]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - include/linux/radix-tree.h
UBUNTU: Ubuntu-5.11.0-22.23
[mirror_ubuntu-hirsute-kernel.git] / include / linux / radix-tree.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Copyright (C) 2001 Momchil Velikov
4 * Portions Copyright (C) 2001 Christoph Hellwig
5 * Copyright (C) 2006 Nick Piggin
6 * Copyright (C) 2012 Konstantin Khlebnikov
7 */
8 #ifndef _LINUX_RADIX_TREE_H
9 #define _LINUX_RADIX_TREE_H
10
11 #include <linux/bitops.h>
12 #include <linux/kernel.h>
13 #include <linux/list.h>
14 #include <linux/percpu.h>
15 #include <linux/preempt.h>
16 #include <linux/rcupdate.h>
17 #include <linux/spinlock.h>
18 #include <linux/types.h>
19 #include <linux/xarray.h>
20
21 /* Keep unconverted code working */
22 #define radix_tree_root xarray
23 #define radix_tree_node xa_node
24
25 /*
26 * The bottom two bits of the slot determine how the remaining bits in the
27 * slot are interpreted:
28 *
29 * 00 - data pointer
30 * 10 - internal entry
31 * x1 - value entry
32 *
33 * The internal entry may be a pointer to the next level in the tree, a
34 * sibling entry, or an indicator that the entry in this slot has been moved
35 * to another location in the tree and the lookup should be restarted. While
36 * NULL fits the 'data pointer' pattern, it means that there is no entry in
37 * the tree for this index (no matter what level of the tree it is found at).
38 * This means that storing a NULL entry in the tree is the same as deleting
39 * the entry from the tree.
40 */
41 #define RADIX_TREE_ENTRY_MASK 3UL
42 #define RADIX_TREE_INTERNAL_NODE 2UL
43
44 static inline bool radix_tree_is_internal_node(void *ptr)
45 {
46 return ((unsigned long)ptr & RADIX_TREE_ENTRY_MASK) ==
47 RADIX_TREE_INTERNAL_NODE;
48 }
49
50 /*** radix-tree API starts here ***/
51
52 #define RADIX_TREE_MAP_SHIFT XA_CHUNK_SHIFT
53 #define RADIX_TREE_MAP_SIZE (1UL << RADIX_TREE_MAP_SHIFT)
54 #define RADIX_TREE_MAP_MASK (RADIX_TREE_MAP_SIZE-1)
55
56 #define RADIX_TREE_MAX_TAGS XA_MAX_MARKS
57 #define RADIX_TREE_TAG_LONGS XA_MARK_LONGS
58
59 #define RADIX_TREE_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(unsigned long))
60 #define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \
61 RADIX_TREE_MAP_SHIFT))
62
63 /* The IDR tag is stored in the low bits of xa_flags */
64 #define ROOT_IS_IDR ((__force gfp_t)4)
65 /* The top bits of xa_flags are used to store the root tags */
66 #define ROOT_TAG_SHIFT (__GFP_BITS_SHIFT)
67
68 #define RADIX_TREE_INIT(name, mask) XARRAY_INIT(name, mask)
69
70 #define RADIX_TREE(name, mask) \
71 struct radix_tree_root name = RADIX_TREE_INIT(name, mask)
72
73 #define INIT_RADIX_TREE(root, mask) xa_init_flags(root, mask)
74
75 static inline bool radix_tree_empty(const struct radix_tree_root *root)
76 {
77 return root->xa_head == NULL;
78 }
79
80 /**
81 * struct radix_tree_iter - radix tree iterator state
82 *
83 * @index: index of current slot
84 * @next_index: one beyond the last index for this chunk
85 * @tags: bit-mask for tag-iterating
86 * @node: node that contains current slot
87 *
88 * This radix tree iterator works in terms of "chunks" of slots. A chunk is a
89 * subinterval of slots contained within one radix tree leaf node. It is
90 * described by a pointer to its first slot and a struct radix_tree_iter
91 * which holds the chunk's position in the tree and its size. For tagged
92 * iteration radix_tree_iter also holds the slots' bit-mask for one chosen
93 * radix tree tag.
94 */
95 struct radix_tree_iter {
96 unsigned long index;
97 unsigned long next_index;
98 unsigned long tags;
99 struct radix_tree_node *node;
100 };
101
102 /**
103 * Radix-tree synchronization
104 *
105 * The radix-tree API requires that users provide all synchronisation (with
106 * specific exceptions, noted below).
107 *
108 * Synchronization of access to the data items being stored in the tree, and
109 * management of their lifetimes must be completely managed by API users.
110 *
111 * For API usage, in general,
112 * - any function _modifying_ the tree or tags (inserting or deleting
113 * items, setting or clearing tags) must exclude other modifications, and
114 * exclude any functions reading the tree.
115 * - any function _reading_ the tree or tags (looking up items or tags,
116 * gang lookups) must exclude modifications to the tree, but may occur
117 * concurrently with other readers.
118 *
119 * The notable exceptions to this rule are the following functions:
120 * __radix_tree_lookup
121 * radix_tree_lookup
122 * radix_tree_lookup_slot
123 * radix_tree_tag_get
124 * radix_tree_gang_lookup
125 * radix_tree_gang_lookup_tag
126 * radix_tree_gang_lookup_tag_slot
127 * radix_tree_tagged
128 *
129 * The first 7 functions are able to be called locklessly, using RCU. The
130 * caller must ensure calls to these functions are made within rcu_read_lock()
131 * regions. Other readers (lock-free or otherwise) and modifications may be
132 * running concurrently.
133 *
134 * It is still required that the caller manage the synchronization and lifetimes
135 * of the items. So if RCU lock-free lookups are used, typically this would mean
136 * that the items have their own locks, or are amenable to lock-free access; and
137 * that the items are freed by RCU (or only freed after having been deleted from
138 * the radix tree *and* a synchronize_rcu() grace period).
139 *
140 * (Note, rcu_assign_pointer and rcu_dereference are not needed to control
141 * access to data items when inserting into or looking up from the radix tree)
142 *
143 * Note that the value returned by radix_tree_tag_get() may not be relied upon
144 * if only the RCU read lock is held. Functions to set/clear tags and to
145 * delete nodes running concurrently with it may affect its result such that
146 * two consecutive reads in the same locked section may return different
147 * values. If reliability is required, modification functions must also be
148 * excluded from concurrency.
149 *
150 * radix_tree_tagged is able to be called without locking or RCU.
151 */
152
153 /**
154 * radix_tree_deref_slot - dereference a slot
155 * @slot: slot pointer, returned by radix_tree_lookup_slot
156 *
157 * For use with radix_tree_lookup_slot(). Caller must hold tree at least read
158 * locked across slot lookup and dereference. Not required if write lock is
159 * held (ie. items cannot be concurrently inserted).
160 *
161 * radix_tree_deref_retry must be used to confirm validity of the pointer if
162 * only the read lock is held.
163 *
164 * Return: entry stored in that slot.
165 */
166 static inline void *radix_tree_deref_slot(void __rcu **slot)
167 {
168 return rcu_dereference(*slot);
169 }
170
171 /**
172 * radix_tree_deref_slot_protected - dereference a slot with tree lock held
173 * @slot: slot pointer, returned by radix_tree_lookup_slot
174 *
175 * Similar to radix_tree_deref_slot. The caller does not hold the RCU read
176 * lock but it must hold the tree lock to prevent parallel updates.
177 *
178 * Return: entry stored in that slot.
179 */
180 static inline void *radix_tree_deref_slot_protected(void __rcu **slot,
181 spinlock_t *treelock)
182 {
183 return rcu_dereference_protected(*slot, lockdep_is_held(treelock));
184 }
185
186 /**
187 * radix_tree_deref_retry - check radix_tree_deref_slot
188 * @arg: pointer returned by radix_tree_deref_slot
189 * Returns: 0 if retry is not required, otherwise retry is required
190 *
191 * radix_tree_deref_retry must be used with radix_tree_deref_slot.
192 */
193 static inline int radix_tree_deref_retry(void *arg)
194 {
195 return unlikely(radix_tree_is_internal_node(arg));
196 }
197
198 /**
199 * radix_tree_exception - radix_tree_deref_slot returned either exception?
200 * @arg: value returned by radix_tree_deref_slot
201 * Returns: 0 if well-aligned pointer, non-0 if either kind of exception.
202 */
203 static inline int radix_tree_exception(void *arg)
204 {
205 return unlikely((unsigned long)arg & RADIX_TREE_ENTRY_MASK);
206 }
207
208 int radix_tree_insert(struct radix_tree_root *, unsigned long index,
209 void *);
210 void *__radix_tree_lookup(const struct radix_tree_root *, unsigned long index,
211 struct radix_tree_node **nodep, void __rcu ***slotp);
212 void *radix_tree_lookup(const struct radix_tree_root *, unsigned long);
213 void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *,
214 unsigned long index);
215 void __radix_tree_replace(struct radix_tree_root *, struct radix_tree_node *,
216 void __rcu **slot, void *entry);
217 void radix_tree_iter_replace(struct radix_tree_root *,
218 const struct radix_tree_iter *, void __rcu **slot, void *entry);
219 void radix_tree_replace_slot(struct radix_tree_root *,
220 void __rcu **slot, void *entry);
221 void radix_tree_iter_delete(struct radix_tree_root *,
222 struct radix_tree_iter *iter, void __rcu **slot);
223 void *radix_tree_delete_item(struct radix_tree_root *, unsigned long, void *);
224 void *radix_tree_delete(struct radix_tree_root *, unsigned long);
225 unsigned int radix_tree_gang_lookup(const struct radix_tree_root *,
226 void **results, unsigned long first_index,
227 unsigned int max_items);
228 int radix_tree_preload(gfp_t gfp_mask);
229 int radix_tree_maybe_preload(gfp_t gfp_mask);
230 void radix_tree_init(void);
231 void *radix_tree_tag_set(struct radix_tree_root *,
232 unsigned long index, unsigned int tag);
233 void *radix_tree_tag_clear(struct radix_tree_root *,
234 unsigned long index, unsigned int tag);
235 int radix_tree_tag_get(const struct radix_tree_root *,
236 unsigned long index, unsigned int tag);
237 void radix_tree_iter_tag_clear(struct radix_tree_root *,
238 const struct radix_tree_iter *iter, unsigned int tag);
239 unsigned int radix_tree_gang_lookup_tag(const struct radix_tree_root *,
240 void **results, unsigned long first_index,
241 unsigned int max_items, unsigned int tag);
242 unsigned int radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *,
243 void __rcu ***results, unsigned long first_index,
244 unsigned int max_items, unsigned int tag);
245 int radix_tree_tagged(const struct radix_tree_root *, unsigned int tag);
246
247 static inline void radix_tree_preload_end(void)
248 {
249 preempt_enable();
250 }
251
252 void __rcu **idr_get_free(struct radix_tree_root *root,
253 struct radix_tree_iter *iter, gfp_t gfp,
254 unsigned long max);
255
256 enum {
257 RADIX_TREE_ITER_TAG_MASK = 0x0f, /* tag index in lower nybble */
258 RADIX_TREE_ITER_TAGGED = 0x10, /* lookup tagged slots */
259 RADIX_TREE_ITER_CONTIG = 0x20, /* stop at first hole */
260 };
261
262 /**
263 * radix_tree_iter_init - initialize radix tree iterator
264 *
265 * @iter: pointer to iterator state
266 * @start: iteration starting index
267 * Returns: NULL
268 */
269 static __always_inline void __rcu **
270 radix_tree_iter_init(struct radix_tree_iter *iter, unsigned long start)
271 {
272 /*
273 * Leave iter->tags uninitialized. radix_tree_next_chunk() will fill it
274 * in the case of a successful tagged chunk lookup. If the lookup was
275 * unsuccessful or non-tagged then nobody cares about ->tags.
276 *
277 * Set index to zero to bypass next_index overflow protection.
278 * See the comment in radix_tree_next_chunk() for details.
279 */
280 iter->index = 0;
281 iter->next_index = start;
282 return NULL;
283 }
284
285 /**
286 * radix_tree_next_chunk - find next chunk of slots for iteration
287 *
288 * @root: radix tree root
289 * @iter: iterator state
290 * @flags: RADIX_TREE_ITER_* flags and tag index
291 * Returns: pointer to chunk first slot, or NULL if there no more left
292 *
293 * This function looks up the next chunk in the radix tree starting from
294 * @iter->next_index. It returns a pointer to the chunk's first slot.
295 * Also it fills @iter with data about chunk: position in the tree (index),
296 * its end (next_index), and constructs a bit mask for tagged iterating (tags).
297 */
298 void __rcu **radix_tree_next_chunk(const struct radix_tree_root *,
299 struct radix_tree_iter *iter, unsigned flags);
300
301 /**
302 * radix_tree_iter_lookup - look up an index in the radix tree
303 * @root: radix tree root
304 * @iter: iterator state
305 * @index: key to look up
306 *
307 * If @index is present in the radix tree, this function returns the slot
308 * containing it and updates @iter to describe the entry. If @index is not
309 * present, it returns NULL.
310 */
311 static inline void __rcu **
312 radix_tree_iter_lookup(const struct radix_tree_root *root,
313 struct radix_tree_iter *iter, unsigned long index)
314 {
315 radix_tree_iter_init(iter, index);
316 return radix_tree_next_chunk(root, iter, RADIX_TREE_ITER_CONTIG);
317 }
318
319 /**
320 * radix_tree_iter_retry - retry this chunk of the iteration
321 * @iter: iterator state
322 *
323 * If we iterate over a tree protected only by the RCU lock, a race
324 * against deletion or creation may result in seeing a slot for which
325 * radix_tree_deref_retry() returns true. If so, call this function
326 * and continue the iteration.
327 */
328 static inline __must_check
329 void __rcu **radix_tree_iter_retry(struct radix_tree_iter *iter)
330 {
331 iter->next_index = iter->index;
332 iter->tags = 0;
333 return NULL;
334 }
335
336 static inline unsigned long
337 __radix_tree_iter_add(struct radix_tree_iter *iter, unsigned long slots)
338 {
339 return iter->index + slots;
340 }
341
342 /**
343 * radix_tree_iter_resume - resume iterating when the chunk may be invalid
344 * @slot: pointer to current slot
345 * @iter: iterator state
346 * Returns: New slot pointer
347 *
348 * If the iterator needs to release then reacquire a lock, the chunk may
349 * have been invalidated by an insertion or deletion. Call this function
350 * before releasing the lock to continue the iteration from the next index.
351 */
352 void __rcu **__must_check radix_tree_iter_resume(void __rcu **slot,
353 struct radix_tree_iter *iter);
354
355 /**
356 * radix_tree_chunk_size - get current chunk size
357 *
358 * @iter: pointer to radix tree iterator
359 * Returns: current chunk size
360 */
361 static __always_inline long
362 radix_tree_chunk_size(struct radix_tree_iter *iter)
363 {
364 return iter->next_index - iter->index;
365 }
366
367 /**
368 * radix_tree_next_slot - find next slot in chunk
369 *
370 * @slot: pointer to current slot
371 * @iter: pointer to iterator state
372 * @flags: RADIX_TREE_ITER_*, should be constant
373 * Returns: pointer to next slot, or NULL if there no more left
374 *
375 * This function updates @iter->index in the case of a successful lookup.
376 * For tagged lookup it also eats @iter->tags.
377 *
378 * There are several cases where 'slot' can be passed in as NULL to this
379 * function. These cases result from the use of radix_tree_iter_resume() or
380 * radix_tree_iter_retry(). In these cases we don't end up dereferencing
381 * 'slot' because either:
382 * a) we are doing tagged iteration and iter->tags has been set to 0, or
383 * b) we are doing non-tagged iteration, and iter->index and iter->next_index
384 * have been set up so that radix_tree_chunk_size() returns 1 or 0.
385 */
386 static __always_inline void __rcu **radix_tree_next_slot(void __rcu **slot,
387 struct radix_tree_iter *iter, unsigned flags)
388 {
389 if (flags & RADIX_TREE_ITER_TAGGED) {
390 iter->tags >>= 1;
391 if (unlikely(!iter->tags))
392 return NULL;
393 if (likely(iter->tags & 1ul)) {
394 iter->index = __radix_tree_iter_add(iter, 1);
395 slot++;
396 goto found;
397 }
398 if (!(flags & RADIX_TREE_ITER_CONTIG)) {
399 unsigned offset = __ffs(iter->tags);
400
401 iter->tags >>= offset++;
402 iter->index = __radix_tree_iter_add(iter, offset);
403 slot += offset;
404 goto found;
405 }
406 } else {
407 long count = radix_tree_chunk_size(iter);
408
409 while (--count > 0) {
410 slot++;
411 iter->index = __radix_tree_iter_add(iter, 1);
412
413 if (likely(*slot))
414 goto found;
415 if (flags & RADIX_TREE_ITER_CONTIG) {
416 /* forbid switching to the next chunk */
417 iter->next_index = 0;
418 break;
419 }
420 }
421 }
422 return NULL;
423
424 found:
425 return slot;
426 }
427
428 /**
429 * radix_tree_for_each_slot - iterate over non-empty slots
430 *
431 * @slot: the void** variable for pointer to slot
432 * @root: the struct radix_tree_root pointer
433 * @iter: the struct radix_tree_iter pointer
434 * @start: iteration starting index
435 *
436 * @slot points to radix tree slot, @iter->index contains its index.
437 */
438 #define radix_tree_for_each_slot(slot, root, iter, start) \
439 for (slot = radix_tree_iter_init(iter, start) ; \
440 slot || (slot = radix_tree_next_chunk(root, iter, 0)) ; \
441 slot = radix_tree_next_slot(slot, iter, 0))
442
443 /**
444 * radix_tree_for_each_tagged - iterate over tagged slots
445 *
446 * @slot: the void** variable for pointer to slot
447 * @root: the struct radix_tree_root pointer
448 * @iter: the struct radix_tree_iter pointer
449 * @start: iteration starting index
450 * @tag: tag index
451 *
452 * @slot points to radix tree slot, @iter->index contains its index.
453 */
454 #define radix_tree_for_each_tagged(slot, root, iter, start, tag) \
455 for (slot = radix_tree_iter_init(iter, start) ; \
456 slot || (slot = radix_tree_next_chunk(root, iter, \
457 RADIX_TREE_ITER_TAGGED | tag)) ; \
458 slot = radix_tree_next_slot(slot, iter, \
459 RADIX_TREE_ITER_TAGGED | tag))
460
461 #endif /* _LINUX_RADIX_TREE_H */