNU General Public License
5 * (GPL) Version 2, available from the file COPYING in the main directory of
6 * this source tree.
7 */
8
9 #ifndef _QED_CHAIN_H
10 #define _QED_CHAIN_H
11
12 #include <linux/types.h>
13 #include <asm/byteorder.h>
14 #include <linux/kernel.h>
15 #include <linux/list.h>
16 #include <linux/slab.h>
17 #include <linux/qed/common_hsi.h>
18
19 /* dma_addr_t manip */
20 #define DMA_LO_LE(x) cpu_to_le32(lower_32_bits(x))
21 #define DMA_HI_LE(x) cpu_to_le32(upper_32_bits(x))
22
23 #define HILO_GEN(hi, lo, type) ((((type)(hi)) << 32) + (lo))
24 #define HILO_DMA(hi, lo) HILO_GEN(hi, lo, dma_addr_t)
25 #define HILO_64(hi, lo) HILO_GEN((le32_to_cpu(hi)), (le32_to_cpu(lo)), u64)
26 #define HILO_DMA_REGPAIR(regpair) (HILO_DMA(regpair.hi, regpair.lo))
27 #define HILO_64_REGPAIR(regpair) (HILO_64(regpair.hi, regpair.lo))
28
29 enum qed_chain_mode {
30 /* Each Page contains a next pointer at its end */
31 QED_CHAIN_MODE_NEXT_PTR,
32
33 /* Chain is a single page (next ptr) is unrequired */
34 QED_CHAIN_MODE_SINGLE,
35
36 /* Page pointers are located in a side list */
37 QED_CHAIN_MODE_PBL,
38 };
39
40 enum qed_chain_use_mode {
41 QED_CHAIN_USE_TO_PRODUCE, /* Chain starts empty */
42 QED_CHAIN_USE_TO_CONSUME, /* Chain starts full */
43 QED_CHAIN_USE_TO_CONSUME_PRODUCE, /* Chain starts empty */
44 };
45
46 struct qed_chain_next {
47 struct regpair next_phys;
48 void *next_virt;
49 };
50
51 struct qed_chain_pbl {
52 dma_addr_t p_phys_table;
53 void *p_virt_table;
54 u16 prod_page_idx;
55 u16 cons_page_idx;
56 };
57
58 struct qed_chain {
59 void *p_virt_addr;
60 dma_addr_t p_phys_addr;
61 void *p_prod_elem;
62 void *p_cons_elem;
63 u16 page_cnt;
64 enum qed_chain_mode mode;
65 enum qed_chain_use_mode intended_use; /* used to produce/consume */
66 u16 capacity; /*< number of _usable_ elements */
67 u16 size; /* number of elements */
68 u16 prod_idx;
69 u16 cons_idx;
70 u16 elem_per_page;
71 u16 elem_per_page_mask;
72 u16 elem_unusable;
73 u16 usable_per_page;
74 u16 elem_size;
75 u16 next_page_mask;
76 struct qed_chain_pbl pbl;
77 };
78
79 #define QED_CHAIN_PBL_ENTRY_SIZE (8)
80 #define QED_CHAIN_PAGE_SIZE (0x1000)
81 #define ELEMS_PER_PAGE(elem_size) (QED_CHAIN_PAGE_SIZE / (elem_size))
82
83 #define UNUSABLE_ELEMS_PER_PAGE(elem_size, mode) \
84 ((mode == QED_CHAIN_MODE_NEXT_PTR) ? \
85 (1 + ((sizeof(struct qed_chain_next) - 1) / \
86 (elem_size))) : 0)
87
88 #define USABLE_ELEMS_PER_PAGE(elem_size, mode) \
89 ((u32)(ELEMS_PER_PAGE(elem_size) - \
90 UNUSABLE_ELEMS_PER_PAGE(elem_size, mode)))
91
92 #define QED_CHAIN_PAGE_CNT(elem_cnt, elem_size, mode) \
93 DIV_ROUND_UP(elem_cnt, USABLE_ELEMS_PER_PAGE(elem_size, mode))
94
95 /* Accessors */
96 static inline u16 qed_chain_get_prod_idx(struct qed_chain *p_chain)
97 {
98 return p_chain->prod_idx;
99 }
100
101 static inline u16 qed_chain_get_cons_idx(struct qed_chain *p_chain)
102 {
103 return p_chain->cons_idx;
104 }
105
106 static inline u16 qed_chain_get_elem_left(struct qed_chain *p_chain)
107 {
108 u16 used;
109
110 /* we don't need to trancate upon assignmet, as we assign u32->u16 */
111 used = ((u32)0x10000u + (u32)(p_chain->prod_idx)) -
112 (u32)p_chain->cons_idx;
113 if (p_chain->mode == QED_CHAIN_MODE_NEXT_PTR)
114 used -= p_chain->prod_idx / p_chain->elem_per_page -
115 p_chain->cons_idx / p_chain->elem_per_page;
116
117 return p_chain->capacity - used;
118 }
119
120 static inline u8 qed_chain_is_full(struct qed_chain *p_chain)
121 {
122 return qed_chain_get_elem_left(p_chain) == p_chain->capacity;
123 }
124
125 static inline u8 qed_chain_is_empty(struct qed_chain *p_chain)
126 {
127 return qed_chain_get_elem_left(p_chain) == 0;
128 }
129
130 static inline u16 qed_chain_get_elem_per_page(
131 struct qed_chain *p_chain)
132 {
133 return p_chain->elem_per_page;
134 }
135
136 static inline u16 qed_chain_get_usable_per_page(
137 struct qed_chain *p_chain)
138 {
139 return p_chain->usable_per_page;
140 }
141
142 static inline u16 qed_chain_get_unusable_per_page(
143 struct qed_chain *p_chain)
144 {
145 return p_chain->elem_unusable;
146 }
147
148 static inline u16 qed_chain_get_size(struct qed_chain *p_chain)
149 {
150 return p_chain->size;
151 }
152
153 static inline dma_addr_t
154 qed_chain_get_pbl_phys(struct qed_chain *p_chain)
155 {
156 return p_chain->pbl.p_phys_table;
157 }
158
159 /**
160 * @brief qed_chain_advance_page -
161 *
162 * Advance the next element accros pages for a linked chain
163 *
164 * @param p_chain
165 * @param p_next_elem
166 * @param idx_to_inc
167 * @param page_to_inc
168 */
169 static inline void
170 qed_chain_advance_page(struct qed_chain *p_chain,
171 void **p_next_elem,
172 u16 *idx_to_inc,
173 u16 *page_to_inc)
174
175 {
176 switch (p_chain->mode) {
177 case QED_CHAIN_MODE_NEXT_PTR:
178 {
179 struct qed_chain_next *p_next = *p_next_elem;
180 *p_next_elem = p_next->next_virt;
181 *idx_to_inc += p_chain->elem_unusable;
182 break;
183 }
184 case QED_CHAIN_MODE_SINGLE:
185 *p_next_elem = p_chain->p_virt_addr;
186 break;
187
188 case QED_CHAIN_MODE_PBL:
189 /* It is assumed pages are sequential, next element needs
190 * to change only when passing going back to first from last.
191 */
192 if (++(*page_to_inc) == p_chain->page_cnt) {
193 *page_to_inc = 0;
194 *p_next_elem = p_chain->p_virt_addr;
195 }
196 }
197 }
198
199 #define is_unusable_idx(p, idx) \
200 (((p)->idx & (p)->elem_per_page_mask) == (p)->usable_per_page)
201
202 #define is_unusable_next_idx(p, idx) \
203 ((((p)->idx + 1) & (p)->elem_per_page_mask) == (p)->usable_per_page)
204
205 #define test_ans_skip(p, idx) \
206 do { \
207 if (is_unusable_idx(p, idx)) { \
208 (p)->idx += (p)->elem_unusable; \
209 } \
210 } while (0)
211
212 /**
213 * @brief qed_chain_return_multi_produced -
214 *
215 * A chain in which the driver "Produces" elements should use this API
216 * to indicate previous produced elements are now consumed.
217 *
218 * @param p_chain
219 * @param num
220 */
221 static inline void
222 qed_chain_return_multi_produced(struct qed_chain *p_chain,
223 u16 num)
224 {
225 p_chain->cons_idx += num;
226 test_ans_skip(p_chain, cons_idx);
227 }
228
229 /**
230 * @brief qed_chain_return_produced -
231 *
232 * A chain in which the driver "Produces" elements should use this API
233 * to indicate previous produced elements are now consumed.
234 *
235 * @param p_chain
236 */
237 static inline void qed_chain_return_produced(struct qed_chain *p_chain)
238 {
239 p_chain->cons_idx++;
240 test_ans_skip(p_chain, cons_idx);
241 }
242
243 /**
244 * @brief qed_chain_produce -
245 *
246 * A chain in which the driver "Produces" elements should use this to get
247 * a pointer to the next element which can be "Produced". It's driver
248 * responsibility to validate that the chain has room for new element.
249 *
250 * @param p_chain
251 *
252 * @return void*, a pointer to next element
253 */
254 static inline void *qed_chain_produce(struct qed_chain *p_chain)
255 {
256 void *ret = NULL;
257
258 if ((p_chain->prod_idx & p_chain->elem_per_page_mask) ==
259 p_chain->next_page_mask) {
260 qed_chain_advance_page(p_chain, &p_chain->p_prod_elem,
261 &p_chain->prod_idx,
262 &p_chain->pbl.prod_page_idx);
263 }
264
265 ret = p_chain->p_prod_elem;
266 p_chain->prod_idx++;
267 p_chain->p_prod_elem = (void *)(((u8 *)p_chain->p_prod_elem) +
268 p_chain->elem_size);
269
270 return ret;
271 }
272
273 /**
274 * @brief qed_chain_get_capacity -
275 *
276 * Get the maximum number of BDs in chain
277 *
278 * @param p_chain
279 * @param num
280 *
281 * @return u16, number of unusable BDs
282 */
283 static inline u16 qed_chain_get_capacity(struct qed_chain *p_chain)
284 {
285 return p_chain->capacity;
286 }
287
288 /**
289 * @brief qed_chain_recycle_consumed -
290 *
291 * Returns an element which was previously consumed;
292 * Increments producers so they could be written to FW.
293 *
294 * @param p_chain
295 */
296 static inline void
297 qed_chain_recycle_consumed(struct qed_chain *p_chain)
298 {
299 test_ans_skip(p_chain, prod_idx);
300 p_chain->prod_idx++;
301 }
302
303 /**
304 * @brief qed_chain_consume -
305 *
306 * A Chain in which the driver utilizes data written by a different source
307 * (i.e., FW) should use this to access passed buffers.
308 *
309 * @param p_chain
310 *
311 * @return void*, a pointer to the next buffer written
312 */
313 static inline void *qed_chain_consume(struct qed_chain *p_chain)
314 {
315 void *ret = NULL;
316
317 if ((p_chain->cons_idx & p_chain->elem_per_page_mask) ==
318 p_chain->next_page_mask) {
319 qed_chain_advance_page(p_chain, &p_chain->p_cons_elem,
320 &p_chain->cons_idx,
321 &p_chain->pbl.cons_page_idx);
322 }
323
324 ret = p_chain->p_cons_elem;
325 p_chain->cons_idx++;
326 p_chain->p_cons_elem = (void *)(((u8 *)p_chain->p_cons_elem) +
327 p_chain->elem_size);
328
329 return ret;
330 }
331
332 /**
333 * @brief qed_chain_reset - Resets the chain to its start state
334 *
335 * @param p_chain pointer to a previously allocted chain
336 */
337 static inline void qed_chain_reset(struct qed_chain *p_chain)
338 {
339 int i;
340
341 p_chain->prod_idx = 0;
342 p_chain->cons_idx = 0;
343 p_chain->p_cons_elem = p_chain->p_virt_addr;
344 p_chain->p_prod_elem = p_chain->p_virt_addr;
345
346 if (p_chain->mode == QED_CHAIN_MODE_PBL) {
347 p_chain->pbl.prod_page_idx = p_chain->page_cnt - 1;
348 p_chain->pbl.cons_page_idx = p_chain->page_cnt - 1;
349 }
350
351 switch (p_chain->intended_use) {
352 case QED_CHAIN_USE_TO_CONSUME_PRODUCE:
353 case QED_CHAIN_USE_TO_PRODUCE:
354 /* Do nothing */
355 break;
356
357 case QED_CHAIN_USE_TO_CONSUME:
358 /* produce empty elements */
359 for (i = 0; i < p_chain->capacity; i++)
360 qed_chain_recycle_consumed(p_chain);
361 break;
362 }
363 }
364
365 /**
366 * @brief qed_chain_init - Initalizes a basic chain struct
367 *
368 * @param p_chain
369 * @param p_virt_addr
370 * @param p_phys_addr physical address of allocated buffer's beginning
371 * @param page_cnt number of pages in the allocated buffer
372 * @param elem_size size of each element in the chain
373 * @param intended_use
374 * @param mode
375 */
376 static inline void qed_chain_init(struct qed_chain *p_chain,
377 void *p_virt_addr,
378 dma_addr_t p_phys_addr,
379 u16 page_cnt,
380 u8 elem_size,
381 enum qed_chain_use_mode intended_use,
382 enum qed_chain_mode mode)
383 {
384 /* chain fixed parameters */
385 p_chain->p_virt_addr = p_virt_addr;
386 p_chain->p_phys_addr = p_phys_addr;
387 p_chain->elem_size = elem_size;
388 p_chain->page_cnt = page_cnt;
389 p_chain->mode = mode;
390
391 p_chain->intended_use = intended_use;
392 p_chain->elem_per_page = ELEMS_PER_PAGE(elem_size);
393 p_chain->usable_per_page =
394 USABLE_ELEMS_PER_PAGE(elem_size, mode);
395 p_chain->capacity = p_chain->usable_per_page * page_cnt;
396 p_chain->size = p_chain->elem_per_page * page_cnt;
397 p_chain->elem_per_page_mask = p_chain->elem_per_page - 1;
398
399 p_chain->elem_unusable = UNUSABLE_ELEMS_PER_PAGE(elem_size, mode);
400
401 p_chain->next_page_mask = (p_chain->usable_per_page &
402 p_chain->elem_per_page_mask);
403
404 if (mode == QED_CHAIN_MODE_NEXT_PTR) {
405 struct qed_chain_next *p_next;
406 u16 i;
407
408 for (i = 0; i < page_cnt - 1; i++) {
409 /* Increment mem_phy to the next page. */
410 p_phys_addr += QED_CHAIN_PAGE_SIZE;
411
412 /* Initialize the physical address of the next page. */
413 p_next = (struct qed_chain_next *)((u8 *)p_virt_addr +
414 elem_size *
415 p_chain->
416 usable_per_page);
417
418 p_next->next_phys.lo = DMA_LO_LE(p_phys_addr);
419 p_next->next_phys.hi = DMA_HI_LE(p_phys_addr);
420
421 /* Initialize the virtual address of the next page. */
422 p_next->next_virt = (void *)((u8 *)p_virt_addr +
423 QED_CHAIN_PAGE_SIZE);
424
425 /* Move to the next page. */
426 p_virt_addr = p_next->next_virt;
427 }
428
429 /* Last page's next should point to beginning of the chain */
430 p_next = (struct qed_chain_next *)((u8 *)p_virt_addr +
431 elem_size *
432 p_chain->usable_per_page);
433
434 p_next->next_phys.lo = DMA_LO_LE(p_chain->p_phys_addr);
435 p_next->next_phys.hi = DMA_HI_LE(p_chain->p_phys_addr);
436 p_next->next_virt = p_chain->p_virt_addr;
437 }
438 qed_chain_reset(p_chain);
439 }
440
441 /**
442 * @brief qed_chain_pbl_init - Initalizes a basic pbl chain
443 * struct
444 * @param p_chain
445 * @param p_virt_addr virtual address of allocated buffer's beginning
446 * @param p_phys_addr physical address of allocated buffer's beginning
447 * @param page_cnt number of pages in the allocated buffer
448 * @param elem_size size of each element in the chain
449 * @param use_mode
450 * @param p_phys_pbl pointer to a pre-allocated side table
451 * which will hold physical page addresses.
452 * @param p_virt_pbl pointer to a pre allocated side table
453 * which will hold virtual page addresses.
454 */
455 static inline void
456 qed_chain_pbl_init(struct qed_chain *p_chain,
457 void *p_virt_addr,
458 dma_addr_t p_phys_addr,
459 u16 page_cnt,
460 u8 elem_size,
461 enum qed_chain_use_mode use_mode,
462 dma_addr_t p_phys_pbl,
463 dma_addr_t *p_virt_pbl)
464 {
465 dma_addr_t *p_pbl_dma = p_virt_pbl;
466 int i;
467
468 qed_chain_init(p_chain, p_virt_addr, p_phys_addr, page_cnt,
469 elem_size, use_mode, QED_CHAIN_MODE_PBL);
470
471 p_chain->pbl.p_phys_table = p_phys_pbl;
472 p_chain->pbl.p_virt_table = p_virt_pbl;
473
474 /* Fill the PBL with physical addresses*/
475 for (i = 0; i < page_cnt; i++) {
476 *p_pbl_dma = p_phys_addr;
477 p_phys_addr += QED_CHAIN_PAGE_SIZE;
478 p_pbl_dma++;
479 }
480 }
481
482 /**
483 * @brief qed_chain_set_prod - sets the prod to the given
484 * value
485 *
486 * @param prod_idx
487 * @param p_prod_elem
488 */
489 static inline void qed_chain_set_prod(struct qed_chain *p_chain,
490 u16 prod_idx,
491 void *p_prod_elem)
492 {
493 p_chain->prod_idx = prod_idx;
494 p_chain->p_prod_elem = p_prod_elem;
495 }
496
497 /**
498 * @brief qed_chain_get_elem -
499 *
500 * get a pointer to an element represented by absolute idx
501 *
502 * @param p_chain
503 * @assumption p_chain->size is a power of 2
504 *
505 * @return void*, a pointer to next element
506 */
507 static inline void *qed_chain_sge_get_elem(struct qed_chain *p_chain,
508 u16 idx)
509 {
510 void *ret = NULL;
511
512 if (idx >= p_chain->size)
513 return NULL;
514
515 ret = (u8 *)p_chain->p_virt_addr + p_chain->elem_size * idx;
516
517 return ret;
518 }
519
520 /**
521 * @brief qed_chain_sge_inc_cons_prod
522 *
523 * for sge chains, producer isn't increased serially, the ring
524 * is expected to be full at all times. Once elements are
525 * consumed, they are immediately produced.
526 *
527 * @param p_chain
528 * @param cnt
529 *
530 * @return inline void
531 */
532 static inline void
533 qed_chain_sge_inc_cons_prod(struct qed_chain *p_chain,
534 u16 cnt)
535 {
536 p_chain->prod_idx += cnt;
537 p_chain->cons_idx += cnt;
538 }
539
540 #endif