]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/radix-tree.h
lib: radix-tree: check accounting of existing slot replacement users
[mirror_ubuntu-artful-kernel.git] / include / linux / radix-tree.h
1 /*
2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
4 * Copyright (C) 2006 Nick Piggin
5 * Copyright (C) 2012 Konstantin Khlebnikov
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2, or (at
10 * your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21 #ifndef _LINUX_RADIX_TREE_H
22 #define _LINUX_RADIX_TREE_H
23
24 #include <linux/bitops.h>
25 #include <linux/preempt.h>
26 #include <linux/types.h>
27 #include <linux/bug.h>
28 #include <linux/kernel.h>
29 #include <linux/rcupdate.h>
30
31 /*
32 * The bottom two bits of the slot determine how the remaining bits in the
33 * slot are interpreted:
34 *
35 * 00 - data pointer
36 * 01 - internal entry
37 * 10 - exceptional entry
38 * 11 - this bit combination is currently unused/reserved
39 *
40 * The internal entry may be a pointer to the next level in the tree, a
41 * sibling entry, or an indicator that the entry in this slot has been moved
42 * to another location in the tree and the lookup should be restarted. While
43 * NULL fits the 'data pointer' pattern, it means that there is no entry in
44 * the tree for this index (no matter what level of the tree it is found at).
45 * This means that you cannot store NULL in the tree as a value for the index.
46 */
47 #define RADIX_TREE_ENTRY_MASK 3UL
48 #define RADIX_TREE_INTERNAL_NODE 1UL
49
50 /*
51 * Most users of the radix tree store pointers but shmem/tmpfs stores swap
52 * entries in the same tree. They are marked as exceptional entries to
53 * distinguish them from pointers to struct page.
54 * EXCEPTIONAL_ENTRY tests the bit, EXCEPTIONAL_SHIFT shifts content past it.
55 */
56 #define RADIX_TREE_EXCEPTIONAL_ENTRY 2
57 #define RADIX_TREE_EXCEPTIONAL_SHIFT 2
58
59 static inline bool radix_tree_is_internal_node(void *ptr)
60 {
61 return ((unsigned long)ptr & RADIX_TREE_ENTRY_MASK) ==
62 RADIX_TREE_INTERNAL_NODE;
63 }
64
65 /*** radix-tree API starts here ***/
66
67 #define RADIX_TREE_MAX_TAGS 3
68
69 #ifndef RADIX_TREE_MAP_SHIFT
70 #define RADIX_TREE_MAP_SHIFT (CONFIG_BASE_SMALL ? 4 : 6)
71 #endif
72
73 #define RADIX_TREE_MAP_SIZE (1UL << RADIX_TREE_MAP_SHIFT)
74 #define RADIX_TREE_MAP_MASK (RADIX_TREE_MAP_SIZE-1)
75
76 #define RADIX_TREE_TAG_LONGS \
77 ((RADIX_TREE_MAP_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG)
78
79 #define RADIX_TREE_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(unsigned long))
80 #define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \
81 RADIX_TREE_MAP_SHIFT))
82
83 /* Internally used bits of node->count */
84 #define RADIX_TREE_COUNT_SHIFT (RADIX_TREE_MAP_SHIFT + 1)
85 #define RADIX_TREE_COUNT_MASK ((1UL << RADIX_TREE_COUNT_SHIFT) - 1)
86
87 struct radix_tree_node {
88 unsigned char shift; /* Bits remaining in each slot */
89 unsigned char offset; /* Slot offset in parent */
90 unsigned int count; /* Total entry count */
91 unsigned char exceptional; /* Exceptional entry count */
92 union {
93 struct {
94 /* Used when ascending tree */
95 struct radix_tree_node *parent;
96 /* For tree user */
97 void *private_data;
98 };
99 /* Used when freeing node */
100 struct rcu_head rcu_head;
101 };
102 /* For tree user */
103 struct list_head private_list;
104 void __rcu *slots[RADIX_TREE_MAP_SIZE];
105 unsigned long tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS];
106 };
107
108 /* root tags are stored in gfp_mask, shifted by __GFP_BITS_SHIFT */
109 struct radix_tree_root {
110 gfp_t gfp_mask;
111 struct radix_tree_node __rcu *rnode;
112 };
113
114 #define RADIX_TREE_INIT(mask) { \
115 .gfp_mask = (mask), \
116 .rnode = NULL, \
117 }
118
119 #define RADIX_TREE(name, mask) \
120 struct radix_tree_root name = RADIX_TREE_INIT(mask)
121
122 #define INIT_RADIX_TREE(root, mask) \
123 do { \
124 (root)->gfp_mask = (mask); \
125 (root)->rnode = NULL; \
126 } while (0)
127
128 static inline bool radix_tree_empty(struct radix_tree_root *root)
129 {
130 return root->rnode == NULL;
131 }
132
133 /**
134 * Radix-tree synchronization
135 *
136 * The radix-tree API requires that users provide all synchronisation (with
137 * specific exceptions, noted below).
138 *
139 * Synchronization of access to the data items being stored in the tree, and
140 * management of their lifetimes must be completely managed by API users.
141 *
142 * For API usage, in general,
143 * - any function _modifying_ the tree or tags (inserting or deleting
144 * items, setting or clearing tags) must exclude other modifications, and
145 * exclude any functions reading the tree.
146 * - any function _reading_ the tree or tags (looking up items or tags,
147 * gang lookups) must exclude modifications to the tree, but may occur
148 * concurrently with other readers.
149 *
150 * The notable exceptions to this rule are the following functions:
151 * __radix_tree_lookup
152 * radix_tree_lookup
153 * radix_tree_lookup_slot
154 * radix_tree_tag_get
155 * radix_tree_gang_lookup
156 * radix_tree_gang_lookup_slot
157 * radix_tree_gang_lookup_tag
158 * radix_tree_gang_lookup_tag_slot
159 * radix_tree_tagged
160 *
161 * The first 8 functions are able to be called locklessly, using RCU. The
162 * caller must ensure calls to these functions are made within rcu_read_lock()
163 * regions. Other readers (lock-free or otherwise) and modifications may be
164 * running concurrently.
165 *
166 * It is still required that the caller manage the synchronization and lifetimes
167 * of the items. So if RCU lock-free lookups are used, typically this would mean
168 * that the items have their own locks, or are amenable to lock-free access; and
169 * that the items are freed by RCU (or only freed after having been deleted from
170 * the radix tree *and* a synchronize_rcu() grace period).
171 *
172 * (Note, rcu_assign_pointer and rcu_dereference are not needed to control
173 * access to data items when inserting into or looking up from the radix tree)
174 *
175 * Note that the value returned by radix_tree_tag_get() may not be relied upon
176 * if only the RCU read lock is held. Functions to set/clear tags and to
177 * delete nodes running concurrently with it may affect its result such that
178 * two consecutive reads in the same locked section may return different
179 * values. If reliability is required, modification functions must also be
180 * excluded from concurrency.
181 *
182 * radix_tree_tagged is able to be called without locking or RCU.
183 */
184
185 /**
186 * radix_tree_deref_slot - dereference a slot
187 * @pslot: pointer to slot, returned by radix_tree_lookup_slot
188 * Returns: item that was stored in that slot with any direct pointer flag
189 * removed.
190 *
191 * For use with radix_tree_lookup_slot(). Caller must hold tree at least read
192 * locked across slot lookup and dereference. Not required if write lock is
193 * held (ie. items cannot be concurrently inserted).
194 *
195 * radix_tree_deref_retry must be used to confirm validity of the pointer if
196 * only the read lock is held.
197 */
198 static inline void *radix_tree_deref_slot(void **pslot)
199 {
200 return rcu_dereference(*pslot);
201 }
202
203 /**
204 * radix_tree_deref_slot_protected - dereference a slot without RCU lock but with tree lock held
205 * @pslot: pointer to slot, returned by radix_tree_lookup_slot
206 * Returns: item that was stored in that slot with any direct pointer flag
207 * removed.
208 *
209 * Similar to radix_tree_deref_slot but only used during migration when a pages
210 * mapping is being moved. The caller does not hold the RCU read lock but it
211 * must hold the tree lock to prevent parallel updates.
212 */
213 static inline void *radix_tree_deref_slot_protected(void **pslot,
214 spinlock_t *treelock)
215 {
216 return rcu_dereference_protected(*pslot, lockdep_is_held(treelock));
217 }
218
219 /**
220 * radix_tree_deref_retry - check radix_tree_deref_slot
221 * @arg: pointer returned by radix_tree_deref_slot
222 * Returns: 0 if retry is not required, otherwise retry is required
223 *
224 * radix_tree_deref_retry must be used with radix_tree_deref_slot.
225 */
226 static inline int radix_tree_deref_retry(void *arg)
227 {
228 return unlikely(radix_tree_is_internal_node(arg));
229 }
230
231 /**
232 * radix_tree_exceptional_entry - radix_tree_deref_slot gave exceptional entry?
233 * @arg: value returned by radix_tree_deref_slot
234 * Returns: 0 if well-aligned pointer, non-0 if exceptional entry.
235 */
236 static inline int radix_tree_exceptional_entry(void *arg)
237 {
238 /* Not unlikely because radix_tree_exception often tested first */
239 return (unsigned long)arg & RADIX_TREE_EXCEPTIONAL_ENTRY;
240 }
241
242 /**
243 * radix_tree_exception - radix_tree_deref_slot returned either exception?
244 * @arg: value returned by radix_tree_deref_slot
245 * Returns: 0 if well-aligned pointer, non-0 if either kind of exception.
246 */
247 static inline int radix_tree_exception(void *arg)
248 {
249 return unlikely((unsigned long)arg & RADIX_TREE_ENTRY_MASK);
250 }
251
252 int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
253 unsigned order, struct radix_tree_node **nodep,
254 void ***slotp);
255 int __radix_tree_insert(struct radix_tree_root *, unsigned long index,
256 unsigned order, void *);
257 static inline int radix_tree_insert(struct radix_tree_root *root,
258 unsigned long index, void *entry)
259 {
260 return __radix_tree_insert(root, index, 0, entry);
261 }
262 void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
263 struct radix_tree_node **nodep, void ***slotp);
264 void *radix_tree_lookup(struct radix_tree_root *, unsigned long);
265 void **radix_tree_lookup_slot(struct radix_tree_root *, unsigned long);
266 void __radix_tree_replace(struct radix_tree_root *root,
267 struct radix_tree_node *node,
268 void **slot, void *item);
269 void radix_tree_replace_slot(struct radix_tree_root *root,
270 void **slot, void *item);
271 bool __radix_tree_delete_node(struct radix_tree_root *root,
272 struct radix_tree_node *node);
273 void *radix_tree_delete_item(struct radix_tree_root *, unsigned long, void *);
274 void *radix_tree_delete(struct radix_tree_root *, unsigned long);
275 void radix_tree_clear_tags(struct radix_tree_root *root,
276 struct radix_tree_node *node,
277 void **slot);
278 unsigned int radix_tree_gang_lookup(struct radix_tree_root *root,
279 void **results, unsigned long first_index,
280 unsigned int max_items);
281 unsigned int radix_tree_gang_lookup_slot(struct radix_tree_root *root,
282 void ***results, unsigned long *indices,
283 unsigned long first_index, unsigned int max_items);
284 int radix_tree_preload(gfp_t gfp_mask);
285 int radix_tree_maybe_preload(gfp_t gfp_mask);
286 int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order);
287 void radix_tree_init(void);
288 void *radix_tree_tag_set(struct radix_tree_root *root,
289 unsigned long index, unsigned int tag);
290 void *radix_tree_tag_clear(struct radix_tree_root *root,
291 unsigned long index, unsigned int tag);
292 int radix_tree_tag_get(struct radix_tree_root *root,
293 unsigned long index, unsigned int tag);
294 unsigned int
295 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
296 unsigned long first_index, unsigned int max_items,
297 unsigned int tag);
298 unsigned int
299 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
300 unsigned long first_index, unsigned int max_items,
301 unsigned int tag);
302 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
303 unsigned long *first_indexp, unsigned long last_index,
304 unsigned long nr_to_tag,
305 unsigned int fromtag, unsigned int totag);
306 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag);
307 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item);
308
309 static inline void radix_tree_preload_end(void)
310 {
311 preempt_enable();
312 }
313
314 /**
315 * struct radix_tree_iter - radix tree iterator state
316 *
317 * @index: index of current slot
318 * @next_index: one beyond the last index for this chunk
319 * @tags: bit-mask for tag-iterating
320 * @shift: shift for the node that holds our slots
321 *
322 * This radix tree iterator works in terms of "chunks" of slots. A chunk is a
323 * subinterval of slots contained within one radix tree leaf node. It is
324 * described by a pointer to its first slot and a struct radix_tree_iter
325 * which holds the chunk's position in the tree and its size. For tagged
326 * iteration radix_tree_iter also holds the slots' bit-mask for one chosen
327 * radix tree tag.
328 */
329 struct radix_tree_iter {
330 unsigned long index;
331 unsigned long next_index;
332 unsigned long tags;
333 #ifdef CONFIG_RADIX_TREE_MULTIORDER
334 unsigned int shift;
335 #endif
336 };
337
338 static inline unsigned int iter_shift(struct radix_tree_iter *iter)
339 {
340 #ifdef CONFIG_RADIX_TREE_MULTIORDER
341 return iter->shift;
342 #else
343 return 0;
344 #endif
345 }
346
347 #define RADIX_TREE_ITER_TAG_MASK 0x00FF /* tag index in lower byte */
348 #define RADIX_TREE_ITER_TAGGED 0x0100 /* lookup tagged slots */
349 #define RADIX_TREE_ITER_CONTIG 0x0200 /* stop at first hole */
350
351 /**
352 * radix_tree_iter_init - initialize radix tree iterator
353 *
354 * @iter: pointer to iterator state
355 * @start: iteration starting index
356 * Returns: NULL
357 */
358 static __always_inline void **
359 radix_tree_iter_init(struct radix_tree_iter *iter, unsigned long start)
360 {
361 /*
362 * Leave iter->tags uninitialized. radix_tree_next_chunk() will fill it
363 * in the case of a successful tagged chunk lookup. If the lookup was
364 * unsuccessful or non-tagged then nobody cares about ->tags.
365 *
366 * Set index to zero to bypass next_index overflow protection.
367 * See the comment in radix_tree_next_chunk() for details.
368 */
369 iter->index = 0;
370 iter->next_index = start;
371 return NULL;
372 }
373
374 /**
375 * radix_tree_next_chunk - find next chunk of slots for iteration
376 *
377 * @root: radix tree root
378 * @iter: iterator state
379 * @flags: RADIX_TREE_ITER_* flags and tag index
380 * Returns: pointer to chunk first slot, or NULL if there no more left
381 *
382 * This function looks up the next chunk in the radix tree starting from
383 * @iter->next_index. It returns a pointer to the chunk's first slot.
384 * Also it fills @iter with data about chunk: position in the tree (index),
385 * its end (next_index), and constructs a bit mask for tagged iterating (tags).
386 */
387 void **radix_tree_next_chunk(struct radix_tree_root *root,
388 struct radix_tree_iter *iter, unsigned flags);
389
390 /**
391 * radix_tree_iter_retry - retry this chunk of the iteration
392 * @iter: iterator state
393 *
394 * If we iterate over a tree protected only by the RCU lock, a race
395 * against deletion or creation may result in seeing a slot for which
396 * radix_tree_deref_retry() returns true. If so, call this function
397 * and continue the iteration.
398 */
399 static inline __must_check
400 void **radix_tree_iter_retry(struct radix_tree_iter *iter)
401 {
402 iter->next_index = iter->index;
403 iter->tags = 0;
404 return NULL;
405 }
406
407 static inline unsigned long
408 __radix_tree_iter_add(struct radix_tree_iter *iter, unsigned long slots)
409 {
410 return iter->index + (slots << iter_shift(iter));
411 }
412
413 /**
414 * radix_tree_iter_next - resume iterating when the chunk may be invalid
415 * @iter: iterator state
416 *
417 * If the iterator needs to release then reacquire a lock, the chunk may
418 * have been invalidated by an insertion or deletion. Call this function
419 * to continue the iteration from the next index.
420 */
421 static inline __must_check
422 void **radix_tree_iter_next(struct radix_tree_iter *iter)
423 {
424 iter->next_index = __radix_tree_iter_add(iter, 1);
425 iter->tags = 0;
426 return NULL;
427 }
428
429 /**
430 * radix_tree_chunk_size - get current chunk size
431 *
432 * @iter: pointer to radix tree iterator
433 * Returns: current chunk size
434 */
435 static __always_inline long
436 radix_tree_chunk_size(struct radix_tree_iter *iter)
437 {
438 return (iter->next_index - iter->index) >> iter_shift(iter);
439 }
440
441 static inline struct radix_tree_node *entry_to_node(void *ptr)
442 {
443 return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
444 }
445
446 /**
447 * radix_tree_next_slot - find next slot in chunk
448 *
449 * @slot: pointer to current slot
450 * @iter: pointer to interator state
451 * @flags: RADIX_TREE_ITER_*, should be constant
452 * Returns: pointer to next slot, or NULL if there no more left
453 *
454 * This function updates @iter->index in the case of a successful lookup.
455 * For tagged lookup it also eats @iter->tags.
456 *
457 * There are several cases where 'slot' can be passed in as NULL to this
458 * function. These cases result from the use of radix_tree_iter_next() or
459 * radix_tree_iter_retry(). In these cases we don't end up dereferencing
460 * 'slot' because either:
461 * a) we are doing tagged iteration and iter->tags has been set to 0, or
462 * b) we are doing non-tagged iteration, and iter->index and iter->next_index
463 * have been set up so that radix_tree_chunk_size() returns 1 or 0.
464 */
465 static __always_inline void **
466 radix_tree_next_slot(void **slot, struct radix_tree_iter *iter, unsigned flags)
467 {
468 if (flags & RADIX_TREE_ITER_TAGGED) {
469 void *canon = slot;
470
471 iter->tags >>= 1;
472 if (unlikely(!iter->tags))
473 return NULL;
474 while (IS_ENABLED(CONFIG_RADIX_TREE_MULTIORDER) &&
475 radix_tree_is_internal_node(slot[1])) {
476 if (entry_to_node(slot[1]) == canon) {
477 iter->tags >>= 1;
478 iter->index = __radix_tree_iter_add(iter, 1);
479 slot++;
480 continue;
481 }
482 iter->next_index = __radix_tree_iter_add(iter, 1);
483 return NULL;
484 }
485 if (likely(iter->tags & 1ul)) {
486 iter->index = __radix_tree_iter_add(iter, 1);
487 return slot + 1;
488 }
489 if (!(flags & RADIX_TREE_ITER_CONTIG)) {
490 unsigned offset = __ffs(iter->tags);
491
492 iter->tags >>= offset;
493 iter->index = __radix_tree_iter_add(iter, offset + 1);
494 return slot + offset + 1;
495 }
496 } else {
497 long count = radix_tree_chunk_size(iter);
498 void *canon = slot;
499
500 while (--count > 0) {
501 slot++;
502 iter->index = __radix_tree_iter_add(iter, 1);
503
504 if (IS_ENABLED(CONFIG_RADIX_TREE_MULTIORDER) &&
505 radix_tree_is_internal_node(*slot)) {
506 if (entry_to_node(*slot) == canon)
507 continue;
508 iter->next_index = iter->index;
509 break;
510 }
511
512 if (likely(*slot))
513 return slot;
514 if (flags & RADIX_TREE_ITER_CONTIG) {
515 /* forbid switching to the next chunk */
516 iter->next_index = 0;
517 break;
518 }
519 }
520 }
521 return NULL;
522 }
523
524 /**
525 * radix_tree_for_each_slot - iterate over non-empty slots
526 *
527 * @slot: the void** variable for pointer to slot
528 * @root: the struct radix_tree_root pointer
529 * @iter: the struct radix_tree_iter pointer
530 * @start: iteration starting index
531 *
532 * @slot points to radix tree slot, @iter->index contains its index.
533 */
534 #define radix_tree_for_each_slot(slot, root, iter, start) \
535 for (slot = radix_tree_iter_init(iter, start) ; \
536 slot || (slot = radix_tree_next_chunk(root, iter, 0)) ; \
537 slot = radix_tree_next_slot(slot, iter, 0))
538
539 /**
540 * radix_tree_for_each_contig - iterate over contiguous slots
541 *
542 * @slot: the void** variable for pointer to slot
543 * @root: the struct radix_tree_root pointer
544 * @iter: the struct radix_tree_iter pointer
545 * @start: iteration starting index
546 *
547 * @slot points to radix tree slot, @iter->index contains its index.
548 */
549 #define radix_tree_for_each_contig(slot, root, iter, start) \
550 for (slot = radix_tree_iter_init(iter, start) ; \
551 slot || (slot = radix_tree_next_chunk(root, iter, \
552 RADIX_TREE_ITER_CONTIG)) ; \
553 slot = radix_tree_next_slot(slot, iter, \
554 RADIX_TREE_ITER_CONTIG))
555
556 /**
557 * radix_tree_for_each_tagged - iterate over tagged slots
558 *
559 * @slot: the void** variable for pointer to slot
560 * @root: the struct radix_tree_root pointer
561 * @iter: the struct radix_tree_iter pointer
562 * @start: iteration starting index
563 * @tag: tag index
564 *
565 * @slot points to radix tree slot, @iter->index contains its index.
566 */
567 #define radix_tree_for_each_tagged(slot, root, iter, start, tag) \
568 for (slot = radix_tree_iter_init(iter, start) ; \
569 slot || (slot = radix_tree_next_chunk(root, iter, \
570 RADIX_TREE_ITER_TAGGED | tag)) ; \
571 slot = radix_tree_next_slot(slot, iter, \
572 RADIX_TREE_ITER_TAGGED))
573
574 #endif /* _LINUX_RADIX_TREE_H */